1 /*
2 * Copyright (C) 2013 Google Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are
6 * met:
7 *
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above
11 * copyright notice, this list of conditions and the following disclaimer
12 * in the documentation and/or other materials provided with the
13 * distribution.
14 * * Neither the name of Google Inc. nor the names of its
15 * contributors may be used to endorse or promote products derived from
16 * this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #ifndef WTF_PartitionAlloc_h
32 #define WTF_PartitionAlloc_h
33
34 // DESCRIPTION
35 // partitionAlloc() / partitionAllocGeneric() and partitionFree() /
36 // partitionFreeGeneric() are approximately analagous to malloc() and free().
37 //
38 // The main difference is that a PartitionRoot / PartitionRootGeneric object
39 // must be supplied to these functions, representing a specific "heap partition"
40 // that will be used to satisfy the allocation. Different partitions are
41 // guaranteed to exist in separate address spaces, including being separate from
42 // the main system heap. If the contained objects are all freed, physical memory
43 // is returned to the system but the address space remains reserved.
44 //
45 // THE ONLY LEGITIMATE WAY TO OBTAIN A PartitionRoot IS THROUGH THE
46 // SizeSpecificPartitionAllocator / PartitionAllocatorGeneric classes. To
47 // minimize the instruction count to the fullest extent possible, the
48 // PartitonRoot is really just a header adjacent to other data areas provided
49 // by the allocator class.
50 //
51 // The partitionAlloc() variant of the API has the following caveats:
52 // - Allocations and frees against a single partition must be single threaded.
53 // - Allocations must not exceed a max size, chosen at compile-time via a
54 // templated parameter to PartitionAllocator.
55 // - Allocation sizes must be aligned to the system pointer size.
56 // - Allocations are bucketed exactly according to size.
57 //
58 // And for partitionAllocGeneric():
59 // - Multi-threaded use against a single partition is ok; locking is handled.
60 // - Allocations of any arbitrary size can be handled (subject to a limit of
61 // INT_MAX bytes for security reasons).
62 // - Bucketing is by approximate size, for example an allocation of 4000 bytes
63 // might be placed into a 4096-byte bucket. Bucket sizes are chosen to try and
64 // keep worst-case waste to ~10%.
65 //
66 // The allocators are designed to be extremely fast, thanks to the following
67 // properties and design:
68 // - Just a single (reasonably predicatable) branch in the hot / fast path for
69 // both allocating and (significantly) freeing.
70 // - A minimal number of operations in the hot / fast path, with the slow paths
71 // in separate functions, leading to the possibility of inlining.
72 // - Each partition page (which is usually multiple physical pages) has a
73 // metadata structure which allows fast mapping of free() address to an
74 // underlying bucket.
75 // - Supports a lock-free API for fast performance in single-threaded cases.
76 // - The freelist for a given bucket is split across a number of partition
77 // pages, enabling various simple tricks to try and minimize fragmentation.
78 // - Fine-grained bucket sizes leading to less waste and better packing.
79 //
80 // The following security properties are provided at this time:
81 // - Linear overflows cannot corrupt into the partition.
82 // - Linear overflows cannot corrupt out of the partition.
83 // - Freed pages will only be re-used within the partition.
84 // (exception: large allocations > ~1MB)
85 // - Freed pages will only hold same-sized objects when re-used.
86 // - Dereference of freelist pointer should fault.
87 // - Out-of-line main metadata: linear over or underflow cannot corrupt it.
88 // - Partial pointer overwrite of freelist pointer should fault.
89 // - Rudimentary double-free detection.
90 // - Large allocations (> ~1MB) are guard-paged at the beginning and end.
91 //
92 // The following security properties could be investigated in the future:
93 // - Per-object bucketing (instead of per-size) is mostly available at the API,
94 // but not used yet.
95 // - No randomness of freelist entries or bucket position.
96 // - Better checking for wild pointers in free().
97 // - Better freelist masking function to guarantee fault on 32-bit.
98
99 #include "wtf/Assertions.h"
100 #include "wtf/BitwiseOperations.h"
101 #include "wtf/ByteSwap.h"
102 #include "wtf/CPU.h"
103 #include "wtf/PageAllocator.h"
104 #include "wtf/SpinLock.h"
105
106 #include <limits.h>
107
108 #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
109 #include <stdlib.h>
110 #endif
111
112 #if ENABLE(ASSERT)
113 #include <string.h>
114 #endif
115
116 namespace WTF {
117
118 // Maximum size of a partition's mappings. 2046MB. Note that the total amount of
119 // bytes allocatable at the API will be smaller. This is because things like
120 // guard pages, metadata, page headers and wasted space come out of the total.
