1 // Copyright 2013 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_ 6 #define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_ 7 8 #include <queue> 9 #include <string> 10 11 #include "base/base_export.h" 12 #include "base/basictypes.h" 13 #include "base/callback_forward.h" 14 #include "base/debug/task_annotator.h" 15 #include "base/location.h" 16 #include "base/memory/ref_counted.h" 17 #include "base/memory/scoped_ptr.h" 18 #include "base/message_loop/incoming_task_queue.h" 19 #include "base/message_loop/message_loop_proxy.h" 20 #include "base/message_loop/message_loop_proxy_impl.h" 21 #include "base/message_loop/message_pump.h" 22 #include "base/message_loop/timer_slack.h" 23 #include "base/observer_list.h" 24 #include "base/pending_task.h" 25 #include "base/sequenced_task_runner_helpers.h" 26 #include "base/synchronization/lock.h" 27 #include "base/time/time.h" 28 #include "base/tracking_info.h" 29 30 // TODO(sky): these includes should not be necessary. Nuke them. 31 #if defined(OS_WIN) 32 #include "base/message_loop/message_pump_win.h" 33 #elif defined(OS_IOS) 34 #include "base/message_loop/message_pump_io_ios.h" 35 #elif defined(OS_POSIX) 36 #include "base/message_loop/message_pump_libevent.h" 37 #endif 38 39 namespace base { 40 41 class HistogramBase; 42 class RunLoop; 43 class ThreadTaskRunnerHandle; 44 class WaitableEvent; 45 46 // A MessageLoop is used to process events for a particular thread. There is 47 // at most one MessageLoop instance per thread. 48 // 49 // Events include at a minimum Task instances submitted to PostTask and its 50 // variants. Depending on the type of message pump used by the MessageLoop 51 // other events such as UI messages may be processed. On Windows APC calls (as 52 // time permits) and signals sent to a registered set of HANDLEs may also be 53 // processed. 54 // 55 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called 56 // on the thread where the MessageLoop's Run method executes. 57 // 58 // NOTE: MessageLoop has task reentrancy protection. This means that if a 59 // task is being processed, a second task cannot start until the first task is 60 // finished. Reentrancy can happen when processing a task, and an inner 61 // message pump is created. That inner pump then processes native messages 62 // which could implicitly start an inner task. Inner message pumps are created 63 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions 64 // (DoDragDrop), printer functions (StartDoc) and *many* others. 65 // 66 // Sample workaround when inner task processing is needed: 67 // HRESULT hr; 68 // { 69 // MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current()); 70 // hr = DoDragDrop(...); // Implicitly runs a modal message loop. 71 // } 72 // // Process |hr| (the result returned by DoDragDrop()). 73 // 74 // Please be SURE your task is reentrant (nestable) and all global variables 75 // are stable and accessible before calling SetNestableTasksAllowed(true). 76 // 77 class BASE_EXPORT MessageLoop : public MessagePump::Delegate { 78 public: 79 // A MessageLoop has a particular type, which indicates the set of 80 // asynchronous events it may process in addition to tasks and timers. 81 // 82 // TYPE_DEFAULT 83 // This type of ML only supports tasks and timers. 84 // 85 // TYPE_UI 86 // This type of ML also supports native UI events (e.g., Windows messages). 87 // See also MessageLoopForUI. 88 // 89 // TYPE_IO 90 // This type of ML also supports asynchronous IO. See also 91 // MessageLoopForIO. 92 // 93 // TYPE_JAVA 94 // This type of ML is backed by a Java message handler which is responsible 95 // for running the tasks added to the ML. This is only for use on Android. 96 // TYPE_JAVA behaves in essence like TYPE_UI, except during construction 97 // where it does not use the main thread specific pump factory. 98 // 99 // TYPE_CUSTOM 100 // MessagePump was supplied to constructor. 101 // 102 enum Type { 103 TYPE_DEFAULT, 104 TYPE_UI, 105 TYPE_CUSTOM, 106 TYPE_IO, 107 #if defined(OS_ANDROID) 108 TYPE_JAVA, 109 #endif // defined(OS_ANDROID) 110 }; 111 112 // Normally, it is not necessary to instantiate a MessageLoop. Instead, it 113 // is typical to make use of the current thread's MessageLoop instance. 