• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/gdbstub.h"
8 #include "helper.h"
9 #include "qemu-common.h"
10 #include "qemu/host-utils.h"
11 #if !defined(CONFIG_USER_ONLY)
12 //#include "hw/loader.h"
13 #endif
14 
15 static uint32_t cortexa9_cp15_c0_c1[8] =
16 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
17 
18 static uint32_t cortexa9_cp15_c0_c2[8] =
19 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
20 
21 static uint32_t cortexa8_cp15_c0_c1[8] =
22 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
23 
24 static uint32_t cortexa8_cp15_c0_c2[8] =
25 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
26 
27 static uint32_t cortexa8r2_cp15_c0_c2[8] =
28 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00011142, 0, 0, 0 };
29 
30 static uint32_t mpcore_cp15_c0_c1[8] =
31 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
32 
33 static uint32_t mpcore_cp15_c0_c2[8] =
34 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
35 
36 static uint32_t arm1136_cp15_c0_c1[8] =
37 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
38 
39 static uint32_t arm1136_cp15_c0_c2[8] =
40 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
41 
42 static uint32_t arm1176_cp15_c0_c1[8] =
43 { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
44 
45 static uint32_t arm1176_cp15_c0_c2[8] =
46 { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
47 
48 static uint32_t cpu_arm_find_by_name(const char *name);
49 
set_feature(CPUARMState * env,int feature)50 static inline void set_feature(CPUARMState *env, int feature)
51 {
52     env->features |= 1u << feature;
53 }
54 
cpu_reset_model_id(CPUARMState * env,uint32_t id)55 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
56 {
57     env->cp15.c0_cpuid = id;
58     switch (id) {
59     case ARM_CPUID_ARM926:
60         set_feature(env, ARM_FEATURE_V4T);
61         set_feature(env, ARM_FEATURE_V5);
62         set_feature(env, ARM_FEATURE_VFP);
63         env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
64         env->cp15.c0_cachetype = 0x1dd20d2;
65         env->cp15.c1_sys = 0x00090078;
66         break;
67     case ARM_CPUID_ARM946:
68         set_feature(env, ARM_FEATURE_V4T);
69         set_feature(env, ARM_FEATURE_V5);
70         set_feature(env, ARM_FEATURE_MPU);
71         env->cp15.c0_cachetype = 0x0f004006;
72         env->cp15.c1_sys = 0x00000078;
73         break;
74     case ARM_CPUID_ARM1026:
75         set_feature(env, ARM_FEATURE_V4T);
76         set_feature(env, ARM_FEATURE_V5);
77         set_feature(env, ARM_FEATURE_VFP);
78         set_feature(env, ARM_FEATURE_AUXCR);
79         env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
80         env->cp15.c0_cachetype = 0x1dd20d2;
81         env->cp15.c1_sys = 0x00090078;
82         break;
83     case ARM_CPUID_ARM1136:
84         /* This is the 1136 r1, which is a v6K core */
85         set_feature(env, ARM_FEATURE_V6K);
86         /* Fall through */
87     case ARM_CPUID_ARM1136_R2:
88         /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
89          * older core than plain "arm1136". In particular this does not
90          * have the v6K features.
91          */
92         set_feature(env, ARM_FEATURE_V4T);
93         set_feature(env, ARM_FEATURE_V5);
94         set_feature(env, ARM_FEATURE_V6);
95         set_feature(env, ARM_FEATURE_VFP);
96         set_feature(env, ARM_FEATURE_AUXCR);
97         /* These ID register values are correct for 1136 but may be wrong
98          * for 1136_r2 (in particular r0p2 does not actually implement most
99          * of the ID registers).
100          */
101         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
102         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
103         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
104         memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
105         memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
106         env->cp15.c0_cachetype = 0x1dd20d2;
107         env->cp15.c1_sys = 0x00050078;
108         break;
109     case ARM_CPUID_ARM1176:
110         set_feature(env, ARM_FEATURE_V4T);
111         set_feature(env, ARM_FEATURE_V5);
112         set_feature(env, ARM_FEATURE_V6);
113         set_feature(env, ARM_FEATURE_V6K);
114         set_feature(env, ARM_FEATURE_VFP);
115         set_feature(env, ARM_FEATURE_AUXCR);
116         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5;
117         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
118         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
119         memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t));
120         memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t));
121         env->cp15.c0_cachetype = 0x1dd20d2;
122         env->cp15.c1_sys = 0x00050078;
123         break;
124     case ARM_CPUID_ARM11MPCORE:
125         set_feature(env, ARM_FEATURE_V4T);
126         set_feature(env, ARM_FEATURE_V5);
127         set_feature(env, ARM_FEATURE_V6);
128         set_feature(env, ARM_FEATURE_V6K);
129         set_feature(env, ARM_FEATURE_VFP);
130         set_feature(env, ARM_FEATURE_AUXCR);
131         set_feature(env, ARM_FEATURE_VAPA);
132         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
133         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
134         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
135         memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
136         memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
137         env->cp15.c0_cachetype = 0x1dd20d2;
138         break;
139     case ARM_CPUID_CORTEXA8:
140         set_feature(env, ARM_FEATURE_V4T);
141         set_feature(env, ARM_FEATURE_V5);
142         set_feature(env, ARM_FEATURE_V6);
143         set_feature(env, ARM_FEATURE_V6K);
144         set_feature(env, ARM_FEATURE_V7);
145         set_feature(env, ARM_FEATURE_AUXCR);
146         set_feature(env, ARM_FEATURE_THUMB2);
147         set_feature(env, ARM_FEATURE_VFP);
148         set_feature(env, ARM_FEATURE_VFP3);
149         set_feature(env, ARM_FEATURE_NEON);
150         set_feature(env, ARM_FEATURE_THUMB2EE);
151         set_feature(env, ARM_FEATURE_TRUSTZONE);
152         env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
153         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
154         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
155         memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
156         memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
157         env->cp15.c0_cachetype = 0x82048004;
158         env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
159         env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
160         env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
161         env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
162         env->cp15.c1_sys = 0x00c50078;
163         break;
164     case ARM_CPUID_CORTEXA8_R2:
165         set_feature(env, ARM_FEATURE_V4T);
166         set_feature(env, ARM_FEATURE_V5);
167         set_feature(env, ARM_FEATURE_V6);
168         set_feature(env, ARM_FEATURE_V6K);
169         set_feature(env, ARM_FEATURE_V7);
170         set_feature(env, ARM_FEATURE_AUXCR);
171         set_feature(env, ARM_FEATURE_THUMB2);
172         set_feature(env, ARM_FEATURE_VFP);
173         set_feature(env, ARM_FEATURE_VFP3);
174         set_feature(env, ARM_FEATURE_NEON);
175         set_feature(env, ARM_FEATURE_THUMB2EE);
176         set_feature(env, ARM_FEATURE_TRUSTZONE);
177         env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c2;
178         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
179         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011111;
180         memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
181         memcpy(env->cp15.c0_c2, cortexa8r2_cp15_c0_c2, 8 * sizeof(uint32_t));
182         env->cp15.c0_cachetype = 0x82048004;
183         env->cp15.c0_clid = (1 << 27) | (2 << 24) | (4 << 3) | 3;
184         env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
185         env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
186         env->cp15.c0_ccsid[2] = 0xf03fe03a; /* 256k L2 cache. */
187         env->cp15.c1_sys = 0x00c50078;
188         break;
189     case ARM_CPUID_CORTEXA9:
190         set_feature(env, ARM_FEATURE_V4T);
191         set_feature(env, ARM_FEATURE_V5);
192         set_feature(env, ARM_FEATURE_V6);
193         set_feature(env, ARM_FEATURE_V6K);
194         set_feature(env, ARM_FEATURE_V7);
195         set_feature(env, ARM_FEATURE_AUXCR);
196         set_feature(env, ARM_FEATURE_THUMB2);
197         set_feature(env, ARM_FEATURE_VFP);
198         set_feature(env, ARM_FEATURE_VFP3);
199         set_feature(env, ARM_FEATURE_VFP_FP16);
200         set_feature(env, ARM_FEATURE_NEON);
201         set_feature(env, ARM_FEATURE_THUMB2EE);
202         /* Note that A9 supports the MP extensions even for
203          * A9UP and single-core A9MP (which are both different
204          * and valid configurations; we don't model A9UP).
205          */
206         set_feature(env, ARM_FEATURE_V7MP);
207         set_feature(env, ARM_FEATURE_TRUSTZONE);
208         env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
209         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
210         env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
211         memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
212         memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
213         env->cp15.c0_cachetype = 0x80038003;
214         env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
215         env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
216         env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
217         env->cp15.c1_sys = 0x00c50078;
218         break;
219     case ARM_CPUID_CORTEXM3:
220         set_feature(env, ARM_FEATURE_V4T);
221         set_feature(env, ARM_FEATURE_V5);
222         set_feature(env, ARM_FEATURE_V6);
223         set_feature(env, ARM_FEATURE_THUMB2);
224         set_feature(env, ARM_FEATURE_V7);
225         set_feature(env, ARM_FEATURE_M);
226         set_feature(env, ARM_FEATURE_DIV);
227         break;
228     case ARM_CPUID_ANY: /* For userspace emulation.  */
229         set_feature(env, ARM_FEATURE_V4T);
230         set_feature(env, ARM_FEATURE_V5);
231         set_feature(env, ARM_FEATURE_V6);
232         set_feature(env, ARM_FEATURE_V6K);
233         set_feature(env, ARM_FEATURE_V7);
234         set_feature(env, ARM_FEATURE_THUMB2);
235         set_feature(env, ARM_FEATURE_VFP);
236         set_feature(env, ARM_FEATURE_VFP3);
237         set_feature(env, ARM_FEATURE_VFP_FP16);
238         set_feature(env, ARM_FEATURE_NEON);
239         set_feature(env, ARM_FEATURE_THUMB2EE);
240         set_feature(env, ARM_FEATURE_DIV);
241         set_feature(env, ARM_FEATURE_V7MP);
242         break;
243     case ARM_CPUID_TI915T:
244     case ARM_CPUID_TI925T:
245         set_feature(env, ARM_FEATURE_V4T);
246         set_feature(env, ARM_FEATURE_OMAPCP);
247         env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
248         env->cp15.c0_cachetype = 0x5109149;
249         env->cp15.c1_sys = 0x00000070;
250         env->cp15.c15_i_max = 0x000;
251         env->cp15.c15_i_min = 0xff0;
252         break;
253     case ARM_CPUID_PXA250:
254     case ARM_CPUID_PXA255:
255     case ARM_CPUID_PXA260:
256     case ARM_CPUID_PXA261:
257     case ARM_CPUID_PXA262:
258         set_feature(env, ARM_FEATURE_V4T);
259         set_feature(env, ARM_FEATURE_V5);
260         set_feature(env, ARM_FEATURE_XSCALE);
261         /* JTAG_ID is ((id << 28) | 0x09265013) */
262         env->cp15.c0_cachetype = 0xd172172;
263         env->cp15.c1_sys = 0x00000078;
264         break;
265     case ARM_CPUID_PXA270_A0:
266     case ARM_CPUID_PXA270_A1:
267     case ARM_CPUID_PXA270_B0:
268     case ARM_CPUID_PXA270_B1:
269     case ARM_CPUID_PXA270_C0:
270     case ARM_CPUID_PXA270_C5:
271         set_feature(env, ARM_FEATURE_V4T);
272         set_feature(env, ARM_FEATURE_V5);
273         set_feature(env, ARM_FEATURE_XSCALE);
274         /* JTAG_ID is ((id << 28) | 0x09265013) */
275         set_feature(env, ARM_FEATURE_IWMMXT);
276         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
277         env->cp15.c0_cachetype = 0xd172172;
278         env->cp15.c1_sys = 0x00000078;
279         break;
280     case ARM_CPUID_SA1100:
281     case ARM_CPUID_SA1110:
282         set_feature(env, ARM_FEATURE_STRONGARM);
283         env->cp15.c1_sys = 0x00000070;
284         break;
285     default:
286         cpu_abort(env, "Bad CPU ID: %x\n", id);
287         break;
288     }
289 
290     /* Some features automatically imply others: */
291     if (arm_feature(env, ARM_FEATURE_V7)) {
292         set_feature(env, ARM_FEATURE_VAPA);
293     }
294 }
295 
cpu_reset(CPUState * cpu)296 void cpu_reset(CPUState *cpu)
297 {
298     CPUARMState *env = cpu->env_ptr;
299     uint32_t id;
300 
301     if (qemu_loglevel_mask(CPU_LOG_RESET)) {
302         qemu_log("CPU Reset (CPU %d)\n", cpu->cpu_index);
303         log_cpu_state(cpu, 0);
304     }
305 
306     id = env->cp15.c0_cpuid;
307     memset(env, 0, offsetof(CPUARMState, breakpoints));
308     if (id)
309         cpu_reset_model_id(env, id);
310     /* DBGDIDR : we implement nothing, and just mirror the main ID
311      * register's Variant and Revision fields.
312      */
313     env->cp14_dbgdidr = (id >> 16 & 0xf0) | 0xf;
314 #if defined (CONFIG_USER_ONLY)
315     env->uncached_cpsr = ARM_CPU_MODE_USR;
316     /* For user mode we must enable access to coprocessors */
317     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
318     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
319         env->cp15.c15_cpar = 3;
320     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
321         env->cp15.c15_cpar = 1;
322     }
323 #else
324     /* SVC mode with interrupts disabled.  */
325     env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
326     /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
327        clear at reset.  Initial SP and PC are loaded from ROM.  */
328     if (IS_M(env)) {
329         env->uncached_cpsr &= ~CPSR_I;
330 #ifndef CONFIG_ANDROID  /* No hw/loader.h and no ROM support for now on Android */
331         uint32_t pc;
332         uint8_t *rom;
333         rom = rom_ptr(0);
334         if (rom) {
335             /* We should really use ldl_phys here, in case the guest
336                modified flash and reset itself.  However images
337                loaded via -kenrel have not been copied yet, so load the
338                values directly from there.  */
339             env->regs[13] = ldl_p(rom);
340             pc = ldl_p(rom + 4);
341             env->thumb = pc & 1;
342             env->regs[15] = pc & ~1;
343         }
344 #endif
345     }
346     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
347     env->cp15.c2_base_mask = 0xffffc000u;
348     /* v7 performance monitor control register: same implementor
349      * field as main ID register, and we implement no event counters.
