1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef CODEGEN_DAGPATTERNS_H 16 #define CODEGEN_DAGPATTERNS_H 17 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenTarget.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include <algorithm> 24 #include <map> 25 #include <set> 26 #include <vector> 27 28 namespace llvm { 29 class Record; 30 class Init; 31 class ListInit; 32 class DagInit; 33 class SDNodeInfo; 34 class TreePattern; 35 class TreePatternNode; 36 class CodeGenDAGPatterns; 37 class ComplexPattern; 38 39 /// EEVT::DAGISelGenValueType - These are some extended forms of 40 /// MVT::SimpleValueType that we use as lattice values during type inference. 41 /// The existing MVT iAny, fAny and vAny types suffice to represent 42 /// arbitrary integer, floating-point, and vector types, so only an unknown 43 /// value is needed. 44 namespace EEVT { 45 /// TypeSet - This is either empty if it's completely unknown, or holds a set 46 /// of types. It is used during type inference because register classes can 47 /// have multiple possible types and we don't know which one they get until 48 /// type inference is complete. 49 /// 50 /// TypeSet can have three states: 51 /// Vector is empty: The type is completely unknown, it can be any valid 52 /// target type. 53 /// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one 54 /// of those types only. 55 /// Vector has one concrete type: The type is completely known. 56 /// 57 class TypeSet { 58 SmallVector<MVT::SimpleValueType, 4> TypeVec; 59 public: TypeSet()60 TypeSet() {} 61 TypeSet(MVT::SimpleValueType VT, TreePattern &TP); 62 TypeSet(ArrayRef<MVT::SimpleValueType> VTList); 63 isCompletelyUnknown()64 bool isCompletelyUnknown() const { return TypeVec.empty(); } 65 isConcrete()66 bool isConcrete() const { 67 if (TypeVec.size() != 1) return false; 68 unsigned char T = TypeVec[0]; (void)T; 69 assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny); 70 return true; 71 } 72 getConcrete()73 MVT::SimpleValueType getConcrete() const { 74 assert(isConcrete() && "Type isn't concrete yet"); 75 return (MVT::SimpleValueType)TypeVec[0]; 76 } 77 isDynamicallyResolved()78 bool isDynamicallyResolved() const { 79 return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny; 80 } 81 getTypeList()82 const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const { 83 assert(!TypeVec.empty() && "Not a type list!"); 84 return TypeVec; 85 } 86 isVoid()87 bool isVoid() const { 88 return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid; 89 } 90 91 /// hasIntegerTypes - Return true if this TypeSet contains any integer value 92 /// types. 93 bool hasIntegerTypes() const; 94 95 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 96 /// a floating point value type. 97 bool hasFloatingPointTypes() const; 98 99 /// hasScalarTypes - Return true if this TypeSet contains a scalar value 100 /// type. 101 bool hasScalarTypes() const; 102 103 /// hasVectorTypes - Return true if this TypeSet contains a vector value 104 /// type. 105 bool hasVectorTypes() const; 106 107 /// getName() - Return this TypeSet as a string. 108 std::string getName() const; 109 110 /// MergeInTypeInfo - This merges in type information from the specified 111 /// argument. If 'this' changes, it returns true. If the two types are 112 /// contradictory (e.g. merge f32 into i32) then this flags an error. 113 bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP); 114 MergeInTypeInfo(MVT::SimpleValueType InVT,TreePattern & TP)115 bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) { 116 return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP); 117 } 118 119 /// Force this type list to only contain integer types. 120 bool EnforceInteger(TreePattern &TP); 121 122 /// Force this type list to only contain floating point types. 123 bool EnforceFloatingPoint(TreePattern &TP); 124 125 /// EnforceScalar - Remove all vector types from this type list. 126 bool EnforceScalar(TreePattern &TP); 127 128 /// EnforceVector - Remove all non-vector types from this type list. 129 bool EnforceVector(TreePattern &TP); 130 131 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 132 /// this an other based on this information. 