• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/AST/RecordLayout.h"
11 #include "clang/AST/ASTContext.h"
12 #include "clang/AST/Attr.h"
13 #include "clang/AST/CXXInheritance.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/SemaDiagnostic.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/CrashRecoveryContext.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/MathExtras.h"
24 
25 using namespace clang;
26 
27 namespace {
28 
29 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
30 /// For a class hierarchy like
31 ///
32 /// class A { };
33 /// class B : A { };
34 /// class C : A, B { };
35 ///
36 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
37 /// instances, one for B and two for A.
38 ///
39 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
40 struct BaseSubobjectInfo {
41   /// Class - The class for this base info.
42   const CXXRecordDecl *Class;
43 
44   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
45   bool IsVirtual;
46 
47   /// Bases - Information about the base subobjects.
48   SmallVector<BaseSubobjectInfo*, 4> Bases;
49 
50   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
51   /// of this base info (if one exists).
52   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
53 
54   // FIXME: Document.
55   const BaseSubobjectInfo *Derived;
56 };
57 
58 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
59 /// offsets while laying out a C++ class.
60 class EmptySubobjectMap {
61   const ASTContext &Context;
62   uint64_t CharWidth;
63 
64   /// Class - The class whose empty entries we're keeping track of.
65   const CXXRecordDecl *Class;
66 
67   /// EmptyClassOffsets - A map from offsets to empty record decls.
68   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
69   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
70   EmptyClassOffsetsMapTy EmptyClassOffsets;
71 
72   /// MaxEmptyClassOffset - The highest offset known to contain an empty
73   /// base subobject.
74   CharUnits MaxEmptyClassOffset;
75 
76   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
77   /// member subobject that is empty.
78   void ComputeEmptySubobjectSizes();
79 
80   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
81 
82   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
83                                  CharUnits Offset, bool PlacingEmptyBase);
84 
85   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
86                                   const CXXRecordDecl *Class,
87                                   CharUnits Offset);
88   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
89 
90   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
91   /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const92   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
93     return Offset <= MaxEmptyClassOffset;
94   }
95 
96   CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const97   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
98     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
99     assert(FieldOffset % CharWidth == 0 &&
100            "Field offset not at char boundary!");
101 
102     return Context.toCharUnitsFromBits(FieldOffset);
103   }
104 
105 protected:
106   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
107                                  CharUnits Offset) const;
108 
109   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
110                                      CharUnits Offset);
111 
112   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
113                                       const CXXRecordDecl *Class,
114                                       CharUnits Offset) const;
115   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
116                                       CharUnits Offset) const;
117 
118 public:
119   /// This holds the size of the largest empty subobject (either a base
120   /// or a member). Will be zero if the record being built doesn't contain
121   /// any empty classes.
122   CharUnits SizeOfLargestEmptySubobject;
123 
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)124   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
125   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
126       ComputeEmptySubobjectSizes();
127   }
128 
129   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
130   /// at the given offset.
131   /// Returns false if placing the record will result in two components
132   /// (direct or indirect) of the same type having the same offset.
133   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
134                             CharUnits Offset);
135 
136   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
137   /// offset.
138   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
139 };
140 
ComputeEmptySubobjectSizes()141 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
142   // Check the bases.
143   for (const auto &I : Class->bases()) {
144     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
145 
146     CharUnits EmptySize;
147     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
148     if (BaseDecl->isEmpty()) {
149       // If the class decl is empty, get its size.
150       EmptySize = Layout.getSize();
151     } else {
152       // Otherwise, we get the largest empty subobject for the decl.
153       EmptySize = Layout.getSizeOfLargestEmptySubobject();
154     }
155 
156     if (EmptySize > SizeOfLargestEmptySubobject)
157       SizeOfLargestEmptySubobject = EmptySize;
158   }
159 
160   // Check the fields.
161   for (const auto *I : Class->fields()) {
162     const RecordType *RT =
163       Context.getBaseElementType(I->getType())->getAs<RecordType>();
164 
165     // We only care about record types.
166     if (!RT)
167       continue;
168 
169     CharUnits EmptySize;
170     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
171     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
172     if (MemberDecl->isEmpty()) {
173       // If the class decl is empty, get its size.
174       EmptySize = Layout.getSize();
175     } else {
176       // Otherwise, we get the largest empty subobject for the decl.
177       EmptySize = Layout.getSizeOfLargestEmptySubobject();
178     }
179 
180     if (EmptySize > SizeOfLargestEmptySubobject)
181       SizeOfLargestEmptySubobject = EmptySize;
182   }
183 }
184 
185 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const186 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
187                                              CharUnits Offset) const {
188   // We only need to check empty bases.
189   if (!RD->isEmpty())
190     return true;
191 
192   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
193   if (I == EmptyClassOffsets.end())
194     return true;
195 
196   const ClassVectorTy& Classes = I->second;
197   if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
198     return true;
199 
200   // There is already an empty class of the same type at this offset.
201   return false;
202 }
203 
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)204 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
205                                              CharUnits Offset) {
206   // We only care about empty bases.
207   if (!RD->isEmpty())
208     return;
209 
210   // If we have empty structures inside a union, we can assign both
211   // the same offset. Just avoid pushing them twice in the list.
212   ClassVectorTy& Classes = EmptyClassOffsets[Offset];
213   if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
214     return;
215 
216   Classes.push_back(RD);
217 
218   // Update the empty class offset.
219   if (Offset > MaxEmptyClassOffset)
220     MaxEmptyClassOffset = Offset;
221 }
222 
223 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)224 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
225                                                  CharUnits Offset) {
226   // We don't have to keep looking past the maximum offset that's known to
227   // contain an empty class.
228   if (!AnyEmptySubobjectsBeyondOffset(Offset))
229     return true;
230 
231   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
232     return false;
233 
234   // Traverse all non-virtual bases.
235   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
236   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
237     BaseSubobjectInfo* Base = Info->Bases[I];
238     if (Base->IsVirtual)
239       continue;
240 
241     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
242 
243     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
244       return false;
245   }
246 
247   if (Info->PrimaryVirtualBaseInfo) {
248     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
249 
250     if (Info == PrimaryVirtualBaseInfo->Derived) {
251       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
252         return false;
253     }
254   }
255 
256   // Traverse all member variables.
257   unsigned FieldNo = 0;
258   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
259        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
260     if (I->isBitField())
261       continue;
262 
263     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
264     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
265       return false;
266   }
267 
268   return true;
269 }
270 
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)271 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
272                                                   CharUnits Offset,
273                                                   bool PlacingEmptyBase) {
274   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
275     // We know that the only empty subobjects that can conflict with empty
276     // subobject of non-empty bases, are empty bases that can be placed at
277     // offset zero. Because of this, we only need to keep track of empty base
278     // subobjects with offsets less than the size of the largest empty
279     // subobject for our class.
280     return;
281   }
282 
283   AddSubobjectAtOffset(Info->Class, Offset);
284 
285   // Traverse all non-virtual bases.
286   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
287   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
288     BaseSubobjectInfo* Base = Info->Bases[I];
289     if (Base->IsVirtual)
290       continue;
291 
292     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
293     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
294   }
295 
296   if (Info->PrimaryVirtualBaseInfo) {
297     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
298 
299     if (Info == PrimaryVirtualBaseInfo->Derived)
300       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
301                                 PlacingEmptyBase);
302   }
303 
304   // Traverse all member variables.
305   unsigned FieldNo = 0;
306   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
307        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
308     if (I->isBitField())
309       continue;
310 
311     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
312     UpdateEmptyFieldSubobjects(*I, FieldOffset);
313   }
314 }
315 
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)316 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
317                                              CharUnits Offset) {
318   // If we know this class doesn't have any empty subobjects we don't need to
319   // bother checking.
320   if (SizeOfLargestEmptySubobject.isZero())
321     return true;
322 
323   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
324     return false;
325 
326   // We are able to place the base at this offset. Make sure to update the
327   // empty base subobject map.
328   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
329   return true;
330 }
331 
332 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const333 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
334                                                   const CXXRecordDecl *Class,
335                                                   CharUnits Offset) const {
336   // We don't have to keep looking past the maximum offset that's known to
337   // contain an empty class.
338   if (!AnyEmptySubobjectsBeyondOffset(Offset))
339     return true;
340 
341   if (!CanPlaceSubobjectAtOffset(RD, Offset))
342     return false;
343 
344   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
345 
346   // Traverse all non-virtual bases.
347   for (const auto &I : RD->bases()) {
348     if (I.isVirtual())
349       continue;
350 
351     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
352 
353     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
354     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
355       return false;
356   }
357 
358   if (RD == Class) {
359     // This is the most derived class, traverse virtual bases as well.
360     for (const auto &I : RD->vbases()) {
361       const CXXRecordDecl *VBaseDecl = I.getType()->getAsCXXRecordDecl();
362 
363       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
364       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
365         return false;
366     }
367   }
368 
369   // Traverse all member variables.
370   unsigned FieldNo = 0;
371   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
372        I != E; ++I, ++FieldNo) {
373     if (I->isBitField())
374       continue;
375 
376     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
377 
378     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
379       return false;
380   }
381 
382   return true;
383 }
384 
385 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const386 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
387                                                   CharUnits Offset) const {
388   // We don't have to keep looking past the maximum offset that's known to
389   // contain an empty class.
390   if (!AnyEmptySubobjectsBeyondOffset(Offset))
391     return true;
392 
393   QualType T = FD->getType();
394   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
395     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
396 
397   // If we have an array type we need to look at every element.
398   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
399     QualType ElemTy = Context.getBaseElementType(AT);
400     const RecordType *RT = ElemTy->getAs<RecordType>();
401     if (!RT)
402       return true;
403 
404     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
405     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
406 
407     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
408     CharUnits ElementOffset = Offset;
409     for (uint64_t I = 0; I != NumElements; ++I) {
410       // We don't have to keep looking past the maximum offset that's known to
411       // contain an empty class.
412       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
413         return true;
414 
415       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
416         return false;
417 
418       ElementOffset += Layout.getSize();
419     }
420   }
421 
422   return true;
423 }
424 
425 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)426 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
427                                          CharUnits Offset) {
428   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
429     return false;
430 
431   // We are able to place the member variable at this offset.
432   // Make sure to update the empty base subobject map.
433   UpdateEmptyFieldSubobjects(FD, Offset);
434   return true;
435 }
436 
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset)437 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
438                                                    const CXXRecordDecl *Class,
439                                                    CharUnits Offset) {
440   // We know that the only empty subobjects that can conflict with empty
441   // field subobjects are subobjects of empty bases that can be placed at offset
442   // zero. Because of this, we only need to keep track of empty field
443   // subobjects with offsets less than the size of the largest empty
444   // subobject for our class.
445   if (Offset >= SizeOfLargestEmptySubobject)
446     return;
447 
448   AddSubobjectAtOffset(RD, Offset);
449 
450   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
451 
452   // Traverse all non-virtual bases.
453   for (const auto &I : RD->bases()) {
454     if (I.isVirtual())
455       continue;
456 
457     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
458 
459     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
460     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
461   }
462 
463   if (RD == Class) {
464     // This is the most derived class, traverse virtual bases as well.
465     for (const auto &I : RD->vbases()) {
466       const CXXRecordDecl *VBaseDecl = I.getType()->getAsCXXRecordDecl();
467 
468       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
469       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
470     }
471   }
472 
473   // Traverse all member variables.
474   unsigned FieldNo = 0;
475   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
476        I != E; ++I, ++FieldNo) {
477     if (I->isBitField())
478       continue;
479 
480     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
481 
482     UpdateEmptyFieldSubobjects(*I, FieldOffset);
483   }
484 }
485 
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset)486 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
487                                                    CharUnits Offset) {
488   QualType T = FD->getType();
489   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
490     UpdateEmptyFieldSubobjects(RD, RD, Offset);
491     return;
492   }
493 
494   // If we have an array type we need to update every element.
495   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
496     QualType ElemTy = Context.getBaseElementType(AT);
497     const RecordType *RT = ElemTy->getAs<RecordType>();
498     if (!RT)
499       return;
500 
501     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
502     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
503 
504     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
505     CharUnits ElementOffset = Offset;
506 
507     for (uint64_t I = 0; I != NumElements; ++I) {
508       // We know that the only empty subobjects that can conflict with empty
509       // field subobjects are subobjects of empty bases that can be placed at
510       // offset zero. Because of this, we only need to keep track of empty field
511       // subobjects with offsets less than the size of the largest empty
512       // subobject for our class.
513       if (ElementOffset >= SizeOfLargestEmptySubobject)
514         return;
515 
516       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
517       ElementOffset += Layout.getSize();
518     }
519   }
520 }
521 
522 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
523 
524 class RecordLayoutBuilder {
525 protected:
526   // FIXME: Remove this and make the appropriate fields public.
527   friend class clang::ASTContext;
528 
529   const ASTContext &Context;
530 
531   EmptySubobjectMap *EmptySubobjects;
532 
533   /// Size - The current size of the record layout.
534   uint64_t Size;
535 
536   /// Alignment - The current alignment of the record layout.
537   CharUnits Alignment;
538 
539   /// \brief The alignment if attribute packed is not used.
540   CharUnits UnpackedAlignment;
541 
542   SmallVector<uint64_t, 16> FieldOffsets;
543 
544   /// \brief Whether the external AST source has provided a layout for this
545   /// record.
546   unsigned ExternalLayout : 1;
547 
548   /// \brief Whether we need to infer alignment, even when we have an
549   /// externally-provided layout.
