• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
6 #define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
7 
8 #include <queue>
9 #include <string>
10 
11 #include "base/base_export.h"
12 #include "base/basictypes.h"
13 #include "base/callback_forward.h"
14 #include "base/debug/task_annotator.h"
15 #include "base/location.h"
16 #include "base/memory/ref_counted.h"
17 #include "base/memory/scoped_ptr.h"
18 #include "base/message_loop/incoming_task_queue.h"
19 #include "base/message_loop/message_loop_proxy.h"
20 #include "base/message_loop/message_loop_proxy_impl.h"
21 #include "base/message_loop/message_pump.h"
22 #include "base/message_loop/timer_slack.h"
23 #include "base/observer_list.h"
24 #include "base/pending_task.h"
25 #include "base/sequenced_task_runner_helpers.h"
26 #include "base/synchronization/lock.h"
27 #include "base/time/time.h"
28 #include "base/tracking_info.h"
29 
30 // TODO(sky): these includes should not be necessary. Nuke them.
31 #if defined(OS_WIN)
32 #include "base/message_loop/message_pump_win.h"
33 #elif defined(OS_IOS)
34 #include "base/message_loop/message_pump_io_ios.h"
35 #elif defined(OS_POSIX)
36 #include "base/message_loop/message_pump_libevent.h"
37 #endif
38 
39 namespace base {
40 
41 class HistogramBase;
42 class RunLoop;
43 class ThreadTaskRunnerHandle;
44 class WaitableEvent;
45 
46 // A MessageLoop is used to process events for a particular thread.  There is
47 // at most one MessageLoop instance per thread.
48 //
49 // Events include at a minimum Task instances submitted to PostTask and its
50 // variants.  Depending on the type of message pump used by the MessageLoop
51 // other events such as UI messages may be processed.  On Windows APC calls (as
52 // time permits) and signals sent to a registered set of HANDLEs may also be
53 // processed.
54 //
55 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
56 // on the thread where the MessageLoop's Run method executes.
57 //
58 // NOTE: MessageLoop has task reentrancy protection.  This means that if a
59 // task is being processed, a second task cannot start until the first task is
60 // finished.  Reentrancy can happen when processing a task, and an inner
61 // message pump is created.  That inner pump then processes native messages
62 // which could implicitly start an inner task.  Inner message pumps are created
63 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
64 // (DoDragDrop), printer functions (StartDoc) and *many* others.
65 //
66 // Sample workaround when inner task processing is needed:
67 //   HRESULT hr;
68 //   {
69 //     MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
70 //     hr = DoDragDrop(...); // Implicitly runs a modal message loop.
71 //   }
72 //   // Process |hr| (the result returned by DoDragDrop()).
73 //
74 // Please be SURE your task is reentrant (nestable) and all global variables
75 // are stable and accessible before calling SetNestableTasksAllowed(true).
76 //
77 class BASE_EXPORT MessageLoop : public MessagePump::Delegate {
78  public:
79   // A MessageLoop has a particular type, which indicates the set of
80   // asynchronous events it may process in addition to tasks and timers.
81   //
82   // TYPE_DEFAULT
83   //   This type of ML only supports tasks and timers.
84   //
85   // TYPE_UI
86   //   This type of ML also supports native UI events (e.g., Windows messages).
87   //   See also MessageLoopForUI.
88   //
89   // TYPE_IO
90   //   This type of ML also supports asynchronous IO.  See also
91   //   MessageLoopForIO.
92   //
93   // TYPE_JAVA
94   //   This type of ML is backed by a Java message handler which is responsible
95   //   for running the tasks added to the ML. This is only for use on Android.
96   //   TYPE_JAVA behaves in essence like TYPE_UI, except during construction
97   //   where it does not use the main thread specific pump factory.
98   //
99   // TYPE_CUSTOM
100   //   MessagePump was supplied to constructor.
101   //
102   enum Type {
103     TYPE_DEFAULT,
104     TYPE_UI,
105     TYPE_CUSTOM,
106     TYPE_IO,
107 #if defined(OS_ANDROID)
108     TYPE_JAVA,
109 #endif // defined(OS_ANDROID)
110   };
111 
112   // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
113   // is typical to make use of the current thread's MessageLoop instance.
114   explicit MessageLoop(Type type = TYPE_DEFAULT);
115   // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must
116   // be non-NULL.