133 bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP); 134 135 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 136 /// whose element is VT. 137 bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP); 138 139 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to 140 /// be a vector type VT. 141 bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP); 142 143 bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; } 144 bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; } 145 146 private: 147 /// FillWithPossibleTypes - Set to all legal types and return true, only 148 /// valid on completely unknown type sets. If Pred is non-null, only MVTs 149 /// that pass the predicate are added. 150 bool FillWithPossibleTypes(TreePattern &TP, 151 bool (*Pred)(MVT::SimpleValueType) = nullptr, 152 const char *PredicateName = nullptr); 153 }; 154 } 155 156 /// Set type used to track multiply used variables in patterns 157 typedef std::set<std::string> MultipleUseVarSet; 158 159 /// SDTypeConstraint - This is a discriminated union of constraints, 160 /// corresponding to the SDTypeConstraint tablegen class in Target.td. 161 struct SDTypeConstraint { 162 SDTypeConstraint(Record *R); 163 164 unsigned OperandNo; // The operand # this constraint applies to. 165 enum { 166 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, 167 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, 168 SDTCisSubVecOfVec 169 } ConstraintType; 170 171 union { // The discriminated union. 172 struct { 173 MVT::SimpleValueType VT; 174 } SDTCisVT_Info; 175 struct { 176 unsigned OtherOperandNum; 177 } SDTCisSameAs_Info; 178 struct { 179 unsigned OtherOperandNum; 180 } SDTCisVTSmallerThanOp_Info; 181 struct { 182 unsigned BigOperandNum; 183 } SDTCisOpSmallerThanOp_Info; 184 struct { 185 unsigned OtherOperandNum; 186 } SDTCisEltOfVec_Info; 187 struct { 188 unsigned OtherOperandNum; 189 } SDTCisSubVecOfVec_Info; 190 } x; 191 192 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 193 /// constraint to the nodes operands. This returns true if it makes a 194 /// change, false otherwise. If a type contradiction is found, an error 195 /// is flagged. 196 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, 197 TreePattern &TP) const; 198 }; 199 200 /// SDNodeInfo - One of these records is created for each SDNode instance in 201 /// the target .td file. This represents the various dag nodes we will be 202 /// processing. 203 class SDNodeInfo { 204 Record *Def; 205 std::string EnumName; 206 std::string SDClassName; 207 unsigned Properties; 208 unsigned NumResults; 209 int NumOperands; 210 std::vector<SDTypeConstraint> TypeConstraints; 211 public: 212 SDNodeInfo(Record *R); // Parse the specified record. 213 getNumResults()214 unsigned getNumResults() const { return NumResults; } 215 216 /// getNumOperands - This is the number of operands required or -1 if 217 /// variadic. getNumOperands()218 int getNumOperands() const { return NumOperands; } getRecord()219 Record *getRecord() const { return Def; } getEnumName()220 const std::string &getEnumName() const { return EnumName; } getSDClassName()221 const std::string &getSDClassName() const { return SDClassName; } 222 getTypeConstraints()223 const std::vector<SDTypeConstraint> &getTypeConstraints() const { 224 return TypeConstraints; 225 } 226 227 /// getKnownType - If the type constraints on this node imply a fixed type 228 /// (e.g. all stores return void, etc), then return it as an 229 /// MVT::SimpleValueType. Otherwise, return MVT::Other. 230 MVT::SimpleValueType getKnownType(unsigned ResNo) const; 231 232 /// hasProperty - Return true if this node has the specified property. 233 /// hasProperty(enum SDNP Prop)234 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } 235 236 /// ApplyTypeConstraints - Given a node in a pattern, apply the type 237 /// constraints for this node to the operands of the node. This returns 238 /// true if it makes a change, false otherwise. If a type contradiction is 239 /// found, an error is flagged. ApplyTypeConstraints(TreePatternNode * N,TreePattern & TP)240 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const { 241 bool MadeChange = false; 242 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) 243 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); 244 return MadeChange; 245 } 246 }; 247 248 /// TreePredicateFn - This is an abstraction that represents the predicates on 249 /// a PatFrag node. This is a simple one-word wrapper around a pointer to 250 /// provide nice accessors. 