1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to represent and build scalar expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
16
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Support/ErrorHandling.h"
21
22 namespace llvm {
23 class ConstantInt;
24 class ConstantRange;
25 class DominatorTree;
26
27 enum SCEVTypes {
28 // These should be ordered in terms of increasing complexity to make the
29 // folders simpler.
30 scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
31 scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
32 scUnknown, scCouldNotCompute
33 };
34
35 //===--------------------------------------------------------------------===//
36 /// SCEVConstant - This class represents a constant integer value.
37 ///
38 class SCEVConstant : public SCEV {
39 friend class ScalarEvolution;
40
41 ConstantInt *V;
SCEVConstant(const FoldingSetNodeIDRef ID,ConstantInt * v)42 SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
43 SCEV(ID, scConstant), V(v) {}
44 public:
getValue()45 ConstantInt *getValue() const { return V; }
46
getType()47 Type *getType() const { return V->getType(); }
48
49 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)50 static inline bool classof(const SCEV *S) {
51 return S->getSCEVType() == scConstant;
52 }
53 };
54
55 //===--------------------------------------------------------------------===//
56 /// SCEVCastExpr - This is the base class for unary cast operator classes.
57 ///
58 class SCEVCastExpr : public SCEV {
59 protected:
60 const SCEV *Op;
61 Type *Ty;
62
63 SCEVCastExpr(const FoldingSetNodeIDRef ID,
64 unsigned SCEVTy, const SCEV *op, Type *ty);
65
66 public:
getOperand()67 const SCEV *getOperand() const { return Op; }
getType()68 Type *getType() const { return Ty; }
69
70 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)71 static inline bool classof(const SCEV *S) {
72 return S->getSCEVType() == scTruncate ||
73 S->getSCEVType() == scZeroExtend ||
74 S->getSCEVType() == scSignExtend;
75 }
76 };
77
78 //===--------------------------------------------------------------------===//
79 /// SCEVTruncateExpr - This class represents a truncation of an integer value
80 /// to a smaller integer value.
81 ///
82 class SCEVTruncateExpr : public SCEVCastExpr {
83 friend class ScalarEvolution;
84
85 SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
86 const SCEV *op, Type *ty);
87
88 public:
89 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)90 static inline bool classof(const SCEV *S) {
91 return S->getSCEVType() == scTruncate;
92 }
93 };
94
95 //===--------------------------------------------------------------------===//
96 /// SCEVZeroExtendExpr - This class represents a zero extension of a small
97 /// integer value to a larger integer value.
98 ///
99 class SCEVZeroExtendExpr : public SCEVCastExpr {
100 friend class ScalarEvolution;
101
102 SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
103 const SCEV *op, Type *ty);
104
105 public:
106 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)107 static inline bool classof(const SCEV *S) {
108 return S->getSCEVType() == scZeroExtend;
109 }
110 };
111
112 //===--------------------------------------------------------------------===//
113 /// SCEVSignExtendExpr - This class represents a sign extension of a small
114 /// integer value to a larger integer value.
115 ///
116 class SCEVSignExtendExpr : public SCEVCastExpr {
117 friend class ScalarEvolution;
118
119 SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
120 const SCEV *op, Type *ty);
121
122 public:
123 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)124 static inline bool classof(const SCEV *S) {
125 return S->getSCEVType() == scSignExtend;
126 }
127 };
128
129
130 //===--------------------------------------------------------------------===//
131 /// SCEVNAryExpr - This node is a base class providing common
132 /// functionality for n'ary operators.
133 ///
134 class SCEVNAryExpr : public SCEV {
135 protected:
136 // Since SCEVs are immutable, ScalarEvolution allocates operand
137 // arrays with its SCEVAllocator, so this class just needs a simple
138 // pointer rather than a more elaborate vector-like data structure.
139 // This also avoids the need for a non-trivial destructor.
