1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/video_coding/main/source/media_opt_util.h"
12
13 #include <algorithm>
14 #include <float.h>
15 #include <limits.h>
16 #include <math.h>
17
18 #include "webrtc/modules/interface/module_common_types.h"
19 #include "webrtc/modules/video_coding/codecs/vp8/include/vp8_common_types.h"
20 #include "webrtc/modules/video_coding/main/interface/video_coding_defines.h"
21 #include "webrtc/modules/video_coding/main/source/er_tables_xor.h"
22 #include "webrtc/modules/video_coding/main/source/fec_tables_xor.h"
23 #include "webrtc/modules/video_coding/main/source/nack_fec_tables.h"
24
25 namespace webrtc {
26 namespace media_optimization {
27
VCMProtectionMethod()28 VCMProtectionMethod::VCMProtectionMethod():
29 _effectivePacketLoss(0),
30 _protectionFactorK(0),
31 _protectionFactorD(0),
32 _residualPacketLossFec(0.0f),
33 _scaleProtKey(2.0f),
34 _maxPayloadSize(1460),
35 _qmRobustness(new VCMQmRobustness()),
36 _useUepProtectionK(false),
37 _useUepProtectionD(true),
38 _corrFecCost(1.0),
39 _type(kNone),
40 _efficiency(0)
41 {
42 //
43 }
44
~VCMProtectionMethod()45 VCMProtectionMethod::~VCMProtectionMethod()
46 {
47 delete _qmRobustness;
48 }
49 void
UpdateContentMetrics(const VideoContentMetrics * contentMetrics)50 VCMProtectionMethod::UpdateContentMetrics(const
51 VideoContentMetrics* contentMetrics)
52 {
53 _qmRobustness->UpdateContent(contentMetrics);
54 }
55
VCMNackFecMethod(int lowRttNackThresholdMs,int highRttNackThresholdMs)56 VCMNackFecMethod::VCMNackFecMethod(int lowRttNackThresholdMs,
57 int highRttNackThresholdMs)
58 : VCMFecMethod(),
59 _lowRttNackMs(lowRttNackThresholdMs),
60 _highRttNackMs(highRttNackThresholdMs),
61 _maxFramesFec(1) {
62 assert(lowRttNackThresholdMs >= -1 && highRttNackThresholdMs >= -1);
63 assert(highRttNackThresholdMs == -1 ||
64 lowRttNackThresholdMs <= highRttNackThresholdMs);
65 assert(lowRttNackThresholdMs > -1 || highRttNackThresholdMs == -1);
66 _type = kNackFec;
67 }
68
~VCMNackFecMethod()69 VCMNackFecMethod::~VCMNackFecMethod()
70 {
71 //
72 }
73 bool
ProtectionFactor(const VCMProtectionParameters * parameters)74 VCMNackFecMethod::ProtectionFactor(const VCMProtectionParameters* parameters)
75 {
76 // Hybrid Nack FEC has three operational modes:
77 // 1. Low RTT (below kLowRttNackMs) - Nack only: Set FEC rate
78 // (_protectionFactorD) to zero. -1 means no FEC.
79 // 2. High RTT (above _highRttNackMs) - FEC Only: Keep FEC factors.
80 // -1 means always allow NACK.
81 // 3. Medium RTT values - Hybrid mode: We will only nack the
82 // residual following the decoding of the FEC (refer to JB logic). FEC
83 // delta protection factor will be adjusted based on the RTT.
84
85 // Otherwise: we count on FEC; if the RTT is below a threshold, then we
86 // nack the residual, based on a decision made in the JB.
87
88 // Compute the protection factors
89 VCMFecMethod::ProtectionFactor(parameters);
90 if (_lowRttNackMs == -1 || parameters->rtt < _lowRttNackMs)
91 {
92 _protectionFactorD = 0;
93 VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
94 }
95
96 // When in Hybrid mode (RTT range), adjust FEC rates based on the
97 // RTT (NACK effectiveness) - adjustment factor is in the range [0,1].
98 else if (_highRttNackMs == -1 || parameters->rtt < _highRttNackMs)
99 {
100 // TODO(mikhal): Disabling adjustment temporarily.
101 // uint16_t rttIndex = (uint16_t) parameters->rtt;
102 float adjustRtt = 1.0f;// (float)VCMNackFecTable[rttIndex] / 100.0f;
103
104 // Adjust FEC with NACK on (for delta frame only)
105 // table depends on RTT relative to rttMax (NACK Threshold)
106 _protectionFactorD = static_cast<uint8_t>
107 (adjustRtt *
108 static_cast<float>(_protectionFactorD));
109 // update FEC rates after applying adjustment
110 VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
111 }
112
113 return true;
114 }
115
ComputeMaxFramesFec(const VCMProtectionParameters * parameters)116 int VCMNackFecMethod::ComputeMaxFramesFec(
117 const VCMProtectionParameters* parameters) {
118 if (parameters->numLayers > 2) {
119 // For more than 2 temporal layers we will only have FEC on the base layer,
120 // and the base layers will be pretty far apart. Therefore we force one
121 // frame FEC.