117   explicit MessageLoop(scoped_ptr<base::MessagePump> pump);
118   virtual ~MessageLoop();
119 
120   // Returns the MessageLoop object for the current thread, or null if none.
121   static MessageLoop* current();
122 
123   static void EnableHistogrammer(bool enable_histogrammer);
124 
125   typedef scoped_ptr<MessagePump> (MessagePumpFactory)();
126   // Uses the given base::MessagePumpForUIFactory to override the default
127   // MessagePump implementation for 'TYPE_UI'. Returns true if the factory
128   // was successfully registered.
129   static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory);
130 
131   // Creates the default MessagePump based on |type|. Caller owns return
132   // value.
133   static scoped_ptr<MessagePump> CreateMessagePumpForType(Type type);
134   // A DestructionObserver is notified when the current MessageLoop is being
135   // destroyed.  These observers are notified prior to MessageLoop::current()
136   // being changed to return NULL.  This gives interested parties the chance to
137   // do final cleanup that depends on the MessageLoop.
138   //
139   // NOTE: Any tasks posted to the MessageLoop during this notification will
140   // not be run.  Instead, they will be deleted.
141   //
142   class BASE_EXPORT DestructionObserver {
143    public:
144     virtual void WillDestroyCurrentMessageLoop() = 0;
145 
146    protected:
147     virtual ~DestructionObserver();
148   };
149 
150   // Add a DestructionObserver, which will start receiving notifications
151   // immediately.
152   void AddDestructionObserver(DestructionObserver* destruction_observer);
153 
154   // Remove a DestructionObserver.  It is safe to call this method while a
155   // DestructionObserver is receiving a notification callback.
156   void RemoveDestructionObserver(DestructionObserver* destruction_observer);
157 
158   // The "PostTask" family of methods call the task's Run method asynchronously
159   // from within a message loop at some point in the future.
160   //
161   // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
162   // with normal UI or IO event processing.  With the PostDelayedTask variant,
163   // tasks are called after at least approximately 'delay_ms' have elapsed.
164   //
165   // The NonNestable variants work similarly except that they promise never to
166   // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
167   // such tasks get deferred until the top-most MessageLoop::Run is executing.
168   //
169   // The MessageLoop takes ownership of the Task, and deletes it after it has
170   // been Run().
171   //
172   // PostTask(from_here, task) is equivalent to
173   // PostDelayedTask(from_here, task, 0).
174   //
175   // NOTE: These methods may be called on any thread.  The Task will be invoked
176   // on the thread that executes MessageLoop::Run().
177   void PostTask(const tracked_objects::Location& from_here,
178                 const Closure& task);
179 
180   void PostDelayedTask(const tracked_objects::Location& from_here,
181                        const Closure& task,
182                        TimeDelta delay);
183 
184   void PostNonNestableTask(const tracked_objects::Location& from_here,
185                            const Closure& task);
186 
187   void PostNonNestableDelayedTask(const tracked_objects::Location& from_here,
188                                   const Closure& task,
189                                   TimeDelta delay);
190 
191   // A variant on PostTask that deletes the given object.  This is useful
192   // if the object needs to live until the next run of the MessageLoop (for
193   // example, deleting a RenderProcessHost from within an IPC callback is not
194   // good).
195   //
196   // NOTE: This method may be called on any thread.  The object will be deleted
197   // on the thread that executes MessageLoop::Run().  If this is not the same
198   // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
199   // from RefCountedThreadSafe<T>!
200   template <class T>
DeleteSoon(const tracked_objects::Location & from_here,const T * object)201   void DeleteSoon(const tracked_objects::Location& from_here, const T* object) {
202     base::subtle::DeleteHelperInternal<T, void>::DeleteViaSequencedTaskRunner(
203         this, from_here, object);
204   }
205 
206   // A variant on PostTask that releases the given reference counted object
207   // (by calling its Release method).  This is useful if the object needs to
208   // live until the next run of the MessageLoop, or if the object needs to be
209   // released on a particular thread.
210   //
211   // A common pattern is to manually increment the object's reference count
212   // (AddRef), clear the pointer, then issue a ReleaseSoon.  The reference count
213   // is incremented manually to ensure clearing the pointer does not trigger a
214   // delete and to account for the upcoming decrement (ReleaseSoon).  For
215   // example:
216   //
217   // scoped_refptr<Foo> foo = ...
