1 /*
2 **
3 ** The author disclaims copyright to this source code. In place of
4 ** a legal notice, here is a blessing:
5 **
6 ** May you do good and not evil.
7 ** May you find forgiveness for yourself and forgive others.
8 ** May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
13 */
14 #include "sqliteInt.h"
15
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
18
19 /*
20 ** Deferred and Immediate FKs
21 ** --------------------------
22 **
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
25 ** is returned and the current statement transaction rolled back. If a
26 ** deferred foreign key constraint is violated, no action is taken
27 ** immediately. However if the application attempts to commit the
28 ** transaction before fixing the constraint violation, the attempt fails.
29 **
30 ** Deferred constraints are implemented using a simple counter associated
31 ** with the database handle. The counter is set to zero each time a
32 ** database transaction is opened. Each time a statement is executed
33 ** that causes a foreign key violation, the counter is incremented. Each
34 ** time a statement is executed that removes an existing violation from
35 ** the database, the counter is decremented. When the transaction is
36 ** committed, the commit fails if the current value of the counter is
37 ** greater than zero. This scheme has two big drawbacks:
38 **
39 ** * When a commit fails due to a deferred foreign key constraint,
40 ** there is no way to tell which foreign constraint is not satisfied,
41 ** or which row it is not satisfied for.
42 **
43 ** * If the database contains foreign key violations when the
44 ** transaction is opened, this may cause the mechanism to malfunction.
45 **
46 ** Despite these problems, this approach is adopted as it seems simpler
47 ** than the alternatives.
48 **
49 ** INSERT operations:
50 **
51 ** I.1) For each FK for which the table is the child table, search
52 ** the parent table for a match. If none is found increment the
53 ** constraint counter.
54 **
55 ** I.2) For each FK for which the table is the parent table,
56 ** search the child table for rows that correspond to the new
57 ** row in the parent table. Decrement the counter for each row
58 ** found (as the constraint is now satisfied).
59 **
60 ** DELETE operations:
61 **
62 ** D.1) For each FK for which the table is the child table,
63 ** search the parent table for a row that corresponds to the
64 ** deleted row in the child table. If such a row is not found,
65 ** decrement the counter.
66 **
67 ** D.2) For each FK for which the table is the parent table, search
68 ** the child table for rows that correspond to the deleted row
69 ** in the parent table. For each found increment the counter.
70 **
71 ** UPDATE operations:
72 **
73 ** An UPDATE command requires that all 4 steps above are taken, but only
74 ** for FK constraints for which the affected columns are actually
75 ** modified (values must be compared at runtime).
76 **
77 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
78 ** This simplifies the implementation a bit.
79 **
80 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
81 ** resolution is considered to delete rows before the new row is inserted.
82 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
83 ** is thrown, even if the FK constraint would be satisfied after the new
84 ** row is inserted.
85 **
86 ** Immediate constraints are usually handled similarly. The only difference
87 ** is that the counter used is stored as part of each individual statement
88 ** object (struct Vdbe). If, after the statement has run, its immediate
89 ** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
90 ** and the statement transaction is rolled back. An exception is an INSERT
91 ** statement that inserts a single row only (no triggers). In this case,
92 ** instead of using a counter, an exception is thrown immediately if the
93 ** INSERT violates a foreign key constraint. This is necessary as such
94 ** an INSERT does not open a statement transaction.
95 **
96 ** TODO: How should dropping a table be handled? How should renaming a
97 ** table be handled?
98 **
99 **
100 ** Query API Notes
101 ** ---------------
102 **
103 ** Before coding an UPDATE or DELETE row operation, the code-generator
104 ** for those two operations needs to know whether or not the operation
105 ** requires any FK processing and, if so, which columns of the original
106 ** row are required by the FK processing VDBE code (i.e. if FKs were
107 ** implemented using triggers, which of the old.* columns would be
108 ** accessed). No information is required by the code-generator before
109 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
110 ** generation code to query for this information are:
111 **
112 ** sqlite3FkRequired() - Test to see if FK processing is required.
113 ** sqlite3FkOldmask() - Query for the set of required old.* columns.