122 return 1;
123 }
124 // We set the max number of frames to base the FEC on so that on average
125 // we will have complete frames in one RTT. Note that this is an upper
126 // bound, and that the actual number of frames used for FEC is decided by the
127 // RTP module based on the actual number of packets and the protection factor.
128 float base_layer_framerate = parameters->frameRate /
129 static_cast<float>(1 << (parameters->numLayers - 1));
130 int max_frames_fec = std::max(static_cast<int>(
131 2.0f * base_layer_framerate * parameters->rtt /
132 1000.0f + 0.5f), 1);
133 // |kUpperLimitFramesFec| is the upper limit on how many frames we
134 // allow any FEC to be based on.
135 if (max_frames_fec > kUpperLimitFramesFec) {
136 max_frames_fec = kUpperLimitFramesFec;
137 }
138 return max_frames_fec;
139 }
140
MaxFramesFec() const141 int VCMNackFecMethod::MaxFramesFec() const {
142 return _maxFramesFec;
143 }
144
BitRateTooLowForFec(const VCMProtectionParameters * parameters)145 bool VCMNackFecMethod::BitRateTooLowForFec(
146 const VCMProtectionParameters* parameters) {
147 // Bitrate below which we turn off FEC, regardless of reported packet loss.
148 // The condition should depend on resolution and content. For now, use
149 // threshold on bytes per frame, with some effect for the frame size.
150 // The condition for turning off FEC is also based on other factors,
151 // such as |_numLayers|, |_maxFramesFec|, and |_rtt|.
152 int estimate_bytes_per_frame = 1000 * BitsPerFrame(parameters) / 8;
153 int max_bytes_per_frame = kMaxBytesPerFrameForFec;
154 int num_pixels = parameters->codecWidth * parameters->codecHeight;
155 if (num_pixels <= 352 * 288) {
156 max_bytes_per_frame = kMaxBytesPerFrameForFecLow;
157 } else if (num_pixels > 640 * 480) {
158 max_bytes_per_frame = kMaxBytesPerFrameForFecHigh;
159 }
160 // TODO (marpan): add condition based on maximum frames used for FEC,
161 // and expand condition based on frame size.
162 if (estimate_bytes_per_frame < max_bytes_per_frame &&
163 parameters->numLayers < 3 &&
164 parameters->rtt < kMaxRttTurnOffFec) {
165 return true;
166 }
167 return false;
168 }
169
170 bool
EffectivePacketLoss(const VCMProtectionParameters * parameters)171 VCMNackFecMethod::EffectivePacketLoss(const VCMProtectionParameters* parameters)
172 {
173 // Set the effective packet loss for encoder (based on FEC code).
174 // Compute the effective packet loss and residual packet loss due to FEC.
175 VCMFecMethod::EffectivePacketLoss(parameters);
176 return true;
177 }
178
179 bool
UpdateParameters(const VCMProtectionParameters * parameters)180 VCMNackFecMethod::UpdateParameters(const VCMProtectionParameters* parameters)
181 {
182 ProtectionFactor(parameters);
183 EffectivePacketLoss(parameters);
184 _maxFramesFec = ComputeMaxFramesFec(parameters);
185 if (BitRateTooLowForFec(parameters)) {
186 _protectionFactorK = 0;
187 _protectionFactorD = 0;
188 }
189
190 // Efficiency computation is based on FEC and NACK
191
192 // Add FEC cost: ignore I frames for now
193 float fecRate = static_cast<float> (_protectionFactorD) / 255.0f;
194 _efficiency = parameters->bitRate * fecRate * _corrFecCost;
195
196 // Add NACK cost, when applicable
197 if (_highRttNackMs == -1 || parameters->rtt < _highRttNackMs)
198 {
199 // nackCost = (bitRate - nackCost) * (lossPr)
200 _efficiency += parameters->bitRate * _residualPacketLossFec /
201 (1.0f + _residualPacketLossFec);
202 }
203
204 // Protection/fec rates obtained above are defined relative to total number
205 // of packets (total rate: source + fec) FEC in RTP module assumes
206 // protection factor is defined relative to source number of packets so we
207 // should convert the factor to reduce mismatch between mediaOpt's rate and
208 // the actual one
209 _protectionFactorK = VCMFecMethod::ConvertFECRate(_protectionFactorK);
210 _protectionFactorD = VCMFecMethod::ConvertFECRate(_protectionFactorD);
211
212 return true;
213 }
214
VCMNackMethod()215 VCMNackMethod::VCMNackMethod():
216 VCMProtectionMethod()
217 {
218 _type = kNack;
219 }
220
~VCMNackMethod()221 VCMNackMethod::~VCMNackMethod()
222 {
223 //
224 }
225
226 bool
EffectivePacketLoss(const VCMProtectionParameters * parameter)227 VCMNackMethod::EffectivePacketLoss(const VCMProtectionParameters* parameter)
228 {
229 // Effective Packet Loss, NA in current version.