550   unsigned InferAlignment : 1;
551 
552   /// Packed - Whether the record is packed or not.
553   unsigned Packed : 1;
554 
555   unsigned IsUnion : 1;
556 
557   unsigned IsMac68kAlign : 1;
558 
559   unsigned IsMsStruct : 1;
560 
561   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
562   /// this contains the number of bits in the last unit that can be used for
563   /// an adjacent bitfield if necessary.  The unit in question is usually
564   /// a byte, but larger units are used if IsMsStruct.
565   unsigned char UnfilledBitsInLastUnit;
566   /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
567   /// of the previous field if it was a bitfield.
568   unsigned char LastBitfieldTypeSize;
569 
570   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
571   /// #pragma pack.
572   CharUnits MaxFieldAlignment;
573 
574   /// DataSize - The data size of the record being laid out.
575   uint64_t DataSize;
576 
577   CharUnits NonVirtualSize;
578   CharUnits NonVirtualAlignment;
579 
580   /// PrimaryBase - the primary base class (if one exists) of the class
581   /// we're laying out.
582   const CXXRecordDecl *PrimaryBase;
583 
584   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
585   /// out is virtual.
586   bool PrimaryBaseIsVirtual;
587 
588   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
589   /// pointer, as opposed to inheriting one from a primary base class.
590   bool HasOwnVFPtr;
591 
592   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
593 
594   /// Bases - base classes and their offsets in the record.
595   BaseOffsetsMapTy Bases;
596 
597   // VBases - virtual base classes and their offsets in the record.
598   ASTRecordLayout::VBaseOffsetsMapTy VBases;
599 
600   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
601   /// primary base classes for some other direct or indirect base class.
602   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
603 
604   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
605   /// inheritance graph order. Used for determining the primary base class.
606   const CXXRecordDecl *FirstNearlyEmptyVBase;
607 
608   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
609   /// avoid visiting virtual bases more than once.
610   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
611 
612   /// \brief Externally-provided size.
613   uint64_t ExternalSize;
614 
615   /// \brief Externally-provided alignment.
616   uint64_t ExternalAlign;
617 
618   /// \brief Externally-provided field offsets.
619   llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
620 
621   /// \brief Externally-provided direct, non-virtual base offsets.
622   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
623 
624   /// \brief Externally-provided virtual base offsets.
625   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
626 
RecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)627   RecordLayoutBuilder(const ASTContext &Context,
628                       EmptySubobjectMap *EmptySubobjects)
629     : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
630       Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
631       ExternalLayout(false), InferAlignment(false),
632       Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
633       UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
634       MaxFieldAlignment(CharUnits::Zero()),
635       DataSize(0), NonVirtualSize(CharUnits::Zero()),
636       NonVirtualAlignment(CharUnits::One()),
637       PrimaryBase(nullptr), PrimaryBaseIsVirtual(false),
638       HasOwnVFPtr(false),
639       FirstNearlyEmptyVBase(nullptr) {}
640 
641   /// Reset this RecordLayoutBuilder to a fresh state, using the given
642   /// alignment as the initial alignment.  This is used for the
643   /// correct layout of vb-table pointers in MSVC.
resetWithTargetAlignment(CharUnits TargetAlignment)644   void resetWithTargetAlignment(CharUnits TargetAlignment) {
645     const ASTContext &Context = this->Context;
646     EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
647     this->~RecordLayoutBuilder();
648     new (this) RecordLayoutBuilder(Context, EmptySubobjects);
649     Alignment = UnpackedAlignment = TargetAlignment;
650   }
651 
652   void Layout(const RecordDecl *D);
653   void Layout(const CXXRecordDecl *D);
654   void Layout(const ObjCInterfaceDecl *D);
655 
656   void LayoutFields(const RecordDecl *D);
657   void LayoutField(const FieldDecl *D);
658   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
659                           bool FieldPacked, const FieldDecl *D);
660   void LayoutBitField(const FieldDecl *D);
661 
getCXXABI() const662   TargetCXXABI getCXXABI() const {
663     return Context.getTargetInfo().getCXXABI();
664   }
665 
666   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
667   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
668 
669   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
670     BaseSubobjectInfoMapTy;
671 
672   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
673   /// of the class we're laying out to their base subobject info.
674   BaseSubobjectInfoMapTy VirtualBaseInfo;
675 
676   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
677   /// class we're laying out to their base subobject info.
678   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
679 
680   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
681   /// bases of the given class.
682   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
683 
684   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
685   /// single class and all of its base classes.
686   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
687                                               bool IsVirtual,
688                                               BaseSubobjectInfo *Derived);
689 
690   /// DeterminePrimaryBase - Determine the primary base of the given class.
691   void DeterminePrimaryBase(const CXXRecordDecl *RD);
692 
693   void SelectPrimaryVBase(const CXXRecordDecl *RD);
694 
695   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
696 
697   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
698   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
699   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
700 
701   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
702   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
703 
704   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
705                                     CharUnits Offset);
706 
707   /// LayoutVirtualBases - Lays out all the virtual bases.
708   void LayoutVirtualBases(const CXXRecordDecl *RD,
709                           const CXXRecordDecl *MostDerivedClass);
710 
711   /// LayoutVirtualBase - Lays out a single virtual base.
712   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
713 
714   /// LayoutBase - Will lay out a base and return the offset where it was
715   /// placed, in chars.
716   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
717 
718   /// InitializeLayout - Initialize record layout for the given record decl.
719   void InitializeLayout(const Decl *D);
720 
721   /// FinishLayout - Finalize record layout. Adjust record size based on the
722   /// alignment.
723   void FinishLayout(const NamedDecl *D);
724 
725   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
UpdateAlignment(CharUnits NewAlignment)726   void UpdateAlignment(CharUnits NewAlignment) {
727     UpdateAlignment(NewAlignment, NewAlignment);
728   }
729 
730   /// \brief Retrieve the externally-supplied field offset for the given
731   /// field.
732   ///
733   /// \param Field The field whose offset is being queried.
734   /// \param ComputedOffset The offset that we've computed for this field.
735   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
736                                      uint64_t ComputedOffset);
737 
738   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
739                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
740                           bool isPacked, const FieldDecl *D);
741 
742   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
743 
getSize() const744   CharUnits getSize() const {
745     assert(Size % Context.getCharWidth() == 0);
746     return Context.toCharUnitsFromBits(Size);
747   }
getSizeInBits() const748   uint64_t getSizeInBits() const { return Size; }
749 
setSize(CharUnits NewSize)750   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)751   void setSize(uint64_t NewSize) { Size = NewSize; }
752 
getAligment() const753   CharUnits getAligment() const { return Alignment; }
754 
getDataSize() const755   CharUnits getDataSize() const {
756     assert(DataSize % Context.getCharWidth() == 0);
757     return Context.toCharUnitsFromBits(DataSize);
758   }
getDataSizeInBits() const759   uint64_t getDataSizeInBits() const { return DataSize; }
760 
setDataSize(CharUnits NewSize)761   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)762   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
763 
764   RecordLayoutBuilder(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
765   void operator=(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
766 };
767 } // end anonymous namespace
768 
769 void
SelectPrimaryVBase(const CXXRecordDecl * RD)770 RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
771   for (const auto &I : RD->bases()) {
772     assert(!I.getType()->isDependentType() &&
773            "Cannot layout class with dependent bases.");
774 
775     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
776 
777     // Check if this is a nearly empty virtual base.
778     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
779       // If it's not an indirect primary base, then we've found our primary
780       // base.
781       if (!IndirectPrimaryBases.count(Base)) {
782         PrimaryBase = Base;
783         PrimaryBaseIsVirtual = true;
784         return;
785       }
786 
787       // Is this the first nearly empty virtual base?
788       if (!FirstNearlyEmptyVBase)
789         FirstNearlyEmptyVBase = Base;
790     }
791 
792     SelectPrimaryVBase(Base);
793     if (PrimaryBase)
794       return;
795   }
796 }
797 
798 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)799 void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
800   // If the class isn't dynamic, it won't have a primary base.
801   if (!RD->isDynamicClass())
802     return;
803 
804   // Compute all the primary virtual bases for all of our direct and
805   // indirect bases, and record all their primary virtual base classes.
806   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
807 
808   // If the record has a dynamic base class, attempt to choose a primary base
809   // class. It is the first (in direct base class order) non-virtual dynamic
810   // base class, if one exists.
811   for (const auto &I : RD->bases()) {
812     // Ignore virtual bases.
813     if (I.isVirtual())
814       continue;
815 
816     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
817 
818     if (Base->isDynamicClass()) {
819       // We found it.
820       PrimaryBase = Base;
821       PrimaryBaseIsVirtual = false;
822       return;
823     }
824   }
825 
826   // Under the Itanium ABI, if there is no non-virtual primary base class,
827   // try to compute the primary virtual base.  The primary virtual base is
828   // the first nearly empty virtual base that is not an indirect primary
829   // virtual base class, if one exists.
830   if (RD->getNumVBases() != 0) {
831     SelectPrimaryVBase(RD);
832     if (PrimaryBase)
833       return;
834   }
835 
836   // Otherwise, it is the first indirect primary base class, if one exists.
837   if (FirstNearlyEmptyVBase) {
838     PrimaryBase = FirstNearlyEmptyVBase;
839     PrimaryBaseIsVirtual = true;
840     return;
841   }
842 
843   assert(!PrimaryBase && "Should not get here with a primary base!");
844 }
845 
846 BaseSubobjectInfo *
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)847 RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
848                                               bool IsVirtual,
849                                               BaseSubobjectInfo *Derived) {
850   BaseSubobjectInfo *Info;
851 
852   if (IsVirtual) {
853     // Check if we already have info about this virtual base.
854     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
855     if (InfoSlot) {
856       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
857       return InfoSlot;
858     }
859 
860     // We don't, create it.
861     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
862     Info = InfoSlot;
863   } else {
864     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
865   }
866 
867   Info->Class = RD;
868   Info->IsVirtual = IsVirtual;
869   Info->Derived = nullptr;
870   Info->PrimaryVirtualBaseInfo = nullptr;
871 
872   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
873   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
874 
875   // Check if this base has a primary virtual base.
876   if (RD->getNumVBases()) {
877     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
878     if (Layout.isPrimaryBaseVirtual()) {
879       // This base does have a primary virtual base.
880       PrimaryVirtualBase = Layout.getPrimaryBase();
881       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
882 
883       // Now check if we have base subobject info about this primary base.
884       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
885 
886       if (PrimaryVirtualBaseInfo) {
887         if (PrimaryVirtualBaseInfo->Derived) {
888           // We did have info about this primary base, and it turns out that it
889           // has already been claimed as a primary virtual base for another
890           // base.
891           PrimaryVirtualBase = nullptr;
892         } else {
893           // We can claim this base as our primary base.
894           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
895           PrimaryVirtualBaseInfo->Derived = Info;
896         }
897       }
898     }
899   }
900 
901   // Now go through all direct bases.
902   for (const auto &I : RD->bases()) {
903     bool IsVirtual = I.isVirtual();
904 
905     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
906 
907     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
908   }
909 
910   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
911     // Traversing the bases must have created the base info for our primary
912     // virtual base.
913     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
914     assert(PrimaryVirtualBaseInfo &&
915            "Did not create a primary virtual base!");
916 
917     // Claim the primary virtual base as our primary virtual base.
918     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
919     PrimaryVirtualBaseInfo->Derived = Info;
920   }
921 
922   return Info;
923 }
924 
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)925 void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
926   for (const auto &I : RD->bases()) {
927     bool IsVirtual = I.isVirtual();
928 
929     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
930 
931     // Compute the base subobject info for this base.
932     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
933                                                        nullptr);
934 
935     if (IsVirtual) {
936       // ComputeBaseInfo has already added this base for us.
937       assert(VirtualBaseInfo.count(BaseDecl) &&
938              "Did not add virtual base!");
939     } else {
940       // Add the base info to the map of non-virtual bases.
941       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
942              "Non-virtual base already exists!");
943       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
944     }
945   }
946 }
947 
948 void
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)949 RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
950   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
951 
952   // The maximum field alignment overrides base align.
953   if (!MaxFieldAlignment.isZero()) {
954     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
955     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
956   }
957 
958   // Round up the current record size to pointer alignment.
959   setSize(getSize().RoundUpToAlignment(BaseAlign));
960   setDataSize(getSize());
961 
962   // Update the alignment.
963   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
964 }
965 
966 void
LayoutNonVirtualBases(const CXXRecordDecl * RD)967 RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
968   // Then, determine the primary base class.
969   DeterminePrimaryBase(RD);
970 
971   // Compute base subobject info.
972   ComputeBaseSubobjectInfo(RD);
973 
974   // If we have a primary base class, lay it out.
975   if (PrimaryBase) {
976     if (PrimaryBaseIsVirtual) {
977       // If the primary virtual base was a primary virtual base of some other
978       // base class we'll have to steal it.
979       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
980       PrimaryBaseInfo->Derived = nullptr;
981 
982       // We have a virtual primary base, insert it as an indirect primary base.
983       IndirectPrimaryBases.insert(PrimaryBase);
984 
985       assert(!VisitedVirtualBases.count(PrimaryBase) &&
986              "vbase already visited!");
987       VisitedVirtualBases.insert(PrimaryBase);
988 
989       LayoutVirtualBase(PrimaryBaseInfo);
990     } else {
991       BaseSubobjectInfo *PrimaryBaseInfo =
992         NonVirtualBaseInfo.lookup(PrimaryBase);
993       assert(PrimaryBaseInfo &&
994              "Did not find base info for non-virtual primary base!");
995 
996       LayoutNonVirtualBase(PrimaryBaseInfo);
997     }
998 
999   // If this class needs a vtable/vf-table and didn't get one from a
1000   // primary base, add it in now.