350      */
351     env->cp15.c9_pmcr = (id & 0xff000000);
352 #endif
353     set_flush_to_zero(1, &env->vfp.standard_fp_status);
354     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
355     set_default_nan_mode(1, &env->vfp.standard_fp_status);
356     set_float_detect_tininess(float_tininess_before_rounding,
357                               &env->vfp.fp_status);
358     set_float_detect_tininess(float_tininess_before_rounding,
359                               &env->vfp.standard_fp_status);
360     tlb_flush(env, 1);
361 }
362 
vfp_gdb_get_reg(CPUARMState * env,uint8_t * buf,int reg)363 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
364 {
365     int nregs;
366 
367     /* VFP data registers are always little-endian.  */
368     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
369     if (reg < nregs) {
370         stfq_le_p(buf, env->vfp.regs[reg]);
371         return 8;
372     }
373     if (arm_feature(env, ARM_FEATURE_NEON)) {
374         /* Aliases for Q regs.  */
375         nregs += 16;
376         if (reg < nregs) {
377             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
378             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
379             return 16;
380         }
381     }
382     switch (reg - nregs) {
383     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
384     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
385     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
386     }
387     return 0;
388 }
389 
vfp_gdb_set_reg(CPUARMState * env,uint8_t * buf,int reg)390 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
391 {
392     int nregs;
393 
394     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
395     if (reg < nregs) {
396         env->vfp.regs[reg] = ldfq_le_p(buf);
397         return 8;
398     }
399     if (arm_feature(env, ARM_FEATURE_NEON)) {
400         nregs += 16;
401         if (reg < nregs) {
402             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
403             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
404             return 16;
405         }
406     }
407     switch (reg - nregs) {
408     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
409     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
410     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
411     }
412     return 0;
413 }
414 
cpu_arm_init(const char * cpu_model)415 CPUARMState *cpu_arm_init(const char *cpu_model)
416 {
417     ARMCPU *arm_cpu;
418     CPUARMState *env;
419     uint32_t id;
420     static int inited = 0;
421 
422     id = cpu_arm_find_by_name(cpu_model);
423     if (id == 0)
424         return NULL;
425     arm_cpu = g_malloc0(sizeof(ARMCPU));
426     env = &arm_cpu->env;
427     ENV_GET_CPU(env)->env_ptr = env;
428 
429     CPUState *cpu = ENV_GET_CPU(env);
430     cpu_exec_init(env);
431     if (!inited) {
432         inited = 1;
433         arm_translate_init();
434     }
435 
436     cpu->cpu_model_str = cpu_model;
437     env->cp15.c0_cpuid = id;
438     cpu_reset(cpu);
439     if (arm_feature(env, ARM_FEATURE_NEON)) {
440         gdb_register_coprocessor(cpu, vfp_gdb_get_reg, vfp_gdb_set_reg,
441                                  51, "arm-neon.xml", 0);
442     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
443         gdb_register_coprocessor(cpu, vfp_gdb_get_reg, vfp_gdb_set_reg,
444                                  35, "arm-vfp3.xml", 0);
445     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
446         gdb_register_coprocessor(cpu, vfp_gdb_get_reg, vfp_gdb_set_reg,
447                                  19, "arm-vfp.xml", 0);
448     }
449     qemu_init_vcpu(cpu);
450     return env;
451 }
452 
453 struct arm_cpu_t {
454     uint32_t id;
455     const char *name;
456 };
457 
458 static const struct arm_cpu_t arm_cpu_names[] = {
459     { ARM_CPUID_ARM926, "arm926"},
460     { ARM_CPUID_ARM946, "arm946"},
461     { ARM_CPUID_ARM1026, "arm1026"},
462     { ARM_CPUID_ARM1136, "arm1136"},
463     { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
464     { ARM_CPUID_ARM1176, "arm1176"},
465     { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
466     { ARM_CPUID_CORTEXM3, "cortex-m3"},
467     { ARM_CPUID_CORTEXA8, "cortex-a8"},
468     { ARM_CPUID_CORTEXA8_R2, "cortex-a8-r2"},
469     { ARM_CPUID_CORTEXA9, "cortex-a9"},
470     { ARM_CPUID_TI925T, "ti925t" },
471     { ARM_CPUID_PXA250, "pxa250" },
472     { ARM_CPUID_SA1100,    "sa1100" },
473     { ARM_CPUID_SA1110,    "sa1110" },
474     { ARM_CPUID_PXA255, "pxa255" },
475     { ARM_CPUID_PXA260, "pxa260" },
476     { ARM_CPUID_PXA261, "pxa261" },
477     { ARM_CPUID_PXA262, "pxa262" },
478     { ARM_CPUID_PXA270, "pxa270" },
479     { ARM_CPUID_PXA270_A0, "pxa270-a0" },
480     { ARM_CPUID_PXA270_A1, "pxa270-a1" },
481     { ARM_CPUID_PXA270_B0, "pxa270-b0" },
482     { ARM_CPUID_PXA270_B1, "pxa270-b1" },
483     { ARM_CPUID_PXA270_C0, "pxa270-c0" },
484     { ARM_CPUID_PXA270_C5, "pxa270-c5" },
485     { ARM_CPUID_ANY, "any"},
486     { 0, NULL}
487 };
488 
arm_cpu_list(FILE * f,fprintf_function cpu_fprintf)489 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
490 {
491     int i;
492 
493     (*cpu_fprintf)(f, "Available CPUs:\n");
494     for (i = 0; arm_cpu_names[i].name; i++) {
495         (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
496     }
497 }
498 
499 /* return 0 if not found */
cpu_arm_find_by_name(const char * name)500 static uint32_t cpu_arm_find_by_name(const char *name)
501 {
502     int i;
503     uint32_t id;
504 
505     id = 0;
506     for (i = 0; arm_cpu_names[i].name; i++) {
507         if (strcmp(name, arm_cpu_names[i].name) == 0) {
508             id = arm_cpu_names[i].id;
509             break;
510         }
511     }
512     return id;
513 }
514 
cpu_arm_close(CPUARMState * env)515 void cpu_arm_close(CPUARMState *env)
516 {
517     free(env);
518 }
519 
cpsr_read(CPUARMState * env)520 uint32_t cpsr_read(CPUARMState *env)
521 {
522     int ZF;
523     ZF = (env->ZF == 0);
524     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
525         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
526         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
527         | ((env->condexec_bits & 0xfc) << 8)
528         | (env->GE << 16);
529 }
530 
cpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)531 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
532 {
533     if (mask & CPSR_NZCV) {
534         env->ZF = (~val) & CPSR_Z;
535         env->NF = val;
536         env->CF = (val >> 29) & 1;
537         env->VF = (val << 3) & 0x80000000;
538     }
539     if (mask & CPSR_Q)
540         env->QF = ((val & CPSR_Q) != 0);
541     if (mask & CPSR_T)
542         env->thumb = ((val & CPSR_T) != 0);
543     if (mask & CPSR_IT_0_1) {
544         env->condexec_bits &= ~3;
545         env->condexec_bits |= (val >> 25) & 3;
546     }
547     if (mask & CPSR_IT_2_7) {
548         env->condexec_bits &= 3;
549         env->condexec_bits |= (val >> 8) & 0xfc;
550     }
551     if (mask & CPSR_GE) {
552         env->GE = (val >> 16) & 0xf;
553     }
554 
555     if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
556         switch_mode(env, val & CPSR_M);
557     }
558     mask &= ~CACHED_CPSR_BITS;
559     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
560 }
561 
562 /* Sign/zero extend */
HELPER(sxtb16)563 uint32_t HELPER(sxtb16)(uint32_t x)
564 {
565     uint32_t res;
566     res = (uint16_t)(int8_t)x;
567     res |= (uint32_t)(int8_t)(x >> 16) << 16;
568     return res;
569 }
570 
HELPER(uxtb16)571 uint32_t HELPER(uxtb16)(uint32_t x)
572 {
573     uint32_t res;
574     res = (uint16_t)(uint8_t)x;
575     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
576     return res;
577 }
578 
HELPER(clz)579 uint32_t HELPER(clz)(uint32_t x)
580 {
581     return clz32(x);
582 }
583 
HELPER(sdiv)584 int32_t HELPER(sdiv)(int32_t num, int32_t den)
585 {
586     if (den == 0)
587       return 0;
588     if (num == INT_MIN && den == -1)
589       return INT_MIN;
590     return num / den;
591 }
592 
HELPER(udiv)593 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
594 {
595     if (den == 0)
596       return 0;
597     return num / den;
598 }
599 
HELPER(rbit)600 uint32_t HELPER(rbit)(uint32_t x)
601 {
602     x =  ((x & 0xff000000) >> 24)
603        | ((x & 0x00ff0000) >> 8)
604        | ((x & 0x0000ff00) << 8)
605        | ((x & 0x000000ff) << 24);
606     x =  ((x & 0xf0f0f0f0) >> 4)
607        | ((x & 0x0f0f0f0f) << 4);
608     x =  ((x & 0x88888888) >> 3)
609        | ((x & 0x44444444) >> 1)
610        | ((x & 0x22222222) << 1)
611        | ((x & 0x11111111) << 3);
612     return x;
613 }
614 
HELPER(abs)615 uint32_t HELPER(abs)(uint32_t x)
616 {
617     return ((int32_t)x < 0) ? -x : x;
618 }
619 
620 #if defined(CONFIG_USER_ONLY)
621 
do_interrupt(CPUARMState * env)622 void do_interrupt (CPUARMState *env)
623 {
624     env->exception_index = -1;
625 }
626 
cpu_arm_handle_mmu_fault(CPUARMState * env,target_ulong address,int rw,int mmu_idx)627 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
628                               int mmu_idx)
629 {
630     if (rw == 2) {
631         env->exception_index = EXCP_PREFETCH_ABORT;
632         env->cp15.c6_insn = address;
633     } else {
634         env->exception_index = EXCP_DATA_ABORT;
635         env->cp15.c6_data = address;
636     }
637     return 1;
638 }
639 
640 /* These should probably raise undefined insn exceptions.  */
HELPER(set_cp15)641 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
642 {
643     cpu_abort(env, "cp15 insn %08x\n", insn);
644 }
645 
HELPER(get_cp15)646 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
647 {
648     cpu_abort(env, "cp15 insn %08x\n", insn);
649     return 0;
650 }
651 
652 /* These should probably raise undefined insn exceptions.  */
HELPER(v7m_msr)653 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
654 {
655     cpu_abort(env, "v7m_mrs %d\n", reg);
656 }
657 
HELPER(v7m_mrs)658 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
659 {
660     cpu_abort(env, "v7m_mrs %d\n", reg);
661     return 0;
662 }
663 
switch_mode(CPUARMState * env,int mode)664 void switch_mode(CPUARMState *env, int mode)
665 {
666     if (mode != ARM_CPU_MODE_USR)
667         cpu_abort(env, "Tried to switch out of user mode\n");
668 }
669 
HELPER(set_r13_banked)670 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
671 {
672     cpu_abort(env, "banked r13 write\n");
673 }
674 
HELPER(get_r13_banked)675 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
676 {
677     cpu_abort(env, "banked r13 read\n");
678     return 0;
679 }
680 
681 #else
682 
683 extern int semihosting_enabled;
684 
685 /* Map CPU modes onto saved register banks.  */
bank_number(CPUARMState * env,int mode)686 static inline int bank_number (CPUARMState *env, int mode)
687 {
688     switch (mode) {
689     case ARM_CPU_MODE_USR:
690     case ARM_CPU_MODE_SYS:
691         return 0;
692     case ARM_CPU_MODE_SVC:
693         return 1;
694     case ARM_CPU_MODE_ABT:
695         return 2;
696     case ARM_CPU_MODE_UND:
697         return 3;
698     case ARM_CPU_MODE_IRQ:
699         return 4;
700     case ARM_CPU_MODE_FIQ:
701         return 5;
702     case ARM_CPU_MODE_SMC:
703         return 6;
704     }
705     cpu_abort(env, "Bad mode %x\n", mode);
706     return -1;
707 }
708 
switch_mode(CPUARMState * env,int mode)709 void switch_mode(CPUARMState *env, int mode)
710 {
711     int old_mode;
712     int i;
713 
714     old_mode = env->uncached_cpsr & CPSR_M;
715     if (mode == old_mode)
716         return;
717 
718     if (old_mode == ARM_CPU_MODE_FIQ) {
719         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
720         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
721     } else if (mode == ARM_CPU_MODE_FIQ) {
722         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
723         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
724     }
725 
726     i = bank_number(env, old_mode);
727     env->banked_r13[i] = env->regs[13];
728     env->banked_r14[i] = env->regs[14];
729     env->banked_spsr[i] = env->spsr;
730 
731     i = bank_number(env, mode);
732     env->regs[13] = env->banked_r13[i];
733     env->regs[14] = env->banked_r14[i];
734     env->spsr = env->banked_spsr[i];
735 }
736 
v7m_push(CPUARMState * env,uint32_t val)737 static void v7m_push(CPUARMState *env, uint32_t val)
738 {
739     env->regs[13] -= 4;
740     stl_phys(env->regs[13], val);
741 }
742 
v7m_pop(CPUARMState * env)743 static uint32_t v7m_pop(CPUARMState *env)
744 {
745     uint32_t val;
746     val = ldl_phys(env->regs[13]);
747     env->regs[13] += 4;
748     return val;
749 }
750 
751 /* Switch to V7M main or process stack pointer.  */
switch_v7m_sp(CPUARMState * env,int process)752 static void switch_v7m_sp(CPUARMState *env, int process)
753 {
754     uint32_t tmp;
755     if (env->v7m.current_sp != process) {
756         tmp = env->v7m.other_sp;
757         env->v7m.other_sp = env->regs[13];
758         env->regs[13] = tmp;
759         env->v7m.current_sp = process;
760     }
761 }
762 
do_v7m_exception_exit(CPUARMState * env)763 static void do_v7m_exception_exit(CPUARMState *env)
764 {
765     uint32_t type;
766     uint32_t xpsr;
767 
768     type = env->regs[15];
769     if (env->v7m.exception != 0)
770         armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
771 
772     /* Switch to the target stack.  */
773     switch_v7m_sp(env, (type & 4) != 0);
774     /* Pop registers.  */
775     env->regs[0] = v7m_pop(env);
776     env->regs[1] = v7m_pop(env);
777     env->regs[2] = v7m_pop(env);
778     env->regs[3] = v7m_pop(env);
779     env->regs[12] = v7m_pop(env);
780     env->regs[14] = v7m_pop(env);
781     env->regs[15] = v7m_pop(env);