230 _effectivePacketLoss = 0;
231 return true;
232 }
233
234 bool
UpdateParameters(const VCMProtectionParameters * parameters)235 VCMNackMethod::UpdateParameters(const VCMProtectionParameters* parameters)
236 {
237 // Compute the effective packet loss
238 EffectivePacketLoss(parameters);
239
240 // nackCost = (bitRate - nackCost) * (lossPr)
241 _efficiency = parameters->bitRate * parameters->lossPr /
242 (1.0f + parameters->lossPr);
243 return true;
244 }
245
VCMFecMethod()246 VCMFecMethod::VCMFecMethod():
247 VCMProtectionMethod()
248 {
249 _type = kFec;
250 }
~VCMFecMethod()251 VCMFecMethod::~VCMFecMethod()
252 {
253 //
254 }
255
256 uint8_t
BoostCodeRateKey(uint8_t packetFrameDelta,uint8_t packetFrameKey) const257 VCMFecMethod::BoostCodeRateKey(uint8_t packetFrameDelta,
258 uint8_t packetFrameKey) const
259 {
260 uint8_t boostRateKey = 2;
261 // Default: ratio scales the FEC protection up for I frames
262 uint8_t ratio = 1;
263
264 if (packetFrameDelta > 0)
265 {
266 ratio = (int8_t) (packetFrameKey / packetFrameDelta);
267 }
268 ratio = VCM_MAX(boostRateKey, ratio);
269
270 return ratio;
271 }
272
273 uint8_t
ConvertFECRate(uint8_t codeRateRTP) const274 VCMFecMethod::ConvertFECRate(uint8_t codeRateRTP) const
275 {
276 return static_cast<uint8_t> (VCM_MIN(255,(0.5 + 255.0 * codeRateRTP /
277 (float)(255 - codeRateRTP))));
278 }
279
280 // Update FEC with protectionFactorD
281 void
UpdateProtectionFactorD(uint8_t protectionFactorD)282 VCMFecMethod::UpdateProtectionFactorD(uint8_t protectionFactorD)
283 {
284 _protectionFactorD = protectionFactorD;
285 }
286
287 // Update FEC with protectionFactorK
288 void
UpdateProtectionFactorK(uint8_t protectionFactorK)289 VCMFecMethod::UpdateProtectionFactorK(uint8_t protectionFactorK)
290 {
291 _protectionFactorK = protectionFactorK;
292 }
293
294 // AvgRecoveryFEC: computes the residual packet loss (RPL) function.
295 // This is the average recovery from the FEC, assuming random packet loss model.
296 // Computed off-line for a range of FEC code parameters and loss rates.
297 float
AvgRecoveryFEC(const VCMProtectionParameters * parameters) const298 VCMFecMethod::AvgRecoveryFEC(const VCMProtectionParameters* parameters) const
299 {
300 // Total (avg) bits available per frame: total rate over actual/sent frame
301 // rate units are kbits/frame
302 const uint16_t bitRatePerFrame = static_cast<uint16_t>
303 (parameters->bitRate / (parameters->frameRate));
304
305 // Total (average) number of packets per frame (source and fec):
306 const uint8_t avgTotPackets = 1 + static_cast<uint8_t>
307 (static_cast<float> (bitRatePerFrame * 1000.0) /
308 static_cast<float> (8.0 * _maxPayloadSize) + 0.5);
309
310 const float protectionFactor = static_cast<float>(_protectionFactorD) /
311 255.0;
312
313 // Round down for estimated #FEC packets/frame, to keep
314 // |fecPacketsPerFrame| <= |sourcePacketsPerFrame|.
315 uint8_t fecPacketsPerFrame = static_cast<uint8_t>
316 (protectionFactor * avgTotPackets);
317
318 uint8_t sourcePacketsPerFrame = avgTotPackets - fecPacketsPerFrame;
319
320 if ( (fecPacketsPerFrame == 0) || (sourcePacketsPerFrame == 0) )
321 {
322 // No protection, or rate too low: so average recovery from FEC == 0.