121 // The 2GB is not necessarily contiguous in virtual address space.
122 static const size_t kMaxPartitionSize = 2046u * 1024u * 1024u;
123
124 // Allocation granularity of sizeof(void*) bytes.
125 static const size_t kAllocationGranularity = sizeof(void*);
126 static const size_t kAllocationGranularityMask = kAllocationGranularity - 1;
127 static const size_t kBucketShift = (kAllocationGranularity == 8) ? 3 : 2;
128
129 // Underlying partition storage pages are a power-of-two size. It is typical
130 // for a partition page to be based on multiple system pages. Most references to
131 // "page" refer to partition pages.
132 // We also have the concept of "super pages" -- these are the underlying system
133 // allocations we make. Super pages contain multiple partition pages inside them
134 // and include space for a small amount of metadata per partition page.
135 // Inside super pages, we store "slot spans". A slot span is a continguous range
136 // of one or more partition pages that stores allocations of the same size.
137 // Slot span sizes are adjusted depending on the allocation size, to make sure
138 // the packing does not lead to unused (wasted) space at the end of the last
139 // system page of the span. For our current max slot span size of 64k and other
140 // constant values, we pack _all_ partitionAllocGeneric() sizes perfectly up
141 // against the end of a system page.
142 static const size_t kPartitionPageShift = 14; // 16KB
143 static const size_t kPartitionPageSize = 1 << kPartitionPageShift;
144 static const size_t kPartitionPageOffsetMask = kPartitionPageSize - 1;
145 static const size_t kPartitionPageBaseMask = ~kPartitionPageOffsetMask;
146 static const size_t kMaxPartitionPagesPerSlotSpan = 4;
147
148 // To avoid fragmentation via never-used freelist entries, we hand out partition
149 // freelist sections gradually, in units of the dominant system page size.
150 // What we're actually doing is avoiding filling the full partition page
151 // (typically 16KB) will freelist pointers right away. Writing freelist
152 // pointers will fault and dirty a private page, which is very wasteful if we
153 // never actually store objects there.
154 static const size_t kNumSystemPagesPerPartitionPage = kPartitionPageSize / kSystemPageSize;
155 static const size_t kMaxSystemPagesPerSlotSpan = kNumSystemPagesPerPartitionPage * kMaxPartitionPagesPerSlotSpan;
156
157 // We reserve virtual address space in 2MB chunks (aligned to 2MB as well).
158 // These chunks are called "super pages". We do this so that we can store
159 // metadata in the first few pages of each 2MB aligned section. This leads to
160 // a very fast free(). We specifically choose 2MB because this virtual address
161 // block represents a full but single PTE allocation on ARM, ia32 and x64.
162 static const size_t kSuperPageShift = 21; // 2MB
163 static const size_t kSuperPageSize = 1 << kSuperPageShift;
164 static const size_t kSuperPageOffsetMask = kSuperPageSize - 1;
165 static const size_t kSuperPageBaseMask = ~kSuperPageOffsetMask;
166 static const size_t kNumPartitionPagesPerSuperPage = kSuperPageSize / kPartitionPageSize;
167
168 static const size_t kPageMetadataShift = 5; // 32 bytes per partition page.
169 static const size_t kPageMetadataSize = 1 << kPageMetadataShift;
170
171 // The following kGeneric* constants apply to the generic variants of the API.
172 // The "order" of an allocation is closely related to the power-of-two size of
173 // the allocation. More precisely, the order is the bit index of the
174 // most-significant-bit in the allocation size, where the bit numbers starts
175 // at index 1 for the least-significant-bit.
176 // In terms of allocation sizes, order 0 covers 0, order 1 covers 1, order 2
177 // covers 2->3, order 3 covers 4->7, order 4 covers 8->15.
178 static const size_t kGenericMinBucketedOrder = 4; // 8 bytes.