782     xpsr = v7m_pop(env);
783     xpsr_write(env, xpsr, 0xfffffdff);
784     /* Undo stack alignment.  */
785     if (xpsr & 0x200)
786         env->regs[13] |= 4;
787     /* ??? The exception return type specifies Thread/Handler mode.  However
788        this is also implied by the xPSR value. Not sure what to do
789        if there is a mismatch.  */
790     /* ??? Likewise for mismatches between the CONTROL register and the stack
791        pointer.  */
792 }
793 
do_interrupt_v7m(CPUARMState * env)794 static void do_interrupt_v7m(CPUARMState *env)
795 {
796     uint32_t xpsr = xpsr_read(env);
797     uint32_t lr;
798     uint32_t addr;
799 
800     lr = 0xfffffff1;
801     if (env->v7m.current_sp)
802         lr |= 4;
803     if (env->v7m.exception == 0)
804         lr |= 8;
805 
806     /* For exceptions we just mark as pending on the NVIC, and let that
807        handle it.  */
808     /* TODO: Need to escalate if the current priority is higher than the
809        one we're raising.  */
810     switch (env->exception_index) {
811     case EXCP_UDEF:
812         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
813         return;
814     case EXCP_SWI:
815         env->regs[15] += 2;
816         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
817         return;
818     case EXCP_PREFETCH_ABORT:
819     case EXCP_DATA_ABORT:
820         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
821         return;
822     case EXCP_BKPT:
823         if (semihosting_enabled) {
824             int nr;
825             nr = cpu_lduw_code(env, env->regs[15]) & 0xff;
826             if (nr == 0xab) {
827                 env->regs[15] += 2;
828                 env->regs[0] = do_arm_semihosting(env);
829                 return;
830             }
831         }
832         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
833         return;
834     case EXCP_IRQ:
835         env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
836         break;
837     case EXCP_EXCEPTION_EXIT:
838         do_v7m_exception_exit(env);
839         return;
840     default:
841         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
842         return; /* Never happens.  Keep compiler happy.  */
843     }
844 
845     /* Align stack pointer.  */
846     /* ??? Should only do this if Configuration Control Register
847        STACKALIGN bit is set.  */
848     if (env->regs[13] & 4) {
849         env->regs[13] -= 4;
850         xpsr |= 0x200;
851     }
852     /* Switch to the handler mode.  */
853     v7m_push(env, xpsr);
854     v7m_push(env, env->regs[15]);
855     v7m_push(env, env->regs[14]);
856     v7m_push(env, env->regs[12]);
857     v7m_push(env, env->regs[3]);
858     v7m_push(env, env->regs[2]);
859     v7m_push(env, env->regs[1]);
860     v7m_push(env, env->regs[0]);
861     switch_v7m_sp(env, 0);
862     env->uncached_cpsr &= ~CPSR_IT;
863     env->regs[14] = lr;
864     addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
865     env->regs[15] = addr & 0xfffffffe;
866     env->thumb = addr & 1;
867 }
868 
869 /* Handle a CPU exception.  */
do_interrupt(CPUARMState * env)870 void do_interrupt(CPUARMState *env)
871 {
872     uint32_t addr;
873     uint32_t mask;
874     int new_mode;
875     uint32_t offset;
876 
877     if (IS_M(env)) {
878         do_interrupt_v7m(env);
879         return;
880     }
881     /* TODO: Vectored interrupt controller.  */
882     switch (env->exception_index) {
883     case EXCP_UDEF:
884         new_mode = ARM_CPU_MODE_UND;
885         addr = 0x04;
886         mask = CPSR_I;
887         if (env->thumb)
888             offset = 2;
889         else
890             offset = 4;
891         break;
892     case EXCP_SWI:
893         if (semihosting_enabled) {
894             /* Check for semihosting interrupt.  */
895             if (env->thumb) {
896                 mask = cpu_lduw_code(env, env->regs[15] - 2) & 0xff;
897             } else {
898                 mask = cpu_ldl_code(env, env->regs[15] - 4) & 0xffffff;
899             }
900             /* Only intercept calls from privileged modes, to provide some
901                semblance of security.  */
902             if (((mask == 0x123456 && !env->thumb)
903                     || (mask == 0xab && env->thumb))
904                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
905                 env->regs[0] = do_arm_semihosting(env);
906                 return;
907             }
908         }
909         new_mode = ARM_CPU_MODE_SVC;
910         addr = 0x08;
911         mask = CPSR_I;
912         /* The PC already points to the next instruction.  */
913         offset = 0;
914         break;
915     case EXCP_BKPT:
916         /* See if this is a semihosting syscall.  */
917         if (env->thumb && semihosting_enabled) {
918             mask = cpu_lduw_code(env, env->regs[15]) & 0xff;
919             if (mask == 0xab
920                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
921                 env->regs[15] += 2;
922                 env->regs[0] = do_arm_semihosting(env);
923                 return;
924             }
925         }
926         /* Fall through to prefetch abort.  */
927     case EXCP_PREFETCH_ABORT:
928         new_mode = ARM_CPU_MODE_ABT;
929         addr = 0x0c;
930         mask = CPSR_A | CPSR_I;
931         offset = 4;
932         break;
933     case EXCP_DATA_ABORT:
934         new_mode = ARM_CPU_MODE_ABT;
935         addr = 0x10;
936         mask = CPSR_A | CPSR_I;
937         offset = 8;
938         break;
939     case EXCP_IRQ:
940         new_mode = ARM_CPU_MODE_IRQ;
941         addr = 0x18;
942         /* Disable IRQ and imprecise data aborts.  */
943         mask = CPSR_A | CPSR_I;
944         offset = 4;
945         break;
946     case EXCP_FIQ:
947         new_mode = ARM_CPU_MODE_FIQ;
948         addr = 0x1c;
949         /* Disable FIQ, IRQ and imprecise data aborts.  */
950         mask = CPSR_A | CPSR_I | CPSR_F;
951         offset = 4;
952         break;
953     case EXCP_SMC:
954         if (semihosting_enabled) {
955             cpu_abort(env, "SMC handling under semihosting not implemented\n");
956             return;
957         }
958         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SMC) {
959             env->cp15.c1_secfg &= ~1;
960         }
961         offset = env->thumb ? 2 : 0;
962         new_mode = ARM_CPU_MODE_SMC;
963         addr = 0x08;
964         mask = CPSR_A | CPSR_I | CPSR_F;
965         break;
966     default:
967         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
968         return; /* Never happens.  Keep compiler happy.  */
969     }
970     if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
971         if (new_mode == ARM_CPU_MODE_SMC ||
972             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SMC) {
973             addr += env->cp15.c12_mvbar;
974         } else {
975             if (env->cp15.c1_sys & (1 << 13)) {
976                 addr += 0xffff0000;
977             } else {
978                 addr += env->cp15.c12_vbar;
979             }
980         }
981     } else {
982     /* High vectors.  */
983     if (env->cp15.c1_sys & (1 << 13)) {
984         addr += 0xffff0000;
985         }
986     }
987     switch_mode (env, new_mode);
988     env->spsr = cpsr_read(env);
989     /* Clear IT bits.  */
990     env->condexec_bits = 0;
991     /* Switch to the new mode, and to the correct instruction set.  */
992     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
993     env->uncached_cpsr |= mask;
994     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
995      * and we should just guard the thumb mode on V4 */
996     if (arm_feature(env, ARM_FEATURE_V4T)) {
997         env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
998     }
999     env->regs[14] = env->regs[15] + offset;
1000     env->regs[15] = addr;
1001     ENV_GET_CPU(env)->interrupt_request |= CPU_INTERRUPT_EXITTB;
1002 }
1003 
1004 /* Check section/page access permissions.
1005    Returns the page protection flags, or zero if the access is not
1006    permitted.  */
check_ap(CPUARMState * env,int ap,int domain,int access_type,int is_user)1007 static inline int check_ap(CPUARMState *env, int ap, int domain, int access_type,
1008                            int is_user)
1009 {
1010   int prot_ro;
1011 
1012   if (domain == 3)
1013     return PAGE_READ | PAGE_WRITE;
1014 
1015   if (access_type == 1)
1016       prot_ro = 0;
1017   else
1018       prot_ro = PAGE_READ;
1019 
1020   switch (ap) {
1021   case 0:
1022       if (access_type == 1)
1023           return 0;
1024       switch ((env->cp15.c1_sys >> 8) & 3) {
1025       case 1:
1026           return is_user ? 0 : PAGE_READ;
1027       case 2:
1028           return PAGE_READ;
1029       default:
1030           return 0;
1031       }
1032   case 1:
1033       return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1034   case 2:
1035       if (is_user)
1036           return prot_ro;
1037       else
1038           return PAGE_READ | PAGE_WRITE;
1039   case 3:
1040       return PAGE_READ | PAGE_WRITE;
1041   case 4: /* Reserved.  */
1042       return 0;
1043   case 5:
1044       return is_user ? 0 : prot_ro;
1045   case 6:
1046       return prot_ro;
1047   case 7:
1048       if (!arm_feature (env, ARM_FEATURE_V6K))
1049           return 0;
1050       return prot_ro;
1051   default:
1052       abort();
1053   }
1054 }
1055 
get_level1_table_address(CPUARMState * env,uint32_t address)1056 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1057 {
1058     uint32_t table;
1059 
1060     if (address & env->cp15.c2_mask)
1061         table = env->cp15.c2_base1 & 0xffffc000;
1062     else
1063         table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1064 
1065     table |= (address >> 18) & 0x3ffc;
1066     return table;
1067 }
1068 
get_phys_addr_v5(CPUARMState * env,uint32_t address,int access_type,int is_user,uint32_t * phys_ptr,int * prot,target_ulong * page_size)1069 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1070 			    int is_user, uint32_t *phys_ptr, int *prot,
1071                             target_ulong *page_size)
1072 {
1073     int code;
1074     uint32_t table;
1075     uint32_t desc;
1076     int type;
1077     int ap;
1078     int domain;
1079     uint32_t phys_addr;
1080 
1081     /* Pagetable walk.  */
1082     /* Lookup l1 descriptor.  */
1083     table = get_level1_table_address(env, address);
1084     desc = ldl_phys(table);
1085     type = (desc & 3);
1086     domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
1087     if (type == 0) {
1088         /* Section translation fault.  */
1089         code = 5;
1090         goto do_fault;
1091     }
1092     if (domain == 0 || domain == 2) {
1093         if (type == 2)
1094             code = 9; /* Section domain fault.  */
1095         else
1096             code = 11; /* Page domain fault.  */
1097         goto do_fault;
1098     }
1099     if (type == 2) {
1100         /* 1Mb section.  */
1101         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1102         ap = (desc >> 10) & 3;
1103         code = 13;
1104         *page_size = 1024 * 1024;
1105     } else {
1106         /* Lookup l2 entry.  */
1107 	if (type == 1) {
1108 	    /* Coarse pagetable.  */
1109 	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1110 	} else {
1111 	    /* Fine pagetable.  */
1112 	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1113 	}
1114         desc = ldl_phys(table);
1115         switch (desc & 3) {
1116         case 0: /* Page translation fault.  */
1117             code = 7;
1118             goto do_fault;
1119         case 1: /* 64k page.  */
1120             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1121             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1122             *page_size = 0x10000;
1123             break;
1124         case 2: /* 4k page.  */
1125             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1126             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1127             *page_size = 0x1000;
1128             break;
1129         case 3: /* 1k page.  */
1130 	    if (type == 1) {
1131 		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1132 		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1133 		} else {
1134 		    /* Page translation fault.  */
1135 		    code = 7;
1136 		    goto do_fault;
1137 		}
1138 	    } else {
1139 		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1140 	    }
1141             ap = (desc >> 4) & 3;
1142             *page_size = 0x400;
1143             break;
1144         default:
1145             /* Never happens, but compiler isn't smart enough to tell.  */
1146             abort();
1147         }
1148         code = 15;
1149     }
1150     *prot = check_ap(env, ap, domain, access_type, is_user);
1151     if (!*prot) {
1152         /* Access permission fault.  */
1153         goto do_fault;
1154     }
1155     *prot |= PAGE_EXEC;
1156     *phys_ptr = phys_addr;
1157     return 0;
1158 do_fault:
1159     return code | (domain << 4);
1160 }
1161 
get_phys_addr_v6(CPUARMState * env,uint32_t address,int access_type,int is_user,uint32_t * phys_ptr,int * prot,target_ulong * page_size)1162 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
1163 			    int is_user, uint32_t *phys_ptr, int *prot,
1164                             target_ulong *page_size)
1165 {
1166     int code;
1167     uint32_t table;
1168     uint32_t desc;
1169     uint32_t xn;
1170     int type;
1171     int ap;
1172     int domain;
1173     uint32_t phys_addr;
1174 
1175     /* Pagetable walk.  */
1176     /* Lookup l1 descriptor.  */
1177     table = get_level1_table_address(env, address);
1178     desc = ldl_phys(table);
1179     type = (desc & 3);