140 const SCEV *const *Operands;
141 size_t NumOperands;
142
SCEVNAryExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)143 SCEVNAryExpr(const FoldingSetNodeIDRef ID,
144 enum SCEVTypes T, const SCEV *const *O, size_t N)
145 : SCEV(ID, T), Operands(O), NumOperands(N) {}
146
147 public:
getNumOperands()148 size_t getNumOperands() const { return NumOperands; }
getOperand(unsigned i)149 const SCEV *getOperand(unsigned i) const {
150 assert(i < NumOperands && "Operand index out of range!");
151 return Operands[i];
152 }
153
154 typedef const SCEV *const *op_iterator;
155 typedef iterator_range<op_iterator> op_range;
op_begin()156 op_iterator op_begin() const { return Operands; }
op_end()157 op_iterator op_end() const { return Operands + NumOperands; }
operands()158 op_range operands() const {
159 return make_range(op_begin(), op_end());
160 }
161
getType()162 Type *getType() const { return getOperand(0)->getType(); }
163
164 NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
165 return (NoWrapFlags)(SubclassData & Mask);
166 }
167
168 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)169 static inline bool classof(const SCEV *S) {
170 return S->getSCEVType() == scAddExpr ||
171 S->getSCEVType() == scMulExpr ||
172 S->getSCEVType() == scSMaxExpr ||
173 S->getSCEVType() == scUMaxExpr ||
174 S->getSCEVType() == scAddRecExpr;
175 }
176 };
177
178 //===--------------------------------------------------------------------===//
179 /// SCEVCommutativeExpr - This node is the base class for n'ary commutative
180 /// operators.
181 ///
182 class SCEVCommutativeExpr : public SCEVNAryExpr {
183 protected:
SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)184 SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
185 enum SCEVTypes T, const SCEV *const *O, size_t N)
186 : SCEVNAryExpr(ID, T, O, N) {}
187
188 public:
189 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)190 static inline bool classof(const SCEV *S) {
191 return S->getSCEVType() == scAddExpr ||
192 S->getSCEVType() == scMulExpr ||
193 S->getSCEVType() == scSMaxExpr ||
194 S->getSCEVType() == scUMaxExpr;
195 }
196
197 /// Set flags for a non-recurrence without clearing previously set flags.
setNoWrapFlags(NoWrapFlags Flags)198 void setNoWrapFlags(NoWrapFlags Flags) {
199 SubclassData |= Flags;
200 }
201 };
202
203
204 //===--------------------------------------------------------------------===//
205 /// SCEVAddExpr - This node represents an addition of some number of SCEVs.
206 ///
207 class SCEVAddExpr : public SCEVCommutativeExpr {
208 friend class ScalarEvolution;
209
SCEVAddExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)210 SCEVAddExpr(const FoldingSetNodeIDRef ID,
211 const SCEV *const *O, size_t N)
212 : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
213 }
214
215 public:
getType()216 Type *getType() const {
217 // Use the type of the last operand, which is likely to be a pointer
218 // type, if there is one. This doesn't usually matter, but it can help
219 // reduce casts when the expressions are expanded.
220 return getOperand(getNumOperands() - 1)->getType();
221 }
222
223 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)224 static inline bool classof(const SCEV *S) {
225 return S->getSCEVType() == scAddExpr;
226 }
227 };
228
229 //===--------------------------------------------------------------------===//
230 /// SCEVMulExpr - This node represents multiplication of some number of SCEVs.
231 ///
232 class SCEVMulExpr : public SCEVCommutativeExpr {
233 friend class ScalarEvolution;
234
SCEVMulExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)235 SCEVMulExpr(const FoldingSetNodeIDRef ID,
236 const SCEV *const *O, size_t N)
237 : SCEVCommutativeExpr(ID, scMulExpr, O, N) {
238 }
239
240 public:
241 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)242 static inline bool classof(const SCEV *S) {
243 return S->getSCEVType() == scMulExpr;
244 }
245 };
246
247
248 //===--------------------------------------------------------------------===//
249 /// SCEVUDivExpr - This class represents a binary unsigned division operation.
