1 /* ====================================================================
2 * Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ====================================================================
48 */
49
50 #include <openssl/opensslconf.h>
51
52 #include <stdio.h>
53 #include <string.h>
54
55 #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1)
56
57 #include <openssl/evp.h>
58 #include <openssl/objects.h>
59 #include <openssl/aes.h>
60 #include <openssl/sha.h>
61 #include "evp_locl.h"
62
63 #ifndef EVP_CIPH_FLAG_AEAD_CIPHER
64 #define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000
65 #define EVP_CTRL_AEAD_TLS1_AAD 0x16
66 #define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
67 #endif
68
69 #if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
70 #define EVP_CIPH_FLAG_DEFAULT_ASN1 0
71 #endif
72
73 #define TLS1_1_VERSION 0x0302
74
75 typedef struct
76 {
77 AES_KEY ks;
78 SHA_CTX head,tail,md;
79 size_t payload_length; /* AAD length in decrypt case */
80 union {
81 unsigned int tls_ver;
82 unsigned char tls_aad[16]; /* 13 used */
83 } aux;
84 } EVP_AES_HMAC_SHA1;
85
86 #define NO_PAYLOAD_LENGTH ((size_t)-1)
87
88 #if defined(AES_ASM) && ( \
89 defined(__x86_64) || defined(__x86_64__) || \
90 defined(_M_AMD64) || defined(_M_X64) || \
91 defined(__INTEL__) )
92
93 #if defined(__GNUC__) && __GNUC__>=2 && !defined(PEDANTIC)
94 # define BSWAP(x) ({ unsigned int r=(x); asm ("bswapl %0":"=r"(r):"0"(r)); r; })
95 #endif
96
97 extern unsigned int OPENSSL_ia32cap_P[2];
98 #define AESNI_CAPABLE (1<<(57-32))
99
100 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
101 AES_KEY *key);
102 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
103 AES_KEY *key);
104
105 void aesni_cbc_encrypt(const unsigned char *in,
106 unsigned char *out,
107 size_t length,
108 const AES_KEY *key,
109 unsigned char *ivec, int enc);
110
111 void aesni_cbc_sha1_enc (const void *inp, void *out, size_t blocks,
112 const AES_KEY *key, unsigned char iv[16],
113 SHA_CTX *ctx,const void *in0);
114
115 #define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data)
116
aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX * ctx,const unsigned char * inkey,const unsigned char * iv,int enc)117 static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
118 const unsigned char *inkey,
119 const unsigned char *iv, int enc)
120 {
121 EVP_AES_HMAC_SHA1 *key = data(ctx);
122 int ret;
123
124 if (enc)
125 ret=aesni_set_encrypt_key(inkey,ctx->key_len*8,&key->ks);
126 else
127 ret=aesni_set_decrypt_key(inkey,ctx->key_len*8,&key->ks);
128
129 SHA1_Init(&key->head); /* handy when benchmarking */
130 key->tail = key->head;
131 key->md = key->head;
132
133 key->payload_length = NO_PAYLOAD_LENGTH;
134
135 return ret<0?0:1;
136 }
137
138 #define STITCHED_CALL
139
140 #if !defined(STITCHED_CALL)
141 #define aes_off 0
142 #endif
143
144 void sha1_block_data_order (void *c,const void *p,size_t len);
145