114 explicit MessageLoop(Type type = TYPE_DEFAULT); 115 // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must 116 // be non-NULL. 117 explicit MessageLoop(scoped_ptr<base::MessagePump> pump); 118 virtual ~MessageLoop(); 119 120 // Returns the MessageLoop object for the current thread, or null if none. 121 static MessageLoop* current(); 122 123 static void EnableHistogrammer(bool enable_histogrammer); 124 125 typedef scoped_ptr<MessagePump> (MessagePumpFactory)(); 126 // Uses the given base::MessagePumpForUIFactory to override the default 127 // MessagePump implementation for 'TYPE_UI'. Returns true if the factory 128 // was successfully registered. 129 static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory); 130 131 // Creates the default MessagePump based on |type|. Caller owns return 132 // value. 133 static scoped_ptr<MessagePump> CreateMessagePumpForType(Type type); 134 // A DestructionObserver is notified when the current MessageLoop is being 135 // destroyed. These observers are notified prior to MessageLoop::current() 136 // being changed to return NULL. This gives interested parties the chance to 137 // do final cleanup that depends on the MessageLoop. 138 // 139 // NOTE: Any tasks posted to the MessageLoop during this notification will 140 // not be run. Instead, they will be deleted. 141 // 142 class BASE_EXPORT DestructionObserver { 143 public: 144 virtual void WillDestroyCurrentMessageLoop() = 0; 145 146 protected: 147 virtual ~DestructionObserver(); 148 }; 149 150 // Add a DestructionObserver, which will start receiving notifications 151 // immediately. 152 void AddDestructionObserver(DestructionObserver* destruction_observer); 153 154 // Remove a DestructionObserver. It is safe to call this method while a 155 // DestructionObserver is receiving a notification callback. 156 void RemoveDestructionObserver(DestructionObserver* destruction_observer); 157 158 // The "PostTask" family of methods call the task's Run method asynchronously 159 // from within a message loop at some point in the future. 160 // 161 // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed 162 // with normal UI or IO event processing. With the PostDelayedTask variant, 163 // tasks are called after at least approximately 'delay_ms' have elapsed. 164 // 165 // The NonNestable variants work similarly except that they promise never to 166 // dispatch the task from a nested invocation of MessageLoop::Run. Instead, 167 // such tasks get deferred until the top-most MessageLoop::Run is executing. 168 // 169 // The MessageLoop takes ownership of the Task, and deletes it after it has 170 // been Run(). 171 // 172 // PostTask(from_here, task) is equivalent to 173 // PostDelayedTask(from_here, task, 0). 174 // 175 // NOTE: These methods may be called on any thread. The Task will be invoked 176 // on the thread that executes MessageLoop::Run(). 177 void PostTask(const tracked_objects::Location& from_here, 178 const Closure& task); 179 180 void PostDelayedTask(const tracked_objects::Location& from_here, 181 const Closure& task, 182 TimeDelta delay); 183 184 void PostNonNestableTask(const tracked_objects::Location& from_here, 185 const Closure& task); 186 187 void PostNonNestableDelayedTask(const tracked_objects::Location& from_here, 188 const Closure& task, 189 TimeDelta delay); 190 191 // A variant on PostTask that deletes the given object. This is useful 192 // if the object needs to live until the next run of the MessageLoop (for 193 // example, deleting a RenderProcessHost from within an IPC callback is not 194 // good). 195 // 196 // NOTE: This method may be called on any thread. The object will be deleted 197 // on the thread that executes MessageLoop::Run(). If this is not the same 198 // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit 199 // from RefCountedThreadSafe<T>! 200 template <class T> DeleteSoon(const tracked_objects::Location & from_here,const T * object)201 void DeleteSoon(const tracked_objects::Location& from_here, const T* object) { 202 base::subtle::DeleteHelperInternal<T, void>::DeleteViaSequencedTaskRunner( 203 this, from_here, object); 204 } 205 206 // A variant on PostTask that releases the given reference counted object 207 // (by calling its Release method). This is useful if the object needs to 208 // live until the next run of the MessageLoop, or if the object needs to be 209 // released on a particular thread. 