1180     if (type == 0 || type == 3) {
1181         /* Section translation fault.  */
1182         code = 5;
1183         domain = 0;
1184         goto do_fault;
1185     } else if (type == 2 && (desc & (1 << 18))) {
1186         /* Supersection.  */
1187         domain = 0;
1188     } else {
1189         /* Section or page.  */
1190         domain = (desc >> 4) & 0x1e;
1191     }
1192     domain = (env->cp15.c3 >> domain) & 3;
1193     if (domain == 0 || domain == 2) {
1194         if (type == 2)
1195             code = 9; /* Section domain fault.  */
1196         else
1197             code = 11; /* Page domain fault.  */
1198         goto do_fault;
1199     }
1200     if (type == 2) {
1201         if (desc & (1 << 18)) {
1202             /* Supersection.  */
1203             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1204             *page_size = 0x1000000;
1205         } else {
1206             /* Section.  */
1207             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1208             *page_size = 0x100000;
1209         }
1210         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1211         xn = desc & (1 << 4);
1212         code = 13;
1213     } else {
1214         /* Lookup l2 entry.  */
1215         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1216         desc = ldl_phys(table);
1217         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1218         switch (desc & 3) {
1219         case 0: /* Page translation fault.  */
1220             code = 7;
1221             goto do_fault;
1222         case 1: /* 64k page.  */
1223             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1224             xn = desc & (1 << 15);
1225             *page_size = 0x10000;
1226             break;
1227         case 2: case 3: /* 4k page.  */
1228             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1229             xn = desc & 1;
1230             *page_size = 0x1000;
1231             break;
1232         default:
1233             /* Never happens, but compiler isn't smart enough to tell.  */
1234             abort();
1235         }
1236         code = 15;
1237     }
1238     if (domain == 3) {
1239         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1240     } else {
1241     if (xn && access_type == 2)
1242         goto do_fault;
1243 
1244     /* The simplified model uses AP[0] as an access control bit.  */
1245     if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1246         /* Access flag fault.  */
1247         code = (code == 15) ? 6 : 3;
1248         goto do_fault;
1249     }
1250     *prot = check_ap(env, ap, domain, access_type, is_user);
1251     if (!*prot) {
1252         /* Access permission fault.  */
1253         goto do_fault;
1254         }
1255         if (!xn) {
1256             *prot |= PAGE_EXEC;
1257         }
1258     }
1259     *phys_ptr = phys_addr;
1260     return 0;
1261 do_fault:
1262     return code | (domain << 4);
1263 }
1264 
get_phys_addr_mpu(CPUARMState * env,uint32_t address,int access_type,int is_user,uint32_t * phys_ptr,int * prot)1265 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
1266 			     int is_user, uint32_t *phys_ptr, int *prot)
1267 {
1268     int n;
1269     uint32_t mask;
1270     uint32_t base;
1271 
1272     *phys_ptr = address;
1273     for (n = 7; n >= 0; n--) {
1274 	base = env->cp15.c6_region[n];
1275 	if ((base & 1) == 0)
1276 	    continue;
1277 	mask = 1 << ((base >> 1) & 0x1f);
1278 	/* Keep this shift separate from the above to avoid an
1279 	   (undefined) << 32.  */
1280 	mask = (mask << 1) - 1;
1281 	if (((base ^ address) & ~mask) == 0)
1282 	    break;
1283     }
1284     if (n < 0)
1285 	return 2;
1286 
1287     if (access_type == 2) {
1288 	mask = env->cp15.c5_insn;
1289     } else {
1290 	mask = env->cp15.c5_data;
1291     }
1292     mask = (mask >> (n * 4)) & 0xf;
1293     switch (mask) {
1294     case 0:
1295 	return 1;
1296     case 1:
1297 	if (is_user)
1298 	  return 1;
1299 	*prot = PAGE_READ | PAGE_WRITE;
1300 	break;
1301     case 2:
1302 	*prot = PAGE_READ;
1303 	if (!is_user)
1304 	    *prot |= PAGE_WRITE;
1305 	break;
1306     case 3:
1307 	*prot = PAGE_READ | PAGE_WRITE;
1308 	break;
1309     case 5:
1310 	if (is_user)
1311 	    return 1;
1312 	*prot = PAGE_READ;
1313 	break;
1314     case 6:
1315 	*prot = PAGE_READ;
1316 	break;
1317     default:
1318 	/* Bad permission.  */
1319 	return 1;
1320     }
1321     *prot |= PAGE_EXEC;
1322     return 0;
1323 }
1324 
1325 #ifdef CONFIG_GLES2
1326 int get_phys_addr(CPUARMState *env, uint32_t address,
1327                   int access_type, int is_user,
1328                   uint32_t *phys_ptr, int *prot,
1329                   target_ulong *page_size);
1330 #else
1331 static
1332 #endif
get_phys_addr(CPUARMState * env,uint32_t address,int access_type,int is_user,uint32_t * phys_ptr,int * prot,target_ulong * page_size)1333 int get_phys_addr(CPUARMState *env, uint32_t address,
1334                   int access_type, int is_user,
1335                   uint32_t *phys_ptr, int *prot,
1336                   target_ulong *page_size)
1337 {
1338     /* Fast Context Switch Extension.  */
1339     if (address < 0x02000000)
1340         address += env->cp15.c13_fcse;
1341 
1342     if ((env->cp15.c1_sys & 1) == 0) {
1343         /* MMU/MPU disabled.  */
1344         *phys_ptr = address;
1345         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1346         *page_size = TARGET_PAGE_SIZE;
1347         return 0;
1348     } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1349         *page_size = TARGET_PAGE_SIZE;
1350     return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1351                              prot);
1352     } else if (env->cp15.c1_sys & (1 << 23)) {
1353         return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1354                                 prot, page_size);
1355     } else {
1356         return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1357                                 prot, page_size);
1358     }
1359 }
1360 
cpu_arm_handle_mmu_fault(CPUARMState * env,target_ulong address,int access_type,int mmu_idx)1361 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
1362                               int access_type, int mmu_idx)
1363 {
1364     uint32_t phys_addr;
1365     target_ulong page_size;
1366     int prot;
1367     int ret, is_user;
1368 
1369     is_user = mmu_idx == MMU_USER_IDX;
1370     ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1371                         &page_size);
1372     if (ret == 0) {
1373         /* Map a single [sub]page.  */
1374         phys_addr &= ~(uint32_t)0x3ff;
1375         address &= ~(uint32_t)0x3ff;
1376         tlb_set_page (env, address, phys_addr, prot | PAGE_EXEC, mmu_idx,
1377                       page_size);
1378         return 0;
1379     }
1380 
1381     if (access_type == 2) {
1382         env->cp15.c5_insn = ret;
1383         env->cp15.c6_insn = address;
1384         env->exception_index = EXCP_PREFETCH_ABORT;
1385     } else {
1386         env->cp15.c5_data = ret;
1387         if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1388             env->cp15.c5_data |= (1 << 11);
1389         env->cp15.c6_data = address;
1390         env->exception_index = EXCP_DATA_ABORT;
1391     }
1392     return 1;
1393 }
1394 
cpu_get_phys_page_debug(CPUARMState * env,target_ulong addr)1395 hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
1396 {
1397     uint32_t phys_addr;
1398     target_ulong page_size;
1399     int prot;
1400     int ret;
1401 
1402     ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1403 
1404     if (ret != 0)
1405         return -1;
1406 
1407     return phys_addr;
1408 }
1409 
1410 /* Return basic MPU access permission bits.  */
simple_mpu_ap_bits(uint32_t val)1411 static uint32_t simple_mpu_ap_bits(uint32_t val)
1412 {
1413     uint32_t ret;
1414     uint32_t mask;
1415     int i;
1416     ret = 0;
1417     mask = 3;
1418     for (i = 0; i < 16; i += 2) {
1419         ret |= (val >> i) & mask;
1420         mask <<= 2;
1421     }
1422     return ret;
1423 }
1424 
1425 /* Pad basic MPU access permission bits to extended format.  */
extended_mpu_ap_bits(uint32_t val)1426 static uint32_t extended_mpu_ap_bits(uint32_t val)
1427 {
1428     uint32_t ret;
1429     uint32_t mask;
1430     int i;
1431     ret = 0;
1432     mask = 3;
1433     for (i = 0; i < 16; i += 2) {
1434         ret |= (val & mask) << i;
1435         mask <<= 2;
1436     }
1437     return ret;
1438 }
1439 
HELPER(set_cp15)1440 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
1441 {
1442     int op1;
1443     int op2;
1444     int crm;
1445 
1446     op1 = (insn >> 21) & 7;
1447     op2 = (insn >> 5) & 7;
1448     crm = insn & 0xf;
1449     switch ((insn >> 16) & 0xf) {
1450     case 0:
1451         /* ID codes.  */
1452         if (arm_feature(env, ARM_FEATURE_XSCALE))
1453             break;
1454         if (arm_feature(env, ARM_FEATURE_OMAPCP))
1455             break;
1456         if (arm_feature(env, ARM_FEATURE_V7)
1457                 && op1 == 2 && crm == 0 && op2 == 0) {
1458             env->cp15.c0_cssel = val & 0xf;
1459             break;
1460         }
1461         goto bad_reg;
1462     case 1: /* System configuration.  */
1463         switch (crm) {
1464         case 0:
1465         if (arm_feature(env, ARM_FEATURE_OMAPCP))
1466             op2 = 0;
1467         switch (op2) {
1468         case 0:
1469                 if (!arm_feature(env, ARM_FEATURE_XSCALE))
1470                 env->cp15.c1_sys = val;
1471             /* ??? Lots of these bits are not implemented.  */
1472             /* This may enable/disable the MMU, so do a TLB flush.  */
1473             tlb_flush(env, 1);
1474             break;
1475             case 1: /* Auxiliary control register.  */
1476             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1477                 env->cp15.c1_xscaleauxcr = val;
1478                 break;
1479             }
1480             /* Not implemented.  */
1481             break;
1482         case 2:
1483             if (arm_feature(env, ARM_FEATURE_XSCALE))
1484                 goto bad_reg;
1485             if (env->cp15.c1_coproc != val) {
1486                 env->cp15.c1_coproc = val;
1487                 /* ??? Is this safe when called from within a TB?  */
1488                 tb_flush(env);
1489                 }
1490                 break;
1491             default:
1492                 goto bad_reg;
1493             }
1494             break;
1495         case 1:
1496             if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)
1497                 || (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)
1498                 goto bad_reg;
1499             switch (op2) {
1500             case 0: /* Secure configuration register. */
1501                 if (env->cp15.c1_secfg & 1)
1502                     goto bad_reg;
1503                 env->cp15.c1_secfg = val;
1504                 break;
1505             case 1: /* Secure debug enable register. */
1506                 if (env->cp15.c1_secfg & 1)
1507                     goto bad_reg;
1508                 env->cp15.c1_sedbg = val;
1509                 break;
1510             case 2: /* Nonsecure access control register. */
1511                 if (env->cp15.c1_secfg & 1)
1512                     goto bad_reg;
1513                 env->cp15.c1_nseac = val;
1514                 break;
1515             default:
1516                 goto bad_reg;
1517             }
1518             break;
1519         default:
1520             goto bad_reg;
1521         }
1522         break;
1523     case 2: /* MMU Page table control / MPU cache control.  */
1524         if (arm_feature(env, ARM_FEATURE_MPU)) {
1525             switch (op2) {
1526             case 0:
1527                 env->cp15.c2_data = val;
1528                 break;
1529             case 1:
1530                 env->cp15.c2_insn = val;
1531                 break;
1532             default:
1533                 goto bad_reg;
1534             }
1535         } else {
1536 	    switch (op2) {
1537 	    case 0:
1538 		env->cp15.c2_base0 = val;
1539 		break;
1540 	    case 1:
1541 		env->cp15.c2_base1 = val;
1542 		break;
1543 	    case 2:
1544                 val &= 7;
1545                 env->cp15.c2_control = val;
1546 		env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1547                 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1548 		break;
1549 	    default:
1550 		goto bad_reg;
1551 	    }
1552         }
1553         break;
1554     case 3: /* MMU Domain access control / MPU write buffer control.  */
1555         env->cp15.c3 = val;
1556         tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1557         break;
1558     case 4: /* Reserved.  */
1559         goto bad_reg;
1560     case 5: /* MMU Fault status / MPU access permission.  */
1561         if (arm_feature(env, ARM_FEATURE_OMAPCP))
1562             op2 = 0;
1563         switch (op2) {
1564         case 0:
1565             if (arm_feature(env, ARM_FEATURE_MPU))
1566                 val = extended_mpu_ap_bits(val);
1567             env->cp15.c5_data = val;
1568             break;
1569         case 1:
1570             if (arm_feature(env, ARM_FEATURE_MPU))
1571                 val = extended_mpu_ap_bits(val);
1572             env->cp15.c5_insn = val;
1573             break;
1574         case 2:
1575             if (!arm_feature(env, ARM_FEATURE_MPU))
1576                 goto bad_reg;
1577             env->cp15.c5_data = val;
1578             break;
1579         case 3:
1580             if (!arm_feature(env, ARM_FEATURE_MPU))
1581                 goto bad_reg;
1582             env->cp15.c5_insn = val;
1583             break;