323 return 0.0;
324 }
325
326 // Table defined up to kMaxNumPackets
327 if (sourcePacketsPerFrame > kMaxNumPackets)
328 {
329 sourcePacketsPerFrame = kMaxNumPackets;
330 }
331
332 // Table defined up to kMaxNumPackets
333 if (fecPacketsPerFrame > kMaxNumPackets)
334 {
335 fecPacketsPerFrame = kMaxNumPackets;
336 }
337
338 // Code index for tables: up to (kMaxNumPackets * kMaxNumPackets)
339 uint16_t codeIndexTable[kMaxNumPackets * kMaxNumPackets];
340 uint16_t k = 0;
341 for (uint8_t i = 1; i <= kMaxNumPackets; i++)
342 {
343 for (uint8_t j = 1; j <= i; j++)
344 {
345 codeIndexTable[(j - 1) * kMaxNumPackets + i - 1] = k;
346 k += 1;
347 }
348 }
349
350 uint8_t lossRate = static_cast<uint8_t> (255.0 *
351 parameters->lossPr + 0.5f);
352
353 // Constrain lossRate to 50%: tables defined up to 50%
354 if (lossRate >= kPacketLossMax)
355 {
356 lossRate = kPacketLossMax - 1;
357 }
358
359 const uint16_t codeIndex = (fecPacketsPerFrame - 1) * kMaxNumPackets +
360 (sourcePacketsPerFrame - 1);
361
362 const uint16_t indexTable = codeIndexTable[codeIndex] * kPacketLossMax +
363 lossRate;
364
365 // Check on table index
366 assert(indexTable < kSizeAvgFECRecoveryXOR);
367 float avgFecRecov = static_cast<float>(kAvgFECRecoveryXOR[indexTable]);
368
369 return avgFecRecov;
370 }
371
372 bool
ProtectionFactor(const VCMProtectionParameters * parameters)373 VCMFecMethod::ProtectionFactor(const VCMProtectionParameters* parameters)
374 {
375 // FEC PROTECTION SETTINGS: varies with packet loss and bitrate
376
377 // No protection if (filtered) packetLoss is 0
378 uint8_t packetLoss = (uint8_t) (255 * parameters->lossPr);
379 if (packetLoss == 0)
380 {
381 _protectionFactorK = 0;
382 _protectionFactorD = 0;
383 return true;
384 }
385
386 // Parameters for FEC setting:
387 // first partition size, thresholds, table pars, spatial resoln fac.
388
389 // First partition protection: ~ 20%
390 uint8_t firstPartitionProt = (uint8_t) (255 * 0.20);
391
392 // Minimum protection level needed to generate one FEC packet for one
393 // source packet/frame (in RTP sender)
394 uint8_t minProtLevelFec = 85;
395
396 // Threshold on packetLoss and bitRrate/frameRate (=average #packets),
397 // above which we allocate protection to cover at least first partition.
398 uint8_t lossThr = 0;
399 uint8_t packetNumThr = 1;
400
401 // Parameters for range of rate index of table.
402 const uint8_t ratePar1 = 5;
403 const uint8_t ratePar2 = 49;
404
405 // Spatial resolution size, relative to a reference size.
406 float spatialSizeToRef = static_cast<float>
407 (parameters->codecWidth * parameters->codecHeight) /
408 (static_cast<float>(704 * 576));
409 // resolnFac: This parameter will generally increase/decrease the FEC rate
410 // (for fixed bitRate and packetLoss) based on system size.
411 // Use a smaller exponent (< 1) to control/soften system size effect.
412 const float resolnFac = 1.0 / powf(spatialSizeToRef, 0.3f);
413
414 const int bitRatePerFrame = BitsPerFrame(parameters);
415
416
417 // Average number of packets per frame (source and fec):
418 const uint8_t avgTotPackets = 1 + (uint8_t)
419 ((float) bitRatePerFrame * 1000.0
420 / (float) (8.0 * _maxPayloadSize) + 0.5);
421
422 // FEC rate parameters: for P and I frame
423 uint8_t codeRateDelta = 0;
424 uint8_t codeRateKey = 0;
425
426 // Get index for table: the FEC protection depends on an effective rate.
427 // The range on the rate index corresponds to rates (bps)
428 // from ~200k to ~8000k, for 30fps
429 const uint16_t effRateFecTable = static_cast<uint16_t>
430 (resolnFac * bitRatePerFrame);
431 uint8_t rateIndexTable =
432 (uint8_t) VCM_MAX(VCM_MIN((effRateFecTable - ratePar1) /
433 ratePar1, ratePar2), 0);
434
435 // Restrict packet loss range to 50:
436 // current tables defined only up to 50%
437 if (packetLoss >= kPacketLossMax)
438 {
439 packetLoss = kPacketLossMax - 1;
440 }
441 uint16_t indexTable = rateIndexTable * kPacketLossMax + packetLoss;
442
443 // Check on table index
444 assert(indexTable < kSizeCodeRateXORTable);
445
446 // Protection factor for P frame
447 codeRateDelta = kCodeRateXORTable[indexTable];
448
449 if (packetLoss > lossThr && avgTotPackets > packetNumThr)
450 {
451 // Set a minimum based on first partition size.