210 // 211 // A common pattern is to manually increment the object's reference count 212 // (AddRef), clear the pointer, then issue a ReleaseSoon. The reference count 213 // is incremented manually to ensure clearing the pointer does not trigger a 214 // delete and to account for the upcoming decrement (ReleaseSoon). For 215 // example: 216 // 217 // scoped_refptr<Foo> foo = ... 218 // foo->AddRef(); 219 // Foo* raw_foo = foo.get(); 220 // foo = NULL; 221 // message_loop->ReleaseSoon(raw_foo); 222 // 223 // NOTE: This method may be called on any thread. The object will be 224 // released (and thus possibly deleted) on the thread that executes 225 // MessageLoop::Run(). If this is not the same as the thread that calls 226 // PostDelayedTask(FROM_HERE, ), then T MUST inherit from 227 // RefCountedThreadSafe<T>! 228 template <class T> ReleaseSoon(const tracked_objects::Location & from_here,const T * object)229 void ReleaseSoon(const tracked_objects::Location& from_here, 230 const T* object) { 231 base::subtle::ReleaseHelperInternal<T, void>::ReleaseViaSequencedTaskRunner( 232 this, from_here, object); 233 } 234 235 // Deprecated: use RunLoop instead. 236 // Run the message loop. 237 void Run(); 238 239 // Deprecated: use RunLoop instead. 240 // Process all pending tasks, windows messages, etc., but don't wait/sleep. 241 // Return as soon as all items that can be run are taken care of. 242 void RunUntilIdle(); 243 244 // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdle(). Quit()245 void Quit() { QuitWhenIdle(); } 246 247 // Deprecated: use RunLoop instead. 248 // 249 // Signals the Run method to return when it becomes idle. It will continue to 250 // process pending messages and future messages as long as they are enqueued. 251 // Warning: if the MessageLoop remains busy, it may never quit. Only use this 252 // Quit method when looping procedures (such as web pages) have been shut 253 // down. 254 // 255 // This method may only be called on the same thread that called Run, and Run 256 // must still be on the call stack. 257 // 258 // Use QuitClosure variants if you need to Quit another thread's MessageLoop, 259 // but note that doing so is fairly dangerous if the target thread makes 260 // nested calls to MessageLoop::Run. The problem being that you won't know 261 // which nested run loop you are quitting, so be careful! 262 void QuitWhenIdle(); 263 264 // Deprecated: use RunLoop instead. 265 // 266 // This method is a variant of Quit, that does not wait for pending messages 267 // to be processed before returning from Run. 268 void QuitNow(); 269 270 // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdleClosure(). QuitClosure()271 static Closure QuitClosure() { return QuitWhenIdleClosure(); } 272 273 // Deprecated: use RunLoop instead. 274 // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an 275 // arbitrary MessageLoop to QuitWhenIdle. 276 static Closure QuitWhenIdleClosure(); 277 278 // Set the timer slack for this message loop. SetTimerSlack(TimerSlack timer_slack)279 void SetTimerSlack(TimerSlack timer_slack) { 280 pump_->SetTimerSlack(timer_slack); 281 } 282 283 // Returns true if this loop is |type|. This allows subclasses (especially 284 // those in tests) to specialize how they are identified. 285 virtual bool IsType(Type type) const; 286 287 // Returns the type passed to the constructor. type()288 Type type() const { return type_; } 289 290 // Optional call to connect the thread name with this loop. set_thread_name(const std::string & thread_name)291 void set_thread_name(const std::string& thread_name) { 292 DCHECK(thread_name_.empty()) << "Should not rename this thread!"; 293 thread_name_ = thread_name; 294 } thread_name()295 const std::string& thread_name() const { return thread_name_; } 296 297 // Gets the message loop proxy associated with this message loop. 298 // 299 // NOTE: Deprecated; prefer task_runner() and the TaskRunner interfaces message_loop_proxy()300 scoped_refptr<MessageLoopProxy> message_loop_proxy() { 301 return message_loop_proxy_; 302 } 303 304 // Gets the TaskRunner associated with this message loop. task_runner()305 scoped_refptr<SingleThreadTaskRunner> task_runner() { 306 return message_loop_proxy_; 307 } 308 309 // Enables or disables the recursive task processing. This happens in the case 310 // of recursive message loops. Some unwanted message loop may occurs when 311 // using common controls or printer functions. By default, recursive task 312 // processing is disabled. 