1001   } else if (RD->isDynamicClass()) {
1002     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1003     CharUnits PtrWidth =
1004       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1005     CharUnits PtrAlign =
1006       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1007     EnsureVTablePointerAlignment(PtrAlign);
1008     HasOwnVFPtr = true;
1009     setSize(getSize() + PtrWidth);
1010     setDataSize(getSize());
1011   }
1012 
1013   // Now lay out the non-virtual bases.
1014   for (const auto &I : RD->bases()) {
1015 
1016     // Ignore virtual bases.
1017     if (I.isVirtual())
1018       continue;
1019 
1020     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1021 
1022     // Skip the primary base, because we've already laid it out.  The
1023     // !PrimaryBaseIsVirtual check is required because we might have a
1024     // non-virtual base of the same type as a primary virtual base.
1025     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1026       continue;
1027 
1028     // Lay out the base.
1029     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1030     assert(BaseInfo && "Did not find base info for non-virtual base!");
1031 
1032     LayoutNonVirtualBase(BaseInfo);
1033   }
1034 }
1035 
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1036 void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
1037   // Layout the base.
1038   CharUnits Offset = LayoutBase(Base);
1039 
1040   // Add its base class offset.
1041   assert(!Bases.count(Base->Class) && "base offset already exists!");
1042   Bases.insert(std::make_pair(Base->Class, Offset));
1043 
1044   AddPrimaryVirtualBaseOffsets(Base, Offset);
1045 }
1046 
1047 void
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1048 RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
1049                                                   CharUnits Offset) {
1050   // This base isn't interesting, it has no virtual bases.
1051   if (!Info->Class->getNumVBases())
1052     return;
1053 
1054   // First, check if we have a virtual primary base to add offsets for.
1055   if (Info->PrimaryVirtualBaseInfo) {
1056     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1057            "Primary virtual base is not virtual!");
1058     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1059       // Add the offset.
1060       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1061              "primary vbase offset already exists!");
1062       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1063                                    ASTRecordLayout::VBaseInfo(Offset, false)));
1064 
1065       // Traverse the primary virtual base.
1066       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1067     }
1068   }
1069 
1070   // Now go through all direct non-virtual bases.
1071   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1072   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
1073     const BaseSubobjectInfo *Base = Info->Bases[I];
1074     if (Base->IsVirtual)
1075       continue;
1076 
1077     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1078     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1079   }
1080 }
1081 
1082 void
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1083 RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
1084                                         const CXXRecordDecl *MostDerivedClass) {
1085   const CXXRecordDecl *PrimaryBase;
1086   bool PrimaryBaseIsVirtual;
1087 
1088   if (MostDerivedClass == RD) {
1089     PrimaryBase = this->PrimaryBase;
1090     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1091   } else {
1092     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1093     PrimaryBase = Layout.getPrimaryBase();
1094     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1095   }
1096 
1097   for (const auto &I : RD->bases()) {
1098     assert(!I.getType()->isDependentType() &&
1099            "Cannot layout class with dependent bases.");
1100 
1101     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1102 
1103     if (I.isVirtual()) {
1104       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1105         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1106 
1107         // Only lay out the virtual base if it's not an indirect primary base.
1108         if (!IndirectPrimaryBase) {
1109           // Only visit virtual bases once.
1110           if (!VisitedVirtualBases.insert(BaseDecl))
1111             continue;
1112 
1113           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1114           assert(BaseInfo && "Did not find virtual base info!");
1115           LayoutVirtualBase(BaseInfo);
1116         }
1117       }
1118     }
1119 
1120     if (!BaseDecl->getNumVBases()) {
1121       // This base isn't interesting since it doesn't have any virtual bases.
1122       continue;
1123     }
1124 
1125     LayoutVirtualBases(BaseDecl, MostDerivedClass);
1126   }
1127 }
1128 
LayoutVirtualBase(const BaseSubobjectInfo * Base)1129 void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
1130   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1131 
1132   // Layout the base.
1133   CharUnits Offset = LayoutBase(Base);
1134 
1135   // Add its base class offset.
1136   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1137   VBases.insert(std::make_pair(Base->Class,
1138                        ASTRecordLayout::VBaseInfo(Offset, false)));
1139 
1140   AddPrimaryVirtualBaseOffsets(Base, Offset);
1141 }
1142 
LayoutBase(const BaseSubobjectInfo * Base)1143 CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1144   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1145 
1146 
1147   CharUnits Offset;
1148 
1149   // Query the external layout to see if it provides an offset.
1150   bool HasExternalLayout = false;
1151   if (ExternalLayout) {
1152     llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
1153     if (Base->IsVirtual) {
1154       Known = ExternalVirtualBaseOffsets.find(Base->Class);
1155       if (Known != ExternalVirtualBaseOffsets.end()) {
1156         Offset = Known->second;
1157         HasExternalLayout = true;
1158       }
1159     } else {
1160       Known = ExternalBaseOffsets.find(Base->Class);
1161       if (Known != ExternalBaseOffsets.end()) {
1162         Offset = Known->second;
1163         HasExternalLayout = true;
1164       }
1165     }
1166   }
1167 
1168   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1169   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
1170 
1171   // If we have an empty base class, try to place it at offset 0.
1172   if (Base->Class->isEmpty() &&
1173       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1174       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1175     setSize(std::max(getSize(), Layout.getSize()));
1176     UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1177 
1178     return CharUnits::Zero();
1179   }
1180 
1181   // The maximum field alignment overrides base align.
1182   if (!MaxFieldAlignment.isZero()) {
1183     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1184     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1185   }
1186 
1187   if (!HasExternalLayout) {
1188     // Round up the current record size to the base's alignment boundary.
1189     Offset = getDataSize().RoundUpToAlignment(BaseAlign);
1190 
1191     // Try to place the base.
1192     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1193       Offset += BaseAlign;
1194   } else {
1195     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1196     (void)Allowed;
1197     assert(Allowed && "Base subobject externally placed at overlapping offset");
1198 
1199     if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
1200       // The externally-supplied base offset is before the base offset we
1201       // computed. Assume that the structure is packed.
1202       Alignment = CharUnits::One();
1203       InferAlignment = false;
1204     }
1205   }
1206 
1207   if (!Base->Class->isEmpty()) {
1208     // Update the data size.
1209     setDataSize(Offset + Layout.getNonVirtualSize());
1210 
1211     setSize(std::max(getSize(), getDataSize()));
1212   } else
1213     setSize(std::max(getSize(), Offset + Layout.getSize()));
1214 
1215   // Remember max struct/class alignment.
1216   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1217 
1218   return Offset;
1219 }
1220 
InitializeLayout(const Decl * D)1221 void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
1222   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1223     IsUnion = RD->isUnion();
1224     IsMsStruct = RD->isMsStruct(Context);
1225   }
1226 
1227   Packed = D->hasAttr<PackedAttr>();
1228 
1229   // Honor the default struct packing maximum alignment flag.
1230   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1231     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1232   }
1233 
1234   // mac68k alignment supersedes maximum field alignment and attribute aligned,
1235   // and forces all structures to have 2-byte alignment. The IBM docs on it
1236   // allude to additional (more complicated) semantics, especially with regard
1237   // to bit-fields, but gcc appears not to follow that.
1238   if (D->hasAttr<AlignMac68kAttr>()) {
1239     IsMac68kAlign = true;
1240     MaxFieldAlignment = CharUnits::fromQuantity(2);
1241     Alignment = CharUnits::fromQuantity(2);
1242   } else {
1243     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1244       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1245 
1246     if (unsigned MaxAlign = D->getMaxAlignment())
1247       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1248   }
1249 
1250   // If there is an external AST source, ask it for the various offsets.
1251   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1252     if (ExternalASTSource *External = Context.getExternalSource()) {
1253       ExternalLayout = External->layoutRecordType(RD,
1254                                                   ExternalSize,
1255                                                   ExternalAlign,
1256                                                   ExternalFieldOffsets,
1257                                                   ExternalBaseOffsets,
1258                                                   ExternalVirtualBaseOffsets);
1259 
1260       // Update based on external alignment.
1261       if (ExternalLayout) {
1262         if (ExternalAlign > 0) {
1263           Alignment = Context.toCharUnitsFromBits(ExternalAlign);
1264         } else {
1265           // The external source didn't have alignment information; infer it.
1266           InferAlignment = true;
1267         }
1268       }
1269     }
1270 }
1271 
Layout(const RecordDecl * D)1272 void RecordLayoutBuilder::Layout(const RecordDecl *D) {
1273   InitializeLayout(D);
1274   LayoutFields(D);
1275 
1276   // Finally, round the size of the total struct up to the alignment of the
1277   // struct itself.
1278   FinishLayout(D);
1279 }
1280 
Layout(const CXXRecordDecl * RD)1281 void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1282   InitializeLayout(RD);
1283 
1284   // Lay out the vtable and the non-virtual bases.
1285   LayoutNonVirtualBases(RD);
1286 
1287   LayoutFields(RD);
1288 
1289   NonVirtualSize = Context.toCharUnitsFromBits(
1290         llvm::RoundUpToAlignment(getSizeInBits(),
1291                                  Context.getTargetInfo().getCharAlign()));
1292   NonVirtualAlignment = Alignment;
1293 
1294   // Lay out the virtual bases and add the primary virtual base offsets.
1295   LayoutVirtualBases(RD, RD);
1296 
1297   // Finally, round the size of the total struct up to the alignment
1298   // of the struct itself.
1299   FinishLayout(RD);
1300 
1301 #ifndef NDEBUG
1302   // Check that we have base offsets for all bases.
1303   for (const auto &I : RD->bases()) {
1304     if (I.isVirtual())
1305       continue;
1306 
1307     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1308 
1309     assert(Bases.count(BaseDecl) && "Did not find base offset!");
1310   }
1311 
1312   // And all virtual bases.
1313   for (const auto &I : RD->vbases()) {
1314     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1315 
1316     assert(VBases.count(BaseDecl) && "Did not find base offset!");
1317   }
1318 #endif
1319 }
1320 
Layout(const ObjCInterfaceDecl * D)1321 void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1322   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1323     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1324 
1325     UpdateAlignment(SL.getAlignment());
1326 
1327     // We start laying out ivars not at the end of the superclass
1328     // structure, but at the next byte following the last field.
1329     setSize(SL.getDataSize());
1330     setDataSize(getSize());
1331   }
1332 
1333   InitializeLayout(D);
1334   // Layout each ivar sequentially.
1335   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1336        IVD = IVD->getNextIvar())
1337     LayoutField(IVD);
1338 
1339   // Finally, round the size of the total struct up to the alignment of the
1340   // struct itself.
1341   FinishLayout(D);
1342 }
1343 
LayoutFields(const RecordDecl * D)1344 void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1345   // Layout each field, for now, just sequentially, respecting alignment.  In
1346   // the future, this will need to be tweakable by targets.
1347   for (const auto *Field : D->fields())
1348     LayoutField(Field);
1349 }
1350 
LayoutWideBitField(uint64_t FieldSize,uint64_t TypeSize,bool FieldPacked,const FieldDecl * D)1351 void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1352                                              uint64_t TypeSize,
1353                                              bool FieldPacked,
1354                                              const FieldDecl *D) {
1355   assert(Context.getLangOpts().CPlusPlus &&
1356          "Can only have wide bit-fields in C++!");
1357 
1358   // Itanium C++ ABI 2.4:
1359   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1360   //   sizeof(T')*8 <= n.
1361 
1362   QualType IntegralPODTypes[] = {
1363     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1364     Context.UnsignedLongTy, Context.UnsignedLongLongTy
1365   };
1366 
1367   QualType Type;
1368   for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
1369        I != E; ++I) {
1370     uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
1371 
1372     if (Size > FieldSize)
1373       break;
1374 
1375     Type = IntegralPODTypes[I];
1376   }
1377   assert(!Type.isNull() && "Did not find a type!");
1378 
1379   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1380 
1381   // We're not going to use any of the unfilled bits in the last byte.
1382   UnfilledBitsInLastUnit = 0;
1383   LastBitfieldTypeSize = 0;
1384 
1385   uint64_t FieldOffset;
1386   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1387 
1388   if (IsUnion) {
1389     setDataSize(std::max(getDataSizeInBits(), FieldSize));
1390     FieldOffset = 0;
1391   } else {
1392     // The bitfield is allocated starting at the next offset aligned
1393     // appropriately for T', with length n bits.
1394     FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
1395                                            Context.toBits(TypeAlign));
1396 
1397     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1398 
1399     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1400                                          Context.getTargetInfo().getCharAlign()));
1401     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1402   }
1403 
1404   // Place this field at the current location.
1405   FieldOffsets.push_back(FieldOffset);
1406 
1407   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1408                     Context.toBits(TypeAlign), FieldPacked, D);
1409 
1410   // Update the size.
1411   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1412 
1413   // Remember max struct/class alignment.