452 if (codeRateDelta < firstPartitionProt)
453 {
454 codeRateDelta = firstPartitionProt;
455 }
456 }
457
458 // Check limit on amount of protection for P frame; 50% is max.
459 if (codeRateDelta >= kPacketLossMax)
460 {
461 codeRateDelta = kPacketLossMax - 1;
462 }
463
464 float adjustFec = 1.0f;
465 // Avoid additional adjustments when layers are active.
466 // TODO(mikhal/marco): Update adjusmtent based on layer info.
467 if (parameters->numLayers == 1)
468 {
469 adjustFec = _qmRobustness->AdjustFecFactor(codeRateDelta,
470 parameters->bitRate,
471 parameters->frameRate,
472 parameters->rtt,
473 packetLoss);
474 }
475
476 codeRateDelta = static_cast<uint8_t>(codeRateDelta * adjustFec);
477
478 // For Key frame:
479 // Effectively at a higher rate, so we scale/boost the rate
480 // The boost factor may depend on several factors: ratio of packet
481 // number of I to P frames, how much protection placed on P frames, etc.
482 const uint8_t packetFrameDelta = (uint8_t)
483 (0.5 + parameters->packetsPerFrame);
484 const uint8_t packetFrameKey = (uint8_t)
485 (0.5 + parameters->packetsPerFrameKey);
486 const uint8_t boostKey = BoostCodeRateKey(packetFrameDelta,
487 packetFrameKey);
488
489 rateIndexTable = (uint8_t) VCM_MAX(VCM_MIN(
490 1 + (boostKey * effRateFecTable - ratePar1) /
491 ratePar1,ratePar2),0);
492 uint16_t indexTableKey = rateIndexTable * kPacketLossMax + packetLoss;
493
494 indexTableKey = VCM_MIN(indexTableKey, kSizeCodeRateXORTable);
495
496 // Check on table index
497 assert(indexTableKey < kSizeCodeRateXORTable);
498
499 // Protection factor for I frame
500 codeRateKey = kCodeRateXORTable[indexTableKey];
501
502 // Boosting for Key frame.
503 int boostKeyProt = _scaleProtKey * codeRateDelta;
504 if (boostKeyProt >= kPacketLossMax)
505 {
506 boostKeyProt = kPacketLossMax - 1;
507 }
508
509 // Make sure I frame protection is at least larger than P frame protection,
510 // and at least as high as filtered packet loss.
511 codeRateKey = static_cast<uint8_t> (VCM_MAX(packetLoss,
512 VCM_MAX(boostKeyProt, codeRateKey)));
513
514 // Check limit on amount of protection for I frame: 50% is max.
515 if (codeRateKey >= kPacketLossMax)
516 {
517 codeRateKey = kPacketLossMax - 1;
518 }
519
520 _protectionFactorK = codeRateKey;
521 _protectionFactorD = codeRateDelta;
522
523 // Generally there is a rate mis-match between the FEC cost estimated
524 // in mediaOpt and the actual FEC cost sent out in RTP module.
525 // This is more significant at low rates (small # of source packets), where
526 // the granularity of the FEC decreases. In this case, non-zero protection
527 // in mediaOpt may generate 0 FEC packets in RTP sender (since actual #FEC
528 // is based on rounding off protectionFactor on actual source packet number).
529 // The correction factor (_corrFecCost) attempts to corrects this, at least
530 // for cases of low rates (small #packets) and low protection levels.
531
532 float numPacketsFl = 1.0f + ((float) bitRatePerFrame * 1000.0
533 / (float) (8.0 * _maxPayloadSize) + 0.5);
534
535 const float estNumFecGen = 0.5f + static_cast<float> (_protectionFactorD *
536 numPacketsFl / 255.0f);
537
538
539 // We reduce cost factor (which will reduce overhead for FEC and
540 // hybrid method) and not the protectionFactor.
541 _corrFecCost = 1.0f;
542 if (estNumFecGen < 1.1f && _protectionFactorD < minProtLevelFec)
543 {
544 _corrFecCost = 0.5f;
545 }
546 if (estNumFecGen < 0.9f && _protectionFactorD < minProtLevelFec)
547 {
548 _corrFecCost = 0.0f;
549 }
550
551 // TODO (marpan): Set the UEP protection on/off for Key and Delta frames
552 _useUepProtectionK = _qmRobustness->SetUepProtection(codeRateKey,
553 parameters->bitRate,
554 packetLoss,
555 0);
556
557 _useUepProtectionD = _qmRobustness->SetUepProtection(codeRateDelta,
558 parameters->bitRate,
559 packetLoss,
560 1);
561
562 // DONE WITH FEC PROTECTION SETTINGS
563 return true;
564 }
565
BitsPerFrame(const VCMProtectionParameters * parameters)566 int VCMFecMethod::BitsPerFrame(const VCMProtectionParameters* parameters) {
567 // When temporal layers are available FEC will only be applied on the base
568 // layer.