179 static const size_t kGenericMaxBucketedOrder = 20; // Largest bucketed order is 1<<(20-1) (storing 512KB -> almost 1MB)
180 static const size_t kGenericNumBucketedOrders = (kGenericMaxBucketedOrder - kGenericMinBucketedOrder) + 1;
181 static const size_t kGenericNumBucketsPerOrderBits = 3; // Eight buckets per order (for the higher orders), e.g. order 8 is 128, 144, 160, ..., 240
182 static const size_t kGenericNumBucketsPerOrder = 1 << kGenericNumBucketsPerOrderBits;
183 static const size_t kGenericSmallestBucket = 1 << (kGenericMinBucketedOrder - 1);
184 static const size_t kGenericMaxBucketSpacing = 1 << ((kGenericMaxBucketedOrder - 1) - kGenericNumBucketsPerOrderBits);
185 static const size_t kGenericMaxBucketed = (1 << (kGenericMaxBucketedOrder - 1)) + ((kGenericNumBucketsPerOrder - 1) * kGenericMaxBucketSpacing);
186 static const size_t kGenericMinDirectMappedDownsize = kGenericMaxBucketed + 1; // Limit when downsizing a direct mapping using realloc().
187 static const size_t kGenericMaxDirectMapped = INT_MAX - kSystemPageSize;
188 static const size_t kBitsPerSizet = sizeof(void*) * CHAR_BIT;
189
190 // Constants for the memory reclaim logic.
191 static const size_t kMaxFreeableSpans = 16;
192
193 #if ENABLE(ASSERT)
194 // These two byte values match tcmalloc.
195 static const unsigned char kUninitializedByte = 0xAB;
196 static const unsigned char kFreedByte = 0xCD;
197 static const uint32_t kCookieValue = 0xDEADBEEFu;
198 static const size_t kCookieSize = 16; // Handles alignment up to XMM instructions on Intel.
199 #endif
200
201 struct PartitionBucket;
202 struct PartitionRootBase;
203
204 struct PartitionFreelistEntry {
205 PartitionFreelistEntry* next;
206 };
207
208 // Some notes on page states. A page can be in one of three major states:
209 // 1) Active.
210 // 2) Full.
211 // 3) Free.
212 // An active page has available free slots. A full page has no free slots. A
213 // free page has had its backing memory released back to the system.
214 // There are two linked lists tracking the pages. The "active page" list is an
215 // approximation of a list of active pages. It is an approximation because both
216 // free and full pages may briefly be present in the list until we next do a
217 // scan over it. The "free page" list is an accurate list of pages which have
218 // been returned back to the system.
219 // The significant page transitions are:
220 // - free() will detect when a full page has a slot free()'d and immediately
221 // return the page to the head of the active list.
222 // - free() will detect when a page is fully emptied. It _may_ add it to the
223 // free list and it _may_ leave it on the active list until a future list scan.
224 // - malloc() _may_ scan the active page list in order to fulfil the request.
225 // If it does this, full and free pages encountered will be booted out of the
226 // active list. If there are no suitable active pages found, a free page (if one
227 // exists) will be pulled from the free list on to the active list.
228 struct PartitionPage {
229 PartitionFreelistEntry* freelistHead;
230 PartitionPage* nextPage;
231 PartitionBucket* bucket;
232 int16_t numAllocatedSlots; // Deliberately signed, -1 for free page, -n for full pages.
233 uint16_t numUnprovisionedSlots;
234 uint16_t pageOffset;
235 int16_t freeCacheIndex; // -1 if not in the free cache.
236 };
237
238 struct PartitionBucket {
239 PartitionPage* activePagesHead; // Accessed most in hot path => goes first.
240 PartitionPage* freePagesHead;
241 uint32_t slotSize;
242 uint16_t numSystemPagesPerSlotSpan;
243 uint16_t numFullPages;
244 };
245
246 // An "extent" is a span of consecutive superpages. We link to the partition's
247 // next extent (if there is one) at the very start of a superpage's metadata
248 // area.