1414   UpdateAlignment(TypeAlign);
1415 }
1416 
LayoutBitField(const FieldDecl * D)1417 void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1418   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1419   uint64_t FieldSize = D->getBitWidthValue(Context);
1420   std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
1421   uint64_t TypeSize = FieldInfo.first;
1422   unsigned FieldAlign = FieldInfo.second;
1423 
1424   // UnfilledBitsInLastUnit is the difference between the end of the
1425   // last allocated bitfield (i.e. the first bit offset available for
1426   // bitfields) and the end of the current data size in bits (i.e. the
1427   // first bit offset available for non-bitfields).  The current data
1428   // size in bits is always a multiple of the char size; additionally,
1429   // for ms_struct records it's also a multiple of the
1430   // LastBitfieldTypeSize (if set).
1431 
1432   // The struct-layout algorithm is dictated by the platform ABI,
1433   // which in principle could use almost any rules it likes.  In
1434   // practice, UNIXy targets tend to inherit the algorithm described
1435   // in the System V generic ABI.  The basic bitfield layout rule in
1436   // System V is to place bitfields at the next available bit offset
1437   // where the entire bitfield would fit in an aligned storage unit of
1438   // the declared type; it's okay if an earlier or later non-bitfield
1439   // is allocated in the same storage unit.  However, some targets
1440   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1441   // require this storage unit to be aligned, and therefore always put
1442   // the bitfield at the next available bit offset.
1443 
1444   // ms_struct basically requests a complete replacement of the
1445   // platform ABI's struct-layout algorithm, with the high-level goal
1446   // of duplicating MSVC's layout.  For non-bitfields, this follows
1447   // the the standard algorithm.  The basic bitfield layout rule is to
1448   // allocate an entire unit of the bitfield's declared type
1449   // (e.g. 'unsigned long'), then parcel it up among successive
1450   // bitfields whose declared types have the same size, making a new
1451   // unit as soon as the last can no longer store the whole value.
1452   // Since it completely replaces the platform ABI's algorithm,
1453   // settings like !useBitFieldTypeAlignment() do not apply.
1454 
1455   // A zero-width bitfield forces the use of a new storage unit for
1456   // later bitfields.  In general, this occurs by rounding up the
1457   // current size of the struct as if the algorithm were about to
1458   // place a non-bitfield of the field's formal type.  Usually this
1459   // does not change the alignment of the struct itself, but it does
1460   // on some targets (those that useZeroLengthBitfieldAlignment(),
1461   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1462   // ignored unless they follow a non-zero-width bitfield.
1463 
1464   // A field alignment restriction (e.g. from #pragma pack) or
1465   // specification (e.g. from __attribute__((aligned))) changes the
1466   // formal alignment of the field.  For System V, this alters the
1467   // required alignment of the notional storage unit that must contain
1468   // the bitfield.  For ms_struct, this only affects the placement of
1469   // new storage units.  In both cases, the effect of #pragma pack is
1470   // ignored on zero-width bitfields.
1471 
1472   // On System V, a packed field (e.g. from #pragma pack or
1473   // __attribute__((packed))) always uses the next available bit
1474   // offset.
1475 
1476   // In an ms_struct struct, the alignment of a fundamental type is
1477   // always equal to its size.  This is necessary in order to mimic
1478   // the i386 alignment rules on targets which might not fully align
1479   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1480 
1481   // First, some simple bookkeeping to perform for ms_struct structs.
1482   if (IsMsStruct) {
1483     // The field alignment for integer types is always the size.
1484     FieldAlign = TypeSize;
1485 
1486     // If the previous field was not a bitfield, or was a bitfield
1487     // with a different storage unit size, we're done with that
1488     // storage unit.
1489     if (LastBitfieldTypeSize != TypeSize) {
1490       // Also, ignore zero-length bitfields after non-bitfields.
1491       if (!LastBitfieldTypeSize && !FieldSize)
1492         FieldAlign = 1;
1493 
1494       UnfilledBitsInLastUnit = 0;
1495       LastBitfieldTypeSize = 0;
1496     }
1497   }
1498 
1499   // If the field is wider than its declared type, it follows
1500   // different rules in all cases.
1501   if (FieldSize > TypeSize) {
1502     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1503     return;
1504   }
1505 
1506   // Compute the next available bit offset.
1507   uint64_t FieldOffset =
1508     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1509 
1510   // Handle targets that don't honor bitfield type alignment.
1511   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1512     // Some such targets do honor it on zero-width bitfields.
1513     if (FieldSize == 0 &&
1514         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1515       // The alignment to round up to is the max of the field's natural
1516       // alignment and a target-specific fixed value (sometimes zero).
1517       unsigned ZeroLengthBitfieldBoundary =
1518         Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1519       FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1520 
1521     // If that doesn't apply, just ignore the field alignment.
1522     } else {
1523       FieldAlign = 1;
1524     }
1525   }
1526 
1527   // Remember the alignment we would have used if the field were not packed.
1528   unsigned UnpackedFieldAlign = FieldAlign;
1529 
1530   // Ignore the field alignment if the field is packed unless it has zero-size.
1531   if (!IsMsStruct && FieldPacked && FieldSize != 0)
1532     FieldAlign = 1;
1533 
1534   // But, if there's an 'aligned' attribute on the field, honor that.
1535   if (unsigned ExplicitFieldAlign = D->getMaxAlignment()) {
1536     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1537     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1538   }
1539 
1540   // But, if there's a #pragma pack in play, that takes precedent over
1541   // even the 'aligned' attribute, for non-zero-width bitfields.
1542   if (!MaxFieldAlignment.isZero() && FieldSize) {
1543     unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1544     FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1545     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1546   }
1547 
1548   // For purposes of diagnostics, we're going to simultaneously
1549   // compute the field offsets that we would have used if we weren't
1550   // adding any alignment padding or if the field weren't packed.
1551   uint64_t UnpaddedFieldOffset = FieldOffset;
1552   uint64_t UnpackedFieldOffset = FieldOffset;
1553 
1554   // Check if we need to add padding to fit the bitfield within an
1555   // allocation unit with the right size and alignment.  The rules are
1556   // somewhat different here for ms_struct structs.
1557   if (IsMsStruct) {
1558     // If it's not a zero-width bitfield, and we can fit the bitfield
1559     // into the active storage unit (and we haven't already decided to
1560     // start a new storage unit), just do so, regardless of any other
1561     // other consideration.  Otherwise, round up to the right alignment.
1562     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1563       FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1564       UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1565                                                      UnpackedFieldAlign);
1566       UnfilledBitsInLastUnit = 0;
1567     }
1568 
1569   } else {
1570     // #pragma pack, with any value, suppresses the insertion of padding.
1571     bool AllowPadding = MaxFieldAlignment.isZero();
1572 
1573     // Compute the real offset.
1574     if (FieldSize == 0 ||
1575         (AllowPadding &&
1576          (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
1577       FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1578     }
1579 
1580     // Repeat the computation for diagnostic purposes.
1581     if (FieldSize == 0 ||
1582         (AllowPadding &&
1583          (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1584       UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1585                                                      UnpackedFieldAlign);
1586   }
1587 
1588   // If we're using external layout, give the external layout a chance
1589   // to override this information.
1590   if (ExternalLayout)
1591     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1592 
1593   // Okay, place the bitfield at the calculated offset.
1594   FieldOffsets.push_back(FieldOffset);
1595 
1596   // Bookkeeping:
1597 
1598   // Anonymous members don't affect the overall record alignment,
1599   // except on targets where they do.
1600   if (!IsMsStruct &&
1601       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1602       !D->getIdentifier())
1603     FieldAlign = UnpackedFieldAlign = 1;
1604 
1605   // Diagnose differences in layout due to padding or packing.
1606   if (!ExternalLayout)
1607     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1608                       UnpackedFieldAlign, FieldPacked, D);
1609 
1610   // Update DataSize to include the last byte containing (part of) the bitfield.
1611 
1612   // For unions, this is just a max operation, as usual.
1613   if (IsUnion) {
1614     // FIXME: I think FieldSize should be TypeSize here.
1615     setDataSize(std::max(getDataSizeInBits(), FieldSize));
1616 
1617   // For non-zero-width bitfields in ms_struct structs, allocate a new
1618   // storage unit if necessary.
1619   } else if (IsMsStruct && FieldSize) {
1620     // We should have cleared UnfilledBitsInLastUnit in every case
1621     // where we changed storage units.
1622     if (!UnfilledBitsInLastUnit) {
1623       setDataSize(FieldOffset + TypeSize);
1624       UnfilledBitsInLastUnit = TypeSize;
1625     }
1626     UnfilledBitsInLastUnit -= FieldSize;
1627     LastBitfieldTypeSize = TypeSize;
1628 
1629   // Otherwise, bump the data size up to include the bitfield,
1630   // including padding up to char alignment, and then remember how
1631   // bits we didn't use.
1632   } else {
1633     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1634     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1635     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, CharAlignment));
1636     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1637 
1638     // The only time we can get here for an ms_struct is if this is a
1639     // zero-width bitfield, which doesn't count as anything for the
1640     // purposes of unfilled bits.
1641     LastBitfieldTypeSize = 0;
1642   }
1643 
1644   // Update the size.
1645   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1646 
1647   // Remember max struct/class alignment.
1648   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1649                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
1650 }
1651 
LayoutField(const FieldDecl * D)1652 void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
1653   if (D->isBitField()) {
1654     LayoutBitField(D);
1655     return;
1656   }
1657 
1658   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1659 
1660   // Reset the unfilled bits.
1661   UnfilledBitsInLastUnit = 0;
1662   LastBitfieldTypeSize = 0;
1663 
1664   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1665   CharUnits FieldOffset =
1666     IsUnion ? CharUnits::Zero() : getDataSize();
1667   CharUnits FieldSize;
1668   CharUnits FieldAlign;
1669 
1670   if (D->getType()->isIncompleteArrayType()) {
1671     // This is a flexible array member; we can't directly
1672     // query getTypeInfo about these, so we figure it out here.
1673     // Flexible array members don't have any size, but they
1674     // have to be aligned appropriately for their element type.
1675     FieldSize = CharUnits::Zero();
1676     const ArrayType* ATy = Context.getAsArrayType(D->getType());
1677     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1678   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1679     unsigned AS = RT->getPointeeType().getAddressSpace();
1680     FieldSize =
1681       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
1682     FieldAlign =
1683       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
1684   } else {
1685     std::pair<CharUnits, CharUnits> FieldInfo =
1686       Context.getTypeInfoInChars(D->getType());
1687     FieldSize = FieldInfo.first;
1688     FieldAlign = FieldInfo.second;
1689 
1690     if (IsMsStruct) {
1691       // If MS bitfield layout is required, figure out what type is being
1692       // laid out and align the field to the width of that type.
1693 
1694       // Resolve all typedefs down to their base type and round up the field
1695       // alignment if necessary.
1696       QualType T = Context.getBaseElementType(D->getType());
1697       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1698         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1699         if (TypeSize > FieldAlign)
1700           FieldAlign = TypeSize;
1701       }
1702     }
1703   }
1704 
1705   // The align if the field is not packed. This is to check if the attribute
1706   // was unnecessary (-Wpacked).
1707   CharUnits UnpackedFieldAlign = FieldAlign;
1708   CharUnits UnpackedFieldOffset = FieldOffset;
1709 
1710   if (FieldPacked)
1711     FieldAlign = CharUnits::One();
1712   CharUnits MaxAlignmentInChars =
1713     Context.toCharUnitsFromBits(D->getMaxAlignment());
1714   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1715   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1716 
1717   // The maximum field alignment overrides the aligned attribute.
1718   if (!MaxFieldAlignment.isZero()) {
1719     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1720     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1721   }
1722 
1723   // Round up the current record size to the field's alignment boundary.
1724   FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
1725   UnpackedFieldOffset =
1726     UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
1727 
1728   if (ExternalLayout) {
1729     FieldOffset = Context.toCharUnitsFromBits(
1730                     updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1731 
1732     if (!IsUnion && EmptySubobjects) {
1733       // Record the fact that we're placing a field at this offset.
1734       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1735       (void)Allowed;
1736       assert(Allowed && "Externally-placed field cannot be placed here");
1737     }
1738   } else {
1739     if (!IsUnion && EmptySubobjects) {
1740       // Check if we can place the field at this offset.
1741       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1742         // We couldn't place the field at the offset. Try again at a new offset.
1743         FieldOffset += FieldAlign;
1744       }
1745     }
1746   }
1747 
1748   // Place this field at the current location.
1749   FieldOffsets.push_back(Context.toBits(FieldOffset));
1750 
1751   if (!ExternalLayout)
1752     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1753                       Context.toBits(UnpackedFieldOffset),
1754                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1755 
1756   // Reserve space for this field.
1757   uint64_t FieldSizeInBits = Context.toBits(FieldSize);
1758   if (IsUnion)
1759     setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
1760   else
1761     setDataSize(FieldOffset + FieldSize);
1762 
1763   // Update the size.
1764   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1765 
1766   // Remember max struct/class alignment.
1767   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1768 }
1769 
FinishLayout(const NamedDecl * D)1770 void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1771   // In C++, records cannot be of size 0.
1772   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1773     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1774       // Compatibility with gcc requires a class (pod or non-pod)
1775       // which is not empty but of size 0; such as having fields of
1776       // array of zero-length, remains of Size 0
1777       if (RD->isEmpty())
1778         setSize(CharUnits::One());
1779     }
1780     else
1781       setSize(CharUnits::One());
1782   }
1783 
1784   // Finally, round the size of the record up to the alignment of the
1785   // record itself.