114 **
115 **
116 ** Externally accessible module functions
117 ** --------------------------------------
118 **
119 ** sqlite3FkCheck() - Check for foreign key violations.
120 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
121 ** sqlite3FkDelete() - Delete an FKey structure.
122 */
123
124 /*
125 ** VDBE Calling Convention
126 ** -----------------------
127 **
128 ** Example:
129 **
130 ** For the following INSERT statement:
131 **
132 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
133 ** INSERT INTO t1 VALUES(1, 2, 3.1);
134 **
135 ** Register (x): 2 (type integer)
136 ** Register (x+1): 1 (type integer)
137 ** Register (x+2): NULL (type NULL)
138 ** Register (x+3): 3.1 (type real)
139 */
140
141 /*
142 ** A foreign key constraint requires that the key columns in the parent
143 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
144 ** Given that pParent is the parent table for foreign key constraint pFKey,
145 ** search the schema a unique index on the parent key columns.
146 **
147 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
148 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
149 ** is set to point to the unique index.
150 **
151 ** If the parent key consists of a single column (the foreign key constraint
152 ** is not a composite foreign key), output variable *paiCol is set to NULL.
153 ** Otherwise, it is set to point to an allocated array of size N, where
154 ** N is the number of columns in the parent key. The first element of the
155 ** array is the index of the child table column that is mapped by the FK
156 ** constraint to the parent table column stored in the left-most column
157 ** of index *ppIdx. The second element of the array is the index of the
158 ** child table column that corresponds to the second left-most column of
159 ** *ppIdx, and so on.
160 **
161 ** If the required index cannot be found, either because:
162 **
163 ** 1) The named parent key columns do not exist, or
164 **
165 ** 2) The named parent key columns do exist, but are not subject to a
166 ** UNIQUE or PRIMARY KEY constraint, or
167 **
168 ** 3) No parent key columns were provided explicitly as part of the
169 ** foreign key definition, and the parent table does not have a
170 ** PRIMARY KEY, or
171 **
172 ** 4) No parent key columns were provided explicitly as part of the
173 ** foreign key definition, and the PRIMARY KEY of the parent table
174 ** consists of a a different number of columns to the child key in
175 ** the child table.
176 **
177 ** then non-zero is returned, and a "foreign key mismatch" error loaded
178 ** into pParse. If an OOM error occurs, non-zero is returned and the
179 ** pParse->db->mallocFailed flag is set.
180 */
locateFkeyIndex(Parse * pParse,Table * pParent,FKey * pFKey,Index ** ppIdx,int ** paiCol)181 static int locateFkeyIndex(
182 Parse *pParse, /* Parse context to store any error in */
183 Table *pParent, /* Parent table of FK constraint pFKey */
184 FKey *pFKey, /* Foreign key to find index for */
185 Index **ppIdx, /* OUT: Unique index on parent table */
186 int **paiCol /* OUT: Map of index columns in pFKey */
187 ){
188 Index *pIdx = 0; /* Value to return via *ppIdx */
189 int *aiCol = 0; /* Value to return via *paiCol */
190 int nCol = pFKey->nCol; /* Number of columns in parent key */
191 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
192
193 /* The caller is responsible for zeroing output parameters. */
194 assert( ppIdx && *ppIdx==0 );
195 assert( !paiCol || *paiCol==0 );
196 assert( pParse );
197
198 /* If this is a non-composite (single column) foreign key, check if it
199 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
200 ** and *paiCol set to zero and return early.
201 **
202 ** Otherwise, for a composite foreign key (more than one column), allocate
203 ** space for the aiCol array (returned via output parameter *paiCol).
204 ** Non-composite foreign keys do not require the aiCol array.
205 */
206 if( nCol==1 ){
207 /* The FK maps to the IPK if any of the following are true:
208 **
209 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
210 ** mapped to the primary key of table pParent, or
211 ** 2) The FK is explicitly mapped to a column declared as INTEGER
212 ** PRIMARY KEY.