250 ///
251 class SCEVUDivExpr : public SCEV {
252 friend class ScalarEvolution;
253
254 const SCEV *LHS;
255 const SCEV *RHS;
SCEVUDivExpr(const FoldingSetNodeIDRef ID,const SCEV * lhs,const SCEV * rhs)256 SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
257 : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
258
259 public:
getLHS()260 const SCEV *getLHS() const { return LHS; }
getRHS()261 const SCEV *getRHS() const { return RHS; }
262
getType()263 Type *getType() const {
264 // In most cases the types of LHS and RHS will be the same, but in some
265 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
266 // depend on the type for correctness, but handling types carefully can
267 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
268 // a pointer type than the RHS, so use the RHS' type here.
269 return getRHS()->getType();
270 }
271
272 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)273 static inline bool classof(const SCEV *S) {
274 return S->getSCEVType() == scUDivExpr;
275 }
276 };
277
278
279 //===--------------------------------------------------------------------===//
280 /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip
281 /// count of the specified loop. This is the primary focus of the
282 /// ScalarEvolution framework; all the other SCEV subclasses are mostly just
283 /// supporting infrastructure to allow SCEVAddRecExpr expressions to be
284 /// created and analyzed.
285 ///
286 /// All operands of an AddRec are required to be loop invariant.
287 ///
288 class SCEVAddRecExpr : public SCEVNAryExpr {
289 friend class ScalarEvolution;
290
291 const Loop *L;
292
SCEVAddRecExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N,const Loop * l)293 SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
294 const SCEV *const *O, size_t N, const Loop *l)
295 : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
296
297 public:
getStart()298 const SCEV *getStart() const { return Operands[0]; }
getLoop()299 const Loop *getLoop() const { return L; }
300
301 /// getStepRecurrence - This method constructs and returns the recurrence
302 /// indicating how much this expression steps by. If this is a polynomial
303 /// of degree N, it returns a chrec of degree N-1.
304 /// We cannot determine whether the step recurrence has self-wraparound.
getStepRecurrence(ScalarEvolution & SE)305 const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
306 if (isAffine()) return getOperand(1);
307 return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
308 op_end()),
309 getLoop(), FlagAnyWrap);
310 }
311
312 /// isAffine - Return true if this is an affine AddRec (i.e., it represents
313 /// an expressions A+B*x where A and B are loop invariant values.
isAffine()314 bool isAffine() const {
315 // We know that the start value is invariant. This expression is thus
316 // affine iff the step is also invariant.
317 return getNumOperands() == 2;
318 }
319
320 /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it
321 /// represents an expressions A+B*x+C*x^2 where A, B and C are loop
322 /// invariant values. This corresponds to an addrec of the form {L,+,M,+,N}
isQuadratic()323 bool isQuadratic() const {
324 return getNumOperands() == 3;
325 }
326
327 /// Set flags for a recurrence without clearing any previously set flags.
328 /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
329 /// to make it easier to propagate flags.
setNoWrapFlags(NoWrapFlags Flags)330 void setNoWrapFlags(NoWrapFlags Flags) {
331 if (Flags & (FlagNUW | FlagNSW))
332 Flags = ScalarEvolution::setFlags(Flags, FlagNW);
333 SubclassData |= Flags;
334 }
335
336 /// evaluateAtIteration - Return the value of this chain of recurrences at
337 /// the specified iteration number.
338 const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
339
340 /// getNumIterationsInRange - Return the number of iterations of this loop
341 /// that produce values in the specified constant range. Another way of
342 /// looking at this is that it returns the first iteration number where the
343 /// value is not in the condition, thus computing the exit count. If the
344 /// iteration count can't be computed, an instance of SCEVCouldNotCompute is
345 /// returned.
346 const SCEV *getNumIterationsInRange(ConstantRange Range,
347 ScalarEvolution &SE) const;
348
349 /// getPostIncExpr - Return an expression representing the value of
350 /// this expression one iteration of the loop ahead.
getPostIncExpr(ScalarEvolution & SE)351 const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
352 return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
353 }
354
355 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)356 static inline bool classof(const SCEV *S) {
357 return S->getSCEVType() == scAddRecExpr;
358 }
359
360 /// Collect parametric terms occurring in step expressions.