249 struct PartitionSuperPageExtentEntry {
250 PartitionRootBase* root;
251 char* superPageBase;
252 char* superPagesEnd;
253 PartitionSuperPageExtentEntry* next;
254 };
255
256 struct WTF_EXPORT PartitionRootBase {
257 size_t totalSizeOfCommittedPages;
258 size_t totalSizeOfSuperPages;
259 unsigned numBuckets;
260 unsigned maxAllocation;
261 bool initialized;
262 char* nextSuperPage;
263 char* nextPartitionPage;
264 char* nextPartitionPageEnd;
265 PartitionSuperPageExtentEntry* currentExtent;
266 PartitionSuperPageExtentEntry* firstExtent;
267 PartitionPage* globalEmptyPageRing[kMaxFreeableSpans];
268 size_t globalEmptyPageRingIndex;
269 uintptr_t invertedSelf;
270
271 static int gInitializedLock;
272 static bool gInitialized;
273 static PartitionPage gSeedPage;
274 static PartitionBucket gPagedBucket;
275 };
276
277 // Never instantiate a PartitionRoot directly, instead use PartitionAlloc.
278 struct PartitionRoot : public PartitionRootBase {
279 // The PartitionAlloc templated class ensures the following is correct.
bucketsPartitionRoot280 ALWAYS_INLINE PartitionBucket* buckets() { return reinterpret_cast<PartitionBucket*>(this + 1); }
bucketsPartitionRoot281 ALWAYS_INLINE const PartitionBucket* buckets() const { return reinterpret_cast<const PartitionBucket*>(this + 1); }
282 };
283
284 // Never instantiate a PartitionRootGeneric directly, instead use PartitionAllocatorGeneric.
285 struct PartitionRootGeneric : public PartitionRootBase {
286 int lock;
287 // Some pre-computed constants.
288 size_t orderIndexShifts[kBitsPerSizet + 1];
289 size_t orderSubIndexMasks[kBitsPerSizet + 1];
290 // The bucket lookup table lets us map a size_t to a bucket quickly.
291 // The trailing +1 caters for the overflow case for very large allocation sizes.
292 // It is one flat array instead of a 2D array because in the 2D world, we'd
293 // need to index array[blah][max+1] which risks undefined behavior.
294 PartitionBucket* bucketLookups[((kBitsPerSizet + 1) * kGenericNumBucketsPerOrder) + 1];
295 PartitionBucket buckets[kGenericNumBucketedOrders * kGenericNumBucketsPerOrder];
296 };
297
298 // Flags for partitionAllocGenericFlags.
299 enum PartitionAllocFlags {
300 PartitionAllocReturnNull = 1 << 0,
301 };
302
303 WTF_EXPORT void partitionAllocInit(PartitionRoot*, size_t numBuckets, size_t maxAllocation);
304 WTF_EXPORT bool partitionAllocShutdown(PartitionRoot*);
305 WTF_EXPORT void partitionAllocGenericInit(PartitionRootGeneric*);
306 WTF_EXPORT bool partitionAllocGenericShutdown(PartitionRootGeneric*);
307
308 WTF_EXPORT NEVER_INLINE void* partitionAllocSlowPath(PartitionRootBase*, int, size_t, PartitionBucket*);
309 WTF_EXPORT NEVER_INLINE void partitionFreeSlowPath(PartitionPage*);
310 WTF_EXPORT NEVER_INLINE void* partitionReallocGeneric(PartitionRootGeneric*, void*, size_t);
311
312 #ifndef NDEBUG
313 WTF_EXPORT void partitionDumpStats(const PartitionRoot&);
314 #endif
315
partitionFreelistMask(PartitionFreelistEntry * ptr)316 ALWAYS_INLINE PartitionFreelistEntry* partitionFreelistMask(PartitionFreelistEntry* ptr)
317 {
318 // We use bswap on little endian as a fast mask for two reasons:
319 // 1) If an object is freed and its vtable used where the attacker doesn't
320 // get the chance to run allocations between the free and use, the vtable
321 // dereference is likely to fault.
322 // 2) If the attacker has a linear buffer overflow and elects to try and
323 // corrupt a freelist pointer, partial pointer overwrite attacks are
324 // thwarted.
325 // For big endian, similar guarantees are arrived at with a negation.
326 #if CPU(BIG_ENDIAN)
327 uintptr_t masked = ~reinterpret_cast<uintptr_t>(ptr);
328 #else
329 uintptr_t masked = bswapuintptrt(reinterpret_cast<uintptr_t>(ptr));
330 #endif
331 return reinterpret_cast<PartitionFreelistEntry*>(masked);
332 }
333
partitionCookieSizeAdjustAdd(size_t size)334 ALWAYS_INLINE size_t partitionCookieSizeAdjustAdd(size_t size)
335 {
336 #if ENABLE(ASSERT)
337 // Add space for cookies, checking for integer overflow.