213 */
214 if( pParent->iPKey>=0 ){
215 if( !zKey ) return 0;
216 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
217 }
218 }else if( paiCol ){
219 assert( nCol>1 );
220 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
221 if( !aiCol ) return 1;
222 *paiCol = aiCol;
223 }
224
225 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
226 if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
227 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
228 ** of columns. If each indexed column corresponds to a foreign key
229 ** column of pFKey, then this index is a winner. */
230
231 if( zKey==0 ){
232 /* If zKey is NULL, then this foreign key is implicitly mapped to
233 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
234 ** identified by the test (Index.autoIndex==2). */
235 if( pIdx->autoIndex==2 ){
236 if( aiCol ){
237 int i;
238 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
239 }
240 break;
241 }
242 }else{
243 /* If zKey is non-NULL, then this foreign key was declared to
244 ** map to an explicit list of columns in table pParent. Check if this
245 ** index matches those columns. Also, check that the index uses
246 ** the default collation sequences for each column. */
247 int i, j;
248 for(i=0; i<nCol; i++){
249 int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
250 char *zDfltColl; /* Def. collation for column */
251 char *zIdxCol; /* Name of indexed column */
252
253 /* If the index uses a collation sequence that is different from
254 ** the default collation sequence for the column, this index is
255 ** unusable. Bail out early in this case. */
256 zDfltColl = pParent->aCol[iCol].zColl;
257 if( !zDfltColl ){
258 zDfltColl = "BINARY";
259 }
260 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
261
262 zIdxCol = pParent->aCol[iCol].zName;
263 for(j=0; j<nCol; j++){
264 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
265 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
266 break;
267 }
268 }
269 if( j==nCol ) break;
270 }
271 if( i==nCol ) break; /* pIdx is usable */
272 }
273 }
274 }
275
276 if( !pIdx ){
277 if( !pParse->disableTriggers ){
278 sqlite3ErrorMsg(pParse, "foreign key mismatch");
279 }
280 sqlite3DbFree(pParse->db, aiCol);
281 return 1;
282 }
283
284 *ppIdx = pIdx;
285 return 0;
286 }
287
288 /*
289 ** This function is called when a row is inserted into or deleted from the
290 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
291 ** on the child table of pFKey, this function is invoked twice for each row
292 ** affected - once to "delete" the old row, and then again to "insert" the
293 ** new row.
294 **
295 ** Each time it is called, this function generates VDBE code to locate the
296 ** row in the parent table that corresponds to the row being inserted into
297 ** or deleted from the child table. If the parent row can be found, no
298 ** special action is taken. Otherwise, if the parent row can *not* be
299 ** found in the parent table:
300 **
301 ** Operation | FK type | Action taken
302 ** --------------------------------------------------------------------------
303 ** INSERT immediate Increment the "immediate constraint counter".
304 **
305 ** DELETE immediate Decrement the "immediate constraint counter".
306 **
307 ** INSERT deferred Increment the "deferred constraint counter".
308 **
309 ** DELETE deferred Decrement the "deferred constraint counter".
310 **
311 ** These operations are identified in the comment at the top of this file
312 ** (fkey.c) as "I.1" and "D.1".
313 */
fkLookupParent(Parse * pParse,int iDb,Table * pTab,Index * pIdx,FKey * pFKey,int * aiCol,int regData,int nIncr,int isIgnore)314 static void fkLookupParent(
315 Parse *pParse, /* Parse context */
316 int iDb, /* Index of database housing pTab */
317 Table *pTab, /* Parent table of FK pFKey */
318 Index *pIdx, /* Unique index on parent key columns in pTab */
319 FKey *pFKey, /* Foreign key constraint */
320 int *aiCol, /* Map from parent key columns to child table columns */
321 int regData, /* Address of array containing child table row */
322 int nIncr, /* Increment constraint counter by this */
323 int isIgnore /* If true, pretend pTab contains all NULL values */
324 ){
325 int i; /* Iterator variable */
326 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
327 int iCur = pParse->nTab - 1; /* Cursor number to use */
328 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
329
330 /* If nIncr is less than zero, then check at runtime if there are any
331 ** outstanding constraints to resolve. If there are not, there is no need
332 ** to check if deleting this row resolves any outstanding violations.