251 class TreePredicateFn { 252 /// PatFragRec - This is the TreePattern for the PatFrag that we 253 /// originally came from. 254 TreePattern *PatFragRec; 255 public: 256 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 257 TreePredicateFn(TreePattern *N); 258 259 getOrigPatFragRecord()260 TreePattern *getOrigPatFragRecord() const { return PatFragRec; } 261 262 /// isAlwaysTrue - Return true if this is a noop predicate. 263 bool isAlwaysTrue() const; 264 isImmediatePattern()265 bool isImmediatePattern() const { return !getImmCode().empty(); } 266 267 /// getImmediatePredicateCode - Return the code that evaluates this pattern if 268 /// this is an immediate predicate. It is an error to call this on a 269 /// non-immediate pattern. getImmediatePredicateCode()270 std::string getImmediatePredicateCode() const { 271 std::string Result = getImmCode(); 272 assert(!Result.empty() && "Isn't an immediate pattern!"); 273 return Result; 274 } 275 276 277 bool operator==(const TreePredicateFn &RHS) const { 278 return PatFragRec == RHS.PatFragRec; 279 } 280 281 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } 282 283 /// Return the name to use in the generated code to reference this, this is 284 /// "Predicate_foo" if from a pattern fragment "foo". 285 std::string getFnName() const; 286 287 /// getCodeToRunOnSDNode - Return the code for the function body that 288 /// evaluates this predicate. The argument is expected to be in "Node", 289 /// not N. This handles casting and conversion to a concrete node type as 290 /// appropriate. 291 std::string getCodeToRunOnSDNode() const; 292 293 private: 294 std::string getPredCode() const; 295 std::string getImmCode() const; 296 }; 297 298 299 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped 300 /// patterns), and as such should be ref counted. We currently just leak all 301 /// TreePatternNode objects! 302 class TreePatternNode { 303 /// The type of each node result. Before and during type inference, each 304 /// result may be a set of possible types. After (successful) type inference, 305 /// each is a single concrete type. 306 SmallVector<EEVT::TypeSet, 1> Types; 307 308 /// Operator - The Record for the operator if this is an interior node (not 309 /// a leaf). 310 Record *Operator; 311 312 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. 313 /// 314 Init *Val; 315 316 /// Name - The name given to this node with the :$foo notation. 317 /// 318 std::string Name; 319 320 /// PredicateFns - The predicate functions to execute on this node to check 321 /// for a match. If this list is empty, no predicate is involved. 322 std::vector<TreePredicateFn> PredicateFns; 323 324 /// TransformFn - The transformation function to execute on this node before 325 /// it can be substituted into the resulting instruction on a pattern match. 326 Record *TransformFn; 327 328 std::vector<TreePatternNode*> Children; 329 public: TreePatternNode(Record * Op,const std::vector<TreePatternNode * > & Ch,unsigned NumResults)330 TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch, 331 unsigned NumResults) 332 : Operator(Op), Val(nullptr), TransformFn(nullptr), Children(Ch) { 333 Types.resize(NumResults); 334 } TreePatternNode(Init * val,unsigned NumResults)335 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor 336 : Operator(nullptr), Val(val), TransformFn(nullptr) { 337 Types.resize(NumResults); 338 } 339 ~TreePatternNode(); 340 hasName()341 bool hasName() const { return !Name.empty(); } getName()342 const std::string &getName() const { return Name; } setName(StringRef N)343 void setName(StringRef N) { Name.assign(N.begin(), N.end()); } 344 isLeaf()345 bool isLeaf() const { return Val != nullptr; } 346 347 // Type accessors. getNumTypes()348 unsigned getNumTypes() const { return Types.size(); } getType(unsigned