569 const float bitRateRatio =
570 kVp8LayerRateAlloction[parameters->numLayers - 1][0];
571 float frameRateRatio = powf(1 / 2.0, parameters->numLayers - 1);
572 float bitRate = parameters->bitRate * bitRateRatio;
573 float frameRate = parameters->frameRate * frameRateRatio;
574
575 // TODO(mikhal): Update factor following testing.
576 float adjustmentFactor = 1;
577
578 // Average bits per frame (units of kbits)
579 return static_cast<int>(adjustmentFactor * bitRate / frameRate);
580 }
581
582 bool
EffectivePacketLoss(const VCMProtectionParameters * parameters)583 VCMFecMethod::EffectivePacketLoss(const VCMProtectionParameters* parameters)
584 {
585 // Effective packet loss to encoder is based on RPL (residual packet loss)
586 // this is a soft setting based on degree of FEC protection
587 // RPL = received/input packet loss - average_FEC_recovery
588 // note: received/input packet loss may be filtered based on FilteredLoss
589
590 // The packet loss:
591 uint8_t packetLoss = (uint8_t) (255 * parameters->lossPr);
592
593 float avgFecRecov = AvgRecoveryFEC(parameters);
594
595 // Residual Packet Loss:
596 _residualPacketLossFec = (float) (packetLoss - avgFecRecov) / 255.0f;
597
598 // Effective Packet Loss, NA in current version.
599 _effectivePacketLoss = 0;
600
601 return true;
602 }
603
604 bool
UpdateParameters(const VCMProtectionParameters * parameters)605 VCMFecMethod::UpdateParameters(const VCMProtectionParameters* parameters)
606 {
607 // Compute the protection factor
608 ProtectionFactor(parameters);
609
610 // Compute the effective packet loss
611 EffectivePacketLoss(parameters);
612
613 // Compute the bit cost
614 // Ignore key frames for now.
615 float fecRate = static_cast<float> (_protectionFactorD) / 255.0f;
616 if (fecRate >= 0.0f)
617 {
618 // use this formula if the fecRate (protection factor) is defined
619 // relative to number of source packets
620 // this is the case for the previous tables:
621 // _efficiency = parameters->bitRate * ( 1.0 - 1.0 / (1.0 + fecRate));
622
623 // in the new tables, the fecRate is defined relative to total number of
624 // packets (total rate), so overhead cost is:
625 _efficiency = parameters->bitRate * fecRate * _corrFecCost;
626 }
627 else
628 {
629 _efficiency = 0.0f;
630 }
631
632 // Protection/fec rates obtained above is defined relative to total number
633 // of packets (total rate: source+fec) FEC in RTP module assumes protection
634 // factor is defined relative to source number of packets so we should
635 // convert the factor to reduce mismatch between mediaOpt suggested rate and
636 // the actual rate
637 _protectionFactorK = ConvertFECRate(_protectionFactorK);
638 _protectionFactorD = ConvertFECRate(_protectionFactorD);
639
640 return true;
641 }
VCMLossProtectionLogic(int64_t nowMs)642 VCMLossProtectionLogic::VCMLossProtectionLogic(int64_t nowMs):
643 _selectedMethod(NULL),
644 _currentParameters(),
645 _rtt(0),
646 _lossPr(0.0f),
647 _bitRate(0.0f),
648 _frameRate(0.0f),
649 _keyFrameSize(0.0f),
650 _fecRateKey(0),
651 _fecRateDelta(0),
652 _lastPrUpdateT(0),
653 _lossPr255(0.9999f),
654 _lossPrHistory(),
655 _shortMaxLossPr255(0),
656 _packetsPerFrame(0.9999f),
657 _packetsPerFrameKey(0.9999f),
658 _residualPacketLossFec(0),
659 _codecWidth(0),
660 _codecHeight(0),
661 _numLayers(1)
662 {
663 Reset(nowMs);
664 }
665
~VCMLossProtectionLogic()666 VCMLossProtectionLogic::~VCMLossProtectionLogic()
667 {
668 Release();
669 }
670
671 bool
SetMethod(enum VCMProtectionMethodEnum newMethodType)672 VCMLossProtectionLogic::SetMethod(enum VCMProtectionMethodEnum newMethodType)
673 {
674 if (_selectedMethod != NULL)
675 {
676 if (_selectedMethod->Type() == newMethodType)
677 {
678 // Nothing to update
679 return false;
680 }
681 // New method - delete existing one
682 delete _selectedMethod;
683 }
684 VCMProtectionMethod *newMethod = NULL;
685 switch (newMethodType)
686 {
687 case kNack:
688 {
689 newMethod = new VCMNackMethod();
690 break;
691 }
692 case kFec:
693 {
694 newMethod = new VCMFecMethod();
695 break;
696 }
697 case kNackFec:
698 {
699 // Default to always having NACK enabled for the hybrid mode.