338 ASSERT(size + (2 * kCookieSize) > size);
339 size += 2 * kCookieSize;
340 #endif
341 return size;
342 }
343
partitionCookieSizeAdjustSubtract(size_t size)344 ALWAYS_INLINE size_t partitionCookieSizeAdjustSubtract(size_t size)
345 {
346 #if ENABLE(ASSERT)
347 // Remove space for cookies.
348 ASSERT(size >= 2 * kCookieSize);
349 size -= 2 * kCookieSize;
350 #endif
351 return size;
352 }
353
partitionCookieFreePointerAdjust(void * ptr)354 ALWAYS_INLINE void* partitionCookieFreePointerAdjust(void* ptr)
355 {
356 #if ENABLE(ASSERT)
357 // The value given to the application is actually just after the cookie.
358 ptr = static_cast<char*>(ptr) - kCookieSize;
359 #endif
360 return ptr;
361 }
362
partitionCookieWriteValue(void * ptr)363 ALWAYS_INLINE void partitionCookieWriteValue(void* ptr)
364 {
365 #if ENABLE(ASSERT)
366 uint32_t* cookiePtr = reinterpret_cast<uint32_t*>(ptr);
367 for (size_t i = 0; i < kCookieSize / sizeof(kCookieValue); ++i, ++cookiePtr)
368 *cookiePtr = kCookieValue;
369 #endif
370 }
371
partitionCookieCheckValue(void * ptr)372 ALWAYS_INLINE void partitionCookieCheckValue(void* ptr)
373 {
374 #if ENABLE(ASSERT)
375 uint32_t* cookiePtr = reinterpret_cast<uint32_t*>(ptr);
376 for (size_t i = 0; i < kCookieSize / sizeof(kCookieValue); ++i, ++cookiePtr)
377 ASSERT(*cookiePtr == kCookieValue);
378 #endif
379 }
380
partitionSuperPageToMetadataArea(char * ptr)381 ALWAYS_INLINE char* partitionSuperPageToMetadataArea(char* ptr)
382 {
383 uintptr_t pointerAsUint = reinterpret_cast<uintptr_t>(ptr);
384 ASSERT(!(pointerAsUint & kSuperPageOffsetMask));
385 // The metadata area is exactly one system page (the guard page) into the
386 // super page.
387 return reinterpret_cast<char*>(pointerAsUint + kSystemPageSize);
388 }
389
partitionPointerToPageNoAlignmentCheck(void * ptr)390 ALWAYS_INLINE PartitionPage* partitionPointerToPageNoAlignmentCheck(void* ptr)
391 {
392 uintptr_t pointerAsUint = reinterpret_cast<uintptr_t>(ptr);
393 char* superPagePtr = reinterpret_cast<char*>(pointerAsUint & kSuperPageBaseMask);
394 uintptr_t partitionPageIndex = (pointerAsUint & kSuperPageOffsetMask) >> kPartitionPageShift;
395 // Index 0 is invalid because it is the metadata area and the last index is invalid because it is a guard page.
396 ASSERT(partitionPageIndex);
397 ASSERT(partitionPageIndex < kNumPartitionPagesPerSuperPage - 1);
398 PartitionPage* page = reinterpret_cast<PartitionPage*>(partitionSuperPageToMetadataArea(superPagePtr) + (partitionPageIndex << kPageMetadataShift));
399 // Many partition pages can share the same page object. Adjust for that.
400 size_t delta = page->pageOffset << kPageMetadataShift;
401 page = reinterpret_cast<PartitionPage*>(reinterpret_cast<char*>(page) - delta);
402 return page;
403 }
404
partitionPageToPointer(PartitionPage * page)405 ALWAYS_INLINE void* partitionPageToPointer(PartitionPage* page)
406 {
407 uintptr_t pointerAsUint = reinterpret_cast<uintptr_t>(page);
408 uintptr_t superPageOffset = (pointerAsUint & kSuperPageOffsetMask);
409 ASSERT(superPageOffset > kSystemPageSize);
410 ASSERT(superPageOffset < kSystemPageSize + (kNumPartitionPagesPerSuperPage * kPageMetadataSize));
411 uintptr_t partitionPageIndex = (superPageOffset - kSystemPageSize) >> kPageMetadataShift;
412 // Index 0 is invalid because it is the metadata area and the last index is invalid because it is a guard page.