313 // 314 // Please utilize |ScopedNestableTaskAllower| instead of calling these methods 315 // directly. In general nestable message loops are to be avoided. They are 316 // dangerous and difficult to get right, so please use with extreme caution. 317 // 318 // The specific case where tasks get queued is: 319 // - The thread is running a message loop. 320 // - It receives a task #1 and execute it. 321 // - The task #1 implicitly start a message loop, like a MessageBox in the 322 // unit test. This can also be StartDoc or GetSaveFileName. 323 // - The thread receives a task #2 before or while in this second message 324 // loop. 325 // - With NestableTasksAllowed set to true, the task #2 will run right away. 326 // Otherwise, it will get executed right after task #1 completes at "thread 327 // message loop level". 328 void SetNestableTasksAllowed(bool allowed); 329 bool NestableTasksAllowed() const; 330 331 // Enables nestable tasks on |loop| while in scope. 332 class ScopedNestableTaskAllower { 333 public: ScopedNestableTaskAllower(MessageLoop * loop)334 explicit ScopedNestableTaskAllower(MessageLoop* loop) 335 : loop_(loop), 336 old_state_(loop_->NestableTasksAllowed()) { 337 loop_->SetNestableTasksAllowed(true); 338 } ~ScopedNestableTaskAllower()339 ~ScopedNestableTaskAllower() { 340 loop_->SetNestableTasksAllowed(old_state_); 341 } 342 343 private: 344 MessageLoop* loop_; 345 bool old_state_; 346 }; 347 348 // Returns true if we are currently running a nested message loop. 349 bool IsNested(); 350 351 // A TaskObserver is an object that receives task notifications from the 352 // MessageLoop. 353 // 354 // NOTE: A TaskObserver implementation should be extremely fast! 355 class BASE_EXPORT TaskObserver { 356 public: 357 TaskObserver(); 358 359 // This method is called before processing a task. 360 virtual void WillProcessTask(const PendingTask& pending_task) = 0; 361 362 // This method is called after processing a task. 363 virtual void DidProcessTask(const PendingTask& pending_task) = 0; 364 365 protected: 366 virtual ~TaskObserver(); 367 }; 368 369 // These functions can only be called on the same thread that |this| is 370 // running on. 371 void AddTaskObserver(TaskObserver* task_observer); 372 void RemoveTaskObserver(TaskObserver* task_observer); 373 374 #if defined(OS_WIN) set_os_modal_loop(bool os_modal_loop)375 void set_os_modal_loop(bool os_modal_loop) { 376 os_modal_loop_ = os_modal_loop; 377 } 378 os_modal_loop()379 bool os_modal_loop() const { 380 return os_modal_loop_; 381 } 382 #endif // OS_WIN 383 384 // Can only be called from the thread that owns the MessageLoop. 385 bool is_running() const; 386 387 // Returns true if the message loop has high resolution timers enabled. 388 // Provided for testing. 389 bool HasHighResolutionTasks(); 390 391 // Returns true if the message loop is "idle". Provided for testing. 392 bool IsIdleForTesting(); 393 394 //---------------------------------------------------------------------------- 395 protected: 396 scoped_ptr<MessagePump> pump_; 397 398 private: 399 friend class internal::IncomingTaskQueue; 400 friend class RunLoop; 401 402 // Configures various members for the two constructors. 403 void Init(); 404 405 // Invokes the actual run loop using the message pump. 406 void RunHandler(); 407 408 // Called to process any delayed non-nestable tasks. 409 bool ProcessNextDelayedNonNestableTask(); 410 411 // Runs the specified PendingTask. 412 void RunTask(const PendingTask& pending_task); 413 414 // Calls RunTask or queues the pending_task on the deferred task list if it 415 // cannot be run right now. Returns true if the task was run. 416 bool DeferOrRunPendingTask(const PendingTask& pending_task); 417 418 // Adds the pending task to delayed_work_queue_. 419 void AddToDelayedWorkQueue(const PendingTask& pending_task); 420 421 // Delete tasks that haven't run yet without running them. Used in the 422 // destructor to make sure all the task's destructors get called. Returns 423 // true if some work was done. 424 bool DeletePendingTasks(); 425 426 // Returns the TaskAnnotator which is used to add debug information to posted 427 // tasks. task_annotator()428 debug::TaskAnnotator* task_annotator() { return &task_annotator_; } 429 430 // Loads tasks from the incoming queue to |work_queue_| if the latter is 431 // empty. 