1584         default:
1585             goto bad_reg;
1586         }
1587         break;
1588     case 6: /* MMU Fault address / MPU base/size.  */
1589         if (arm_feature(env, ARM_FEATURE_MPU)) {
1590             if (crm >= 8)
1591                 goto bad_reg;
1592             env->cp15.c6_region[crm] = val;
1593         } else {
1594             if (arm_feature(env, ARM_FEATURE_OMAPCP))
1595                 op2 = 0;
1596             switch (op2) {
1597             case 0:
1598                 env->cp15.c6_data = val;
1599                 break;
1600             case 1: /* ??? This is WFAR on armv6 */
1601             case 2:
1602                 env->cp15.c6_insn = val;
1603                 break;
1604             default:
1605                 goto bad_reg;
1606             }
1607         }
1608         break;
1609     case 7: /* Cache control.  */
1610         env->cp15.c15_i_max = 0x000;
1611         env->cp15.c15_i_min = 0xff0;
1612         if (op1 != 0) {
1613             goto bad_reg;
1614         }
1615         /* No cache, so nothing to do except VA->PA translations. */
1616         if (arm_feature(env, ARM_FEATURE_VAPA)) {
1617             switch (crm) {
1618             case 4:
1619                 if (arm_feature(env, ARM_FEATURE_V7)) {
1620                     env->cp15.c7_par = val & 0xfffff6ff;
1621                 } else {
1622                     env->cp15.c7_par = val & 0xfffff1ff;
1623                 }
1624                 break;
1625             case 8: {
1626                 uint32_t phys_addr;
1627                 target_ulong page_size;
1628                 int prot;
1629                 int ret, is_user = op2 & 2;
1630                 int access_type = op2 & 1;
1631 
1632                 if (op2 & 4) {
1633                     /* Other states are only available with TrustZone */
1634                     goto bad_reg;
1635                 }
1636                 ret = get_phys_addr(env, val, access_type, is_user,
1637                                     &phys_addr, &prot, &page_size);
1638                 if (ret == 0) {
1639                     /* We do not set any attribute bits in the PAR */
1640                     if (page_size == (1 << 24)
1641                         && arm_feature(env, ARM_FEATURE_V7)) {
1642                         env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1643                     } else {
1644                         env->cp15.c7_par = phys_addr & 0xfffff000;
1645                     }
1646                 } else {
1647                     env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1648                                        ((ret & (12 << 1)) >> 6) |
1649                                        ((ret & 0xf) << 1) | 1;
1650                 }
1651                 break;
1652             }
1653             }
1654         }
1655         break;
1656     case 8: /* MMU TLB control.  */
1657         switch (op2) {
1658         case 0: /* Invalidate all.  */
1659             tlb_flush(env, 0);
1660             break;
1661         case 1: /* Invalidate single TLB entry.  */
1662             tlb_flush_page(env, val & TARGET_PAGE_MASK);
1663             break;
1664         case 2: /* Invalidate on ASID.  */
1665             tlb_flush(env, val == 0);
1666             break;
1667         case 3: /* Invalidate single entry on MVA.  */
1668             /* ??? This is like case 1, but ignores ASID.  */
1669             tlb_flush(env, 1);
1670             break;
1671         default:
1672             goto bad_reg;
1673         }
1674         break;
1675     case 9:
1676         if (arm_feature(env, ARM_FEATURE_OMAPCP))
1677             break;
1678         if (arm_feature(env, ARM_FEATURE_STRONGARM))
1679             break; /* Ignore ReadBuffer access */
1680         switch (crm) {
1681         case 0: /* Cache lockdown.  */
1682 	    switch (op1) {
1683 	    case 0: /* L1 cache.  */
1684 		switch (op2) {
1685 		case 0:
1686 		    env->cp15.c9_data = val;
1687 		    break;
1688 		case 1:
1689 		    env->cp15.c9_insn = val;
1690 		    break;
1691 		default:
1692 		    goto bad_reg;
1693 		}
1694 		break;
1695 	    case 1: /* L2 cache.  */
1696                 switch (op2) {
1697                 case 0: /* L2 cache lockdown */
1698                 case 2: /* L2 cache auxiliary control */
1699                     /* ignore */
1700                     break;
1701                 default:
1702                     goto bad_reg;
1703                 }
1704 		break;
1705 	    default:
1706 		goto bad_reg;
1707 	    }
1708 	    break;
1709         case 1: /* TCM memory region registers.  */
1710         case 2:
1711             /* Not implemented.  */
1712             goto bad_reg;
1713         case 12: /* Performance monitor control */
1714             /* Performance monitors are implementation defined in v7,
1715              * but with an ARM recommended set of registers, which we
1716              * follow (although we don't actually implement any counters)
1717              */
1718             if (!arm_feature(env, ARM_FEATURE_V7)) {
1719                 goto bad_reg;
1720             }
1721             switch (op2) {
1722             case 0: /* performance monitor control register */
1723                 /* only the DP, X, D and E bits are writable */
1724                 env->cp15.c9_pmcr &= ~0x39;
1725                 env->cp15.c9_pmcr |= (val & 0x39);
1726                 break;
1727             case 1: /* Count enable set register */
1728                 val &= (1 << 31);
1729                 env->cp15.c9_pmcnten |= val;
1730                 break;
1731             case 2: /* Count enable clear */
1732                 val &= (1 << 31);
1733                 env->cp15.c9_pmcnten &= ~val;
1734                 break;
1735             case 3: /* Overflow flag status */
1736                 env->cp15.c9_pmovsr &= ~val;
1737                 break;
1738             case 4: /* Software increment */
1739                 /* RAZ/WI since we don't implement the software-count event */
1740                 break;
1741             case 5: /* Event counter selection register */
1742                 /* Since we don't implement any events, writing to this register
1743                  * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1744                  */
1745                 break;
1746             default:
1747                 goto bad_reg;
1748             }
1749             break;
1750         case 13: /* Performance counters */
1751             if (!arm_feature(env, ARM_FEATURE_V7)) {
1752                 goto bad_reg;
1753             }
1754             switch (op2) {
1755             case 0: /* Cycle count register: not implemented, so RAZ/WI */
1756                 break;
1757             case 1: /* Event type select */
1758                 env->cp15.c9_pmxevtyper = val & 0xff;
1759                 break;
1760             case 2: /* Event count register */
1761                 /* Unimplemented (we have no events), RAZ/WI */
1762                 break;
1763             default:
1764                 goto bad_reg;
1765             }
1766             break;
1767         case 14: /* Performance monitor control */
1768             if (!arm_feature(env, ARM_FEATURE_V7)) {
1769                 goto bad_reg;
1770             }
1771             switch (op2) {
1772             case 0: /* user enable */
1773                 env->cp15.c9_pmuserenr = val & 1;
1774                 /* changes access rights for cp registers, so flush tbs */
1775                 tb_flush(env);
1776                 break;
1777             case 1: /* interrupt enable set */
1778                 /* We have no event counters so only the C bit can be changed */
1779                 val &= (1 << 31);
1780                 env->cp15.c9_pminten |= val;
1781                 break;
1782             case 2: /* interrupt enable clear */
1783                 val &= (1 << 31);
1784                 env->cp15.c9_pminten &= ~val;
1785                 break;
1786             }
1787             break;
1788         default:
1789             goto bad_reg;
1790         }
1791         break;
1792     case 10: /* MMU TLB lockdown.  */
1793         /* ??? TLB lockdown not implemented.  */
1794         break;
1795     case 12: /* Reserved.  */
1796         if (!op1 && !crm) {
1797             switch (op2) {
1798             case 0:
1799                 if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
1800                     goto bad_reg;
1801                 }
1802                 env->cp15.c12_vbar = val & ~0x1f;
1803                 break;
1804             case 1:
1805                 if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
1806                     goto bad_reg;
1807                 }
1808                 if (!(env->cp15.c1_secfg & 1)) {
1809                     env->cp15.c12_mvbar = val & ~0x1f;
1810                 }
1811                 break;
1812             default:
1813                 goto bad_reg;
1814             }
1815             break;
1816         }
1817         goto bad_reg;
1818     case 13: /* Process ID.  */
1819         switch (op2) {
1820         case 0:
1821             /* Unlike real hardware the qemu TLB uses virtual addresses,
1822                not modified virtual addresses, so this causes a TLB flush.
1823              */
1824             if (env->cp15.c13_fcse != val)
1825               tlb_flush(env, 1);
1826             env->cp15.c13_fcse = val;
1827             break;
1828         case 1:
1829             /* This changes the ASID, so do a TLB flush.  */
1830             if (env->cp15.c13_context != val
1831                 && !arm_feature(env, ARM_FEATURE_MPU))
1832               tlb_flush(env, 0);
1833             env->cp15.c13_context = val;
1834             break;
1835         default:
1836             goto bad_reg;
1837         }
1838         break;
1839     case 14: /* Reserved.  */
1840         goto bad_reg;
1841     case 15: /* Implementation specific.  */
1842         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1843             if (op2 == 0 && crm == 1) {
1844                 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1845                     /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1846                     tb_flush(env);
1847                     env->cp15.c15_cpar = val & 0x3fff;
1848                 }
1849                 break;
1850             }
1851             goto bad_reg;
1852         }
1853         if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1854             switch (crm) {
1855             case 0:
1856                 break;
1857             case 1: /* Set TI925T configuration.  */
1858                 env->cp15.c15_ticonfig = val & 0xe7;
1859                 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1860                         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1861                 break;
1862             case 2: /* Set I_max.  */
1863                 env->cp15.c15_i_max = val;
1864                 break;
1865             case 3: /* Set I_min.  */
1866                 env->cp15.c15_i_min = val;
1867                 break;
1868             case 4: /* Set thread-ID.  */
1869                 env->cp15.c15_threadid = val & 0xffff;
1870                 break;
1871             case 8: /* Wait-for-interrupt (deprecated).  */
1872                 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_HALT);
1873                 break;
1874             default:
1875                 goto bad_reg;
1876             }
1877         }
1878         break;
1879     }
1880     return;
1881 bad_reg:
1882     /* ??? For debugging only.  Should raise illegal instruction exception.  */
1883     cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1884               (insn >> 16) & 0xf, crm, op1, op2);
1885 }
1886 
HELPER(get_cp15)1887 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
1888 {
1889     int op1;
1890     int op2;
1891     int crm;
1892 
1893     op1 = (insn >> 21) & 7;
1894     op2 = (insn >> 5) & 7;
1895     crm = insn & 0xf;
1896     switch ((insn >> 16) & 0xf) {
1897     case 0: /* ID codes.  */
1898         switch (op1) {
1899         case 0:
1900             switch (crm) {
1901             case 0:
1902                 switch (op2) {
1903                 case 0: /* Device ID.  */
1904                     return env->cp15.c0_cpuid;
1905                 case 1: /* Cache Type.  */
1906 		    return env->cp15.c0_cachetype;
1907                 case 2: /* TCM status.  */
1908                     return 0;
1909                 case 3: /* TLB type register.  */
1910                     return 0; /* No lockable TLB entries.  */
1911                 case 5: /* MPIDR */
1912                     /* The MPIDR was standardised in v7; prior to
1913                      * this it was implemented only in the 11MPCore.
1914                      * For all other pre-v7 cores it does not exist.
1915                      */
1916                     if (arm_feature(env, ARM_FEATURE_V7) ||
1917                         ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1918                         int mpidr = ENV_GET_CPU(env)->cpu_index;
1919                         /* We don't support setting cluster ID ([8..11])
1920                          * so these bits always RAZ.
1921                          */
1922                         if (arm_feature(env, ARM_FEATURE_V7MP)) {
1923                             mpidr |= (1 << 31);
1924                             /* Cores which are uniprocessor (non-coherent)
1925                              * but still implement the MP extensions set
1926                              * bit 30. (For instance, A9UP.) However we do
1927                              * not currently model any of those cores.