sha1_update(SHA_CTX * c,const void * data,size_t len)146 static void sha1_update(SHA_CTX *c,const void *data,size_t len)
147 { const unsigned char *ptr = data;
148 size_t res;
149
150 if ((res = c->num)) {
151 res = SHA_CBLOCK-res;
152 if (len<res) res=len;
153 SHA1_Update (c,ptr,res);
154 ptr += res;
155 len -= res;
156 }
157
158 res = len % SHA_CBLOCK;
159 len -= res;
160
161 if (len) {
162 sha1_block_data_order(c,ptr,len/SHA_CBLOCK);
163
164 ptr += len;
165 c->Nh += len>>29;
166 c->Nl += len<<=3;
167 if (c->Nl<(unsigned int)len) c->Nh++;
168 }
169
170 if (res)
171 SHA1_Update(c,ptr,res);
172 }
173
174 #ifdef SHA1_Update
175 #undef SHA1_Update
176 #endif
177 #define SHA1_Update sha1_update
178
aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX * ctx,unsigned char * out,const unsigned char * in,size_t len)179 static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
180 const unsigned char *in, size_t len)
181 {
182 EVP_AES_HMAC_SHA1 *key = data(ctx);
183 unsigned int l;
184 size_t plen = key->payload_length,
185 iv = 0, /* explicit IV in TLS 1.1 and later */
186 sha_off = 0;
187 #if defined(STITCHED_CALL)
188 size_t aes_off = 0,
189 blocks;
190
191 sha_off = SHA_CBLOCK-key->md.num;
192 #endif
193
194 key->payload_length = NO_PAYLOAD_LENGTH;
195
196 if (len%AES_BLOCK_SIZE) return 0;
197
198 if (ctx->encrypt) {
199 if (plen==NO_PAYLOAD_LENGTH)
200 plen = len;
201 else if (len!=((plen+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE))
202 return 0;
203 else if (key->aux.tls_ver >= TLS1_1_VERSION)
204 iv = AES_BLOCK_SIZE;
205
206 #if defined(STITCHED_CALL)
207 if (plen>(sha_off+iv) && (blocks=(plen-(sha_off+iv))/SHA_CBLOCK)) {
208 SHA1_Update(&key->md,in+iv,sha_off);
209
210 aesni_cbc_sha1_enc(in,out,blocks,&key->ks,
211 ctx->iv,&key->md,in+iv+sha_off);
212 blocks *= SHA_CBLOCK;
213 aes_off += blocks;
214 sha_off += blocks;
215 key->md.Nh += blocks>>29;
216 key->md.Nl += blocks<<=3;
217 if (key->md.Nl<(unsigned int)blocks) key->md.Nh++;
218 } else {
219 sha_off = 0;
220 }
221 #endif
222 sha_off += iv;
223 SHA1_Update(&key->md,in+sha_off,plen-sha_off);
224
225 if (plen!=len) { /* "TLS" mode of operation */
226 if (in!=out)
227 memcpy(out+aes_off,in+aes_off,plen-aes_off);
228
229 /* calculate HMAC and append it to payload */
230 SHA1_Final(out+plen,&key->md);
231 key->md = key->tail;
232 SHA1_Update(&key->md,out+plen,SHA_DIGEST_LENGTH);
233 SHA1_Final(out+plen,&key->md);
234
235 /* pad the payload|hmac */
236 plen += SHA_DIGEST_LENGTH;
237 for (l=len-plen-1;plen<len;plen++) out[plen]=l;
238 /* encrypt HMAC|padding at once */
239 aesni_cbc_encrypt(out+aes_off,out+aes_off,len-aes_off,
240 &key->ks,ctx->iv,1);
241 } else {
242 aesni_cbc_encrypt(in+aes_off,out+aes_off,len-aes_off,
243 &key->ks,ctx->iv,1);
244 }
245 } else {
246 union { unsigned int u[SHA_DIGEST_LENGTH/sizeof(unsigned int)];
247 unsigned char c[32+SHA_DIGEST_LENGTH]; } mac, *pmac;
248
249 /* arrange cache line alignment */
250 pmac = (void *)(((size_t)mac.c+31)&((size_t)0-32));
251