1786   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
1787   uint64_t UnpackedSizeInBits =
1788   llvm::RoundUpToAlignment(getSizeInBits(),
1789                            Context.toBits(UnpackedAlignment));
1790   CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
1791   uint64_t RoundedSize
1792     = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
1793 
1794   if (ExternalLayout) {
1795     // If we're inferring alignment, and the external size is smaller than
1796     // our size after we've rounded up to alignment, conservatively set the
1797     // alignment to 1.
1798     if (InferAlignment && ExternalSize < RoundedSize) {
1799       Alignment = CharUnits::One();
1800       InferAlignment = false;
1801     }
1802     setSize(ExternalSize);
1803     return;
1804   }
1805 
1806   // Set the size to the final size.
1807   setSize(RoundedSize);
1808 
1809   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1810   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1811     // Warn if padding was introduced to the struct/class/union.
1812     if (getSizeInBits() > UnpaddedSize) {
1813       unsigned PadSize = getSizeInBits() - UnpaddedSize;
1814       bool InBits = true;
1815       if (PadSize % CharBitNum == 0) {
1816         PadSize = PadSize / CharBitNum;
1817         InBits = false;
1818       }
1819       Diag(RD->getLocation(), diag::warn_padded_struct_size)
1820           << Context.getTypeDeclType(RD)
1821           << PadSize
1822           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
1823     }
1824 
1825     // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1826     // bother since there won't be alignment issues.
1827     if (Packed && UnpackedAlignment > CharUnits::One() &&
1828         getSize() == UnpackedSize)
1829       Diag(D->getLocation(), diag::warn_unnecessary_packed)
1830           << Context.getTypeDeclType(RD);
1831   }
1832 }
1833 
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)1834 void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
1835                                           CharUnits UnpackedNewAlignment) {
1836   // The alignment is not modified when using 'mac68k' alignment or when
1837   // we have an externally-supplied layout that also provides overall alignment.
1838   if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
1839     return;
1840 
1841   if (NewAlignment > Alignment) {
1842     assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
1843            "Alignment not a power of 2"));
1844     Alignment = NewAlignment;
1845   }
1846 
1847   if (UnpackedNewAlignment > UnpackedAlignment) {
1848     assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
1849            "Alignment not a power of 2"));
1850     UnpackedAlignment = UnpackedNewAlignment;
1851   }
1852 }
1853 
1854 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)1855 RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
1856                                                uint64_t ComputedOffset) {
1857   assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
1858          "Field does not have an external offset");
1859 
1860   uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
1861 
1862   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
1863     // The externally-supplied field offset is before the field offset we
1864     // computed. Assume that the structure is packed.
1865     Alignment = CharUnits::One();
1866     InferAlignment = false;
1867   }
1868 
1869   // Use the externally-supplied field offset.
1870   return ExternalFieldOffset;
1871 }
1872 
1873 /// \brief Get diagnostic %select index for tag kind for
1874 /// field padding diagnostic message.
1875 /// WARNING: Indexes apply to particular diagnostics only!
1876 ///
1877 /// \returns diagnostic %select index.
getPaddingDiagFromTagKind(TagTypeKind Tag)1878 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
1879   switch (Tag) {
1880   case TTK_Struct: return 0;
1881   case TTK_Interface: return 1;
1882   case TTK_Class: return 2;
1883   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
1884   }
1885 }
1886 
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)1887 void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
1888                                             uint64_t UnpaddedOffset,
1889                                             uint64_t UnpackedOffset,
1890                                             unsigned UnpackedAlign,
1891                                             bool isPacked,
1892                                             const FieldDecl *D) {
1893   // We let objc ivars without warning, objc interfaces generally are not used
1894   // for padding tricks.
1895   if (isa<ObjCIvarDecl>(D))
1896     return;
1897 
1898   // Don't warn about structs created without a SourceLocation.  This can
1899   // be done by clients of the AST, such as codegen.
1900   if (D->getLocation().isInvalid())
1901     return;
1902 
1903   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1904 
1905   // Warn if padding was introduced to the struct/class.
1906   if (!IsUnion && Offset > UnpaddedOffset) {
1907     unsigned PadSize = Offset - UnpaddedOffset;
1908     bool InBits = true;
1909     if (PadSize % CharBitNum == 0) {
1910       PadSize = PadSize / CharBitNum;
1911       InBits = false;
1912     }
1913     if (D->getIdentifier())
1914       Diag(D->getLocation(), diag::warn_padded_struct_field)
1915           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1916           << Context.getTypeDeclType(D->getParent())
1917           << PadSize
1918           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
1919           << D->getIdentifier();
1920     else
1921       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
1922           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1923           << Context.getTypeDeclType(D->getParent())
1924           << PadSize
1925           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
1926   }
1927 
1928   // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1929   // bother since there won't be alignment issues.
1930   if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
1931     Diag(D->getLocation(), diag::warn_unnecessary_packed)
1932         << D->getIdentifier();
1933 }
1934 
computeKeyFunction(ASTContext & Context,const CXXRecordDecl * RD)1935 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
1936                                                const CXXRecordDecl *RD) {
1937   // If a class isn't polymorphic it doesn't have a key function.
1938   if (!RD->isPolymorphic())
1939     return nullptr;
1940 
1941   // A class that is not externally visible doesn't have a key function. (Or
1942   // at least, there's no point to assigning a key function to such a class;
1943   // this doesn't affect the ABI.)
1944   if (!RD->isExternallyVisible())
1945     return nullptr;
1946 
1947   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
1948   // Same behavior as GCC.
1949   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1950   if (TSK == TSK_ImplicitInstantiation ||
1951       TSK == TSK_ExplicitInstantiationDeclaration ||
1952       TSK == TSK_ExplicitInstantiationDefinition)
1953     return nullptr;
1954 
1955   bool allowInlineFunctions =
1956     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
1957 
1958   for (const auto *MD : RD->methods()) {
1959     if (!MD->isVirtual())
1960       continue;
1961 
1962     if (MD->isPure())
1963       continue;
1964 
1965     // Ignore implicit member functions, they are always marked as inline, but
1966     // they don't have a body until they're defined.
1967     if (MD->isImplicit())
1968       continue;
1969 
1970     if (MD->isInlineSpecified())
1971       continue;
1972 
1973     if (MD->hasInlineBody())
1974       continue;
1975 
1976     // Ignore inline deleted or defaulted functions.
1977     if (!MD->isUserProvided())
1978       continue;
1979 
1980     // In certain ABIs, ignore functions with out-of-line inline definitions.
1981     if (!allowInlineFunctions) {
1982       const FunctionDecl *Def;
1983       if (MD->hasBody(Def) && Def->isInlineSpecified())
1984         continue;
1985     }
1986 
1987     // We found it.
1988     return MD;
1989   }
1990 
1991   return nullptr;
1992 }
1993 
1994 DiagnosticBuilder
Diag(SourceLocation Loc,unsigned DiagID)1995 RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
1996   return Context.getDiagnostics().Report(Loc, DiagID);
1997 }
1998 
1999 /// Does the target C++ ABI require us to skip over the tail-padding
2000 /// of the given class (considering it as a base class) when allocating
2001 /// objects?
mustSkipTailPadding(TargetCXXABI ABI,const CXXRecordDecl * RD)2002 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2003   switch (ABI.getTailPaddingUseRules()) {
2004   case TargetCXXABI::AlwaysUseTailPadding:
2005     return false;
2006 
2007   case TargetCXXABI::UseTailPaddingUnlessPOD03:
2008     // FIXME: To the extent that this is meant to cover the Itanium ABI
2009     // rules, we should implement the restrictions about over-sized
2010     // bitfields:
2011     //
2012     // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
2013     //   In general, a type is considered a POD for the purposes of
2014     //   layout if it is a POD type (in the sense of ISO C++
2015     //   [basic.types]). However, a POD-struct or POD-union (in the
2016     //   sense of ISO C++ [class]) with a bitfield member whose
2017     //   declared width is wider than the declared type of the
2018     //   bitfield is not a POD for the purpose of layout.  Similarly,
2019     //   an array type is not a POD for the purpose of layout if the
2020     //   element type of the array is not a POD for the purpose of
2021     //   layout.
2022     //
2023     //   Where references to the ISO C++ are made in this paragraph,
2024     //   the Technical Corrigendum 1 version of the standard is
2025     //   intended.
2026     return RD->isPOD();
2027 
2028   case TargetCXXABI::UseTailPaddingUnlessPOD11:
2029     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2030     // but with a lot of abstraction penalty stripped off.  This does
2031     // assume that these properties are set correctly even in C++98
2032     // mode; fortunately, that is true because we want to assign
2033     // consistently semantics to the type-traits intrinsics (or at
2034     // least as many of them as possible).
2035     return RD->isTrivial() && RD->isStandardLayout();
2036   }
2037 
2038   llvm_unreachable("bad tail-padding use kind");
2039 }
2040 
isMsLayout(const RecordDecl * D)2041 static bool isMsLayout(const RecordDecl* D) {
2042   return D->getASTContext().getTargetInfo().getCXXABI().isMicrosoft();
2043 }
2044 
2045 // This section contains an implementation of struct layout that is, up to the
2046 // included tests, compatible with cl.exe (2013).  The layout produced is
2047 // significantly different than those produced by the Itanium ABI.  Here we note
2048 // the most important differences.
2049 //
2050 // * The alignment of bitfields in unions is ignored when computing the
2051 //   alignment of the union.
2052 // * The existence of zero-width bitfield that occurs after anything other than
2053 //   a non-zero length bitfield is ignored.
2054 // * There is no explicit primary base for the purposes of layout.  All bases
2055 //   with vfptrs are laid out first, followed by all bases without vfptrs.
2056 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2057 //   function pointer) and a vbptr (virtual base pointer).  They can each be
2058 //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2059 //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2060 //   placed after the lexiographically last non-virtual base.  This placement
2061 //   is always before fields but can be in the middle of the non-virtual bases
2062 //   due to the two-pass layout scheme for non-virtual-bases.
2063 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2064 //   the virtual base and is used in conjunction with virtual overrides during
2065 //   construction and destruction.  This is always a 4 byte value and is used as
2066 //   an alternative to constructor vtables.
2067 // * vtordisps are allocated in a block of memory with size and alignment equal
2068 //   to the alignment of the completed structure (before applying __declspec(
2069 //   align())).  The vtordisp always occur at the end of the allocation block,
2070 //   immediately prior to the virtual base.
2071 // * vfptrs are injected after all bases and fields have been laid out.  In
2072 //   order to guarantee proper alignment of all fields, the vfptr injection
2073 //   pushes all bases and fields back by the alignment imposed by those bases
2074 //   and fields.  This can potentially add a significant amount of padding.
2075 //   vfptrs are always injected at offset 0.
2076 // * vbptrs are injected after all bases and fields have been laid out.  In
2077 //   order to guarantee proper alignment of all fields, the vfptr injection
2078 //   pushes all bases and fields back by the alignment imposed by those bases
2079 //   and fields.  This can potentially add a significant amount of padding.
2080 //   vbptrs are injected immediately after the last non-virtual base as
2081 //   lexiographically ordered in the code.  If this site isn't pointer aligned
2082 //   the vbptr is placed at the next properly aligned location.  Enough padding
2083 //   is added to guarantee a fit.
2084 // * The last zero sized non-virtual base can be placed at the end of the
2085 //   struct (potentially aliasing another object), or may alias with the first
2086 //   field, even if they are of the same type.
2087 // * The last zero size virtual base may be placed at the end of the struct
2088 //   potentially aliasing another object.
2089 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2090 //   between bases or vbases with specific properties.  The criteria for
2091 //   additional padding between two bases is that the first base is zero sized
2092 //   or ends with a zero sized subobject and the second base is zero sized or
2093 //   trails with a zero sized base or field (sharing of vfptrs can reorder the
2094 //   layout of the so the leading base is not always the first one declared).
2095 //   This rule does take into account fields that are not records, so padding
2096 //   will occur even if the last field is, e.g. an int. The padding added for
2097 //   bases is 1 byte.  The padding added between vbases depends on the alignment
2098 //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2099 // * There is no concept of non-virtual alignment, non-virtual alignment and
2100 //   alignment are always identical.
2101 // * There is a distinction between alignment and required alignment.
2102 //   __declspec(align) changes the required alignment of a struct.  This
2103 //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2104 //   record inherites required alignment from all of its fields an bases.
2105 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2106 //   alignment instead of its required alignment.  This is the only known way
2107 //   to make the alignment of a struct bigger than 8.  Interestingly enough
2108 //   this alignment is also immune to the effects of #pragma pack and can be
2109 //   used to create structures with large alignment under #pragma pack.
2110 //   However, because it does not impact required alignment, such a structure,
2111 //   when used as a field or base, will not be aligned if #pragma pack is
2112 //   still active at the time of use.
2113 //
2114 // Known incompatibilities:
2115 // * all: #pragma pack between fields in a record
2116 // * 2010 and back: If the last field in a record is a bitfield, every object
2117 //   laid out after the record will have extra padding inserted before it.  The
2118 //   extra padding will have size equal to the size of the storage class of the
2119 //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2120 //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2121 //   sized bitfield.
2122 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2123 //   greater due to __declspec(align()) then a second layout phase occurs after
2124 //   The locations of the vf and vb pointers are known.  This layout phase
2125 //   suffers from the "last field is a bitfield" bug in 2010 and results in
2126 //   _every_ field getting padding put in front of it, potentially including the
2127 //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2128 //   anything tries to read the vftbl.  The second layout phase also treats
2129 //   bitfields as separate entities and gives them each storage rather than
2130 //   packing them.  Additionally, because this phase appears to perform a
2131 //   (an unstable) sort on the members before laying them out and because merged
2132 //   bitfields have the same address, the bitfields end up in whatever order
2133 //   the sort left them in, a behavior we could never hope to replicate.