218   // foo->AddRef();
219   // Foo* raw_foo = foo.get();
220   // foo = NULL;
221   // message_loop->ReleaseSoon(raw_foo);
222   //
223   // NOTE: This method may be called on any thread.  The object will be
224   // released (and thus possibly deleted) on the thread that executes
225   // MessageLoop::Run().  If this is not the same as the thread that calls
226   // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
227   // RefCountedThreadSafe<T>!
228   template <class T>
ReleaseSoon(const tracked_objects::Location & from_here,const T * object)229   void ReleaseSoon(const tracked_objects::Location& from_here,
230                    const T* object) {
231     base::subtle::ReleaseHelperInternal<T, void>::ReleaseViaSequencedTaskRunner(
232         this, from_here, object);
233   }
234 
235   // Deprecated: use RunLoop instead.
236   // Run the message loop.
237   void Run();
238 
239   // Deprecated: use RunLoop instead.
240   // Process all pending tasks, windows messages, etc., but don't wait/sleep.
241   // Return as soon as all items that can be run are taken care of.
242   void RunUntilIdle();
243 
244   // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdle().
Quit()245   void Quit() { QuitWhenIdle(); }
246 
247   // Deprecated: use RunLoop instead.
248   //
249   // Signals the Run method to return when it becomes idle. It will continue to
250   // process pending messages and future messages as long as they are enqueued.
251   // Warning: if the MessageLoop remains busy, it may never quit. Only use this
252   // Quit method when looping procedures (such as web pages) have been shut
253   // down.
254   //
255   // This method may only be called on the same thread that called Run, and Run
256   // must still be on the call stack.
257   //
258   // Use QuitClosure variants if you need to Quit another thread's MessageLoop,
259   // but note that doing so is fairly dangerous if the target thread makes
260   // nested calls to MessageLoop::Run.  The problem being that you won't know
261   // which nested run loop you are quitting, so be careful!
262   void QuitWhenIdle();
263 
264   // Deprecated: use RunLoop instead.
265   //
266   // This method is a variant of Quit, that does not wait for pending messages
267   // to be processed before returning from Run.
268   void QuitNow();
269 
270   // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdleClosure().
QuitClosure()271   static Closure QuitClosure() { return QuitWhenIdleClosure(); }
272 
273   // Deprecated: use RunLoop instead.
274   // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an
275   // arbitrary MessageLoop to QuitWhenIdle.
276   static Closure QuitWhenIdleClosure();
277 
278   // Set the timer slack for this message loop.
SetTimerSlack(TimerSlack timer_slack)279   void SetTimerSlack(TimerSlack timer_slack) {
280     pump_->SetTimerSlack(timer_slack);
281   }
282 
283   // Returns true if this loop is |type|. This allows subclasses (especially
284   // those in tests) to specialize how they are identified.
285   virtual bool IsType(Type type) const;
286 
287   // Returns the type passed to the constructor.
type()288   Type type() const { return type_; }
289 
290   // Optional call to connect the thread name with this loop.
set_thread_name(const std::string & thread_name)291   void set_thread_name(const std::string& thread_name) {
292     DCHECK(thread_name_.empty()) << "Should not rename this thread!";
293     thread_name_ = thread_name;
294   }
thread_name()295   const std::string& thread_name() const { return thread_name_; }
296 
297   // Gets the message loop proxy associated with this message loop.
298   //
299   // NOTE: Deprecated; prefer task_runner() and the TaskRunner interfaces
message_loop_proxy()300   scoped_refptr<MessageLoopProxy> message_loop_proxy() {
301     return message_loop_proxy_;
302   }
303 
304   // Gets the TaskRunner associated with this message loop.
task_runner()305   scoped_refptr<SingleThreadTaskRunner> task_runner() {
306     return message_loop_proxy_;
307   }
308 
309   // Enables or disables the recursive task processing. This happens in the case
310   // of recursive message loops. Some unwanted message loop may occurs when
311   // using common controls or printer functions. By default, recursive task
312   // processing is disabled.
313   //
314   // Please utilize |ScopedNestableTaskAllower| instead of calling these methods
315   // directly.  In general nestable message loops are to be avoided.  They are
316   // dangerous and difficult to get right, so please use with extreme caution.
317   //
318   // The specific case where tasks get queued is:
319   // - The thread is running a message loop.
320   // - It receives a task #1 and execute it.
321   // - The task #1 implicitly start a message loop, like a MessageBox in the
322   //   unit test. This can also be StartDoc or GetSaveFileName.
323   // - The thread receives a task #2 before or while in this second message
324   //   loop.