252 /* decrypt HMAC|padding at once */
253 aesni_cbc_encrypt(in,out,len,
254 &key->ks,ctx->iv,0);
255
256 if (plen) { /* "TLS" mode of operation */
257 size_t inp_len, mask, j, i;
258 unsigned int res, maxpad, pad, bitlen;
259 int ret = 1;
260 union { unsigned int u[SHA_LBLOCK];
261 unsigned char c[SHA_CBLOCK]; }
262 *data = (void *)key->md.data;
263
264 if ((key->aux.tls_aad[plen-4]<<8|key->aux.tls_aad[plen-3])
265 >= TLS1_1_VERSION)
266 iv = AES_BLOCK_SIZE;
267
268 if (len<(iv+SHA_DIGEST_LENGTH+1))
269 return 0;
270
271 /* omit explicit iv */
272 out += iv;
273 len -= iv;
274
275 /* figure out payload length */
276 pad = out[len-1];
277 maxpad = len-(SHA_DIGEST_LENGTH+1);
278 maxpad |= (255-maxpad)>>(sizeof(maxpad)*8-8);
279 maxpad &= 255;
280
281 inp_len = len - (SHA_DIGEST_LENGTH+pad+1);
282 mask = (0-((inp_len-len)>>(sizeof(inp_len)*8-1)));
283 inp_len &= mask;
284 ret &= (int)mask;
285
286 key->aux.tls_aad[plen-2] = inp_len>>8;
287 key->aux.tls_aad[plen-1] = inp_len;
288
289 /* calculate HMAC */
290 key->md = key->head;
291 SHA1_Update(&key->md,key->aux.tls_aad,plen);
292
293 #if 1
294 len -= SHA_DIGEST_LENGTH; /* amend mac */
295 if (len>=(256+SHA_CBLOCK)) {
296 j = (len-(256+SHA_CBLOCK))&(0-SHA_CBLOCK);
297 j += SHA_CBLOCK-key->md.num;
298 SHA1_Update(&key->md,out,j);
299 out += j;
300 len -= j;
301 inp_len -= j;
302 }
303
304 /* but pretend as if we hashed padded payload */
305 bitlen = key->md.Nl+(inp_len<<3); /* at most 18 bits */
306 #ifdef BSWAP
307 bitlen = BSWAP(bitlen);
308 #else
309 mac.c[0] = 0;
310 mac.c[1] = (unsigned char)(bitlen>>16);
311 mac.c[2] = (unsigned char)(bitlen>>8);
312 mac.c[3] = (unsigned char)bitlen;
313 bitlen = mac.u[0];
314 #endif
315
316 pmac->u[0]=0;
317 pmac->u[1]=0;
318 pmac->u[2]=0;
319 pmac->u[3]=0;
320 pmac->u[4]=0;
321
322 for (res=key->md.num, j=0;j<len;j++) {
323 size_t c = out[j];
324 mask = (j-inp_len)>>(sizeof(j)*8-8);
325 c &= mask;
326 c |= 0x80&~mask&~((inp_len-j)>>(sizeof(j)*8-8));
327 data->c[res++]=(unsigned char)c;
328
329 if (res!=SHA_CBLOCK) continue;
330
331 /* j is not incremented yet */
332 mask = 0-((inp_len+7-j)>>(sizeof(j)*8-1));
333 data->u[SHA_LBLOCK-1] |= bitlen&mask;
334 sha1_block_data_order(&key->md,data,1);
335 mask &= 0-((j-inp_len-72)>>(sizeof(j)*8-1));
336 pmac->u[0] |= key->md.h0 & mask;
337 pmac->u[1] |= key->md.h1 & mask;
338 pmac->u[2] |= key->md.h2 & mask;
339 pmac->u[3] |= key->md.h3 & mask;
340 pmac->u[4] |= key->md.h4 & mask;
341 res=0;
342 }
343
344 for(i=res;i<SHA_CBLOCK;i++,j++) data->c[i]=0;
345
346 if (res>SHA_CBLOCK-8) {
347 mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1));
348 data->u[SHA_LBLOCK-1] |= bitlen&mask;
349 sha1_block_data_order(&key->md,data,1);
350 mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1));
351 pmac->u[0] |= key->md.h0 & mask;
352 pmac->u[1] |= key->md.h1 & mask;
353 pmac->u[2] |= key->md.h2 & mask;
354 pmac->u[3] |= key->md.h3 & mask;
355 pmac->u[4] |= key->md.h4 & mask;
356
357 memset(data,0,SHA_CBLOCK);