413 ASSERT(partitionPageIndex);
414 ASSERT(partitionPageIndex < kNumPartitionPagesPerSuperPage - 1);
415 uintptr_t superPageBase = (pointerAsUint & kSuperPageBaseMask);
416 void* ret = reinterpret_cast<void*>(superPageBase + (partitionPageIndex << kPartitionPageShift));
417 return ret;
418 }
419
partitionPointerToPage(void * ptr)420 ALWAYS_INLINE PartitionPage* partitionPointerToPage(void* ptr)
421 {
422 PartitionPage* page = partitionPointerToPageNoAlignmentCheck(ptr);
423 // Checks that the pointer is a multiple of bucket size.
424 ASSERT(!((reinterpret_cast<uintptr_t>(ptr) - reinterpret_cast<uintptr_t>(partitionPageToPointer(page))) % page->bucket->slotSize));
425 return page;
426 }
427
partitionPageToRoot(PartitionPage * page)428 ALWAYS_INLINE PartitionRootBase* partitionPageToRoot(PartitionPage* page)
429 {
430 PartitionSuperPageExtentEntry* extentEntry = reinterpret_cast<PartitionSuperPageExtentEntry*>(reinterpret_cast<uintptr_t>(page) & kSystemPageBaseMask);
431 return extentEntry->root;
432 }
433
partitionPointerIsValid(void * ptr)434 ALWAYS_INLINE bool partitionPointerIsValid(void* ptr)
435 {
436 PartitionPage* page = partitionPointerToPage(ptr);
437 PartitionRootBase* root = partitionPageToRoot(page);
438 return root->invertedSelf == ~reinterpret_cast<uintptr_t>(root);
439 }
440
partitionBucketAlloc(PartitionRootBase * root,int flags,size_t size,PartitionBucket * bucket)441 ALWAYS_INLINE void* partitionBucketAlloc(PartitionRootBase* root, int flags, size_t size, PartitionBucket* bucket)
442 {
443 PartitionPage* page = bucket->activePagesHead;
444 ASSERT(page->numAllocatedSlots >= 0);
445 void* ret = page->freelistHead;
446 if (LIKELY(ret != 0)) {
447 // If these asserts fire, you probably corrupted memory.
448 ASSERT(partitionPointerIsValid(ret));
449 PartitionFreelistEntry* newHead = partitionFreelistMask(static_cast<PartitionFreelistEntry*>(ret)->next);
450 page->freelistHead = newHead;
451 ASSERT(!ret || partitionPointerIsValid(ret));
452 page->numAllocatedSlots++;
453 } else {
454 ret = partitionAllocSlowPath(root, flags, size, bucket);
455 }
456 #if ENABLE(ASSERT)
457 if (!ret)
458 return 0;
459 // Fill the uninitialized pattern. and write the cookies.
460 page = partitionPointerToPage(ret);
461 size_t bucketSize = page->bucket->slotSize;
462 memset(ret, kUninitializedByte, bucketSize);
463 partitionCookieWriteValue(ret);
464 partitionCookieWriteValue(reinterpret_cast<char*>(ret) + bucketSize - kCookieSize);
465 // The value given to the application is actually just after the cookie.
466 ret = static_cast<char*>(ret) + kCookieSize;
467 #endif
468 return ret;
469 }
470
partitionAlloc(PartitionRoot * root,size_t size)471 ALWAYS_INLINE void* partitionAlloc(PartitionRoot* root, size_t size)
472 {
473 #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
474 void* result = malloc(size);
475 RELEASE_ASSERT(result);
476 return result;
477 #else
478 size = partitionCookieSizeAdjustAdd(size);
479 ASSERT(root->initialized);
480 size_t index = size >> kBucketShift;
481 ASSERT(index < root->numBuckets);
482 ASSERT(size == index << kBucketShift);
483 PartitionBucket* bucket = &root->buckets()[index];
484 return partitionBucketAlloc(root, 0, size, bucket);
485 #endif // defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
486 }
487
partitionFreeWithPage(void * ptr,PartitionPage * page)488 ALWAYS_INLINE void partitionFreeWithPage(void* ptr, PartitionPage* page)
489 {
490 // If these asserts fire, you probably corrupted memory.