325   // - With NestableTasksAllowed set to true, the task #2 will run right away.
326   //   Otherwise, it will get executed right after task #1 completes at "thread
327   //   message loop level".
328   void SetNestableTasksAllowed(bool allowed);
329   bool NestableTasksAllowed() const;
330 
331   // Enables nestable tasks on |loop| while in scope.
332   class ScopedNestableTaskAllower {
333    public:
ScopedNestableTaskAllower(MessageLoop * loop)334     explicit ScopedNestableTaskAllower(MessageLoop* loop)
335         : loop_(loop),
336           old_state_(loop_->NestableTasksAllowed()) {
337       loop_->SetNestableTasksAllowed(true);
338     }
~ScopedNestableTaskAllower()339     ~ScopedNestableTaskAllower() {
340       loop_->SetNestableTasksAllowed(old_state_);
341     }
342 
343    private:
344     MessageLoop* loop_;
345     bool old_state_;
346   };
347 
348   // Returns true if we are currently running a nested message loop.
349   bool IsNested();
350 
351   // A TaskObserver is an object that receives task notifications from the
352   // MessageLoop.
353   //
354   // NOTE: A TaskObserver implementation should be extremely fast!
355   class BASE_EXPORT TaskObserver {
356    public:
357     TaskObserver();
358 
359     // This method is called before processing a task.
360     virtual void WillProcessTask(const PendingTask& pending_task) = 0;
361 
362     // This method is called after processing a task.
363     virtual void DidProcessTask(const PendingTask& pending_task) = 0;
364 
365    protected:
366     virtual ~TaskObserver();
367   };
368 
369   // These functions can only be called on the same thread that |this| is
370   // running on.
371   void AddTaskObserver(TaskObserver* task_observer);
372   void RemoveTaskObserver(TaskObserver* task_observer);
373 
374 #if defined(OS_WIN)
set_os_modal_loop(bool os_modal_loop)375   void set_os_modal_loop(bool os_modal_loop) {
376     os_modal_loop_ = os_modal_loop;
377   }
378 
os_modal_loop()379   bool os_modal_loop() const {
380     return os_modal_loop_;
381   }
382 #endif  // OS_WIN
383 
384   // Can only be called from the thread that owns the MessageLoop.
385   bool is_running() const;
386 
387   // Returns true if the message loop has high resolution timers enabled.
388   // Provided for testing.
389   bool HasHighResolutionTasks();
390 
391   // Returns true if the message loop is "idle". Provided for testing.
392   bool IsIdleForTesting();
393 
394   //----------------------------------------------------------------------------
395  protected:
396   scoped_ptr<MessagePump> pump_;
397 
398  private:
399   friend class internal::IncomingTaskQueue;
400   friend class RunLoop;
401 
402   // Configures various members for the two constructors.
403   void Init();
404 
405   // Invokes the actual run loop using the message pump.
406   void RunHandler();
407 
408   // Called to process any delayed non-nestable tasks.
409   bool ProcessNextDelayedNonNestableTask();
410 
411   // Runs the specified PendingTask.
412   void RunTask(const PendingTask& pending_task);
413 
414   // Calls RunTask or queues the pending_task on the deferred task list if it
415   // cannot be run right now.  Returns true if the task was run.
416   bool DeferOrRunPendingTask(const PendingTask& pending_task);
417 
418   // Adds the pending task to delayed_work_queue_.
419   void AddToDelayedWorkQueue(const PendingTask& pending_task);
420 
421   // Delete tasks that haven't run yet without running them.  Used in the
422   // destructor to make sure all the task's destructors get called.  Returns
423   // true if some work was done.
424   bool DeletePendingTasks();
425 
426   // Returns the TaskAnnotator which is used to add debug information to posted
427   // tasks.
task_annotator()428   debug::TaskAnnotator* task_annotator() { return &task_annotator_; }
429 
430   // Loads tasks from the incoming queue to |work_queue_| if the latter is
431   // empty.
432   void ReloadWorkQueue();
433 
434   // Wakes up the message pump. Can be called on any thread. The caller is
435   // responsible for synchronizing ScheduleWork() calls.
436   void ScheduleWork(bool was_empty);
437 
438   // Start recording histogram info about events and action IF it was enabled
439   // and IF the statistics recorder can accept a registration of our histogram.
440   void StartHistogrammer();
441 
442   // Add occurrence of event to our histogram, so that we can see what is being
443   // done in a specific MessageLoop instance (i.e., specific thread).