361 void collectParametricTerms(ScalarEvolution &SE,
362 SmallVectorImpl<const SCEV *> &Terms) const;
363
364 /// Return in Subscripts the access functions for each dimension in Sizes.
365 void computeAccessFunctions(ScalarEvolution &SE,
366 SmallVectorImpl<const SCEV *> &Subscripts,
367 SmallVectorImpl<const SCEV *> &Sizes) const;
368
369 /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
370 /// subscripts and sizes of an array access.
371 ///
372 /// The delinearization is a 3 step process: the first two steps compute the
373 /// sizes of each subscript and the third step computes the access functions
374 /// for the delinearized array:
375 ///
376 /// 1. Find the terms in the step functions
377 /// 2. Compute the array size
378 /// 3. Compute the access function: divide the SCEV by the array size
379 /// starting with the innermost dimensions found in step 2. The Quotient
380 /// is the SCEV to be divided in the next step of the recursion. The
381 /// Remainder is the subscript of the innermost dimension. Loop over all
382 /// array dimensions computed in step 2.
383 ///
384 /// To compute a uniform array size for several memory accesses to the same
385 /// object, one can collect in step 1 all the step terms for all the memory
386 /// accesses, and compute in step 2 a unique array shape. This guarantees
387 /// that the array shape will be the same across all memory accesses.
388 ///
389 /// FIXME: We could derive the result of steps 1 and 2 from a description of
390 /// the array shape given in metadata.
391 ///
392 /// Example:
393 ///
394 /// A[][n][m]
395 ///
396 /// for i
397 /// for j
398 /// for k
399 /// A[j+k][2i][5i] =
400 ///
401 /// The initial SCEV:
402 ///
403 /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
404 ///
405 /// 1. Find the different terms in the step functions:
406 /// -> [2*m, 5, n*m, n*m]
407 ///
408 /// 2. Compute the array size: sort and unique them
409 /// -> [n*m, 2*m, 5]
410 /// find the GCD of all the terms = 1
411 /// divide by the GCD and erase constant terms
412 /// -> [n*m, 2*m]
413 /// GCD = m
414 /// divide by GCD -> [n, 2]
415 /// remove constant terms
416 /// -> [n]
417 /// size of the array is A[unknown][n][m]
418 ///
419 /// 3. Compute the access function
420 /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
421 /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
422 /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
423 /// The remainder is the subscript of the innermost array dimension: [5i].
424 ///
425 /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
426 /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
427 /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
428 /// The Remainder is the subscript of the next array dimension: [2i].
429 ///
430 /// The subscript of the outermost dimension is the Quotient: [j+k].
431 ///
432 /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
433 void delinearize(ScalarEvolution &SE,
434 SmallVectorImpl<const SCEV *> &Subscripts,
435 SmallVectorImpl<const SCEV *> &Sizes,
436 const SCEV *ElementSize) const;
437 };
438
439 //===--------------------------------------------------------------------===//
440 /// SCEVSMaxExpr - This class represents a signed maximum selection.
441 ///
442 class SCEVSMaxExpr : public SCEVCommutativeExpr {
443 friend class ScalarEvolution;
444
SCEVSMaxExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)445 SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
446 const SCEV *const *O, size_t N)
447 : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
448 // Max never overflows.
449 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
450 }
451
452 public:
453 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)454 static inline bool classof(const SCEV *S) {
455 return S->getSCEVType() == scSMaxExpr;
456 }
457 };
458
459
460 //===--------------------------------------------------------------------===//
461 /// SCEVUMaxExpr - This class represents an unsigned maximum selection.
462 ///
463 class SCEVUMaxExpr : public SCEVCommutativeExpr {
464 friend class ScalarEvolution;
465
SCEVUMaxExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)466 SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
467 const SCEV *const *O, size_t N)
468 : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
469 // Max never overflows.