333 **
334 ** Check if any of the key columns in the child table row are NULL. If
335 ** any are, then the constraint is considered satisfied. No need to
336 ** search for a matching row in the parent table. */
337 if( nIncr<0 ){
338 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
339 }
340 for(i=0; i<pFKey->nCol; i++){
341 int iReg = aiCol[i] + regData + 1;
342 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
343 }
344
345 if( isIgnore==0 ){
346 if( pIdx==0 ){
347 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
348 ** column of the parent table (table pTab). */
349 int iMustBeInt; /* Address of MustBeInt instruction */
350 int regTemp = sqlite3GetTempReg(pParse);
351
352 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
353 ** apply the affinity of the parent key). If this fails, then there
354 ** is no matching parent key. Before using MustBeInt, make a copy of
355 ** the value. Otherwise, the value inserted into the child key column
356 ** will have INTEGER affinity applied to it, which may not be correct. */
357 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
358 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
359
360 /* If the parent table is the same as the child table, and we are about
361 ** to increment the constraint-counter (i.e. this is an INSERT operation),
362 ** then check if the row being inserted matches itself. If so, do not
363 ** increment the constraint-counter. */
364 if( pTab==pFKey->pFrom && nIncr==1 ){
365 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
366 }
367
368 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
369 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
370 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
371 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
372 sqlite3VdbeJumpHere(v, iMustBeInt);
373 sqlite3ReleaseTempReg(pParse, regTemp);
374 }else{
375 int nCol = pFKey->nCol;
376 int regTemp = sqlite3GetTempRange(pParse, nCol);
377 int regRec = sqlite3GetTempReg(pParse);
378 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
379
380 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
381 sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
382 for(i=0; i<nCol; i++){
383 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
384 }
385
386 /* If the parent table is the same as the child table, and we are about
387 ** to increment the constraint-counter (i.e. this is an INSERT operation),
388 ** then check if the row being inserted matches itself. If so, do not
389 ** increment the constraint-counter. */
390 if( pTab==pFKey->pFrom && nIncr==1 ){
391 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
392 for(i=0; i<nCol; i++){
393 int iChild = aiCol[i]+1+regData;
394 int iParent = pIdx->aiColumn[i]+1+regData;
395 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
396 }
397 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
398 }
399
400 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
401 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
402 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
403
404 sqlite3ReleaseTempReg(pParse, regRec);
405 sqlite3ReleaseTempRange(pParse, regTemp, nCol);
406 }
407 }
408
409 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
410 /* Special case: If this is an INSERT statement that will insert exactly
411 ** one row into the table, raise a constraint immediately instead of
412 ** incrementing a counter. This is necessary as the VM code is being
413 ** generated for will not open a statement transaction. */
414 assert( nIncr==1 );
415 sqlite3HaltConstraint(
416 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
417 );
418 }else{
419 if( nIncr>0 && pFKey->isDeferred==0 ){
420 sqlite3ParseToplevel(pParse)->mayAbort = 1;
421 }
422 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
423 }
424
425 sqlite3VdbeResolveLabel(v, iOk);
426 sqlite3VdbeAddOp1(v, OP_Close, iCur);
427 }
428
429 /*
430 ** This function is called to generate code executed when a row is deleted
431 ** from the parent table of foreign key constraint pFKey and, if pFKey is
432 ** deferred, when a row is inserted into the same table. When generating
433 ** code for an SQL UPDATE operation, this function may be called twice -
434 ** once to "delete" the old row and once to "insert" the new row.
435 **
436 ** The code generated by this function scans through the rows in the child
437 ** table that correspond to the parent table row being deleted or inserted.
438 ** For each child row found, one of the following actions is taken:
439 **
440 ** Operation | FK type | Action taken
441 ** --------------------------------------------------------------------------
442 ** DELETE immediate Increment the "immediate constraint counter".
443 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
444 ** throw a "foreign key constraint failed" exception.
445 **
446 ** INSERT immediate Decrement the "immediate constraint counter".
447 **
448 ** DELETE deferred Increment the "deferred constraint counter".
449 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
450 ** throw a "foreign key constraint failed" exception.
451 **
452 ** INSERT deferred Decrement the "deferred constraint counter".
453 **
454 ** These operations are identified in the comment at the top of this file
455 ** (fkey.c) as "I.2" and "D.2".