444   // If message_histogram_ is NULL, this is a no-op.
445   void HistogramEvent(int event);
446 
447   // MessagePump::Delegate methods:
448   virtual bool DoWork() OVERRIDE;
449   virtual bool DoDelayedWork(TimeTicks* next_delayed_work_time) OVERRIDE;
450   virtual bool DoIdleWork() OVERRIDE;
451 
452   const Type type_;
453 
454   // A list of tasks that need to be processed by this instance.  Note that
455   // this queue is only accessed (push/pop) by our current thread.
456   TaskQueue work_queue_;
457 
458   // How many high resolution tasks are in the pending task queue. This value
459   // increases by N every time we call ReloadWorkQueue() and decreases by 1
460   // every time we call RunTask() if the task needs a high resolution timer.
461   int pending_high_res_tasks_;
462   // Tracks if we have requested high resolution timers. Its only use is to
463   // turn off the high resolution timer upon loop destruction.
464   bool in_high_res_mode_;
465 
466   // Contains delayed tasks, sorted by their 'delayed_run_time' property.
467   DelayedTaskQueue delayed_work_queue_;
468 
469   // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
470   TimeTicks recent_time_;
471 
472   // A queue of non-nestable tasks that we had to defer because when it came
473   // time to execute them we were in a nested message loop.  They will execute
474   // once we're out of nested message loops.
475   TaskQueue deferred_non_nestable_work_queue_;
476 
477   ObserverList<DestructionObserver> destruction_observers_;
478 
479   // A recursion block that prevents accidentally running additional tasks when
480   // insider a (accidentally induced?) nested message pump.
481   bool nestable_tasks_allowed_;
482 
483 #if defined(OS_WIN)
484   // Should be set to true before calling Windows APIs like TrackPopupMenu, etc
485   // which enter a modal message loop.
486   bool os_modal_loop_;
487 #endif
488 
489   std::string thread_name_;
490   // A profiling histogram showing the counts of various messages and events.
491   HistogramBase* message_histogram_;
492 
493   RunLoop* run_loop_;
494 
495   ObserverList<TaskObserver> task_observers_;
496 
497   debug::TaskAnnotator task_annotator_;
498 
499   scoped_refptr<internal::IncomingTaskQueue> incoming_task_queue_;
500 
501   // The message loop proxy associated with this message loop.
502   scoped_refptr<internal::MessageLoopProxyImpl> message_loop_proxy_;
503   scoped_ptr<ThreadTaskRunnerHandle> thread_task_runner_handle_;
504 
505   template <class T, class R> friend class base::subtle::DeleteHelperInternal;
506   template <class T, class R> friend class base::subtle::ReleaseHelperInternal;
507 
508   void DeleteSoonInternal(const tracked_objects::Location& from_here,
509                           void(*deleter)(const void*),
510                           const void* object);
511   void ReleaseSoonInternal(const tracked_objects::Location& from_here,
512                            void(*releaser)(const void*),
513                            const void* object);
514 
515   DISALLOW_COPY_AND_ASSIGN(MessageLoop);
516 };
517 
518 #if !defined(OS_NACL)
519 
520 //-----------------------------------------------------------------------------
521 // MessageLoopForUI extends MessageLoop with methods that are particular to a
522 // MessageLoop instantiated with TYPE_UI.
523 //
524 // This class is typically used like so:
525 //   MessageLoopForUI::current()->...call some method...
526 //
527 class BASE_EXPORT MessageLoopForUI : public MessageLoop {
528  public:
MessageLoopForUI()529   MessageLoopForUI() : MessageLoop(TYPE_UI) {
530   }
531 
532   // Returns the MessageLoopForUI of the current thread.
current()533   static MessageLoopForUI* current() {
534     MessageLoop* loop = MessageLoop::current();
535     DCHECK(loop);
536     DCHECK_EQ(MessageLoop::TYPE_UI, loop->type());
537     return static_cast<MessageLoopForUI*>(loop);
538   }
539 
IsCurrent()540   static bool IsCurrent() {
541     MessageLoop* loop = MessageLoop::current();
542     return loop && loop->type() == MessageLoop::TYPE_UI;
543   }
544 
545 #if defined(OS_IOS)
546   // On iOS, the main message loop cannot be Run().  Instead call Attach(),
547   // which connects this MessageLoop to the UI thread's CFRunLoop and allows
548   // PostTask() to work.