470 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
471 }
472
473 public:
474 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)475 static inline bool classof(const SCEV *S) {
476 return S->getSCEVType() == scUMaxExpr;
477 }
478 };
479
480 //===--------------------------------------------------------------------===//
481 /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV
482 /// value, and only represent it as its LLVM Value. This is the "bottom"
483 /// value for the analysis.
484 ///
485 class SCEVUnknown : public SCEV, private CallbackVH {
486 friend class ScalarEvolution;
487
488 // Implement CallbackVH.
489 void deleted() override;
490 void allUsesReplacedWith(Value *New) override;
491
492 /// SE - The parent ScalarEvolution value. This is used to update
493 /// the parent's maps when the value associated with a SCEVUnknown
494 /// is deleted or RAUW'd.
495 ScalarEvolution *SE;
496
497 /// Next - The next pointer in the linked list of all
498 /// SCEVUnknown instances owned by a ScalarEvolution.
499 SCEVUnknown *Next;
500
SCEVUnknown(const FoldingSetNodeIDRef ID,Value * V,ScalarEvolution * se,SCEVUnknown * next)501 SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
502 ScalarEvolution *se, SCEVUnknown *next) :
503 SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
504
505 public:
getValue()506 Value *getValue() const { return getValPtr(); }
507
508 /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special
509 /// constant representing a type size, alignment, or field offset in
510 /// a target-independent manner, and hasn't happened to have been
511 /// folded with other operations into something unrecognizable. This
512 /// is mainly only useful for pretty-printing and other situations
513 /// where it isn't absolutely required for these to succeed.
514 bool isSizeOf(Type *&AllocTy) const;
515 bool isAlignOf(Type *&AllocTy) const;
516 bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
517
getType()518 Type *getType() const { return getValPtr()->getType(); }
519
520 /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)521 static inline bool classof(const SCEV *S) {
522 return S->getSCEVType() == scUnknown;
523 }
524 };
525
526 /// SCEVVisitor - This class defines a simple visitor class that may be used
527 /// for various SCEV analysis purposes.
528 template<typename SC, typename RetVal=void>
529 struct SCEVVisitor {
visitSCEVVisitor530 RetVal visit(const SCEV *S) {
531 switch (S->getSCEVType()) {
532 case scConstant:
533 return ((SC*)this)->visitConstant((const SCEVConstant*)S);
534 case scTruncate:
535 return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
536 case scZeroExtend:
537 return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
538 case scSignExtend:
539 return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
540 case scAddExpr:
541 return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
542 case scMulExpr:
543 return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
544 case scUDivExpr:
545 return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
546 case scAddRecExpr:
547 return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
548 case scSMaxExpr:
549 return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
550 case scUMaxExpr:
551 return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
552 case scUnknown:
553 return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
554 case scCouldNotCompute:
555 return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
556 default:
557 llvm_unreachable("Unknown SCEV type!");
558 }
559 }
560
visitCouldNotComputeSCEVVisitor561 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
562 llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
563 }
564 };
565
566 /// Visit all nodes in the expression tree using worklist traversal.
567 ///
568 /// Visitor implements:
569 /// // return true to follow this node.
570 /// bool follow(const SCEV *S);
571 /// // return true to terminate the search.
572 /// bool isDone();
573 template<typename SV>
574 class SCEVTraversal {
575 SV &Visitor;
576 SmallVector<const SCEV *, 8> Worklist;
577 SmallPtrSet<const SCEV *, 8> Visited;
578
push(const SCEV * S)579 void push(const SCEV *S) {
580 if (Visited.insert(S) && Visitor.follow(S))
581 Worklist.push_back(S);
582 }
583 public:
SCEVTraversal(SV & V)584 SCEVTraversal(SV& V): Visitor(V) {}
585
visitAll(const SCEV * Root)586 void visitAll(const SCEV *Root) {
587 push(Root);
588 while (!Worklist.empty() && !Visitor.isDone()) {
589 const SCEV *S = Worklist.pop_back_val();
590
591 switch (S->getSCEVType()) {
592 case scConstant:
593 case scUnknown:
594 break;
595 case scTruncate:
596 case scZeroExtend:
597 case scSignExtend:
598 push(cast<SCEVCastExpr>(S)->getOperand());
599 break;
600 case scAddExpr:
601 case scMulExpr:
602 case scSMaxExpr:
603 case scUMaxExpr:
604 case scAddRecExpr: {
605 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
606 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(),
607 E = NAry->op_end(); I != E; ++I) {
608 push(*I);
609 }
610 break;
611 }
612 case scUDivExpr: {
613 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
614 push(UDiv->getLHS());
615 push(UDiv->getRHS());
616 break;
617 }
618 case scCouldNotCompute:
619 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
620 default:
621 llvm_unreachable("Unknown SCEV kind!");
622 }
623 }
624 }
625 };
626
627 /// Use SCEVTraversal to visit all nodes in the givien expression tree.