358 j+=64;
359 }
360 data->u[SHA_LBLOCK-1] = bitlen;
361 sha1_block_data_order(&key->md,data,1);
362 mask = 0-((j-inp_len-73)>>(sizeof(j)*8-1));
363 pmac->u[0] |= key->md.h0 & mask;
364 pmac->u[1] |= key->md.h1 & mask;
365 pmac->u[2] |= key->md.h2 & mask;
366 pmac->u[3] |= key->md.h3 & mask;
367 pmac->u[4] |= key->md.h4 & mask;
368
369 #ifdef BSWAP
370 pmac->u[0] = BSWAP(pmac->u[0]);
371 pmac->u[1] = BSWAP(pmac->u[1]);
372 pmac->u[2] = BSWAP(pmac->u[2]);
373 pmac->u[3] = BSWAP(pmac->u[3]);
374 pmac->u[4] = BSWAP(pmac->u[4]);
375 #else
376 for (i=0;i<5;i++) {
377 res = pmac->u[i];
378 pmac->c[4*i+0]=(unsigned char)(res>>24);
379 pmac->c[4*i+1]=(unsigned char)(res>>16);
380 pmac->c[4*i+2]=(unsigned char)(res>>8);
381 pmac->c[4*i+3]=(unsigned char)res;
382 }
383 #endif
384 len += SHA_DIGEST_LENGTH;
385 #else
386 SHA1_Update(&key->md,out,inp_len);
387 res = key->md.num;
388 SHA1_Final(pmac->c,&key->md);
389
390 {
391 unsigned int inp_blocks, pad_blocks;
392
393 /* but pretend as if we hashed padded payload */
394 inp_blocks = 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
395 res += (unsigned int)(len-inp_len);
396 pad_blocks = res / SHA_CBLOCK;
397 res %= SHA_CBLOCK;
398 pad_blocks += 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
399 for (;inp_blocks<pad_blocks;inp_blocks++)
400 sha1_block_data_order(&key->md,data,1);
401 }
402 #endif
403 key->md = key->tail;
404 SHA1_Update(&key->md,pmac->c,SHA_DIGEST_LENGTH);
405 SHA1_Final(pmac->c,&key->md);
406
407 /* verify HMAC */
408 out += inp_len;
409 len -= inp_len;
410 #if 1
411 {
412 unsigned char *p = out+len-1-maxpad-SHA_DIGEST_LENGTH;
413 size_t off = out-p;
414 unsigned int c, cmask;
415
416 maxpad += SHA_DIGEST_LENGTH;
417 for (res=0,i=0,j=0;j<maxpad;j++) {
418 c = p[j];
419 cmask = ((int)(j-off-SHA_DIGEST_LENGTH))>>(sizeof(int)*8-1);
420 res |= (c^pad)&~cmask; /* ... and padding */
421 cmask &= ((int)(off-1-j))>>(sizeof(int)*8-1);
422 res |= (c^pmac->c[i])&cmask;
423 i += 1&cmask;
424 }
425 maxpad -= SHA_DIGEST_LENGTH;
426
427 res = 0-((0-res)>>(sizeof(res)*8-1));
428 ret &= (int)~res;
429 }
430 #else
431 for (res=0,i=0;i<SHA_DIGEST_LENGTH;i++)
432 res |= out[i]^pmac->c[i];
433 res = 0-((0-res)>>(sizeof(res)*8-1));
434 ret &= (int)~res;
435
436 /* verify padding */
437 pad = (pad&~res) | (maxpad&res);
438 out = out+len-1-pad;
439 for (res=0,i=0;i<pad;i++)
440 res |= out[i]^pad;
441
442 res = (0-res)>>(sizeof(res)*8-1);
443 ret &= (int)~res;
444 #endif
445 return ret;
446 } else {
447 SHA1_Update(&key->md,out,len);
448 }
449 }
450
451 return 1;
452 }
453
aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX * ctx,int type,int arg,void * ptr)454 static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
455 {
456 EVP_AES_HMAC_SHA1 *key = data(ctx);
457
458 switch (type)
459 {
460 case EVP_CTRL_AEAD_SET_MAC_KEY:
461 {
462 unsigned int i;
463 unsigned char hmac_key[64];
464
465 memset (hmac_key,0,sizeof(hmac_key));
466
467 if (arg > (int)sizeof(hmac_key)) {