1928                              */
1929                         }
1930                         return mpidr;
1931                     }
1932                     /* otherwise fall through to the unimplemented-reg case */
1933                 default:
1934                     goto bad_reg;
1935                 }
1936             case 1:
1937                 if (!arm_feature(env, ARM_FEATURE_V6))
1938                     goto bad_reg;
1939                 return env->cp15.c0_c1[op2];
1940             case 2:
1941                 if (!arm_feature(env, ARM_FEATURE_V6))
1942                     goto bad_reg;
1943                 return env->cp15.c0_c2[op2];
1944             case 3: case 4: case 5: case 6: case 7:
1945                 return 0;
1946             default:
1947                 goto bad_reg;
1948             }
1949             break;
1950         case 1:
1951             /* These registers aren't documented on arm11 cores.  However
1952                Linux looks at them anyway.  */
1953             if (!arm_feature(env, ARM_FEATURE_V6))
1954                 goto bad_reg;
1955             if (crm != 0)
1956                 goto bad_reg;
1957             if (!arm_feature(env, ARM_FEATURE_V7))
1958                 return 0;
1959 
1960             switch (op2) {
1961             case 0:
1962                 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1963             case 1:
1964                 return env->cp15.c0_clid;
1965             case 7:
1966                 return 0;
1967             }
1968             goto bad_reg;
1969         case 2:
1970             if (op2 != 0 || crm != 0)
1971                 goto bad_reg;
1972             return env->cp15.c0_cssel;
1973         default:
1974             goto bad_reg;
1975         }
1976         break;
1977     case 1: /* System configuration.  */
1978         switch (crm) {
1979         case 0:
1980         if (arm_feature(env, ARM_FEATURE_OMAPCP))
1981             op2 = 0;
1982         switch (op2) {
1983         case 0: /* Control register.  */
1984             return env->cp15.c1_sys;
1985         case 1: /* Auxiliary control register.  */
1986             if (arm_feature(env, ARM_FEATURE_XSCALE))
1987                 return env->cp15.c1_xscaleauxcr;
1988             if (!arm_feature(env, ARM_FEATURE_AUXCR))
1989                 goto bad_reg;
1990             switch (ARM_CPUID(env)) {
1991             case ARM_CPUID_ARM1026:
1992                 return 1;
1993             case ARM_CPUID_ARM1136:
1994             case ARM_CPUID_ARM1136_R2:
1995                 return 7;
1996             case ARM_CPUID_ARM11MPCORE:
1997                 return 1;
1998             case ARM_CPUID_CORTEXA8:
1999                 case ARM_CPUID_CORTEXA8_R2:
2000                 return 2;
2001                 case ARM_CPUID_CORTEXA9:
2002                     return 0;
2003             default:
2004                 goto bad_reg;
2005             }
2006                 break;
2007         case 2: /* Coprocessor access register.  */
2008             if (arm_feature(env, ARM_FEATURE_XSCALE))
2009                 goto bad_reg;
2010             return env->cp15.c1_coproc;
2011         default:
2012             goto bad_reg;
2013         }
2014             break;
2015         case 1:
2016             if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)
2017                 || (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)
2018                 goto bad_reg;
2019             switch (op2) {
2020             case 0: /* Secure configuration register. */
2021                 if (env->cp15.c1_secfg & 1)
2022                     goto bad_reg;
2023                 return env->cp15.c1_secfg;
2024             case 1: /* Secure debug enable register. */
2025                 if (env->cp15.c1_secfg & 1)
2026                     goto bad_reg;
2027                 return env->cp15.c1_sedbg;
2028             case 2: /* Nonsecure access control register. */
2029                 return env->cp15.c1_nseac;
2030             default:
2031                 goto bad_reg;
2032             }
2033             break;
2034         default:
2035             goto bad_reg;
2036         }
2037         break;
2038     case 2: /* MMU Page table control / MPU cache control.  */
2039         if (arm_feature(env, ARM_FEATURE_MPU)) {
2040             switch (op2) {
2041             case 0:
2042                 return env->cp15.c2_data;
2043                 break;
2044             case 1:
2045                 return env->cp15.c2_insn;
2046                 break;
2047             default:
2048                 goto bad_reg;
2049             }
2050         } else {
2051 	    switch (op2) {
2052 	    case 0:
2053 		return env->cp15.c2_base0;
2054 	    case 1:
2055 		return env->cp15.c2_base1;
2056 	    case 2:
2057                 return env->cp15.c2_control;
2058 	    default:
2059 		goto bad_reg;
2060 	    }
2061 	}
2062     case 3: /* MMU Domain access control / MPU write buffer control.  */
2063         return env->cp15.c3;
2064     case 4: /* Reserved.  */
2065         goto bad_reg;
2066     case 5: /* MMU Fault status / MPU access permission.  */
2067         if (arm_feature(env, ARM_FEATURE_OMAPCP))
2068             op2 = 0;
2069         switch (op2) {
2070         case 0:
2071             if (arm_feature(env, ARM_FEATURE_MPU))
2072                 return simple_mpu_ap_bits(env->cp15.c5_data);
2073             return env->cp15.c5_data;
2074         case 1:
2075             if (arm_feature(env, ARM_FEATURE_MPU))
2076                 return simple_mpu_ap_bits(env->cp15.c5_data);
2077             return env->cp15.c5_insn;
2078         case 2:
2079             if (!arm_feature(env, ARM_FEATURE_MPU))
2080                 goto bad_reg;
2081             return env->cp15.c5_data;
2082         case 3:
2083             if (!arm_feature(env, ARM_FEATURE_MPU))
2084                 goto bad_reg;
2085             return env->cp15.c5_insn;
2086         default:
2087             goto bad_reg;
2088         }
2089     case 6: /* MMU Fault address.  */
2090         if (arm_feature(env, ARM_FEATURE_MPU)) {
2091             if (crm >= 8)
2092                 goto bad_reg;
2093             return env->cp15.c6_region[crm];
2094         } else {
2095             if (arm_feature(env, ARM_FEATURE_OMAPCP))
2096                 op2 = 0;
2097 	    switch (op2) {
2098 	    case 0:
2099 		return env->cp15.c6_data;
2100 	    case 1:
2101 		if (arm_feature(env, ARM_FEATURE_V6)) {
2102 		    /* Watchpoint Fault Adrress.  */
2103 		    return 0; /* Not implemented.  */
2104                 }
2105 		    /* Instruction Fault Adrress.  */
2106 		    /* Arm9 doesn't have an IFAR, but implementing it anyway
2107 		       shouldn't do any harm.  */
2108 		    return env->cp15.c6_insn;
2109 	    case 2:
2110 		if (arm_feature(env, ARM_FEATURE_V6)) {
2111 		    /* Instruction Fault Adrress.  */
2112 		    return env->cp15.c6_insn;
2113 		}
2114                 goto bad_reg;
2115 	    default:
2116 		goto bad_reg;
2117 	    }
2118         }
2119     case 7: /* Cache control.  */
2120         if (crm == 4 && op1 == 0 && op2 == 0) {
2121             return env->cp15.c7_par;
2122         }
2123         if (((insn >> 12) & 0xf) == 0xf) /* clear ZF only if destination is r15 */
2124         env->ZF = 0;
2125         return 0;
2126     case 8: /* MMU TLB control.  */
2127         goto bad_reg;
2128     case 9:
2129         switch (crm) {
2130         case 0: /* Cache lockdown */
2131             switch (op1) {
2132             case 0: /* L1 cache.  */
2133                 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2134                     return 0;
2135                 }
2136                 switch (op2) {
2137                 case 0:
2138                     return env->cp15.c9_data;
2139                 case 1:
2140                     return env->cp15.c9_insn;
2141                 default:
2142                     goto bad_reg;
2143                 }
2144             case 1: /* L2 cache */
2145                 if (crm != 0) {
2146                     goto bad_reg;
2147                 }
2148                 /* L2 Lockdown and Auxiliary control.  */
2149                 return 0;
2150             default:
2151                 goto bad_reg;
2152             }
2153             break;
2154         case 12: /* Performance monitor control */
2155             if (!arm_feature(env, ARM_FEATURE_V7)) {
2156                 goto bad_reg;
2157             }
2158             switch (op2) {
2159             case 0: /* performance monitor control register */
2160                 return env->cp15.c9_pmcr;
2161             case 1: /* count enable set */
2162             case 2: /* count enable clear */
2163                 return env->cp15.c9_pmcnten;
2164             case 3: /* overflow flag status */
2165                 return env->cp15.c9_pmovsr;
2166             case 4: /* software increment */
2167             case 5: /* event counter selection register */
2168                 return 0; /* Unimplemented, RAZ/WI */
2169             default:
2170                 goto bad_reg;
2171             }
2172         case 13: /* Performance counters */
2173             if (!arm_feature(env, ARM_FEATURE_V7)) {
2174                 goto bad_reg;
2175             }
2176             switch (op2) {
2177             case 1: /* Event type select */
2178                 return env->cp15.c9_pmxevtyper;
2179             case 0: /* Cycle count register */
2180             case 2: /* Event count register */
2181                 /* Unimplemented, so RAZ/WI */
2182                 return 0;
2183             default:
2184                 goto bad_reg;
2185             }
2186         case 14: /* Performance monitor control */
2187             if (!arm_feature(env, ARM_FEATURE_V7)) {
2188                 goto bad_reg;
2189             }
2190             switch (op2) {
2191             case 0: /* user enable */
2192                 return env->cp15.c9_pmuserenr;
2193             case 1: /* interrupt enable set */
2194             case 2: /* interrupt enable clear */
2195                 return env->cp15.c9_pminten;
2196             default:
2197                 goto bad_reg;
2198             }
2199         default:
2200             goto bad_reg;
2201         }
2202         break;
2203     case 10: /* MMU TLB lockdown.  */
2204         /* ??? TLB lockdown not implemented.  */
2205         return 0;
2206     case 11: /* TCM DMA control.  */
2207     case 12: /* Reserved.  */
2208         if (!op1 && !crm) {
2209             switch (op2) {
2210             case 0: /* secure or nonsecure vector base address */
2211                 if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
2212                     return env->cp15.c12_vbar;
2213                 }
2214                 break;
2215             case 1: /* monitor vector base address */
2216                 if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
2217                     return env->cp15.c12_mvbar;
2218                 }
2219                 break;
2220             default:
2221                 break;
2222             }
2223         }
2224         goto bad_reg;
2225     case 13: /* Process ID.  */
2226         switch (op2) {
2227         case 0:
2228             return env->cp15.c13_fcse;
2229         case 1:
2230             return env->cp15.c13_context;
2231         default:
2232             goto bad_reg;
2233         }
2234     case 14: /* Reserved.  */
2235         goto bad_reg;
2236     case 15: /* Implementation specific.  */
2237         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2238             if (op2 == 0 && crm == 1)
2239                 return env->cp15.c15_cpar;
2240 
2241             goto bad_reg;
2242         }
2243         if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2244             switch (crm) {
2245             case 0:
2246                 return 0;
2247             case 1: /* Read TI925T configuration.  */
2248                 return env->cp15.c15_ticonfig;
2249             case 2: /* Read I_max.  */
2250                 return env->cp15.c15_i_max;
2251             case 3: /* Read I_min.  */
2252                 return env->cp15.c15_i_min;
2253             case 4: /* Read thread-ID.  */
2254                 return env->cp15.c15_threadid;
2255             case 8: /* TI925T_status */
2256                 return 0;
2257             }
2258             /* TODO: Peripheral port remap register:
2259              * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2260              * controller base address at $rn & ~0xfff and map size of
2261              * 0x200 << ($rn & 0xfff), when MMU is off.  */
2262             goto bad_reg;
2263         }
2264         return 0;
2265     }
2266 bad_reg:
2267     /* ??? For debugging only.  Should raise illegal instruction exception.  */
2268     cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2269               (insn >> 16) & 0xf, crm, op1, op2);
2270     return 0;
2271 }
2272 
HELPER(set_r13_banked)2273 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2274 {
2275     if ((env->uncached_cpsr & CPSR_M) == mode) {
2276         env->regs[13] = val;
2277     } else {
2278     env->banked_r13[bank_number(env, mode)] = val;
2279 }
2280 }
2281 
HELPER(get_r13_banked)2282 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2283 {
2284     if ((env->uncached_cpsr & CPSR_M) == mode) {
2285         return env->regs[13];
2286     } else {
2287     return env->banked_r13[bank_number(env, mode)];
2288     }
2289 }
2290 
HELPER(v7m_mrs)2291 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2292 {
2293     switch (reg) {
2294     case 0: /* APSR */
2295         return xpsr_read(env) & 0xf8000000;
2296     case 1: /* IAPSR */
2297         return xpsr_read(env) & 0xf80001ff;
2298     case 2: /* EAPSR */
2299         return xpsr_read(env) & 0xff00fc00;
2300     case 3: /* xPSR */
2301         return xpsr_read(env) & 0xff00fdff;
2302     case 5: /* IPSR */
2303         return xpsr_read(env) & 0x000001ff;
2304     case 6: /* EPSR */
2305         return xpsr_read(env) & 0x0700fc00;
2306     case 7: /* IEPSR */
2307         return xpsr_read(env) & 0x0700edff;
2308     case 8: /* MSP */
2309         return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2310     case 9: /* PSP */
2311         return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2312     case 16: /* PRIMASK */
2313         return (env->uncached_cpsr & CPSR_I) != 0;
2314     case 17: /* BASEPRI */
2315     case 18: /* BASEPRI_MAX */
2316         return env->v7m.basepri;
2317     case 19: /* FAULTMASK */
2318         return (env->uncached_cpsr & CPSR_F) != 0;
2319     case 20: /* CONTROL */
2320         return env->v7m.control;
2321     default:
2322         /* ??? For debugging only.  */
2323         cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2324         return 0;
2325     }
2326 }
2327 
HELPER(v7m_msr)2328 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2329 {
2330     switch (reg) {
2331     case 0: /* APSR */
2332         xpsr_write(env, val, 0xf8000000);
2333         break;
2334     case 1: /* IAPSR */
2335         xpsr_write(env, val, 0xf8000000);
2336         break;
2337     case 2: /* EAPSR */
2338         xpsr_write(env, val, 0xfe00fc00);
2339         break;
2340     case 3: /* xPSR */
2341         xpsr_write(env, val, 0xfe00fc00);
2342         break;
2343     case 5: /* IPSR */
2344         /* IPSR bits are readonly.  */
2345         break;
2346     case 6: /* EPSR */
2347         xpsr_write(env, val, 0x0600fc00);
2348         break;
2349     case 7: /* IEPSR */
2350         xpsr_write(env, val, 0x0600fc00);
2351         break;
2352     case 8: /* MSP */
2353         if (env->v7m.current_sp)
2354             env->v7m.other_sp = val;
2355         else
2356             env->regs[13] = val;
2357         break;
2358     case 9: /* PSP */
2359         if (env->v7m.current_sp)
2360             env->regs[13] = val;
2361         else
2362             env->v7m.other_sp = val;
2363         break;
2364     case 16: /* PRIMASK */
2365         if (val & 1)
2366             env->uncached_cpsr |= CPSR_I;
2367         else
2368             env->uncached_cpsr &= ~CPSR_I;
2369         break;
2370     case 17: /* BASEPRI */
2371         env->v7m.basepri = val & 0xff;
2372         break;
2373     case 18: /* BASEPRI_MAX */
2374         val &= 0xff;
2375         if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2376             env->v7m.basepri = val;
2377         break;
2378     case 19: /* FAULTMASK */
2379         if (val & 1)
2380             env->uncached_cpsr |= CPSR_F;
2381         else
2382             env->uncached_cpsr &= ~CPSR_F;
2383         break;
2384     case 20: /* CONTROL */
2385         env->v7m.control = val & 3;
2386         switch_v7m_sp(env, (val & 2) != 0);
2387         break;
2388     default:
2389         /* ??? For debugging only.  */
2390         cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2391         return;
2392     }
2393 }
2394 
cpu_arm_set_cp_io(CPUARMState * env,int cpnum,ARMReadCPFunc * cp_read,ARMWriteCPFunc * cp_write,void * opaque)2395 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2396                 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2397                 void *opaque)
2398 {
2399     if (cpnum < 0 || cpnum > 14) {
2400         cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2401         return;
2402     }
2403 
2404     env->cp[cpnum].cp_read = cp_read;
2405     env->cp[cpnum].cp_write = cp_write;
2406     env->cp[cpnum].opaque = opaque;
2407 }
2408 
2409 #endif
2410 
2411 /* Note that signed overflow is undefined in C.  The following routines are
2412    careful to use unsigned types where modulo arithmetic is required.