628 template<typename SV>
visitAll(const SCEV * Root,SV & Visitor)629 void visitAll(const SCEV *Root, SV& Visitor) {
630 SCEVTraversal<SV> T(Visitor);
631 T.visitAll(Root);
632 }
633
634 typedef DenseMap<const Value*, Value*> ValueToValueMap;
635
636 /// The SCEVParameterRewriter takes a scalar evolution expression and updates
637 /// the SCEVUnknown components following the Map (Value -> Value).
638 struct SCEVParameterRewriter
639 : public SCEVVisitor<SCEVParameterRewriter, const SCEV*> {
640 public:
641 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
642 ValueToValueMap &Map,
643 bool InterpretConsts = false) {
644 SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
645 return Rewriter.visit(Scev);
646 }
647
SCEVParameterRewriterSCEVParameterRewriter648 SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M, bool C)
649 : SE(S), Map(M), InterpretConsts(C) {}
650
visitConstantSCEVParameterRewriter651 const SCEV *visitConstant(const SCEVConstant *Constant) {
652 return Constant;
653 }
654
visitTruncateExprSCEVParameterRewriter655 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
656 const SCEV *Operand = visit(Expr->getOperand());
657 return SE.getTruncateExpr(Operand, Expr->getType());
658 }
659
visitZeroExtendExprSCEVParameterRewriter660 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
661 const SCEV *Operand = visit(Expr->getOperand());
662 return SE.getZeroExtendExpr(Operand, Expr->getType());
663 }
664
visitSignExtendExprSCEVParameterRewriter665 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
666 const SCEV *Operand = visit(Expr->getOperand());
667 return SE.getSignExtendExpr(Operand, Expr->getType());
668 }
669
visitAddExprSCEVParameterRewriter670 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
671 SmallVector<const SCEV *, 2> Operands;
672 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
673 Operands.push_back(visit(Expr->getOperand(i)));
674 return SE.getAddExpr(Operands);
675 }
676
visitMulExprSCEVParameterRewriter677 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
678 SmallVector<const SCEV *, 2> Operands;
679 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
680 Operands.push_back(visit(Expr->getOperand(i)));
681 return SE.getMulExpr(Operands);
682 }
683
visitUDivExprSCEVParameterRewriter684 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
685 return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
686 }
687
visitAddRecExprSCEVParameterRewriter688 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
689 SmallVector<const SCEV *, 2> Operands;
690 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
691 Operands.push_back(visit(Expr->getOperand(i)));
692 return SE.getAddRecExpr(Operands, Expr->getLoop(),
693 Expr->getNoWrapFlags());
694 }
695
visitSMaxExprSCEVParameterRewriter696 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
697 SmallVector<const SCEV *, 2> Operands;
698 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
699 Operands.push_back(visit(Expr->getOperand(i)));
700 return SE.getSMaxExpr(Operands);
701 }
702
visitUMaxExprSCEVParameterRewriter703 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
704 SmallVector<const SCEV *, 2> Operands;
705 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
706 Operands.push_back(visit(Expr->getOperand(i)));
707 return SE.getUMaxExpr(Operands);
708 }
709
visitUnknownSCEVParameterRewriter710 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
711 Value *V = Expr->getValue();
712 if (Map.count(V)) {
713 Value *NV = Map[V];
714 if (InterpretConsts && isa<ConstantInt>(NV))
715 return SE.getConstant(cast<ConstantInt>(NV));
716 return SE.getUnknown(NV);
717 }
718 return Expr;
719 }
720
visitCouldNotComputeSCEVParameterRewriter721 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
722 return Expr;
723 }
724
725 private:
726 ScalarEvolution &SE;
727 ValueToValueMap ⤅
728 bool InterpretConsts;
729 };
730
731 typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;
732
733 /// The SCEVApplyRewriter takes a scalar evolution expression and applies
734 /// the Map (Loop -> SCEV) to all AddRecExprs.
