• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_STABLENORM_H
11 #define EIGEN_STABLENORM_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 template<typename ExpressionType, typename Scalar>
stable_norm_kernel(const ExpressionType & bl,Scalar & ssq,Scalar & scale,Scalar & invScale)18 inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
19 {
20   using std::max;
21   Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
22 
23   if (maxCoeff>scale)
24   {
25     ssq = ssq * numext::abs2(scale/maxCoeff);
26     Scalar tmp = Scalar(1)/maxCoeff;
27     if(tmp > NumTraits<Scalar>::highest())
28     {
29       invScale = NumTraits<Scalar>::highest();
30       scale = Scalar(1)/invScale;
31     }
32     else
33     {
34       scale = maxCoeff;
35       invScale = tmp;
36     }
37   }
38 
39   // TODO if the maxCoeff is much much smaller than the current scale,
40   // then we can neglect this sub vector
41   if(scale>Scalar(0)) // if scale==0, then bl is 0
42     ssq += (bl*invScale).squaredNorm();
43 }
44 
45 template<typename Derived>
46 inline typename NumTraits<typename traits<Derived>::Scalar>::Real
blueNorm_impl(const EigenBase<Derived> & _vec)47 blueNorm_impl(const EigenBase<Derived>& _vec)
48 {
49   typedef typename Derived::RealScalar RealScalar;
50   typedef typename Derived::Index Index;
51   using std::pow;
52   using std::min;
53   using std::max;
54   using std::sqrt;
55   using std::abs;
56   const Derived& vec(_vec.derived());
57   static bool initialized = false;
58   static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
59   if(!initialized)
60   {
61     int ibeta, it, iemin, iemax, iexp;
62     RealScalar eps;
63     // This program calculates the machine-dependent constants
64     // bl, b2, slm, s2m, relerr overfl
65     // from the "basic" machine-dependent numbers
66     // nbig, ibeta, it, iemin, iemax, rbig.
67     // The following define the basic machine-dependent constants.
68     // For portability, the PORT subprograms "ilmaeh" and "rlmach"
69     // are used. For any specific computer, each of the assignment
70     // statements can be replaced
71     ibeta = std::numeric_limits<RealScalar>::radix;                 // base for floating-point numbers
72     it    = std::numeric_limits<RealScalar>::digits;                // number of base-beta digits in mantissa
73     iemin = std::numeric_limits<RealScalar>::min_exponent;          // minimum exponent
74     iemax = std::numeric_limits<RealScalar>::max_exponent;          // maximum exponent
75     rbig  = (std::numeric_limits<RealScalar>::max)();               // largest floating-point number
76 
77     iexp  = -((1-iemin)/2);
78     b1    = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // lower boundary of midrange
79     iexp  = (iemax + 1 - it)/2;
80     b2    = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // upper boundary of midrange
81 
82     iexp  = (2-iemin)/2;
83     s1m   = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // scaling factor for lower range
84     iexp  = - ((iemax+it)/2);
85     s2m   = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp)));    // scaling factor for upper range
86 
87     overfl  = rbig*s2m;                                             // overflow boundary for abig
88     eps     = RealScalar(pow(double(ibeta), 1-it));
89     relerr  = sqrt(eps);                                            // tolerance for neglecting asml
90     initialized = true;
91   }
92   Index n = vec.size();
93   RealScalar ab2 = b2 / RealScalar(n);
94   RealScalar asml = RealScalar(0);
95   RealScalar amed = RealScalar(0);
96   RealScalar abig = RealScalar(0);
97   for(typename Derived::InnerIterator it(vec, 0); it; ++it)
98   {
99     RealScalar ax = abs(it.value());
100     if(ax > ab2)     abig += numext::abs2(ax*s2m);
101     else if(ax < b1) asml += numext::abs2(ax*s1m);
102     else             amed += numext::abs2(ax);
103   }
104   if(abig > RealScalar(0))
105   {
106     abig = sqrt(abig);
107     if(abig > overfl)
108     {
109       return rbig;
110     }
111     if(amed > RealScalar(0))
112     {
113       abig = abig/s2m;
114       amed = sqrt(amed);
115     }
116     else
117       return abig/s2m;
118   }
119   else if(asml > RealScalar(0))
120   {
121     if (amed > RealScalar(0))
122     {
123       abig = sqrt(amed);
124       amed = sqrt(asml) / s1m;
125     }
126     else
127       return sqrt(asml)/s1m;
128   }
129   else
130     return sqrt(amed);
131   asml = (min)(abig, amed);
132   abig = (max)(abig, amed);
133   if(asml <= abig*relerr)
134     return abig;
135   else
136     return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
137 }
138 
139 } // end namespace internal
140 
141 /** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
142   * This version use a blockwise two passes algorithm:
143   *  1 - find the absolute largest coefficient \c s
144   *  2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
145   *
146   * For architecture/scalar types supporting vectorization, this version
147   * is faster than blueNorm(). Otherwise the blueNorm() is much faster.
148   *
149   * \sa norm(), blueNorm(), hypotNorm()
150   */
151 template<typename Derived>
152 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
stableNorm()153 MatrixBase<Derived>::stableNorm() const
154 {
155   using std::min;
156   using std::sqrt;
157   const Index blockSize = 4096;
158   RealScalar scale(0);
159   RealScalar invScale(1);
160   RealScalar ssq(0); // sum of square
161   enum {
162     Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
163   };
164   Index n = size();
165   Index bi = internal::first_aligned(derived());
166   if (bi>0)
167     internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
168   for (; bi<n; bi+=blockSize)
169     internal::stable_norm_kernel(this->segment(bi,(min)(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
170   return scale * sqrt(ssq);
171 }
172 
173 /** \returns the \em l2 norm of \c *this using the Blue's algorithm.
174   * A Portable Fortran Program to Find the Euclidean Norm of a Vector,
175   * ACM TOMS, Vol 4, Issue 1, 1978.
176   *
177   * For architecture/scalar types without vectorization, this version
178   * is much faster than stableNorm(). Otherwise the stableNorm() is faster.
179   *
180   * \sa norm(), stableNorm(), hypotNorm()
181   */
182 template<typename Derived>
183 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
blueNorm()184 MatrixBase<Derived>::blueNorm() const
185 {
186   return internal::blueNorm_impl(*this);
187 }
188 
189 /** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
190   * This version use a concatenation of hypot() calls, and it is very slow.
191   *
192   * \sa norm(), stableNorm()
193   */
194 template<typename Derived>
195 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
hypotNorm()196 MatrixBase<Derived>::hypotNorm() const
197 {
198   return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
199 }
200 
201 } // end namespace Eigen
202 
203 #endif // EIGEN_STABLENORM_H
204