2413    Failure to do so _will_ break on newer gcc.  */
2414 
2415 /* Signed saturating arithmetic.  */
2416 
2417 /* Perform 16-bit signed saturating addition.  */
add16_sat(uint16_t a,uint16_t b)2418 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2419 {
2420     uint16_t res;
2421 
2422     res = a + b;
2423     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2424         if (a & 0x8000)
2425             res = 0x8000;
2426         else
2427             res = 0x7fff;
2428     }
2429     return res;
2430 }
2431 
2432 /* Perform 8-bit signed saturating addition.  */
add8_sat(uint8_t a,uint8_t b)2433 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2434 {
2435     uint8_t res;
2436 
2437     res = a + b;
2438     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2439         if (a & 0x80)
2440             res = 0x80;
2441         else
2442             res = 0x7f;
2443     }
2444     return res;
2445 }
2446 
2447 /* Perform 16-bit signed saturating subtraction.  */
sub16_sat(uint16_t a,uint16_t b)2448 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2449 {
2450     uint16_t res;
2451 
2452     res = a - b;
2453     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2454         if (a & 0x8000)
2455             res = 0x8000;
2456         else
2457             res = 0x7fff;
2458     }
2459     return res;
2460 }
2461 
2462 /* Perform 8-bit signed saturating subtraction.  */
sub8_sat(uint8_t a,uint8_t b)2463 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2464 {
2465     uint8_t res;
2466 
2467     res = a - b;
2468     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2469         if (a & 0x80)
2470             res = 0x80;
2471         else
2472             res = 0x7f;
2473     }
2474     return res;
2475 }
2476 
2477 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2478 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2479 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2480 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2481 #define PFX q
2482 
2483 #include "op_addsub.h"
2484 
2485 /* Unsigned saturating arithmetic.  */
add16_usat(uint16_t a,uint16_t b)2486 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2487 {
2488     uint16_t res;
2489     res = a + b;
2490     if (res < a)
2491         res = 0xffff;
2492     return res;
2493 }
2494 
sub16_usat(uint16_t a,uint16_t b)2495 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2496 {
2497     if (a > b)
2498         return a - b;
2499     else
2500         return 0;
2501 }
2502 
add8_usat(uint8_t a,uint8_t b)2503 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2504 {
2505     uint8_t res;
2506     res = a + b;
2507     if (res < a)
2508         res = 0xff;
2509     return res;
2510 }
2511 
sub8_usat(uint8_t a,uint8_t b)2512 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2513 {
2514     if (a > b)
2515         return a - b;
2516     else
2517         return 0;
2518 }
2519 
2520 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2521 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2522 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2523 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2524 #define PFX uq
2525 
2526 #include "op_addsub.h"
2527 
2528 /* Signed modulo arithmetic.  */
2529 #define SARITH16(a, b, n, op) do { \
2530     int32_t sum; \
2531     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2532     RESULT(sum, n, 16); \
2533     if (sum >= 0) \
2534         ge |= 3 << (n * 2); \
2535     } while(0)
2536 
2537 #define SARITH8(a, b, n, op) do { \
2538     int32_t sum; \
2539     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2540     RESULT(sum, n, 8); \
2541     if (sum >= 0) \
2542         ge |= 1 << n; \
2543     } while(0)
2544 
2545 
2546 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2547 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2548 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
2549 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
2550 #define PFX s
2551 #define ARITH_GE
2552 
2553 #include "op_addsub.h"
2554 
2555 /* Unsigned modulo arithmetic.  */
2556 #define ADD16(a, b, n) do { \
2557     uint32_t sum; \
2558     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2559     RESULT(sum, n, 16); \
2560     if ((sum >> 16) == 1) \
2561         ge |= 3 << (n * 2); \
2562     } while(0)
2563 
2564 #define ADD8(a, b, n) do { \
2565     uint32_t sum; \
2566     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2567     RESULT(sum, n, 8); \
2568     if ((sum >> 8) == 1) \
2569         ge |= 1 << n; \
2570     } while(0)
2571 
2572 #define SUB16(a, b, n) do { \
2573     uint32_t sum; \
2574     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2575     RESULT(sum, n, 16); \
2576     if ((sum >> 16) == 0) \
2577         ge |= 3 << (n * 2); \
2578     } while(0)
2579 
2580 #define SUB8(a, b, n) do { \
2581     uint32_t sum; \
2582     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2583     RESULT(sum, n, 8); \
2584     if ((sum >> 8) == 0) \
2585         ge |= 1 << n; \
2586     } while(0)
2587 
2588 #define PFX u
2589 #define ARITH_GE
2590 
2591 #include "op_addsub.h"
2592 
2593 /* Halved signed arithmetic.  */
2594 #define ADD16(a, b, n) \
2595   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2596 #define SUB16(a, b, n) \
2597   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2598 #define ADD8(a, b, n) \
2599   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2600 #define SUB8(a, b, n) \
2601   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2602 #define PFX sh
2603 
2604 #include "op_addsub.h"
2605 
2606 /* Halved unsigned arithmetic.  */
2607 #define ADD16(a, b, n) \
2608   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2609 #define SUB16(a, b, n) \
2610   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2611 #define ADD8(a, b, n) \
2612   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2613 #define SUB8(a, b, n) \
2614   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2615 #define PFX uh
2616 
2617 #include "op_addsub.h"
2618 
do_usad(uint8_t a,uint8_t b)2619 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2620 {
2621     if (a > b)
2622         return a - b;
2623     else
2624         return b - a;
2625 }
2626 
2627 /* Unsigned sum of absolute byte differences.  */
HELPER(usad8)2628 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2629 {
2630     uint32_t sum;
2631     sum = do_usad(a, b);
2632     sum += do_usad(a >> 8, b >> 8);
2633     sum += do_usad(a >> 16, b >>16);
2634     sum += do_usad(a >> 24, b >> 24);
2635     return sum;
2636 }
2637 
2638 /* For ARMv6 SEL instruction.  */
HELPER(sel_flags)2639 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2640 {
2641     uint32_t mask;
2642 
2643     mask = 0;
2644     if (flags & 1)
2645         mask |= 0xff;
2646     if (flags & 2)
2647         mask |= 0xff00;
2648     if (flags & 4)
2649         mask |= 0xff0000;
2650     if (flags & 8)
2651         mask |= 0xff000000;
2652     return (a & mask) | (b & ~mask);
2653 }
2654 
HELPER(logicq_cc)2655 uint32_t HELPER(logicq_cc)(uint64_t val)
2656 {
2657     return (val >> 32) | (val != 0);
2658 }
2659 
2660 /* VFP support.  We follow the convention used for VFP instrunctions:
2661    Single precition routines have a "s" suffix, double precision a
2662    "d" suffix.  */
2663 
2664 /* Convert host exception flags to vfp form.  */
vfp_exceptbits_from_host(int host_bits)2665 static inline int vfp_exceptbits_from_host(int host_bits)
2666 {
2667     int target_bits = 0;
2668 
2669     if (host_bits & float_flag_invalid)
2670         target_bits |= 1;
2671     if (host_bits & float_flag_divbyzero)
2672         target_bits |= 2;
2673     if (host_bits & float_flag_overflow)
2674         target_bits |= 4;
2675     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2676         target_bits |= 8;
2677     if (host_bits & float_flag_inexact)
2678         target_bits |= 0x10;
2679     if (host_bits & float_flag_input_denormal)
2680         target_bits |= 0x80;
2681     return target_bits;
2682 }
2683 
HELPER(vfp_get_fpscr)2684 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2685 {
2686     int i;
2687     uint32_t fpscr;
2688 
2689     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2690             | (env->vfp.vec_len << 16)
2691             | (env->vfp.vec_stride << 20);
2692     i = get_float_exception_flags(&env->vfp.fp_status);
2693     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2694     fpscr |= vfp_exceptbits_from_host(i);
2695     return fpscr;
2696 }
2697 
vfp_get_fpscr(CPUARMState * env)2698 uint32_t vfp_get_fpscr(CPUARMState *env)
2699 {
2700     return HELPER(vfp_get_fpscr)(env);
2701 }
2702 
2703 /* Convert vfp exception flags to target form.  */
vfp_exceptbits_to_host(int target_bits)2704 static inline int vfp_exceptbits_to_host(int target_bits)
2705 {
2706     int host_bits = 0;
2707 
2708     if (target_bits & 1)
2709         host_bits |= float_flag_invalid;
2710     if (target_bits & 2)
2711         host_bits |= float_flag_divbyzero;
2712     if (target_bits & 4)
2713         host_bits |= float_flag_overflow;
2714     if (target_bits & 8)
2715         host_bits |= float_flag_underflow;
2716     if (target_bits & 0x10)
2717         host_bits |= float_flag_inexact;
2718     if (target_bits & 0x80)
2719         host_bits |= float_flag_input_denormal;
2720     return host_bits;
2721 }
2722 
HELPER(vfp_set_fpscr)2723 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2724 {
2725     int i;
2726     uint32_t changed;
2727 
2728     changed = env->vfp.xregs[ARM_VFP_FPSCR];
2729     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2730     env->vfp.vec_len = (val >> 16) & 7;
2731     env->vfp.vec_stride = (val >> 20) & 3;
2732 
2733     changed ^= val;
2734     if (changed & (3 << 22)) {
2735         i = (val >> 22) & 3;
2736         switch (i) {
2737         case 0:
2738             i = float_round_nearest_even;
2739             break;
2740         case 1:
2741             i = float_round_up;
2742             break;
2743         case 2:
2744             i = float_round_down;
2745             break;
2746         case 3:
2747             i = float_round_to_zero;
2748             break;
2749         }
2750         set_float_rounding_mode(i, &env->vfp.fp_status);
2751     }
2752     if (changed & (1 << 24)) {
2753         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2754         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2755     }
2756     if (changed & (1 << 25))
2757         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2758 
2759     i = vfp_exceptbits_to_host(val);
2760     set_float_exception_flags(i, &env->vfp.fp_status);
2761     set_float_exception_flags(0, &env->vfp.standard_fp_status);
2762 }
2763 
vfp_set_fpscr(CPUARMState * env,uint32_t val)2764 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2765 {
2766     HELPER(vfp_set_fpscr)(env, val);
2767 }
2768 
2769 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2770 
2771 #define VFP_BINOP(name) \
2772 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2773 { \
2774     float_status *fpst = fpstp; \
2775     return float32_ ## name (a, b, fpst); \
2776 } \
2777 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2778 { \
2779     float_status *fpst = fpstp; \
2780     return float64_ ## name (a, b, fpst); \
2781 }
2782 VFP_BINOP(add)
VFP_BINOP(sub)2783 VFP_BINOP(sub)
2784 VFP_BINOP(mul)
2785 VFP_BINOP(div)
2786 #undef VFP_BINOP
2787 
2788 float32 VFP_HELPER(neg, s)(float32 a)
2789 {
2790     return float32_chs(a);
2791 }
2792 
VFP_HELPER(neg,d)2793 float64 VFP_HELPER(neg, d)(float64 a)
2794 {
2795     return float64_chs(a);
2796 }
2797 
VFP_HELPER(abs,s)2798 float32 VFP_HELPER(abs, s)(float32 a)
2799 {
2800     return float32_abs(a);
2801 }
2802 
VFP_HELPER(abs,d)2803 float64 VFP_HELPER(abs, d)(float64 a)
2804 {
2805     return float64_abs(a);
2806 }
2807 
VFP_HELPER(sqrt,s)2808 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2809 {
2810     return float32_sqrt(a, &env->vfp.fp_status);
2811 }
2812 
VFP_HELPER(sqrt,d)2813 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2814 {
2815     return float64_sqrt(a, &env->vfp.fp_status);
2816 }
2817 
2818 /* XXX: check quiet/signaling case */
2819 #define DO_VFP_cmp(p, type) \
2820 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
2821 { \
2822     uint32_t flags; \
2823     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2824     case 0: flags = 0x6; break; \
2825     case -1: flags = 0x8; break; \
2826     case 1: flags = 0x2; break; \
2827     default: case 2: flags = 0x3; break; \
2828     } \
2829     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2830         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2831 } \
2832 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2833 { \
2834     uint32_t flags; \
2835     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2836     case 0: flags = 0x6; break; \
2837     case -1: flags = 0x8; break; \
2838     case 1: flags = 0x2; break; \
2839     default: case 2: flags = 0x3; break; \
2840     } \
2841     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2842         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2843 }
DO_VFP_cmp(s,float32)2844 DO_VFP_cmp(s, float32)
2845 DO_VFP_cmp(d, float64)
2846 #undef DO_VFP_cmp
2847 
2848 /* Integer to float and float to integer conversions */
2849 
2850 #define CONV_ITOF(name, fsz, sign) \
2851     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2852 { \
2853     float_status *fpst = fpstp; \
2854     return sign##int32_to_##float##fsz(x, fpst); \
2855 }
2856 
2857 #define CONV_FTOI(name, fsz, sign, round) \
2858 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2859 { \
2860     float_status *fpst = fpstp; \
2861     if (float##fsz##_is_any_nan(x)) { \
2862         float_raise(float_flag_invalid, fpst); \
2863         return 0; \
2864     } \
2865     return float##fsz##_to_##sign##int32##round(x, fpst); \
2866 }
2867 
2868 #define FLOAT_CONVS(name, p, fsz, sign) \
2869 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2870 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2871 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2872 
2873 FLOAT_CONVS(si, s, 32, )
2874 FLOAT_CONVS(si, d, 64, )
2875 FLOAT_CONVS(ui, s, 32, u)
2876 FLOAT_CONVS(ui, d, 64, u)
2877 
2878 #undef CONV_ITOF
2879 #undef CONV_FTOI
2880 #undef FLOAT_CONVS
2881 
2882 /* floating point conversion */
2883 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2884 {
2885     float64 r = float32_to_float64(x, &env->vfp.fp_status);
2886     /* ARM requires that S<->D conversion of any kind of NaN generates
2887      * a quiet NaN by forcing the most significant frac bit to 1.