735 struct SCEVApplyRewriter
736 : public SCEVVisitor<SCEVApplyRewriter, const SCEV*> {
737 public:
rewriteSCEVApplyRewriter738 static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
739 ScalarEvolution &SE) {
740 SCEVApplyRewriter Rewriter(SE, Map);
741 return Rewriter.visit(Scev);
742 }
743
SCEVApplyRewriterSCEVApplyRewriter744 SCEVApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M)
745 : SE(S), Map(M) {}
746
visitConstantSCEVApplyRewriter747 const SCEV *visitConstant(const SCEVConstant *Constant) {
748 return Constant;
749 }
750
visitTruncateExprSCEVApplyRewriter751 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
752 const SCEV *Operand = visit(Expr->getOperand());
753 return SE.getTruncateExpr(Operand, Expr->getType());
754 }
755
visitZeroExtendExprSCEVApplyRewriter756 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
757 const SCEV *Operand = visit(Expr->getOperand());
758 return SE.getZeroExtendExpr(Operand, Expr->getType());
759 }
760
visitSignExtendExprSCEVApplyRewriter761 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
762 const SCEV *Operand = visit(Expr->getOperand());
763 return SE.getSignExtendExpr(Operand, Expr->getType());
764 }
765
visitAddExprSCEVApplyRewriter766 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
767 SmallVector<const SCEV *, 2> Operands;
768 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
769 Operands.push_back(visit(Expr->getOperand(i)));
770 return SE.getAddExpr(Operands);
771 }
772
visitMulExprSCEVApplyRewriter773 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
774 SmallVector<const SCEV *, 2> Operands;
775 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
776 Operands.push_back(visit(Expr->getOperand(i)));
777 return SE.getMulExpr(Operands);
778 }
779
visitUDivExprSCEVApplyRewriter780 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
781 return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
782 }
783
visitAddRecExprSCEVApplyRewriter784 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
785 SmallVector<const SCEV *, 2> Operands;
786 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
787 Operands.push_back(visit(Expr->getOperand(i)));
788
789 const Loop *L = Expr->getLoop();
790 const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
791
792 if (0 == Map.count(L))
793 return Res;
794
795 const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res;
796 return Rec->evaluateAtIteration(Map[L], SE);
797 }
798
visitSMaxExprSCEVApplyRewriter799 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
800 SmallVector<const SCEV *, 2> Operands;
801 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
802 Operands.push_back(visit(Expr->getOperand(i)));
803 return SE.getSMaxExpr(Operands);
804 }
805
visitUMaxExprSCEVApplyRewriter806 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
807 SmallVector<const SCEV *, 2> Operands;
808 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
809 Operands.push_back(visit(Expr->getOperand(i)));
810 return SE.getUMaxExpr(Operands);
811 }
812
visitUnknownSCEVApplyRewriter813 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
814 return Expr;
815 }
816
visitCouldNotComputeSCEVApplyRewriter817 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
818 return Expr;
819 }
820
821 private:
822 ScalarEvolution &SE;
823 LoopToScevMapT ⤅
824 };
825
826 /// Applies the Map (Loop -> SCEV) to the given Scev.
apply(const SCEV * Scev,LoopToScevMapT & Map,ScalarEvolution & SE)827 static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map,
828 ScalarEvolution &SE) {
829 return SCEVApplyRewriter::rewrite(Scev, Map, SE);
830 }
831
832 }
833
834 #endif
835