2134 
2135 namespace {
2136 struct MicrosoftRecordLayoutBuilder {
2137   struct ElementInfo {
2138     CharUnits Size;
2139     CharUnits Alignment;
2140   };
2141   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
MicrosoftRecordLayoutBuilder__anond999b0ee0211::MicrosoftRecordLayoutBuilder2142   MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2143 private:
2144   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &)
2145   LLVM_DELETED_FUNCTION;
2146   void operator=(const MicrosoftRecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
2147 public:
2148   void layout(const RecordDecl *RD);
2149   void cxxLayout(const CXXRecordDecl *RD);
2150   /// \brief Initializes size and alignment and honors some flags.
2151   void initializeLayout(const RecordDecl *RD);
2152   /// \brief Initialized C++ layout, compute alignment and virtual alignment and
2153   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2154   /// laid out.
2155   void initializeCXXLayout(const CXXRecordDecl *RD);
2156   void layoutNonVirtualBases(const CXXRecordDecl *RD);
2157   void layoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
2158                             const ASTRecordLayout &BaseLayout,
2159                             const ASTRecordLayout *&PreviousBaseLayout);
2160   void injectVFPtr(const CXXRecordDecl *RD);
2161   void injectVBPtr(const CXXRecordDecl *RD);
2162   /// \brief Lays out the fields of the record.  Also rounds size up to
2163   /// alignment.
2164   void layoutFields(const RecordDecl *RD);
2165   void layoutField(const FieldDecl *FD);
2166   void layoutBitField(const FieldDecl *FD);
2167   /// \brief Lays out a single zero-width bit-field in the record and handles
2168   /// special cases associated with zero-width bit-fields.
2169   void layoutZeroWidthBitField(const FieldDecl *FD);
2170   void layoutVirtualBases(const CXXRecordDecl *RD);
2171   void finalizeLayout(const RecordDecl *RD);
2172   /// \brief Gets the size and alignment of a base taking pragma pack and
2173   /// __declspec(align) into account.
2174   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2175   /// \brief Gets the size and alignment of a field taking pragma  pack and
2176   /// __declspec(align) into account.  It also updates RequiredAlignment as a
2177   /// side effect because it is most convenient to do so here.
2178   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2179   /// \brief Places a field at an offset in CharUnits.
placeFieldAtOffset__anond999b0ee0211::MicrosoftRecordLayoutBuilder2180   void placeFieldAtOffset(CharUnits FieldOffset) {
2181     FieldOffsets.push_back(Context.toBits(FieldOffset));
2182   }
2183   /// \brief Places a bitfield at a bit offset.
placeFieldAtBitOffset__anond999b0ee0211::MicrosoftRecordLayoutBuilder2184   void placeFieldAtBitOffset(uint64_t FieldOffset) {
2185     FieldOffsets.push_back(FieldOffset);
2186   }
2187   /// \brief Compute the set of virtual bases for which vtordisps are required.
2188   llvm::SmallPtrSet<const CXXRecordDecl *, 2>
2189   computeVtorDispSet(const CXXRecordDecl *RD);
2190   const ASTContext &Context;
2191   /// \brief The size of the record being laid out.
2192   CharUnits Size;
2193   /// \brief The non-virtual size of the record layout.
2194   CharUnits NonVirtualSize;
2195   /// \brief The data size of the record layout.
2196   CharUnits DataSize;
2197   /// \brief The current alignment of the record layout.
2198   CharUnits Alignment;
2199   /// \brief The maximum allowed field alignment. This is set by #pragma pack.
2200   CharUnits MaxFieldAlignment;
2201   /// \brief The alignment that this record must obey.  This is imposed by
2202   /// __declspec(align()) on the record itself or one of its fields or bases.
2203   CharUnits RequiredAlignment;
2204   /// \brief The size of the allocation of the currently active bitfield.
2205   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2206   /// is true.
2207   CharUnits CurrentBitfieldSize;
2208   /// \brief Offset to the virtual base table pointer (if one exists).
2209   CharUnits VBPtrOffset;
2210   /// \brief The size and alignment info of a pointer.
2211   ElementInfo PointerInfo;
2212   /// \brief The primary base class (if one exists).
2213   const CXXRecordDecl *PrimaryBase;
2214   /// \brief The class we share our vb-pointer with.
2215   const CXXRecordDecl *SharedVBPtrBase;
2216   /// \brief The collection of field offsets.
2217   SmallVector<uint64_t, 16> FieldOffsets;
2218   /// \brief Base classes and their offsets in the record.
2219   BaseOffsetsMapTy Bases;
2220   /// \brief virtual base classes and their offsets in the record.
2221   ASTRecordLayout::VBaseOffsetsMapTy VBases;
2222   /// \brief The number of remaining bits in our last bitfield allocation.
2223   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2224   /// true.
2225   unsigned RemainingBitsInField;
2226   bool IsUnion : 1;
2227   /// \brief True if the last field laid out was a bitfield and was not 0
2228   /// width.
2229   bool LastFieldIsNonZeroWidthBitfield : 1;
2230   /// \brief True if the class has its own vftable pointer.
2231   bool HasOwnVFPtr : 1;
2232   /// \brief True if the class has a vbtable pointer.
2233   bool HasVBPtr : 1;
2234   /// \brief True if the last sub-object within the type is zero sized or the
2235   /// object itself is zero sized.  This *does not* count members that are not
2236   /// records.  Only used for MS-ABI.
2237   bool EndsWithZeroSizedObject : 1;
2238   /// \brief True if this class is zero sized or first base is zero sized or
2239   /// has this property.  Only used for MS-ABI.
2240   bool LeadsWithZeroSizedBase : 1;
2241 };
2242 } // namespace
2243 
2244 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const ASTRecordLayout & Layout)2245 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2246     const ASTRecordLayout &Layout) {
2247   ElementInfo Info;
2248   Info.Alignment = Layout.getAlignment();
2249   // Respect pragma pack.
2250   if (!MaxFieldAlignment.isZero())
2251     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2252   // Track zero-sized subobjects here where it's already available.
2253   EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
2254   // Respect required alignment, this is necessary because we may have adjusted
2255   // the alignment in the case of pragam pack.  Note that the required alignment
2256   // doesn't actually apply to the struct alignment at this point.
2257   Alignment = std::max(Alignment, Info.Alignment);
2258   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2259   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2260   Info.Size = Layout.getNonVirtualSize();
2261   return Info;
2262 }
2263 
2264 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const FieldDecl * FD)2265 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2266     const FieldDecl *FD) {
2267   ElementInfo Info;
2268   std::tie(Info.Size, Info.Alignment) =
2269       Context.getTypeInfoInChars(FD->getType());
2270   // Respect align attributes.
2271   CharUnits FieldRequiredAlignment =
2272       Context.toCharUnitsFromBits(FD->getMaxAlignment());
2273   // Respect attributes applied to subobjects of the field.
2274   if (FD->isBitField())
2275     // For some reason __declspec align impacts alignment rather than required
2276     // alignment when it is applied to bitfields.
2277     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2278   else {
2279     if (auto RT =
2280             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2281       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2282       EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
2283       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2284                                         Layout.getRequiredAlignment());
2285     }
2286     // Capture required alignment as a side-effect.
2287     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2288   }
2289   // Respect pragma pack, attribute pack and declspec align
2290   if (!MaxFieldAlignment.isZero())
2291     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2292   if (FD->hasAttr<PackedAttr>())
2293     Info.Alignment = CharUnits::One();
2294   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2295   return Info;
2296 }
2297 
layout(const RecordDecl * RD)2298 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2299   initializeLayout(RD);
2300   layoutFields(RD);
2301   DataSize = Size = Size.RoundUpToAlignment(Alignment);
2302   RequiredAlignment = std::max(
2303       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2304   finalizeLayout(RD);
2305 }
2306 
cxxLayout(const CXXRecordDecl * RD)2307 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2308   initializeLayout(RD);
2309   initializeCXXLayout(RD);
2310   layoutNonVirtualBases(RD);
2311   layoutFields(RD);
2312   injectVBPtr(RD);
2313   injectVFPtr(RD);
2314   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2315     Alignment = std::max(Alignment, PointerInfo.Alignment);
2316   auto RoundingAlignment = Alignment;
2317   if (!MaxFieldAlignment.isZero())
2318     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2319   NonVirtualSize = Size = Size.RoundUpToAlignment(RoundingAlignment);
2320   RequiredAlignment = std::max(
2321       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2322   layoutVirtualBases(RD);
2323   finalizeLayout(RD);
2324 }
2325 
initializeLayout(const RecordDecl * RD)2326 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2327   IsUnion = RD->isUnion();
2328   Size = CharUnits::Zero();
2329   Alignment = CharUnits::One();
2330   // In 64-bit mode we always perform an alignment step after laying out vbases.
2331   // In 32-bit mode we do not.  The check to see if we need to perform alignment
2332   // checks the RequiredAlignment field and performs alignment if it isn't 0.
2333   RequiredAlignment = Context.getTargetInfo().getPointerWidth(0) == 64 ?
2334                       CharUnits::One() : CharUnits::Zero();
2335   // Compute the maximum field alignment.
2336   MaxFieldAlignment = CharUnits::Zero();
2337   // Honor the default struct packing maximum alignment flag.
2338   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2339       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2340   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2341   // than the pointer size.
2342   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2343     unsigned PackedAlignment = MFAA->getAlignment();
2344     if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2345       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2346   }
2347   // Packed attribute forces max field alignment to be 1.
2348   if (RD->hasAttr<PackedAttr>())
2349     MaxFieldAlignment = CharUnits::One();
2350 }
2351 
2352 void
initializeCXXLayout(const CXXRecordDecl * RD)2353 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2354   EndsWithZeroSizedObject = false;
2355   LeadsWithZeroSizedBase = false;
2356   HasOwnVFPtr = false;
2357   HasVBPtr = false;
2358   PrimaryBase = nullptr;
2359   SharedVBPtrBase = nullptr;
2360   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2361   // injection.
2362   PointerInfo.Size =
2363       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2364   PointerInfo.Alignment = PointerInfo.Size;
2365   // Respect pragma pack.
2366   if (!MaxFieldAlignment.isZero())
2367     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2368 }
2369 
2370 void
layoutNonVirtualBases(const CXXRecordDecl * RD)2371 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2372   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2373   // out any bases that do not contain vfptrs.  We implement this as two passes
2374   // over the bases.  This approach guarantees that the primary base is laid out
2375   // first.  We use these passes to calculate some additional aggregated
2376   // information about the bases, such as reqruied alignment and the presence of
2377   // zero sized members.
2378   const ASTRecordLayout *PreviousBaseLayout = nullptr;
2379   // Iterate through the bases and lay out the non-virtual ones.
2380   for (const auto &I : RD->bases()) {
2381     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
2382     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2383     // Mark and skip virtual bases.
2384     if (I.isVirtual()) {
2385       HasVBPtr = true;
2386       continue;
2387     }
2388     // Check fo a base to share a VBPtr with.
2389     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2390       SharedVBPtrBase = BaseDecl;
2391       HasVBPtr = true;
2392     }
2393     // Only lay out bases with extendable VFPtrs on the first pass.
2394     if (!BaseLayout.hasExtendableVFPtr())
2395       continue;
2396     // If we don't have a primary base, this one qualifies.
2397     if (!PrimaryBase) {
2398       PrimaryBase = BaseDecl;
2399       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2400     }
2401     // Lay out the base.
2402     layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
2403   }
2404   // Figure out if we need a fresh VFPtr for this class.
2405   if (!PrimaryBase && RD->isDynamicClass())
2406     for (CXXRecordDecl::method_iterator i = RD->method_begin(),
2407                                         e = RD->method_end();
2408          !HasOwnVFPtr && i != e; ++i)
2409       HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
2410   // If we don't have a primary base then we have a leading object that could
2411   // itself lead with a zero-sized object, something we track.
2412   bool CheckLeadingLayout = !PrimaryBase;
2413   // Iterate through the bases and lay out the non-virtual ones.
2414   for (const auto &I : RD->bases()) {
2415     if (I.isVirtual())
2416       continue;
2417     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
2418     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2419     // Only lay out bases without extendable VFPtrs on the second pass.
2420     if (BaseLayout.hasExtendableVFPtr()) {
2421       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2422       continue;
2423     }
2424     // If this is the first layout, check to see if it leads with a zero sized
2425     // object.  If it does, so do we.
2426     if (CheckLeadingLayout) {
2427       CheckLeadingLayout = false;
2428       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2429     }
2430     // Lay out the base.
2431     layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
2432     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2433   }
2434   // Set our VBPtroffset if we know it at this point.
2435   if (!HasVBPtr)
2436     VBPtrOffset = CharUnits::fromQuantity(-1);
2437   else if (SharedVBPtrBase) {
2438     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2439     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2440   }
2441 }
2442 
layoutNonVirtualBase(const CXXRecordDecl * BaseDecl,const ASTRecordLayout & BaseLayout,const ASTRecordLayout * & PreviousBaseLayout)2443 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2444     const CXXRecordDecl *BaseDecl,
2445     const ASTRecordLayout &BaseLayout,
2446     const ASTRecordLayout *&PreviousBaseLayout) {
2447   // Insert padding between two bases if the left first one is zero sized or
2448   // contains a zero sized subobject and the right is zero sized or one leads
2449   // with a zero sized base.