700 newMethod = new VCMNackFecMethod(kLowRttNackMs, -1);
701 break;
702 }
703 default:
704 {
705 return false;
706 break;
707 }
708
709 }
710 _selectedMethod = newMethod;
711 return true;
712 }
713 bool
RemoveMethod(enum VCMProtectionMethodEnum method)714 VCMLossProtectionLogic::RemoveMethod(enum VCMProtectionMethodEnum method)
715 {
716 if (_selectedMethod == NULL)
717 {
718 return false;
719 }
720 else if (_selectedMethod->Type() == method)
721 {
722 delete _selectedMethod;
723 _selectedMethod = NULL;
724 }
725 return true;
726 }
727
728 float
RequiredBitRate() const729 VCMLossProtectionLogic::RequiredBitRate() const
730 {
731 float RequiredBitRate = 0.0f;
732 if (_selectedMethod != NULL)
733 {
734 RequiredBitRate = _selectedMethod->RequiredBitRate();
735 }
736 return RequiredBitRate;
737 }
738
739 void
UpdateRtt(uint32_t rtt)740 VCMLossProtectionLogic::UpdateRtt(uint32_t rtt)
741 {
742 _rtt = rtt;
743 }
744
745 void
UpdateResidualPacketLoss(float residualPacketLoss)746 VCMLossProtectionLogic::UpdateResidualPacketLoss(float residualPacketLoss)
747 {
748 _residualPacketLossFec = residualPacketLoss;
749 }
750
751 void
UpdateMaxLossHistory(uint8_t lossPr255,int64_t now)752 VCMLossProtectionLogic::UpdateMaxLossHistory(uint8_t lossPr255,
753 int64_t now)
754 {
755 if (_lossPrHistory[0].timeMs >= 0 &&
756 now - _lossPrHistory[0].timeMs < kLossPrShortFilterWinMs)
757 {
758 if (lossPr255 > _shortMaxLossPr255)
759 {
760 _shortMaxLossPr255 = lossPr255;
761 }
762 }
763 else
764 {
765 // Only add a new value to the history once a second
766 if (_lossPrHistory[0].timeMs == -1)
767 {
768 // First, no shift
769 _shortMaxLossPr255 = lossPr255;
770 }
771 else
772 {
773 // Shift
774 for (int32_t i = (kLossPrHistorySize - 2); i >= 0; i--)
775 {
776 _lossPrHistory[i + 1].lossPr255 = _lossPrHistory[i].lossPr255;
777 _lossPrHistory[i + 1].timeMs = _lossPrHistory[i].timeMs;
778 }
779 }
780 if (_shortMaxLossPr255 == 0)
781 {
782 _shortMaxLossPr255 = lossPr255;
783 }
784
785 _lossPrHistory[0].lossPr255 = _shortMaxLossPr255;
786 _lossPrHistory[0].timeMs = now;
787 _shortMaxLossPr255 = 0;
788 }
789 }
790
791 uint8_t
MaxFilteredLossPr(int64_t nowMs) const792 VCMLossProtectionLogic::MaxFilteredLossPr(int64_t nowMs) const
793 {
794 uint8_t maxFound = _shortMaxLossPr255;
795 if (_lossPrHistory[0].timeMs == -1)
796 {
797 return maxFound;
798 }
799 for (int32_t i = 0; i < kLossPrHistorySize; i++)
800 {
801 if (_lossPrHistory[i].timeMs == -1)
802 {
803 break;
804 }
805 if (nowMs - _lossPrHistory[i].timeMs >
806 kLossPrHistorySize * kLossPrShortFilterWinMs)
807 {
808 // This sample (and all samples after this) is too old
809 break;
810 }
811 if (_lossPrHistory[i].lossPr255 > maxFound)
812 {
813 // This sample is the largest one this far into the history
814 maxFound = _lossPrHistory[i].lossPr255;
815 }
816 }
817 return maxFound;
818 }
819
FilteredLoss(int64_t nowMs,FilterPacketLossMode filter_mode,uint8_t lossPr255)820 uint8_t VCMLossProtectionLogic::FilteredLoss(
821 int64_t nowMs,
822 FilterPacketLossMode filter_mode,
823 uint8_t lossPr255) {
824
825 // Update the max window filter.
826 UpdateMaxLossHistory(lossPr255, nowMs);
827
828 // Update the recursive average filter.
829 _lossPr255.Apply(static_cast<float> (nowMs - _lastPrUpdateT),
830 static_cast<float> (lossPr255));
831 _lastPrUpdateT = nowMs;
832
833 // Filtered loss: default is received loss (no filtering).