491 #if ENABLE(ASSERT)
492 size_t bucketSize = page->bucket->slotSize;
493 partitionCookieCheckValue(ptr);
494 partitionCookieCheckValue(reinterpret_cast<char*>(ptr) + bucketSize - kCookieSize);
495 memset(ptr, kFreedByte, bucketSize);
496 #endif
497 ASSERT(page->numAllocatedSlots);
498 PartitionFreelistEntry* freelistHead = page->freelistHead;
499 ASSERT(!freelistHead || partitionPointerIsValid(freelistHead));
500 RELEASE_ASSERT(ptr != freelistHead); // Catches an immediate double free.
501 ASSERT(!freelistHead || ptr != partitionFreelistMask(freelistHead->next)); // Look for double free one level deeper in debug.
502 PartitionFreelistEntry* entry = static_cast<PartitionFreelistEntry*>(ptr);
503 entry->next = partitionFreelistMask(freelistHead);
504 page->freelistHead = entry;
505 --page->numAllocatedSlots;
506 if (UNLIKELY(page->numAllocatedSlots <= 0))
507 partitionFreeSlowPath(page);
508 }
509
partitionFree(void * ptr)510 ALWAYS_INLINE void partitionFree(void* ptr)
511 {
512 #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
513 free(ptr);
514 #else
515 ptr = partitionCookieFreePointerAdjust(ptr);
516 ASSERT(partitionPointerIsValid(ptr));
517 PartitionPage* page = partitionPointerToPage(ptr);
518 partitionFreeWithPage(ptr, page);
519 #endif
520 }
521
partitionGenericSizeToBucket(PartitionRootGeneric * root,size_t size)522 ALWAYS_INLINE PartitionBucket* partitionGenericSizeToBucket(PartitionRootGeneric* root, size_t size)
523 {
524 size_t order = kBitsPerSizet - countLeadingZerosSizet(size);
525 // The order index is simply the next few bits after the most significant bit.
526 size_t orderIndex = (size >> root->orderIndexShifts[order]) & (kGenericNumBucketsPerOrder - 1);
527 // And if the remaining bits are non-zero we must bump the bucket up.
528 size_t subOrderIndex = size & root->orderSubIndexMasks[order];
529 PartitionBucket* bucket = root->bucketLookups[(order << kGenericNumBucketsPerOrderBits) + orderIndex + !!subOrderIndex];
530 ASSERT(!bucket->slotSize || bucket->slotSize >= size);
531 ASSERT(!(bucket->slotSize % kGenericSmallestBucket));
532 return bucket;
533 }
534
partitionAllocGenericFlags(PartitionRootGeneric * root,int flags,size_t size)535 ALWAYS_INLINE void* partitionAllocGenericFlags(PartitionRootGeneric* root, int flags, size_t size)
536 {
537 #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
538 void* result = malloc(size);
539 RELEASE_ASSERT(result);
540 return result;
541 #else
542 ASSERT(root->initialized);
543 size = partitionCookieSizeAdjustAdd(size);
544 PartitionBucket* bucket = partitionGenericSizeToBucket(root, size);
545 spinLockLock(&root->lock);
546 void* ret = partitionBucketAlloc(root, flags, size, bucket);
547 spinLockUnlock(&root->lock);
548 return ret;
549 #endif
550 }
551
partitionAllocGeneric(PartitionRootGeneric * root,size_t size)552 ALWAYS_INLINE void* partitionAllocGeneric(PartitionRootGeneric* root, size_t size)
553 {
554 return partitionAllocGenericFlags(root, 0, size);
555 }
556
partitionFreeGeneric(PartitionRootGeneric * root,void * ptr)557 ALWAYS_INLINE void partitionFreeGeneric(PartitionRootGeneric* root, void* ptr)
558 {
559 #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
560 free(ptr);
561 #else
562 ASSERT(root->initialized);
563
564 if (UNLIKELY(!ptr))
565 return;
566
567 ptr = partitionCookieFreePointerAdjust(ptr);
568 ASSERT(partitionPointerIsValid(ptr));
569 PartitionPage* page = partitionPointerToPage(ptr);
570 spinLockLock(&root->lock);
571 partitionFreeWithPage(ptr, page);
572 spinLockUnlock(&root->lock);
573 #endif
574 }
575
partitionBucketIsDirectMapped(PartitionBucket * bucket)576 ALWAYS_INLINE bool partitionBucketIsDirectMapped(PartitionBucket* bucket)
577 {
578 return !bucket->numSystemPagesPerSlotSpan;
579 }
580
partitionDirectMapSize(size_t size)581 ALWAYS_INLINE size_t partitionDirectMapSize(size_t size)
582 {
583 // Caller must check that the size is not above the kGenericMaxDirectMapped
584 // limit before calling. This also guards against integer overflow in the
585 // calculation here.