432 void ReloadWorkQueue(); 433 434 // Wakes up the message pump. Can be called on any thread. The caller is 435 // responsible for synchronizing ScheduleWork() calls. 436 void ScheduleWork(bool was_empty); 437 438 // Start recording histogram info about events and action IF it was enabled 439 // and IF the statistics recorder can accept a registration of our histogram. 440 void StartHistogrammer(); 441 442 // Add occurrence of event to our histogram, so that we can see what is being 443 // done in a specific MessageLoop instance (i.e., specific thread). 444 // If message_histogram_ is NULL, this is a no-op. 445 void HistogramEvent(int event); 446 447 // MessagePump::Delegate methods: 448 virtual bool DoWork() OVERRIDE; 449 virtual bool DoDelayedWork(TimeTicks* next_delayed_work_time) OVERRIDE; 450 virtual bool DoIdleWork() OVERRIDE; 451 452 const Type type_; 453 454 // A list of tasks that need to be processed by this instance. Note that 455 // this queue is only accessed (push/pop) by our current thread. 456 TaskQueue work_queue_; 457 458 // How many high resolution tasks are in the pending task queue. This value 459 // increases by N every time we call ReloadWorkQueue() and decreases by 1 460 // every time we call RunTask() if the task needs a high resolution timer. 461 int pending_high_res_tasks_; 462 // Tracks if we have requested high resolution timers. Its only use is to 463 // turn off the high resolution timer upon loop destruction. 464 bool in_high_res_mode_; 465 466 // Contains delayed tasks, sorted by their 'delayed_run_time' property. 467 DelayedTaskQueue delayed_work_queue_; 468 469 // A recent snapshot of Time::Now(), used to check delayed_work_queue_. 470 TimeTicks recent_time_; 471 472 // A queue of non-nestable tasks that we had to defer because when it came 473 // time to execute them we were in a nested message loop. They will execute 474 // once we're out of nested message loops. 475 TaskQueue deferred_non_nestable_work_queue_; 476 477 ObserverList<DestructionObserver> destruction_observers_; 478 479 // A recursion block that prevents accidentally running additional tasks when 480 // insider a (accidentally induced?) nested message pump. 481 bool nestable_tasks_allowed_; 482 483 #if defined(OS_WIN) 484 // Should be set to true before calling Windows APIs like TrackPopupMenu, etc 485 // which enter a modal message loop. 486 bool os_modal_loop_; 487 #endif 488 489 std::string thread_name_; 490 // A profiling histogram showing the counts of various messages and events. 491 HistogramBase* message_histogram_; 492 493 RunLoop* run_loop_; 494 495 ObserverList<TaskObserver> task_observers_; 496 497 debug::TaskAnnotator task_annotator_; 498 499 scoped_refptr<internal::IncomingTaskQueue> incoming_task_queue_; 500 501 // The message loop proxy associated with this message loop. 502 scoped_refptr<internal::MessageLoopProxyImpl> message_loop_proxy_; 503 scoped_ptr<ThreadTaskRunnerHandle> thread_task_runner_handle_; 504 505 template <class T, class R> friend class base::subtle::DeleteHelperInternal; 506 template <class T, class R> friend class base::subtle::ReleaseHelperInternal; 507 508 void DeleteSoonInternal(const tracked_objects::Location& from_here, 509 void(*deleter)(const void*), 510 const void* object); 511 void ReleaseSoonInternal(const tracked_objects::Location& from_here, 512 void(*releaser)(const void*), 513 const void* object); 514 515 DISALLOW_COPY_AND_ASSIGN(MessageLoop); 516 }; 517 518 #if !defined(OS_NACL) 519 520 //----------------------------------------------------------------------------- 521 // MessageLoopForUI extends MessageLoop with methods that are particular to a 522 // MessageLoop instantiated with TYPE_UI. 523 // 524 // This class is typically used like so: 525 // MessageLoopForUI::current()->...call some method... 