ResNo)349 MVT::SimpleValueType getType(unsigned ResNo) const { 350 return Types[ResNo].getConcrete(); 351 } getExtTypes()352 const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; } getExtType(unsigned ResNo)353 const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; } getExtType(unsigned ResNo)354 EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; } setType(unsigned ResNo,const EEVT::TypeSet & T)355 void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; } 356 hasTypeSet(unsigned ResNo)357 bool hasTypeSet(unsigned ResNo) const { 358 return Types[ResNo].isConcrete(); 359 } isTypeCompletelyUnknown(unsigned ResNo)360 bool isTypeCompletelyUnknown(unsigned ResNo) const { 361 return Types[ResNo].isCompletelyUnknown(); 362 } isTypeDynamicallyResolved(unsigned ResNo)363 bool isTypeDynamicallyResolved(unsigned ResNo) const { 364 return Types[ResNo].isDynamicallyResolved(); 365 } 366 getLeafValue()367 Init *getLeafValue() const { assert(isLeaf()); return Val; } getOperator()368 Record *getOperator() const { assert(!isLeaf()); return Operator; } 369 getNumChildren()370 unsigned getNumChildren() const { return Children.size(); } getChild(unsigned N)371 TreePatternNode *getChild(unsigned N) const { return Children[N]; } setChild(unsigned i,TreePatternNode * N)372 void setChild(unsigned i, TreePatternNode *N) { 373 Children[i] = N; 374 } 375 376 /// hasChild - Return true if N is any of our children. hasChild(const TreePatternNode * N)377 bool hasChild(const TreePatternNode *N) const { 378 for (unsigned i = 0, e = Children.size(); i != e; ++i) 379 if (Children[i] == N) return true; 380 return false; 381 } 382 hasAnyPredicate()383 bool hasAnyPredicate() const { return !PredicateFns.empty(); } 384 getPredicateFns()385 const std::vector<TreePredicateFn> &getPredicateFns() const { 386 return PredicateFns; 387 } clearPredicateFns()388 void clearPredicateFns() { PredicateFns.clear(); } setPredicateFns(const std::vector<TreePredicateFn> & Fns)389 void setPredicateFns(const std::vector<TreePredicateFn> &Fns) { 390 assert(PredicateFns.empty() && "Overwriting non-empty predicate list!"); 391 PredicateFns = Fns; 392 } addPredicateFn(const TreePredicateFn & Fn)393 void addPredicateFn(const TreePredicateFn &Fn) { 394 assert(!Fn.isAlwaysTrue() && "Empty predicate string!"); 395 if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) == 396 PredicateFns.end()) 397 PredicateFns.push_back(Fn); 398 } 399 getTransformFn()400 Record *getTransformFn() const { return TransformFn; } setTransformFn(Record * Fn)401 void setTransformFn(Record *Fn) { TransformFn = Fn; } 402 403 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 404 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 405 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; 406 407 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 408 /// return the ComplexPattern information, otherwise return null. 409 const ComplexPattern * 410 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; 411 412 /// Returns the number of MachineInstr operands that would be produced by this 413 /// node if it mapped directly to an output Instruction's 414 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it 415 /// for Operands; otherwise 1. 416 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; 417 418 /// NodeHasProperty - Return true if this node has the specified property. 419 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 420 421 /// TreeHasProperty - Return true if any node in this tree has the specified 422 /// property. 423 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 424 425 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is 426 /// marked isCommutative. 427 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; 428 429 void print(raw_ostream &OS) const; 430 void dump() const; 431 432 public: // Higher level manipulation routines. 433 434 /// clone - Return a new copy of this tree. 435 /// 436 TreePatternNode *clone() const; 437 438 /// RemoveAllTypes - Recursively strip all the types of this tree. 439 void RemoveAllTypes(); 440 441 /// isIsomorphicTo - Return true if this node is recursively isomorphic to 442 /// the specified node. For this comparison, all of the state of the node 443 /// is considered, except for the assigned name. Nodes with differing names 444 /// that are otherwise identical are considered isomorphic. 