2450   if (PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
2451       BaseLayout.leadsWithZeroSizedBase())
2452     Size++;
2453   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2454   CharUnits BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
2455   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2456   Size = BaseOffset + BaseLayout.getNonVirtualSize();
2457   PreviousBaseLayout = &BaseLayout;
2458 }
2459 
layoutFields(const RecordDecl * RD)2460 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2461   LastFieldIsNonZeroWidthBitfield = false;
2462   for (const auto *Field : RD->fields())
2463     layoutField(Field);
2464 }
2465 
layoutField(const FieldDecl * FD)2466 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2467   if (FD->isBitField()) {
2468     layoutBitField(FD);
2469     return;
2470   }
2471   LastFieldIsNonZeroWidthBitfield = false;
2472   ElementInfo Info = getAdjustedElementInfo(FD);
2473   Alignment = std::max(Alignment, Info.Alignment);
2474   if (IsUnion) {
2475     placeFieldAtOffset(CharUnits::Zero());
2476     Size = std::max(Size, Info.Size);
2477   } else {
2478     CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2479     placeFieldAtOffset(FieldOffset);
2480     Size = FieldOffset + Info.Size;
2481   }
2482 }
2483 
layoutBitField(const FieldDecl * FD)2484 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2485   unsigned Width = FD->getBitWidthValue(Context);
2486   if (Width == 0) {
2487     layoutZeroWidthBitField(FD);
2488     return;
2489   }
2490   ElementInfo Info = getAdjustedElementInfo(FD);
2491   // Clamp the bitfield to a containable size for the sake of being able
2492   // to lay them out.  Sema will throw an error.
2493   if (Width > Context.toBits(Info.Size))
2494     Width = Context.toBits(Info.Size);
2495   // Check to see if this bitfield fits into an existing allocation.  Note:
2496   // MSVC refuses to pack bitfields of formal types with different sizes
2497   // into the same allocation.
2498   if (!IsUnion && LastFieldIsNonZeroWidthBitfield &&
2499       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2500     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2501     RemainingBitsInField -= Width;
2502     return;
2503   }
2504   LastFieldIsNonZeroWidthBitfield = true;
2505   CurrentBitfieldSize = Info.Size;
2506   if (IsUnion) {
2507     placeFieldAtOffset(CharUnits::Zero());
2508     Size = std::max(Size, Info.Size);
2509     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2510   } else {
2511     // Allocate a new block of memory and place the bitfield in it.
2512     CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2513     placeFieldAtOffset(FieldOffset);
2514     Size = FieldOffset + Info.Size;
2515     Alignment = std::max(Alignment, Info.Alignment);
2516     RemainingBitsInField = Context.toBits(Info.Size) - Width;
2517   }
2518 }
2519 
2520 void
layoutZeroWidthBitField(const FieldDecl * FD)2521 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2522   // Zero-width bitfields are ignored unless they follow a non-zero-width
2523   // bitfield.
2524   if (!LastFieldIsNonZeroWidthBitfield) {
2525     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2526     // TODO: Add a Sema warning that MS ignores alignment for zero
2527     // sized bitfields that occur after zero-size bitfields or non-bitfields.
2528     return;
2529   }
2530   LastFieldIsNonZeroWidthBitfield = false;
2531   ElementInfo Info = getAdjustedElementInfo(FD);
2532   if (IsUnion) {
2533     placeFieldAtOffset(CharUnits::Zero());
2534     Size = std::max(Size, Info.Size);
2535     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2536   } else {
2537     // Round up the current record size to the field's alignment boundary.
2538     CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2539     placeFieldAtOffset(FieldOffset);
2540     Size = FieldOffset;
2541     Alignment = std::max(Alignment, Info.Alignment);
2542   }
2543 }
2544 
injectVBPtr(const CXXRecordDecl * RD)2545 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2546   if (!HasVBPtr || SharedVBPtrBase)
2547     return;
2548   // Inject the VBPointer at the injection site.
2549   CharUnits InjectionSite = VBPtrOffset;
2550   // But before we do, make sure it's properly aligned.
2551   VBPtrOffset = VBPtrOffset.RoundUpToAlignment(PointerInfo.Alignment);
2552   // Determine where the first field should be laid out after the vbptr.
2553   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2554   // Make sure that the amount we push the fields back by is a multiple of the
2555   // alignment.
2556   CharUnits Offset = (FieldStart - InjectionSite).RoundUpToAlignment(
2557       std::max(RequiredAlignment, Alignment));
2558   // Increase the size of the object and push back all fields by the offset
2559   // amount.
2560   Size += Offset;
2561   for (SmallVector<uint64_t, 16>::iterator i = FieldOffsets.begin(),
2562                                            e = FieldOffsets.end();
2563        i != e; ++i)
2564     *i += Context.toBits(Offset);
2565   for (BaseOffsetsMapTy::iterator i = Bases.begin(), e = Bases.end();
2566        i != e; ++i)
2567     if (i->second >= InjectionSite)
2568       i->second += Offset;
2569 }
2570 
injectVFPtr(const CXXRecordDecl * RD)2571 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2572   if (!HasOwnVFPtr)
2573     return;
2574   // Make sure that the amount we push the struct back by is a multiple of the
2575   // alignment.
2576   CharUnits Offset = PointerInfo.Size.RoundUpToAlignment(
2577       std::max(RequiredAlignment, Alignment));
2578   // Increase the size of the object and push back all fields, the vbptr and all
2579   // bases by the offset amount.
2580   Size += Offset;
2581   for (SmallVectorImpl<uint64_t>::iterator i = FieldOffsets.begin(),
2582                                            e = FieldOffsets.end();
2583        i != e; ++i)
2584     *i += Context.toBits(Offset);
2585   if (HasVBPtr)
2586     VBPtrOffset += Offset;
2587   for (BaseOffsetsMapTy::iterator i = Bases.begin(), e = Bases.end();
2588        i != e; ++i)
2589     i->second += Offset;
2590 }
2591 
layoutVirtualBases(const CXXRecordDecl * RD)2592 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2593   if (!HasVBPtr)
2594     return;
2595   // Vtordisps are always 4 bytes (even in 64-bit mode)
2596   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2597   CharUnits VtorDispAlignment = VtorDispSize;
2598   // vtordisps respect pragma pack.
2599   if (!MaxFieldAlignment.isZero())
2600     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
2601   // The alignment of the vtordisp is at least the required alignment of the
2602   // entire record.  This requirement may be present to support vtordisp
2603   // injection.
2604   for (const auto &I : RD->vbases()) {
2605     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
2606     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2607     RequiredAlignment =
2608         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
2609   }
2610   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
2611   // Compute the vtordisp set.
2612   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtordispSet =
2613       computeVtorDispSet(RD);
2614   // Iterate through the virtual bases and lay them out.
2615   const ASTRecordLayout *PreviousBaseLayout = nullptr;
2616   for (const auto &I : RD->vbases()) {
2617     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
2618     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2619     bool HasVtordisp = HasVtordispSet.count(BaseDecl);
2620     // Insert padding between two bases if the left first one is zero sized or
2621     // contains a zero sized subobject and the right is zero sized or one leads
2622     // with a zero sized base.  The padding between virtual bases is 4
2623     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
2624     // the required alignment, we don't know why.
2625     if ((PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
2626         BaseLayout.leadsWithZeroSizedBase()) || HasVtordisp)
2627       Size = Size.RoundUpToAlignment(VtorDispAlignment) + VtorDispSize;
2628     // Insert the virtual base.
2629     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2630     CharUnits BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
2631     VBases.insert(std::make_pair(BaseDecl,
2632         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
2633     Size = BaseOffset + BaseLayout.getNonVirtualSize();
2634     PreviousBaseLayout = &BaseLayout;
2635   }
2636 }
2637 
finalizeLayout(const RecordDecl * RD)2638 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
2639   // Respect required alignment.  Note that in 32-bit mode Required alignment
2640   // may be 0 nad cause size not to be updated.
2641   DataSize = Size;
2642   if (!RequiredAlignment.isZero()) {
2643     Alignment = std::max(Alignment, RequiredAlignment);
2644     auto RoundingAlignment = Alignment;
2645     if (!MaxFieldAlignment.isZero())
2646       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2647     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
2648     Size = Size.RoundUpToAlignment(RoundingAlignment);
2649   }
2650   // Zero-sized structures have size equal to their alignment.
2651   if (Size.isZero()) {
2652     EndsWithZeroSizedObject = true;
2653     LeadsWithZeroSizedBase = true;
2654     Size = Alignment;
2655   }
2656 }
2657 
2658 // Recursively walks the non-virtual bases of a class and determines if any of
2659 // them are in the bases with overridden methods set.
RequiresVtordisp(const llvm::SmallPtrSet<const CXXRecordDecl *,2> & BasesWithOverriddenMethods,const CXXRecordDecl * RD)2660 static bool RequiresVtordisp(
2661     const llvm::SmallPtrSet<const CXXRecordDecl *, 2> &
2662         BasesWithOverriddenMethods,
2663     const CXXRecordDecl *RD) {
2664   if (BasesWithOverriddenMethods.count(RD))
2665     return true;
2666   // If any of a virtual bases non-virtual bases (recursively) requires a
2667   // vtordisp than so does this virtual base.
2668   for (const auto &I : RD->bases())
2669     if (!I.isVirtual() &&
2670         RequiresVtordisp(BasesWithOverriddenMethods,
2671                          I.getType()->getAsCXXRecordDecl()))
2672       return true;
2673   return false;
2674 }
2675 
2676 llvm::SmallPtrSet<const CXXRecordDecl *, 2>
computeVtorDispSet(const CXXRecordDecl * RD)2677 MicrosoftRecordLayoutBuilder::computeVtorDispSet(const CXXRecordDecl *RD) {
2678   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtordispSet;
2679 
2680   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
2681   // vftables.
2682   if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
2683     for (const auto &I : RD->vbases()) {
2684       const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
2685       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2686       if (Layout.hasExtendableVFPtr())
2687         HasVtordispSet.insert(BaseDecl);
2688     }
2689     return HasVtordispSet;
2690   }
2691 
2692   // If any of our bases need a vtordisp for this type, so do we.  Check our
2693   // direct bases for vtordisp requirements.
2694   for (const auto &I : RD->bases()) {
2695     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
2696     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2697     for (const auto &bi : Layout.getVBaseOffsetsMap())
2698       if (bi.second.hasVtorDisp())
2699         HasVtordispSet.insert(bi.first);
2700   }
2701   // We don't introduce any additional vtordisps if either:
2702   // * A user declared constructor or destructor aren't declared.
2703   // * #pragma vtordisp(0) or the /vd0 flag are in use.
2704   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
2705       RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
2706     return HasVtordispSet;
2707   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
2708   // possible for a partially constructed object with virtual base overrides to
2709   // escape a non-trivial constructor.
2710   assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
2711   // Compute a set of base classes which define methods we override.  A virtual
2712   // base in this set will require a vtordisp.  A virtual base that transitively
2713   // contains one of these bases as a non-virtual base will also require a
2714   // vtordisp.
2715   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
2716   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
2717   // Seed the working set with our non-destructor virtual methods.
2718   for (const auto *I : RD->methods())
2719     if (I->isVirtual() && !isa<CXXDestructorDecl>(I))
2720       Work.insert(I);
2721   while (!Work.empty()) {
2722     const CXXMethodDecl *MD = *Work.begin();
2723     CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(),
2724                                    e = MD->end_overridden_methods();
2725     // If a virtual method has no-overrides it lives in its parent's vtable.
2726     if (i == e)
2727       BasesWithOverriddenMethods.insert(MD->getParent());
2728     else
2729       Work.insert(i, e);
2730     // We've finished processing this element, remove it from the working set.
2731     Work.erase(MD);
2732   }
2733   // For each of our virtual bases, check if it is in the set of overridden
2734   // bases or if it transitively contains a non-virtual base that is.
2735   for (const auto &I : RD->vbases()) {
2736     const CXXRecordDecl *BaseDecl =  I.getType()->getAsCXXRecordDecl();
2737     if (!HasVtordispSet.count(BaseDecl) &&
2738         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
2739       HasVtordispSet.insert(BaseDecl);
2740   }
2741   return HasVtordispSet;
2742 }
2743 
2744 /// \brief Get or compute information about the layout of the specified record
2745 /// (struct/union/class), which indicates its size and field position
2746 /// information.
2747 const ASTRecordLayout *
BuildMicrosoftASTRecordLayout(const RecordDecl * D) const2748 ASTContext::BuildMicrosoftASTRecordLayout(const RecordDecl *D) const {
2749   MicrosoftRecordLayoutBuilder Builder(*this);
2750   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2751     Builder.cxxLayout(RD);
2752     return new (*this) ASTRecordLayout(
2753         *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2754         Builder.HasOwnVFPtr,
2755         Builder.HasOwnVFPtr || Builder.PrimaryBase,
2756         Builder.VBPtrOffset, Builder.NonVirtualSize, Builder.FieldOffsets.data(),
2757         Builder.FieldOffsets.size(), Builder.NonVirtualSize,
2758         Builder.Alignment, CharUnits::Zero(), Builder.PrimaryBase,
2759         false, Builder.SharedVBPtrBase,
2760         Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
2761         Builder.Bases, Builder.VBases);
2762   } else {
2763     Builder.layout(D);
2764     return new (*this) ASTRecordLayout(
2765         *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2766         Builder.Size, Builder.FieldOffsets.data(), Builder.FieldOffsets.size());
2767   }
2768 }
2769 
2770 /// getASTRecordLayout - Get or compute information about the layout of the
2771 /// specified record (struct/union/class), which indicates its size and field
2772 /// position information.