468 SHA1_Init(&key->head);
469 SHA1_Update(&key->head,ptr,arg);
470 SHA1_Final(hmac_key,&key->head);
471 } else {
472 memcpy(hmac_key,ptr,arg);
473 }
474
475 for (i=0;i<sizeof(hmac_key);i++)
476 hmac_key[i] ^= 0x36; /* ipad */
477 SHA1_Init(&key->head);
478 SHA1_Update(&key->head,hmac_key,sizeof(hmac_key));
479
480 for (i=0;i<sizeof(hmac_key);i++)
481 hmac_key[i] ^= 0x36^0x5c; /* opad */
482 SHA1_Init(&key->tail);
483 SHA1_Update(&key->tail,hmac_key,sizeof(hmac_key));
484
485 OPENSSL_cleanse(hmac_key,sizeof(hmac_key));
486
487 return 1;
488 }
489 case EVP_CTRL_AEAD_TLS1_AAD:
490 {
491 unsigned char *p=ptr;
492 unsigned int len=p[arg-2]<<8|p[arg-1];
493
494 if (ctx->encrypt)
495 {
496 key->payload_length = len;
497 if ((key->aux.tls_ver=p[arg-4]<<8|p[arg-3]) >= TLS1_1_VERSION) {
498 len -= AES_BLOCK_SIZE;
499 p[arg-2] = len>>8;
500 p[arg-1] = len;
501 }
502 key->md = key->head;
503 SHA1_Update(&key->md,p,arg);
504
505 return (int)(((len+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE)
506 - len);
507 }
508 else
509 {
510 if (arg>13) arg = 13;
511 memcpy(key->aux.tls_aad,ptr,arg);
512 key->payload_length = arg;
513
514 return SHA_DIGEST_LENGTH;
515 }
516 }
517 default:
518 return -1;
519 }
520 }
521
522 static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher =
523 {
524 #ifdef NID_aes_128_cbc_hmac_sha1
525 NID_aes_128_cbc_hmac_sha1,
526 #else
527 NID_undef,
528 #endif
529 16,16,16,
530 EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER,
531 aesni_cbc_hmac_sha1_init_key,
532 aesni_cbc_hmac_sha1_cipher,
533 NULL,
534 sizeof(EVP_AES_HMAC_SHA1),
535 EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
536 EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
537 aesni_cbc_hmac_sha1_ctrl,
538 NULL
539 };
540
541 static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher =
542 {
543 #ifdef NID_aes_256_cbc_hmac_sha1
544 NID_aes_256_cbc_hmac_sha1,
545 #else
546 NID_undef,
547 #endif
548 16,32,16,
549 EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER,
550 aesni_cbc_hmac_sha1_init_key,
551 aesni_cbc_hmac_sha1_cipher,
552 NULL,
553 sizeof(EVP_AES_HMAC_SHA1),
554 EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
555 EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
556 aesni_cbc_hmac_sha1_ctrl,
557 NULL
558 };
559
EVP_aes_128_cbc_hmac_sha1(void)560 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
561 {
562 return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
563 &aesni_128_cbc_hmac_sha1_cipher:NULL);
564 }
565
EVP_aes_256_cbc_hmac_sha1(void)566 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
567 {
568 return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
569 &aesni_256_cbc_hmac_sha1_cipher:NULL);
570 }
571 #else
EVP_aes_128_cbc_hmac_sha1(void)572 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
573 {
574 return NULL;
575 }
EVP_aes_256_cbc_hmac_sha1(void)576 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
577 {
578 return NULL;
579 }
580 #endif
581 #endif
582