445 bool isIsomorphicTo(const TreePatternNode *N, 446 const MultipleUseVarSet &DepVars) const; 447 448 /// SubstituteFormalArguments - Replace the formal arguments in this tree 449 /// with actual values specified by ArgMap. 450 void SubstituteFormalArguments(std::map<std::string, 451 TreePatternNode*> &ArgMap); 452 453 /// InlinePatternFragments - If this pattern refers to any pattern 454 /// fragments, inline them into place, giving us a pattern without any 455 /// PatFrag references. 456 TreePatternNode *InlinePatternFragments(TreePattern &TP); 457 458 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 459 /// this node and its children in the tree. This returns true if it makes a 460 /// change, false otherwise. If a type contradiction is found, flag an error. 461 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); 462 463 /// UpdateNodeType - Set the node type of N to VT if VT contains 464 /// information. If N already contains a conflicting type, then flag an 465 /// error. This returns true if any information was updated. 466 /// UpdateNodeType(unsigned ResNo,const EEVT::TypeSet & InTy,TreePattern & TP)467 bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy, 468 TreePattern &TP) { 469 return Types[ResNo].MergeInTypeInfo(InTy, TP); 470 } 471 UpdateNodeType(unsigned ResNo,MVT::SimpleValueType InTy,TreePattern & TP)472 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, 473 TreePattern &TP) { 474 return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP); 475 } 476 477 // Update node type with types inferred from an instruction operand or result 478 // def from the ins/outs lists. 479 // Return true if the type changed. 480 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); 481 482 /// ContainsUnresolvedType - Return true if this tree contains any 483 /// unresolved types. ContainsUnresolvedType()484 bool ContainsUnresolvedType() const { 485 for (unsigned i = 0, e = Types.size(); i != e; ++i) 486 if (!Types[i].isConcrete()) return true; 487 488 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 489 if (getChild(i)->ContainsUnresolvedType()) return true; 490 return false; 491 } 492 493 /// canPatternMatch - If it is impossible for this pattern to match on this 494 /// target, fill in Reason and return false. Otherwise, return true. 495 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); 496 }; 497 498 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { 499 TPN.print(OS); 500 return OS; 501 } 502 503 504 /// TreePattern - Represent a pattern, used for instructions, pattern 505 /// fragments, etc. 506 /// 507 class TreePattern { 508 /// Trees - The list of pattern trees which corresponds to this pattern. 509 /// Note that PatFrag's only have a single tree. 510 /// 511 std::vector<TreePatternNode*> Trees; 512 513 /// NamedNodes - This is all of the nodes that have names in the trees in this 514 /// pattern. 515 StringMap<SmallVector<TreePatternNode*,1> > NamedNodes; 516 517 /// TheRecord - The actual TableGen record corresponding to this pattern. 518 /// 519 Record *TheRecord; 520 521 /// Args - This is a list of all of the arguments to this pattern (for 522 /// PatFrag patterns), which are the 'node' markers in this pattern. 523 std::vector<std::string> Args; 524 525 /// CDP - the top-level object coordinating this madness. 526 /// 527 CodeGenDAGPatterns &CDP; 528 529 /// isInputPattern - True if this is an input pattern, something to match. 530 /// False if this is an output pattern, something to emit. 531 bool isInputPattern; 532 533 /// hasError - True if the currently processed nodes have unresolvable types 534 /// or other non-fatal errors 535 bool HasError; 536 537 /// It's important that the usage of operands in ComplexPatterns is 538 /// consistent: each named operand can be defined by at most one 539 /// ComplexPattern. This records the ComplexPattern instance and the operand 540 /// number for each operand encountered in a ComplexPattern to aid in that 541 /// check. 