586 ASSERT(size <= kGenericMaxDirectMapped);
587 return (size + kSystemPageOffsetMask) & kSystemPageBaseMask;
588 }
589
partitionAllocActualSize(PartitionRootGeneric * root,size_t size)590 ALWAYS_INLINE size_t partitionAllocActualSize(PartitionRootGeneric* root, size_t size)
591 {
592 #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
593 return size;
594 #else
595 ASSERT(root->initialized);
596 size = partitionCookieSizeAdjustAdd(size);
597 PartitionBucket* bucket = partitionGenericSizeToBucket(root, size);
598 if (LIKELY(!partitionBucketIsDirectMapped(bucket))) {
599 size = bucket->slotSize;
600 } else if (size > kGenericMaxDirectMapped) {
601 // Too large to allocate => return the size unchanged.
602 } else {
603 ASSERT(bucket == &PartitionRootBase::gPagedBucket);
604 size = partitionDirectMapSize(size);
605 }
606 return partitionCookieSizeAdjustSubtract(size);
607 #endif
608 }
609
partitionAllocSupportsGetSize()610 ALWAYS_INLINE bool partitionAllocSupportsGetSize()
611 {
612 #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
613 return false;
614 #else
615 return true;
616 #endif
617 }
618
partitionAllocGetSize(void * ptr)619 ALWAYS_INLINE size_t partitionAllocGetSize(void* ptr)
620 {
621 // No need to lock here. Only 'ptr' being freed by another thread could
622 // cause trouble, and the caller is responsible for that not happening.
623 ASSERT(partitionAllocSupportsGetSize());
624 ptr = partitionCookieFreePointerAdjust(ptr);
625 ASSERT(partitionPointerIsValid(ptr));
626 PartitionPage* page = partitionPointerToPage(ptr);
627 size_t size = page->bucket->slotSize;
628 return partitionCookieSizeAdjustSubtract(size);
629 }
630
631 // N (or more accurately, N - sizeof(void*)) represents the largest size in
632 // bytes that will be handled by a SizeSpecificPartitionAllocator.
633 // Attempts to partitionAlloc() more than this amount will fail.
634 template <size_t N>
635 class SizeSpecificPartitionAllocator {
636 public:
637 static const size_t kMaxAllocation = N - kAllocationGranularity;
638 static const size_t kNumBuckets = N / kAllocationGranularity;
init()639 void init() { partitionAllocInit(&m_partitionRoot, kNumBuckets, kMaxAllocation); }
shutdown()640 bool shutdown() { return partitionAllocShutdown(&m_partitionRoot); }
root()641 ALWAYS_INLINE PartitionRoot* root() { return &m_partitionRoot; }
642 private:
643 PartitionRoot m_partitionRoot;
644 PartitionBucket m_actualBuckets[kNumBuckets];
645 };
646
647 class PartitionAllocatorGeneric {
648 public:
init()649 void init() { partitionAllocGenericInit(&m_partitionRoot); }
shutdown()650 bool shutdown() { return partitionAllocGenericShutdown(&m_partitionRoot); }
root()651 ALWAYS_INLINE PartitionRootGeneric* root() { return &m_partitionRoot; }
652 private:
653 PartitionRootGeneric m_partitionRoot;
654 };
655
656 } // namespace WTF
657
658 using WTF::SizeSpecificPartitionAllocator;
659 using WTF::PartitionAllocatorGeneric;
660 using WTF::PartitionRoot;
661 using WTF::partitionAllocInit;
662 using WTF::partitionAllocShutdown;
663 using WTF::partitionAlloc;
664 using WTF::partitionFree;
665 using WTF::partitionAllocGeneric;
666 using WTF::partitionFreeGeneric;
667 using WTF::partitionReallocGeneric;
668 using WTF::partitionAllocActualSize;
669 using WTF::partitionAllocSupportsGetSize;
670 using WTF::partitionAllocGetSize;
671
672 #endif // WTF_PartitionAlloc_h
673