2888      */
2889     return float64_maybe_silence_nan(r);
2890 }
2891 
VFP_HELPER(fcvts,d)2892 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2893 {
2894     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
2895     /* ARM requires that S<->D conversion of any kind of NaN generates
2896      * a quiet NaN by forcing the most significant frac bit to 1.
2897      */
2898     return float32_maybe_silence_nan(r);
2899 }
2900 
2901 /* VFP3 fixed point conversion.  */
2902 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2903 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t  x, uint32_t shift, \
2904                                     void *fpstp) \
2905 { \
2906     float_status *fpst = fpstp; \
2907     float##fsz tmp; \
2908     tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2909     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2910 } \
2911 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2912                                        void *fpstp) \
2913 { \
2914     float_status *fpst = fpstp; \
2915     float##fsz tmp; \
2916     if (float##fsz##_is_any_nan(x)) { \
2917         float_raise(float_flag_invalid, fpst); \
2918         return 0; \
2919     } \
2920     tmp = float##fsz##_scalbn(x, shift, fpst); \
2921     return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2922 }
2923 
2924 VFP_CONV_FIX(sh, d, 64, int16, )
2925 VFP_CONV_FIX(sl, d, 64, int32, )
2926 VFP_CONV_FIX(uh, d, 64, uint16, u)
2927 VFP_CONV_FIX(ul, d, 64, uint32, u)
2928 VFP_CONV_FIX(sh, s, 32, int16, )
2929 VFP_CONV_FIX(sl, s, 32, int32, )
2930 VFP_CONV_FIX(uh, s, 32, uint16, u)
2931 VFP_CONV_FIX(ul, s, 32, uint32, u)
2932 #undef VFP_CONV_FIX
2933 
2934 /* Half precision conversions.  */
do_fcvt_f16_to_f32(uint32_t a,CPUARMState * env,float_status * s)2935 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2936 {
2937     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2938     float32 r = float16_to_float32(make_float16(a), ieee, s);
2939     if (ieee) {
2940         return float32_maybe_silence_nan(r);
2941     }
2942     return r;
2943 }
2944 
do_fcvt_f32_to_f16(float32 a,CPUARMState * env,float_status * s)2945 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2946 {
2947     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2948     float16 r = float32_to_float16(a, ieee, s);
2949     if (ieee) {
2950         r = float16_maybe_silence_nan(r);
2951     }
2952     return float16_val(r);
2953 }
2954 
HELPER(neon_fcvt_f16_to_f32)2955 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2956 {
2957     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2958 }
2959 
HELPER(neon_fcvt_f32_to_f16)2960 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2961 {
2962     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2963 }
2964 
HELPER(vfp_fcvt_f16_to_f32)2965 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2966 {
2967     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2968 }
2969 
HELPER(vfp_fcvt_f32_to_f16)2970 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2971 {
2972     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2973 }
2974 
2975 #define float32_two make_float32(0x40000000)
2976 #define float32_three make_float32(0x40400000)
2977 #define float32_one_point_five make_float32(0x3fc00000)
2978 
HELPER(recps_f32)2979 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2980 {
2981     float_status *s = &env->vfp.standard_fp_status;
2982     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2983         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2984         if (!(float32_is_zero(a) || float32_is_zero(b))) {
2985             float_raise(float_flag_input_denormal, s);
2986         }
2987         return float32_two;
2988     }
2989     return float32_sub(float32_two, float32_mul(a, b, s), s);
2990 }
2991 
HELPER(rsqrts_f32)2992 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2993 {
2994     float_status *s = &env->vfp.standard_fp_status;
2995     float32 product;
2996     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2997         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2998         if (!(float32_is_zero(a) || float32_is_zero(b))) {
2999             float_raise(float_flag_input_denormal, s);
3000         }
3001         return float32_one_point_five;
3002     }
3003     product = float32_mul(a, b, s);
3004     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3005 }
3006 
3007 /* NEON helpers.  */
3008 
3009 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3010  * int->float conversions at run-time.  */
3011 #define float64_256 make_float64(0x4070000000000000LL)
3012 #define float64_512 make_float64(0x4080000000000000LL)
3013 
3014 /* The algorithm that must be used to calculate the estimate
3015  * is specified by the ARM ARM.
3016  */
recip_estimate(float64 a,CPUARMState * env)3017 static float64 recip_estimate(float64 a, CPUARMState *env)
3018 {
3019     /* These calculations mustn't set any fp exception flags,
3020      * so we use a local copy of the fp_status.
3021      */
3022     float_status dummy_status = env->vfp.standard_fp_status;
3023     float_status *s = &dummy_status;
3024     /* q = (int)(a * 512.0) */
3025     float64 q = float64_mul(float64_512, a, s);
3026     int64_t q_int = float64_to_int64_round_to_zero(q, s);
3027 
3028     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3029     q = int64_to_float64(q_int, s);
3030     q = float64_add(q, float64_half, s);
3031     q = float64_div(q, float64_512, s);
3032     q = float64_div(float64_one, q, s);
3033 
3034     /* s = (int)(256.0 * r + 0.5) */
3035     q = float64_mul(q, float64_256, s);
3036     q = float64_add(q, float64_half, s);
3037     q_int = float64_to_int64_round_to_zero(q, s);
3038 
3039     /* return (double)s / 256.0 */
3040     return float64_div(int64_to_float64(q_int, s), float64_256, s);
3041 }
3042 
HELPER(recpe_f32)3043 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3044 {
3045     float_status *s = &env->vfp.standard_fp_status;
3046     float64 f64;
3047     uint32_t val32 = float32_val(a);
3048 
3049     int result_exp;
3050     int a_exp = (val32  & 0x7f800000) >> 23;
3051     int sign = val32 & 0x80000000;
3052 
3053     if (float32_is_any_nan(a)) {
3054         if (float32_is_signaling_nan(a)) {
3055             float_raise(float_flag_invalid, s);
3056         }
3057         return float32_default_nan;
3058     } else if (float32_is_infinity(a)) {
3059         return float32_set_sign(float32_zero, float32_is_neg(a));
3060     } else if (float32_is_zero_or_denormal(a)) {
3061         if (!float32_is_zero(a)) {
3062             float_raise(float_flag_input_denormal, s);
3063         }
3064         float_raise(float_flag_divbyzero, s);
3065         return float32_set_sign(float32_infinity, float32_is_neg(a));
3066     } else if (a_exp >= 253) {
3067         float_raise(float_flag_underflow, s);
3068         return float32_set_sign(float32_zero, float32_is_neg(a));
3069     }
3070 
3071     f64 = make_float64((0x3feULL << 52)
3072                        | ((int64_t)(val32 & 0x7fffff) << 29));
3073 
3074     result_exp = 253 - a_exp;
3075 
3076     f64 = recip_estimate(f64, env);
3077 
3078     val32 = sign
3079         | ((result_exp & 0xff) << 23)
3080         | ((float64_val(f64) >> 29) & 0x7fffff);
3081     return make_float32(val32);
3082 }
3083 
3084 /* The algorithm that must be used to calculate the estimate
3085  * is specified by the ARM ARM.
3086  */
recip_sqrt_estimate(float64 a,CPUARMState * env)3087 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3088 {
3089     /* These calculations mustn't set any fp exception flags,
3090      * so we use a local copy of the fp_status.
3091      */
3092     float_status dummy_status = env->vfp.standard_fp_status;
3093     float_status *s = &dummy_status;
3094     float64 q;
3095     int64_t q_int;
3096 
3097     if (float64_lt(a, float64_half, s)) {
3098         /* range 0.25 <= a < 0.5 */
3099 
3100         /* a in units of 1/512 rounded down */
3101         /* q0 = (int)(a * 512.0);  */
3102         q = float64_mul(float64_512, a, s);
3103         q_int = float64_to_int64_round_to_zero(q, s);
3104 
3105         /* reciprocal root r */
3106         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
3107         q = int64_to_float64(q_int, s);
3108         q = float64_add(q, float64_half, s);
3109         q = float64_div(q, float64_512, s);
3110         q = float64_sqrt(q, s);
3111         q = float64_div(float64_one, q, s);
3112     } else {
3113         /* range 0.5 <= a < 1.0 */
3114 
3115         /* a in units of 1/256 rounded down */
3116         /* q1 = (int)(a * 256.0); */
3117         q = float64_mul(float64_256, a, s);
3118         int64_t q_int = float64_to_int64_round_to_zero(q, s);
3119 
3120         /* reciprocal root r */
3121         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3122         q = int64_to_float64(q_int, s);
3123         q = float64_add(q, float64_half, s);
3124         q = float64_div(q, float64_256, s);
3125         q = float64_sqrt(q, s);
3126         q = float64_div(float64_one, q, s);
3127     }
3128     /* r in units of 1/256 rounded to nearest */
3129     /* s = (int)(256.0 * r + 0.5); */
3130 
3131     q = float64_mul(q, float64_256,s );
3132     q = float64_add(q, float64_half, s);
3133     q_int = float64_to_int64_round_to_zero(q, s);
3134 
3135     /* return (double)s / 256.0;*/
3136     return float64_div(int64_to_float64(q_int, s), float64_256, s);
3137 }
3138 
HELPER(rsqrte_f32)3139 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3140 {
3141     float_status *s = &env->vfp.standard_fp_status;
3142     int result_exp;
3143     float64 f64;
3144     uint32_t val;
3145     uint64_t val64;
3146 
3147     val = float32_val(a);
3148 
3149     if (float32_is_any_nan(a)) {
3150         if (float32_is_signaling_nan(a)) {
3151             float_raise(float_flag_invalid, s);
3152         }
3153         return float32_default_nan;
3154     } else if (float32_is_zero_or_denormal(a)) {
3155         if (!float32_is_zero(a)) {
3156             float_raise(float_flag_input_denormal, s);
3157         }
3158         float_raise(float_flag_divbyzero, s);
3159         return float32_set_sign(float32_infinity, float32_is_neg(a));
3160     } else if (float32_is_neg(a)) {
3161         float_raise(float_flag_invalid, s);
3162         return float32_default_nan;
3163     } else if (float32_is_infinity(a)) {
3164         return float32_zero;
3165     }
3166 
3167     /* Normalize to a double-precision value between 0.25 and 1.0,
3168      * preserving the parity of the exponent.  */
3169     if ((val & 0x800000) == 0) {
3170         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3171                            | (0x3feULL << 52)
3172                            | ((uint64_t)(val & 0x7fffff) << 29));
3173     } else {
3174         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3175                            | (0x3fdULL << 52)
3176                            | ((uint64_t)(val & 0x7fffff) << 29));
3177     }
3178 
3179     result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3180 
3181     f64 = recip_sqrt_estimate(f64, env);
3182 
3183     val64 = float64_val(f64);
3184 
3185     val = ((val64 >> 63)  & 0x80000000)
3186         | ((result_exp & 0xff) << 23)
3187         | ((val64 >> 29)  & 0x7fffff);
3188     return make_float32(val);
3189 }
3190 
HELPER(recpe_u32)3191 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3192 {
3193     float64 f64;
3194 
3195     if ((a & 0x80000000) == 0) {
3196         return 0xffffffff;
3197     }
3198 
3199     f64 = make_float64((0x3feULL << 52)
3200                        | ((int64_t)(a & 0x7fffffff) << 21));
3201 
3202     f64 = recip_estimate (f64, env);
3203 
3204     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3205 }
3206 
HELPER(rsqrte_u32)3207 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3208 {
3209     float64 f64;
3210 
3211     if ((a & 0xc0000000) == 0) {
3212         return 0xffffffff;
3213     }
3214 
3215     if (a & 0x80000000) {
3216         f64 = make_float64((0x3feULL << 52)
3217                            | ((uint64_t)(a & 0x7fffffff) << 21));
3218     } else { /* bits 31-30 == '01' */
3219         f64 = make_float64((0x3fdULL << 52)
3220                            | ((uint64_t)(a & 0x3fffffff) << 22));
3221     }
3222 
3223     f64 = recip_sqrt_estimate(f64, env);
3224 
3225     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3226 }
3227 
HELPER(set_teecr)3228 void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
3229 {
3230     val &= 1;
3231     if (env->teecr != val) {
3232         env->teecr = val;
3233         tb_flush(env);
3234     }
3235 }
3236