542 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; 543 public: 544 545 /// TreePattern constructor - Parse the specified DagInits into the 546 /// current record. 547 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 548 CodeGenDAGPatterns &ise); 549 TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 550 CodeGenDAGPatterns &ise); 551 TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 552 CodeGenDAGPatterns &ise); 553 554 /// getTrees - Return the tree patterns which corresponds to this pattern. 555 /// getTrees()556 const std::vector<TreePatternNode*> &getTrees() const { return Trees; } getNumTrees()557 unsigned getNumTrees() const { return Trees.size(); } getTree(unsigned i)558 TreePatternNode *getTree(unsigned i) const { return Trees[i]; } getOnlyTree()559 TreePatternNode *getOnlyTree() const { 560 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); 561 return Trees[0]; 562 } 563 getNamedNodesMap()564 const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() { 565 if (NamedNodes.empty()) 566 ComputeNamedNodes(); 567 return NamedNodes; 568 } 569 570 /// getRecord - Return the actual TableGen record corresponding to this 571 /// pattern. 572 /// getRecord()573 Record *getRecord() const { return TheRecord; } 574 getNumArgs()575 unsigned getNumArgs() const { return Args.size(); } getArgName(unsigned i)576 const std::string &getArgName(unsigned i) const { 577 assert(i < Args.size() && "Argument reference out of range!"); 578 return Args[i]; 579 } getArgList()580 std::vector<std::string> &getArgList() { return Args; } 581 getDAGPatterns()582 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } 583 584 /// InlinePatternFragments - If this pattern refers to any pattern 585 /// fragments, inline them into place, giving us a pattern without any 586 /// PatFrag references. InlinePatternFragments()587 void InlinePatternFragments() { 588 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 589 Trees[i] = Trees[i]->InlinePatternFragments(*this); 590 } 591 592 /// InferAllTypes - Infer/propagate as many types throughout the expression 593 /// patterns as possible. Return true if all types are inferred, false 594 /// otherwise. Bail out if a type contradiction is found. 595 bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > 596 *NamedTypes=nullptr); 597 598 /// error - If this is the first error in the current resolution step, 599 /// print it and set the error flag. Otherwise, continue silently. 600 void error(const std::string &Msg); hasError()601 bool hasError() const { 602 return HasError; 603 } resetError()604 void resetError() { 605 HasError = false; 606 } 607 608 void print(raw_ostream &OS) const; 609 void dump() const; 610 611 private: 612 TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName); 613 void ComputeNamedNodes(); 614 void ComputeNamedNodes(TreePatternNode *N); 615 }; 616 617 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps 618 /// that has a set ExecuteAlways / DefaultOps field. 619 struct DAGDefaultOperand { 620 std::vector<TreePatternNode*> DefaultOps; 621 }; 622 623 class DAGInstruction { 624 TreePattern *Pattern; 625 std::vector<Record*> Results; 626 std::vector<Record*> Operands; 627 std::vector<Record*> ImpResults; 628 TreePatternNode *ResultPattern; 629 public: DAGInstruction(TreePattern * TP,const std::vector<Record * > & results,const std::vector<Record * > & operands,const std::vector<Record * > & impresults)630 DAGInstruction(TreePattern *TP, 631 const std::vector<Record*> &results, 632 const std::vector<Record*> &operands, 633 const std::vector<Record*> &impresults) 634 : Pattern(TP), Results(results), Operands(operands), 635 ImpResults(impresults), ResultPattern(nullptr) {} 636 getPattern()637 TreePattern *getPattern() const { return Pattern; } getNumResults()638 unsigned getNumResults() const { return Results.size(); } getNumOperands()639 unsigned getNumOperands() const { return Operands.size(); } getNumImpResults()640 unsigned getNumImpResults() const { return ImpResults.size(); } getImpResults()641 const std::vector<Record*>& getImpResults() const { return ImpResults; } 642 setResultPattern(TreePatternNode * R)643 