834 uint8_t filtered_loss = lossPr255;
835
836 switch (filter_mode) {
837 case kNoFilter:
838 break;
839 case kAvgFilter:
840 filtered_loss = static_cast<uint8_t>(_lossPr255.filtered() + 0.5);
841 break;
842 case kMaxFilter:
843 filtered_loss = MaxFilteredLossPr(nowMs);
844 break;
845 }
846
847 return filtered_loss;
848 }
849
850 void
UpdateFilteredLossPr(uint8_t packetLossEnc)851 VCMLossProtectionLogic::UpdateFilteredLossPr(uint8_t packetLossEnc)
852 {
853 _lossPr = (float) packetLossEnc / (float) 255.0;
854 }
855
856 void
UpdateBitRate(float bitRate)857 VCMLossProtectionLogic::UpdateBitRate(float bitRate)
858 {
859 _bitRate = bitRate;
860 }
861
862 void
UpdatePacketsPerFrame(float nPackets,int64_t nowMs)863 VCMLossProtectionLogic::UpdatePacketsPerFrame(float nPackets, int64_t nowMs)
864 {
865 _packetsPerFrame.Apply(static_cast<float>(nowMs - _lastPacketPerFrameUpdateT),
866 nPackets);
867 _lastPacketPerFrameUpdateT = nowMs;
868 }
869
870 void
UpdatePacketsPerFrameKey(float nPackets,int64_t nowMs)871 VCMLossProtectionLogic::UpdatePacketsPerFrameKey(float nPackets, int64_t nowMs)
872 {
873 _packetsPerFrameKey.Apply(static_cast<float>(nowMs -
874 _lastPacketPerFrameUpdateTKey), nPackets);
875 _lastPacketPerFrameUpdateTKey = nowMs;
876 }
877
878 void
UpdateKeyFrameSize(float keyFrameSize)879 VCMLossProtectionLogic::UpdateKeyFrameSize(float keyFrameSize)
880 {
881 _keyFrameSize = keyFrameSize;
882 }
883
884 void
UpdateFrameSize(uint16_t width,uint16_t height)885 VCMLossProtectionLogic::UpdateFrameSize(uint16_t width,
886 uint16_t height)
887 {
888 _codecWidth = width;
889 _codecHeight = height;
890 }
891
UpdateNumLayers(int numLayers)892 void VCMLossProtectionLogic::UpdateNumLayers(int numLayers) {
893 _numLayers = (numLayers == 0) ? 1 : numLayers;
894 }
895
896 bool
UpdateMethod()897 VCMLossProtectionLogic::UpdateMethod()
898 {
899 if (_selectedMethod == NULL)
900 {
901 return false;
902 }
903 _currentParameters.rtt = _rtt;
904 _currentParameters.lossPr = _lossPr;
905 _currentParameters.bitRate = _bitRate;
906 _currentParameters.frameRate = _frameRate; // rename actual frame rate?
907 _currentParameters.keyFrameSize = _keyFrameSize;
908 _currentParameters.fecRateDelta = _fecRateDelta;
909 _currentParameters.fecRateKey = _fecRateKey;
910 _currentParameters.packetsPerFrame = _packetsPerFrame.filtered();
911 _currentParameters.packetsPerFrameKey = _packetsPerFrameKey.filtered();
912 _currentParameters.residualPacketLossFec = _residualPacketLossFec;
913 _currentParameters.codecWidth = _codecWidth;
914 _currentParameters.codecHeight = _codecHeight;
915 _currentParameters.numLayers = _numLayers;
916 return _selectedMethod->UpdateParameters(&_currentParameters);
917 }
918
919 VCMProtectionMethod*
SelectedMethod() const920 VCMLossProtectionLogic::SelectedMethod() const
921 {
922 return _selectedMethod;
923 }
924
925 VCMProtectionMethodEnum
SelectedType() const926 VCMLossProtectionLogic::SelectedType() const
927 {
928 return _selectedMethod->Type();
929 }
930
931 void
Reset(int64_t nowMs)932 VCMLossProtectionLogic::Reset(int64_t nowMs)
933 {
934 _lastPrUpdateT = nowMs;
935 _lastPacketPerFrameUpdateT = nowMs;
936 _lastPacketPerFrameUpdateTKey = nowMs;
937 _lossPr255.Reset(0.9999f);
938 _packetsPerFrame.Reset(0.9999f);
939 _fecRateDelta = _fecRateKey = 0;
940 for (int32_t i = 0; i < kLossPrHistorySize; i++)
941 {
942 _lossPrHistory[i].lossPr255 = 0;
943 _lossPrHistory[i].timeMs = -1;
944 }
945 _shortMaxLossPr255 = 0;
946 Release();
947 }
948
949 void
Release()950 VCMLossProtectionLogic::Release()
951 {
952 delete _selectedMethod;
953 _selectedMethod = NULL;
954 }
955
956 } // namespace media_optimization
957 } // namespace webrtc
958