549   void Attach();
550 #endif
551 
552 #if defined(OS_ANDROID)
553   // On Android, the UI message loop is handled by Java side. So Run() should
554   // never be called. Instead use Start(), which will forward all the native UI
555   // events to the Java message loop.
556   void Start();
557 #endif
558 
559 #if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
560   // Please see MessagePumpLibevent for definition.
561   bool WatchFileDescriptor(
562       int fd,
563       bool persistent,
564       MessagePumpLibevent::Mode mode,
565       MessagePumpLibevent::FileDescriptorWatcher* controller,
566       MessagePumpLibevent::Watcher* delegate);
567 #endif
568 };
569 
570 // Do not add any member variables to MessageLoopForUI!  This is important b/c
571 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
572 // data that you need should be stored on the MessageLoop's pump_ instance.
573 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
574                MessageLoopForUI_should_not_have_extra_member_variables);
575 
576 #endif  // !defined(OS_NACL)
577 
578 //-----------------------------------------------------------------------------
579 // MessageLoopForIO extends MessageLoop with methods that are particular to a
580 // MessageLoop instantiated with TYPE_IO.
581 //
582 // This class is typically used like so:
583 //   MessageLoopForIO::current()->...call some method...
584 //
585 class BASE_EXPORT MessageLoopForIO : public MessageLoop {
586  public:
MessageLoopForIO()587   MessageLoopForIO() : MessageLoop(TYPE_IO) {
588   }
589 
590   // Returns the MessageLoopForIO of the current thread.
current()591   static MessageLoopForIO* current() {
592     MessageLoop* loop = MessageLoop::current();
593     DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
594     return static_cast<MessageLoopForIO*>(loop);
595   }
596 
IsCurrent()597   static bool IsCurrent() {
598     MessageLoop* loop = MessageLoop::current();
599     return loop && loop->type() == MessageLoop::TYPE_IO;
600   }
601 
602 #if !defined(OS_NACL)
603 
604 #if defined(OS_WIN)
605   typedef MessagePumpForIO::IOHandler IOHandler;
606   typedef MessagePumpForIO::IOContext IOContext;
607   typedef MessagePumpForIO::IOObserver IOObserver;
608 #elif defined(OS_IOS)
609   typedef MessagePumpIOSForIO::Watcher Watcher;
610   typedef MessagePumpIOSForIO::FileDescriptorWatcher
611       FileDescriptorWatcher;
612   typedef MessagePumpIOSForIO::IOObserver IOObserver;
613 
614   enum Mode {
615     WATCH_READ = MessagePumpIOSForIO::WATCH_READ,
616     WATCH_WRITE = MessagePumpIOSForIO::WATCH_WRITE,
617     WATCH_READ_WRITE = MessagePumpIOSForIO::WATCH_READ_WRITE
618   };
619 #elif defined(OS_POSIX)
620   typedef MessagePumpLibevent::Watcher Watcher;
621   typedef MessagePumpLibevent::FileDescriptorWatcher
622       FileDescriptorWatcher;
623   typedef MessagePumpLibevent::IOObserver IOObserver;
624 
625   enum Mode {
626     WATCH_READ = MessagePumpLibevent::WATCH_READ,
627     WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE,
628     WATCH_READ_WRITE = MessagePumpLibevent::WATCH_READ_WRITE
629   };
630 #endif
631 
632   void AddIOObserver(IOObserver* io_observer);
633   void RemoveIOObserver(IOObserver* io_observer);
634 
635 #if defined(OS_WIN)
636   // Please see MessagePumpWin for definitions of these methods.
637   void RegisterIOHandler(HANDLE file, IOHandler* handler);
638   bool RegisterJobObject(HANDLE job, IOHandler* handler);
639   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
640 #elif defined(OS_POSIX)
641   // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition.
642   bool WatchFileDescriptor(int fd,
643                            bool persistent,
644                            Mode mode,
645                            FileDescriptorWatcher *controller,
646                            Watcher *delegate);
647 #endif  // defined(OS_IOS) || defined(OS_POSIX)
648 #endif  // !defined(OS_NACL)
649 };
650 
651 // Do not add any member variables to MessageLoopForIO!  This is important b/c
652 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
653 // data that you need should be stored on the MessageLoop's pump_ instance.
654 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
655                MessageLoopForIO_should_not_have_extra_member_variables);
656 
657 }  // namespace base
658 
659 #endif  // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
660