void setResultPattern(TreePatternNode *R) { ResultPattern = R; } 644 getResult(unsigned RN)645 Record *getResult(unsigned RN) const { 646 assert(RN < Results.size()); 647 return Results[RN]; 648 } 649 getOperand(unsigned ON)650 Record *getOperand(unsigned ON) const { 651 assert(ON < Operands.size()); 652 return Operands[ON]; 653 } 654 getImpResult(unsigned RN)655 Record *getImpResult(unsigned RN) const { 656 assert(RN < ImpResults.size()); 657 return ImpResults[RN]; 658 } 659 getResultPattern()660 TreePatternNode *getResultPattern() const { return ResultPattern; } 661 }; 662 663 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns 664 /// processed to produce isel. 665 class PatternToMatch { 666 public: PatternToMatch(Record * srcrecord,ListInit * preds,TreePatternNode * src,TreePatternNode * dst,const std::vector<Record * > & dstregs,unsigned complexity,unsigned uid)667 PatternToMatch(Record *srcrecord, ListInit *preds, 668 TreePatternNode *src, TreePatternNode *dst, 669 const std::vector<Record*> &dstregs, 670 unsigned complexity, unsigned uid) 671 : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst), 672 Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {} 673 674 Record *SrcRecord; // Originating Record for the pattern. 675 ListInit *Predicates; // Top level predicate conditions to match. 676 TreePatternNode *SrcPattern; // Source pattern to match. 677 TreePatternNode *DstPattern; // Resulting pattern. 678 std::vector<Record*> Dstregs; // Physical register defs being matched. 679 unsigned AddedComplexity; // Add to matching pattern complexity. 680 unsigned ID; // Unique ID for the record. 681 getSrcRecord()682 Record *getSrcRecord() const { return SrcRecord; } getPredicates()683 ListInit *getPredicates() const { return Predicates; } getSrcPattern()684 TreePatternNode *getSrcPattern() const { return SrcPattern; } getDstPattern()685 TreePatternNode *getDstPattern() const { return DstPattern; } getDstRegs()686 const std::vector<Record*> &getDstRegs() const { return Dstregs; } getAddedComplexity()687 unsigned getAddedComplexity() const { return AddedComplexity; } 688 689 std::string getPredicateCheck() const; 690 691 /// Compute the complexity metric for the input pattern. This roughly 692 /// corresponds to the number of nodes that are covered. 693 unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const; 694 }; 695 696 class CodeGenDAGPatterns { 697 RecordKeeper &Records; 698 CodeGenTarget Target; 699 std::vector<CodeGenIntrinsic> Intrinsics; 700 std::vector<CodeGenIntrinsic> TgtIntrinsics; 701 702 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; 703 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> SDNodeXForms; 704 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; 705 std::map<Record*, TreePattern*, LessRecordByID> PatternFragments; 706 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; 707 std::map<Record*, DAGInstruction, LessRecordByID> Instructions; 708 709 // Specific SDNode definitions: 710 Record *intrinsic_void_sdnode; 711 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; 712 713 /// PatternsToMatch - All of the things we are matching on the DAG. The first 714 /// value is the pattern to match, the second pattern is the result to 715 /// emit. 716 std::vector<PatternToMatch> PatternsToMatch; 717 public: 718 CodeGenDAGPatterns(RecordKeeper &R); 719 ~CodeGenDAGPatterns(); 720 getTargetInfo()721 CodeGenTarget &getTargetInfo() { return Target; } getTargetInfo()722 const CodeGenTarget &getTargetInfo() const { return Target; } 723 724 Record *getSDNodeNamed(const std::string &Name) const; 725 getSDNodeInfo(Record * R)726 const SDNodeInfo &getSDNodeInfo(Record *R) const { 727 assert(SDNodes.count(R) && "Unknown node!"); 728 return SDNodes.find(R)->second; 729 } 730 731 // Node transformation lookups. 