526 // 527 class BASE_EXPORT MessageLoopForUI : public MessageLoop { 528 public: MessageLoopForUI()529 MessageLoopForUI() : MessageLoop(TYPE_UI) { 530 } 531 532 // Returns the MessageLoopForUI of the current thread. current()533 static MessageLoopForUI* current() { 534 MessageLoop* loop = MessageLoop::current(); 535 DCHECK(loop); 536 DCHECK_EQ(MessageLoop::TYPE_UI, loop->type()); 537 return static_cast<MessageLoopForUI*>(loop); 538 } 539 IsCurrent()540 static bool IsCurrent() { 541 MessageLoop* loop = MessageLoop::current(); 542 return loop && loop->type() == MessageLoop::TYPE_UI; 543 } 544 545 #if defined(OS_IOS) 546 // On iOS, the main message loop cannot be Run(). Instead call Attach(), 547 // which connects this MessageLoop to the UI thread's CFRunLoop and allows 548 // PostTask() to work. 549 void Attach(); 550 #endif 551 552 #if defined(OS_ANDROID) 553 // On Android, the UI message loop is handled by Java side. So Run() should 554 // never be called. Instead use Start(), which will forward all the native UI 555 // events to the Java message loop. 556 void Start(); 557 #endif 558 559 #if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB)) 560 // Please see MessagePumpLibevent for definition. 561 bool WatchFileDescriptor( 562 int fd, 563 bool persistent, 564 MessagePumpLibevent::Mode mode, 565 MessagePumpLibevent::FileDescriptorWatcher* controller, 566 MessagePumpLibevent::Watcher* delegate); 567 #endif 568 }; 569 570 // Do not add any member variables to MessageLoopForUI! This is important b/c 571 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra 572 // data that you need should be stored on the MessageLoop's pump_ instance. 573 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI), 574 MessageLoopForUI_should_not_have_extra_member_variables); 575 576 #endif // !defined(OS_NACL) 577 578 //----------------------------------------------------------------------------- 579 // MessageLoopForIO extends MessageLoop with methods that are particular to a 580 // MessageLoop instantiated with TYPE_IO. 581 // 582 // This class is typically used like so: 583 // MessageLoopForIO::current()->...call some method... 584 // 585 class BASE_EXPORT MessageLoopForIO : public MessageLoop { 586 public: MessageLoopForIO()587 MessageLoopForIO() : MessageLoop(TYPE_IO) { 588 } 589 590 // Returns the MessageLoopForIO of the current thread. current()591 static MessageLoopForIO* current() { 592 MessageLoop* loop = MessageLoop::current(); 593 DCHECK_EQ(MessageLoop::TYPE_IO, loop->type()); 594 return static_cast<MessageLoopForIO*>(loop); 595 } 596 IsCurrent()597 static bool IsCurrent() { 598 MessageLoop* loop = MessageLoop::current(); 599 return loop && loop->type() == MessageLoop::TYPE_IO; 600 } 601 602 #if !defined(OS_NACL) 603 604 #if defined(OS_WIN) 605 typedef MessagePumpForIO::IOHandler IOHandler; 606 typedef MessagePumpForIO::IOContext IOContext; 607 typedef MessagePumpForIO::IOObserver IOObserver; 608 #elif defined(OS_IOS) 609 typedef MessagePumpIOSForIO::Watcher Watcher; 610 typedef MessagePumpIOSForIO::FileDescriptorWatcher 611 FileDescriptorWatcher; 612 typedef MessagePumpIOSForIO::IOObserver IOObserver; 613 614 enum Mode { 615 WATCH_READ = MessagePumpIOSForIO::WATCH_READ, 616 WATCH_WRITE = MessagePumpIOSForIO::WATCH_WRITE, 617 WATCH_READ_WRITE = MessagePumpIOSForIO::WATCH_READ_WRITE 618 }; 619 #elif defined(OS_POSIX) 620 typedef MessagePumpLibevent::Watcher Watcher; 621 typedef MessagePumpLibevent::FileDescriptorWatcher 622 FileDescriptorWatcher; 623 typedef MessagePumpLibevent::IOObserver IOObserver; 624 625 enum Mode { 626 WATCH_READ = MessagePumpLibevent::WATCH_READ, 627 WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE, 628 WATCH_READ_WRITE = MessagePumpLibevent::WATCH_READ_WRITE 629 }; 630 #endif 631 632 void AddIOObserver(IOObserver* io_observer); 633 void RemoveIOObserver(IOObserver* io_observer); 634 635 #if defined(OS_WIN) 636 // Please see MessagePumpWin for definitions of these methods. 637 void RegisterIOHandler(HANDLE file, IOHandler* handler); 638 bool RegisterJobObject(HANDLE job, IOHandler* handler); 639 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); 640 #elif defined(OS_POSIX) 641 // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition. 642 bool WatchFileDescriptor(int fd, 643 bool persistent, 644 Mode mode, 645 FileDescriptorWatcher *controller, 646 Watcher *delegate); 647 #endif // defined(OS_IOS) || defined(OS_POSIX) 648 #endif // !defined(OS_NACL) 649 }; 650 651 // Do not add any member variables to MessageLoopForIO! This is important b/c 652 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra 653 // data that you need should be stored on the MessageLoop's pump_ instance. 654 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO), 655 MessageLoopForIO_should_not_have_extra_member_variables); 656 657 } // namespace base 658 659 #endif // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_ 660