456 */
fkScanChildren(Parse * pParse,SrcList * pSrc,Table * pTab,Index * pIdx,FKey * pFKey,int * aiCol,int regData,int nIncr)457 static void fkScanChildren(
458 Parse *pParse, /* Parse context */
459 SrcList *pSrc, /* SrcList containing the table to scan */
460 Table *pTab,
461 Index *pIdx, /* Foreign key index */
462 FKey *pFKey, /* Foreign key relationship */
463 int *aiCol, /* Map from pIdx cols to child table cols */
464 int regData, /* Referenced table data starts here */
465 int nIncr /* Amount to increment deferred counter by */
466 ){
467 sqlite3 *db = pParse->db; /* Database handle */
468 int i; /* Iterator variable */
469 Expr *pWhere = 0; /* WHERE clause to scan with */
470 NameContext sNameContext; /* Context used to resolve WHERE clause */
471 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
472 int iFkIfZero = 0; /* Address of OP_FkIfZero */
473 Vdbe *v = sqlite3GetVdbe(pParse);
474
475 assert( !pIdx || pIdx->pTable==pTab );
476
477 if( nIncr<0 ){
478 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
479 }
480
481 /* Create an Expr object representing an SQL expression like:
482 **
483 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
484 **
485 ** The collation sequence used for the comparison should be that of
486 ** the parent key columns. The affinity of the parent key column should
487 ** be applied to each child key value before the comparison takes place.
488 */
489 for(i=0; i<pFKey->nCol; i++){
490 Expr *pLeft; /* Value from parent table row */
491 Expr *pRight; /* Column ref to child table */
492 Expr *pEq; /* Expression (pLeft = pRight) */
493 int iCol; /* Index of column in child table */
494 const char *zCol; /* Name of column in child table */
495
496 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
497 if( pLeft ){
498 /* Set the collation sequence and affinity of the LHS of each TK_EQ
499 ** expression to the parent key column defaults. */
500 if( pIdx ){
501 Column *pCol;
502 iCol = pIdx->aiColumn[i];
503 pCol = &pTab->aCol[iCol];
504 if( pTab->iPKey==iCol ) iCol = -1;
505 pLeft->iTable = regData+iCol+1;
506 pLeft->affinity = pCol->affinity;
507 pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
508 }else{
509 pLeft->iTable = regData;
510 pLeft->affinity = SQLITE_AFF_INTEGER;
511 }
512 }
513 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
514 assert( iCol>=0 );
515 zCol = pFKey->pFrom->aCol[iCol].zName;
516 pRight = sqlite3Expr(db, TK_ID, zCol);
517 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
518 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
519 }
520
521 /* If the child table is the same as the parent table, and this scan
522 ** is taking place as part of a DELETE operation (operation D.2), omit the
523 ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE
524 ** clause, where $rowid is the rowid of the row being deleted. */
525 if( pTab==pFKey->pFrom && nIncr>0 ){
526 Expr *pEq; /* Expression (pLeft = pRight) */
527 Expr *pLeft; /* Value from parent table row */
528 Expr *pRight; /* Column ref to child table */
529 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
530 pRight = sqlite3Expr(db, TK_COLUMN, 0);
531 if( pLeft && pRight ){
532 pLeft->iTable = regData;
533 pLeft->affinity = SQLITE_AFF_INTEGER;
534 pRight->iTable = pSrc->a[0].iCursor;
535 pRight->iColumn = -1;
536 }
537 pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
538 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
539 }
540
541 /* Resolve the references in the WHERE clause. */
542 memset(&sNameContext, 0, sizeof(NameContext));
543 sNameContext.pSrcList = pSrc;
544 sNameContext.pParse = pParse;
545 sqlite3ResolveExprNames(&sNameContext, pWhere);
546
547 /* Create VDBE to loop through the entries in pSrc that match the WHERE
548 ** clause. If the constraint is not deferred, throw an exception for
549 ** each row found. Otherwise, for deferred constraints, increment the
550 ** deferred constraint counter by nIncr for each row selected. */
551 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
552 if( nIncr>0 && pFKey->isDeferred==0 ){
553 sqlite3ParseToplevel(pParse)->mayAbort = 1;
554 }
555 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
556 if( pWInfo ){
557 sqlite3WhereEnd(pWInfo);
558 }
559
560 /* Clean up the WHERE clause constructed above. */
561 sqlite3ExprDelete(db, pWhere);
562 if( iFkIfZero ){
563 sqlite3VdbeJumpHere(v, iFkIfZero);
564 }
565 }
566
567 /*
568 ** This function returns a pointer to the head of a linked list of FK
569 ** constraints for which table pTab is the parent table. For example,
570 ** given the following schema:
571 **
572 ** CREATE TABLE t1(a PRIMARY KEY);
573 ** CREATE TABLE t2(b REFERENCES t1(a);
574 **
575 ** Calling this function with table "t1" as an argument returns a pointer
576 ** to the FKey structure representing the foreign key constraint on table
577 ** "t2". Calling this function with "t2" as the argument would return a
578 ** NULL pointer (as there are no FK constraints for which t2 is the parent
579 ** table).