732 typedef std::pair<Record*, std::string> NodeXForm; getSDNodeTransform(Record * R)733 const NodeXForm &getSDNodeTransform(Record *R) const { 734 assert(SDNodeXForms.count(R) && "Invalid transform!"); 735 return SDNodeXForms.find(R)->second; 736 } 737 738 typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator 739 nx_iterator; nx_begin()740 nx_iterator nx_begin() const { return SDNodeXForms.begin(); } nx_end()741 nx_iterator nx_end() const { return SDNodeXForms.end(); } 742 743 getComplexPattern(Record * R)744 const ComplexPattern &getComplexPattern(Record *R) const { 745 assert(ComplexPatterns.count(R) && "Unknown addressing mode!"); 746 return ComplexPatterns.find(R)->second; 747 } 748 getIntrinsic(Record * R)749 const CodeGenIntrinsic &getIntrinsic(Record *R) const { 750 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 751 if (Intrinsics[i].TheDef == R) return Intrinsics[i]; 752 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 753 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; 754 llvm_unreachable("Unknown intrinsic!"); 755 } 756 getIntrinsicInfo(unsigned IID)757 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { 758 if (IID-1 < Intrinsics.size()) 759 return Intrinsics[IID-1]; 760 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) 761 return TgtIntrinsics[IID-Intrinsics.size()-1]; 762 llvm_unreachable("Bad intrinsic ID!"); 763 } 764 getIntrinsicID(Record * R)765 unsigned getIntrinsicID(Record *R) const { 766 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 767 if (Intrinsics[i].TheDef == R) return i; 768 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 769 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); 770 llvm_unreachable("Unknown intrinsic!"); 771 } 772 getDefaultOperand(Record * R)773 const DAGDefaultOperand &getDefaultOperand(Record *R) const { 774 assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!"); 775 return DefaultOperands.find(R)->second; 776 } 777 778 // Pattern Fragment information. getPatternFragment(Record * R)779 TreePattern *getPatternFragment(Record *R) const { 780 assert(PatternFragments.count(R) && "Invalid pattern fragment request!"); 781 return PatternFragments.find(R)->second; 782 } getPatternFragmentIfRead(Record * R)783 TreePattern *getPatternFragmentIfRead(Record *R) const { 784 if (!PatternFragments.count(R)) return nullptr; 785 return PatternFragments.find(R)->second; 786 } 787 788 typedef std::map<Record*, TreePattern*, LessRecordByID>::const_iterator 789 pf_iterator; pf_begin()790 pf_iterator pf_begin() const { return PatternFragments.begin(); } pf_end()791 pf_iterator pf_end() const { return PatternFragments.end(); } 792 793 // Patterns to match information. 794 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; ptm_begin()795 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } ptm_end()796 ptm_iterator ptm_end() const { return PatternsToMatch.end(); } 797 798 /// Parse the Pattern for an instruction, and insert the result in DAGInsts. 799 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; 800 const DAGInstruction &parseInstructionPattern( 801 CodeGenInstruction &CGI, ListInit *Pattern, 802 DAGInstMap &DAGInsts); 803 getInstruction(Record * R)804 const DAGInstruction &getInstruction(Record *R) const { 805 assert(Instructions.count(R) && "Unknown instruction!"); 806 return Instructions.find(R)->second; 807 } 808 get_intrinsic_void_sdnode()809 Record *get_intrinsic_void_sdnode() const { 810 return intrinsic_void_sdnode; 811 } get_intrinsic_w_chain_sdnode()812 Record *get_intrinsic_w_chain_sdnode() const { 813 return intrinsic_w_chain_sdnode; 814 } get_intrinsic_wo_chain_sdnode()815 Record *get_intrinsic_wo_chain_sdnode() const { 816 return intrinsic_wo_chain_sdnode; 817 } 818 hasTargetIntrinsics()819 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } 820 821 private: 822 void ParseNodeInfo(); 823 void ParseNodeTransforms(); 824 void ParseComplexPatterns(); 825 void ParsePatternFragments(bool OutFrags = false); 826 void ParseDefaultOperands(); 827 void ParseInstructions(); 828 void ParsePatterns(); 829 void InferInstructionFlags(); 830 void GenerateVariants(); 831 void VerifyInstructionFlags(); 832 833 void AddPatternToMatch(TreePattern *Pattern, const PatternToMatch &PTM); 834 void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 835 std::map<std::string, 836 TreePatternNode*> &InstInputs, 837 std::map<std::string, 838 TreePatternNode*> &InstResults, 839 std::vector<Record*> &InstImpResults); 840 }; 841 } // end namespace llvm 842 843 #endif 844