2773 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const2774 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
2775   // These asserts test different things.  A record has a definition
2776   // as soon as we begin to parse the definition.  That definition is
2777   // not a complete definition (which is what isDefinition() tests)
2778   // until we *finish* parsing the definition.
2779 
2780   if (D->hasExternalLexicalStorage() && !D->getDefinition())
2781     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
2782 
2783   D = D->getDefinition();
2784   assert(D && "Cannot get layout of forward declarations!");
2785   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
2786   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
2787 
2788   // Look up this layout, if already laid out, return what we have.
2789   // Note that we can't save a reference to the entry because this function
2790   // is recursive.
2791   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
2792   if (Entry) return *Entry;
2793 
2794   const ASTRecordLayout *NewEntry = nullptr;
2795 
2796   if (isMsLayout(D) && !D->getASTContext().getExternalSource()) {
2797     NewEntry = BuildMicrosoftASTRecordLayout(D);
2798   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2799     EmptySubobjectMap EmptySubobjects(*this, RD);
2800     RecordLayoutBuilder Builder(*this, &EmptySubobjects);
2801     Builder.Layout(RD);
2802 
2803     // In certain situations, we are allowed to lay out objects in the
2804     // tail-padding of base classes.  This is ABI-dependent.
2805     // FIXME: this should be stored in the record layout.
2806     bool skipTailPadding =
2807       mustSkipTailPadding(getTargetInfo().getCXXABI(), cast<CXXRecordDecl>(D));
2808 
2809     // FIXME: This should be done in FinalizeLayout.
2810     CharUnits DataSize =
2811       skipTailPadding ? Builder.getSize() : Builder.getDataSize();
2812     CharUnits NonVirtualSize =
2813       skipTailPadding ? DataSize : Builder.NonVirtualSize;
2814     NewEntry =
2815       new (*this) ASTRecordLayout(*this, Builder.getSize(),
2816                                   Builder.Alignment,
2817                                   /*RequiredAlignment : used by MS-ABI)*/
2818                                   Builder.Alignment,
2819                                   Builder.HasOwnVFPtr,
2820                                   RD->isDynamicClass(),
2821                                   CharUnits::fromQuantity(-1),
2822                                   DataSize,
2823                                   Builder.FieldOffsets.data(),
2824                                   Builder.FieldOffsets.size(),
2825                                   NonVirtualSize,
2826                                   Builder.NonVirtualAlignment,
2827                                   EmptySubobjects.SizeOfLargestEmptySubobject,
2828                                   Builder.PrimaryBase,
2829                                   Builder.PrimaryBaseIsVirtual,
2830                                   nullptr, false, false,
2831                                   Builder.Bases, Builder.VBases);
2832   } else {
2833     RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
2834     Builder.Layout(D);
2835 
2836     NewEntry =
2837       new (*this) ASTRecordLayout(*this, Builder.getSize(),
2838                                   Builder.Alignment,
2839                                   /*RequiredAlignment : used by MS-ABI)*/
2840                                   Builder.Alignment,
2841                                   Builder.getSize(),
2842                                   Builder.FieldOffsets.data(),
2843                                   Builder.FieldOffsets.size());
2844   }
2845 
2846   ASTRecordLayouts[D] = NewEntry;
2847 
2848   if (getLangOpts().DumpRecordLayouts) {
2849     llvm::outs() << "\n*** Dumping AST Record Layout\n";
2850     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
2851   }
2852 
2853   return *NewEntry;
2854 }
2855 
getCurrentKeyFunction(const CXXRecordDecl * RD)2856 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
2857   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
2858     return nullptr;
2859 
2860   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
2861   RD = cast<CXXRecordDecl>(RD->getDefinition());
2862 
2863   // Beware:
2864   //  1) computing the key function might trigger deserialization, which might
2865   //     invalidate iterators into KeyFunctions
2866   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
2867   //     invalidate the LazyDeclPtr within the map itself
2868   LazyDeclPtr Entry = KeyFunctions[RD];
2869   const Decl *Result =
2870       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
2871 
2872   // Store it back if it changed.
2873   if (Entry.isOffset() || Entry.isValid() != bool(Result))
2874     KeyFunctions[RD] = const_cast<Decl*>(Result);
2875 
2876   return cast_or_null<CXXMethodDecl>(Result);
2877 }
2878 
setNonKeyFunction(const CXXMethodDecl * Method)2879 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
2880   assert(Method == Method->getFirstDecl() &&
2881          "not working with method declaration from class definition");
2882 
2883   // Look up the cache entry.  Since we're working with the first
2884   // declaration, its parent must be the class definition, which is
2885   // the correct key for the KeyFunctions hash.
2886   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr>::iterator
2887     I = KeyFunctions.find(Method->getParent());
2888 
2889   // If it's not cached, there's nothing to do.
2890   if (I == KeyFunctions.end()) return;
2891 
2892   // If it is cached, check whether it's the target method, and if so,
2893   // remove it from the cache. Note, the call to 'get' might invalidate
2894   // the iterator and the LazyDeclPtr object within the map.
2895   LazyDeclPtr Ptr = I->second;
2896   if (Ptr.get(getExternalSource()) == Method) {
2897     // FIXME: remember that we did this for module / chained PCH state?
2898     KeyFunctions.erase(Method->getParent());
2899   }
2900 }
2901 
getFieldOffset(const ASTContext & C,const FieldDecl * FD)2902 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
2903   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
2904   return Layout.getFieldOffset(FD->getFieldIndex());
2905 }
2906 
getFieldOffset(const ValueDecl * VD) const2907 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
2908   uint64_t OffsetInBits;
2909   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
2910     OffsetInBits = ::getFieldOffset(*this, FD);
2911   } else {
2912     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
2913 
2914     OffsetInBits = 0;
2915     for (const auto *CI : IFD->chain())
2916       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(CI));
2917   }
2918 
2919   return OffsetInBits;
2920 }
2921 
2922 /// getObjCLayout - Get or compute information about the layout of the
2923 /// given interface.
2924 ///
2925 /// \param Impl - If given, also include the layout of the interface's
2926 /// implementation. This may differ by including synthesized ivars.
2927 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const2928 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
2929                           const ObjCImplementationDecl *Impl) const {
2930   // Retrieve the definition
2931   if (D->hasExternalLexicalStorage() && !D->getDefinition())
2932     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
2933   D = D->getDefinition();
2934   assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
2935 
2936   // Look up this layout, if already laid out, return what we have.
2937   const ObjCContainerDecl *Key =
2938     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
2939   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
2940     return *Entry;
2941 
2942   // Add in synthesized ivar count if laying out an implementation.
2943   if (Impl) {
2944     unsigned SynthCount = CountNonClassIvars(D);
2945     // If there aren't any sythesized ivars then reuse the interface
2946     // entry. Note we can't cache this because we simply free all
2947     // entries later; however we shouldn't look up implementations
2948     // frequently.
2949     if (SynthCount == 0)
2950       return getObjCLayout(D, nullptr);
2951   }
2952 
2953   RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
2954   Builder.Layout(D);
2955 
2956   const ASTRecordLayout *NewEntry =
2957     new (*this) ASTRecordLayout(*this, Builder.getSize(),
2958                                 Builder.Alignment,
2959                                 /*RequiredAlignment : used by MS-ABI)*/
2960                                 Builder.Alignment,
2961                                 Builder.getDataSize(),
2962                                 Builder.FieldOffsets.data(),
2963                                 Builder.FieldOffsets.size());
2964 
2965   ObjCLayouts[Key] = NewEntry;
2966 
2967   return *NewEntry;
2968 }
2969 
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)2970 static void PrintOffset(raw_ostream &OS,
2971                         CharUnits Offset, unsigned IndentLevel) {
2972   OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
2973   OS.indent(IndentLevel * 2);
2974 }
2975 
PrintIndentNoOffset(raw_ostream & OS,unsigned IndentLevel)2976 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
2977   OS << "     | ";
2978   OS.indent(IndentLevel * 2);
2979 }
2980 
DumpCXXRecordLayout(raw_ostream & OS,const CXXRecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool IncludeVirtualBases)2981 static void DumpCXXRecordLayout(raw_ostream &OS,
2982                                 const CXXRecordDecl *RD, const ASTContext &C,
2983                                 CharUnits Offset,
2984                                 unsigned IndentLevel,
2985                                 const char* Description,
2986                                 bool IncludeVirtualBases) {
2987   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
2988 
2989   PrintOffset(OS, Offset, IndentLevel);
2990   OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
2991   if (Description)
2992     OS << ' ' << Description;
2993   if (RD->isEmpty())
2994     OS << " (empty)";
2995   OS << '\n';
2996 
2997   IndentLevel++;
2998 
2999   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3000   bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3001   bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3002 
3003   // Vtable pointer.
3004   if (RD->isDynamicClass() && !PrimaryBase && !isMsLayout(RD)) {
3005     PrintOffset(OS, Offset, IndentLevel);
3006     OS << '(' << *RD << " vtable pointer)\n";
3007   } else if (HasOwnVFPtr) {
3008     PrintOffset(OS, Offset, IndentLevel);
3009     // vfptr (for Microsoft C++ ABI)
3010     OS << '(' << *RD << " vftable pointer)\n";
3011   }
3012 
3013   // Collect nvbases.
3014   SmallVector<const CXXRecordDecl *, 4> Bases;
3015   for (const auto &I : RD->bases()) {
3016     assert(!I.getType()->isDependentType() &&
3017            "Cannot layout class with dependent bases.");
3018     if (!I.isVirtual())
3019       Bases.push_back(I.getType()->getAsCXXRecordDecl());
3020   }
3021 
3022   // Sort nvbases by offset.
3023   std::stable_sort(Bases.begin(), Bases.end(),
3024                    [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3025     return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3026   });
3027 
3028   // Dump (non-virtual) bases
3029   for (SmallVectorImpl<const CXXRecordDecl *>::iterator I = Bases.begin(),
3030                                                         E = Bases.end();
3031        I != E; ++I) {
3032     const CXXRecordDecl *Base = *I;
3033     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3034     DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3035                         Base == PrimaryBase ? "(primary base)" : "(base)",
3036                         /*IncludeVirtualBases=*/false);
3037   }
3038 
3039   // vbptr (for Microsoft C++ ABI)
3040   if (HasOwnVBPtr) {
3041     PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3042     OS << '(' << *RD << " vbtable pointer)\n";
3043   }
3044 
3045   // Dump fields.
3046   uint64_t FieldNo = 0;
3047   for (CXXRecordDecl::field_iterator I = RD->field_begin(),
3048          E = RD->field_end(); I != E; ++I, ++FieldNo) {
3049     const FieldDecl &Field = **I;
3050     CharUnits FieldOffset = Offset +
3051       C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
3052 
3053     if (const CXXRecordDecl *D = Field.getType()->getAsCXXRecordDecl()) {
3054       DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
3055                           Field.getName().data(),
3056                           /*IncludeVirtualBases=*/true);
3057       continue;
3058     }
3059 
3060     PrintOffset(OS, FieldOffset, IndentLevel);
3061     OS << Field.getType().getAsString() << ' ' << Field << '\n';
3062   }
3063 
3064   if (!IncludeVirtualBases)
3065     return;
3066 
3067   // Dump virtual bases.
3068   const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps =
3069     Layout.getVBaseOffsetsMap();
3070   for (const auto &I : RD->vbases()) {
3071     assert(I.isVirtual() && "Found non-virtual class!");
3072     const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
3073 
3074     CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3075 
3076     if (vtordisps.find(VBase)->second.hasVtorDisp()) {
3077       PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3078       OS << "(vtordisp for vbase " << *VBase << ")\n";
3079     }
3080 
3081     DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3082                         VBase == PrimaryBase ?
3083                         "(primary virtual base)" : "(virtual base)",
3084                         /*IncludeVirtualBases=*/false);
3085   }
3086 
3087   PrintIndentNoOffset(OS, IndentLevel - 1);
3088   OS << "[sizeof=" << Layout.getSize().getQuantity();
3089   if (!isMsLayout(RD))
3090     OS << ", dsize=" << Layout.getDataSize().getQuantity();
3091   OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
3092 
3093   PrintIndentNoOffset(OS, IndentLevel - 1);
3094   OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3095   OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity() << "]\n";
3096 }
3097 
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const3098 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
3099                                   raw_ostream &OS,
3100                                   bool Simple) const {
3101   const ASTRecordLayout &Info = getASTRecordLayout(RD);
3102 
3103   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3104     if (!Simple)
3105       return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, nullptr,
3106                                  /*IncludeVirtualBases=*/true);
3107 
3108   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3109   if (!Simple) {
3110     OS << "Record: ";
3111     RD->dump();
3112   }
3113   OS << "\nLayout: ";
3114   OS << "<ASTRecordLayout\n";
3115   OS << "  Size:" << toBits(Info.getSize()) << "\n";
3116   if (!isMsLayout(RD))
3117     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3118   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3119   OS << "  FieldOffsets: [";
3120   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3121     if (i) OS << ", ";
3122     OS << Info.getFieldOffset(i);
3123   }
3124   OS << "]>\n";
3125 }
3126