580 */
sqlite3FkReferences(Table * pTab)581 FKey *sqlite3FkReferences(Table *pTab){
582 int nName = sqlite3Strlen30(pTab->zName);
583 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
584 }
585
586 /*
587 ** The second argument is a Trigger structure allocated by the
588 ** fkActionTrigger() routine. This function deletes the Trigger structure
589 ** and all of its sub-components.
590 **
591 ** The Trigger structure or any of its sub-components may be allocated from
592 ** the lookaside buffer belonging to database handle dbMem.
593 */
fkTriggerDelete(sqlite3 * dbMem,Trigger * p)594 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
595 if( p ){
596 TriggerStep *pStep = p->step_list;
597 sqlite3ExprDelete(dbMem, pStep->pWhere);
598 sqlite3ExprListDelete(dbMem, pStep->pExprList);
599 sqlite3SelectDelete(dbMem, pStep->pSelect);
600 sqlite3ExprDelete(dbMem, p->pWhen);
601 sqlite3DbFree(dbMem, p);
602 }
603 }
604
605 /*
606 ** This function is called to generate code that runs when table pTab is
607 ** being dropped from the database. The SrcList passed as the second argument
608 ** to this function contains a single entry guaranteed to resolve to
609 ** table pTab.
610 **
611 ** Normally, no code is required. However, if either
612 **
613 ** (a) The table is the parent table of a FK constraint, or
614 ** (b) The table is the child table of a deferred FK constraint and it is
615 ** determined at runtime that there are outstanding deferred FK
616 ** constraint violations in the database,
617 **
618 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
619 ** the table from the database. Triggers are disabled while running this
620 ** DELETE, but foreign key actions are not.
621 */
sqlite3FkDropTable(Parse * pParse,SrcList * pName,Table * pTab)622 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
623 sqlite3 *db = pParse->db;
624 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
625 int iSkip = 0;
626 Vdbe *v = sqlite3GetVdbe(pParse);
627
628 assert( v ); /* VDBE has already been allocated */
629 if( sqlite3FkReferences(pTab)==0 ){
630 /* Search for a deferred foreign key constraint for which this table
631 ** is the child table. If one cannot be found, return without
632 ** generating any VDBE code. If one can be found, then jump over
633 ** the entire DELETE if there are no outstanding deferred constraints
634 ** when this statement is run. */
635 FKey *p;
636 for(p=pTab->pFKey; p; p=p->pNextFrom){
637 if( p->isDeferred ) break;
638 }
639 if( !p ) return;
640 iSkip = sqlite3VdbeMakeLabel(v);
641 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
642 }
643
644 pParse->disableTriggers = 1;
645 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
646 pParse->disableTriggers = 0;
647
648 /* If the DELETE has generated immediate foreign key constraint
649 ** violations, halt the VDBE and return an error at this point, before
650 ** any modifications to the schema are made. This is because statement
651 ** transactions are not able to rollback schema changes. */
652 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
653 sqlite3HaltConstraint(
654 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
655 );
656
657 if( iSkip ){
658 sqlite3VdbeResolveLabel(v, iSkip);
659 }
660 }
661 }
662
663 /*
664 ** This function is called when inserting, deleting or updating a row of
665 ** table pTab to generate VDBE code to perform foreign key constraint
666 ** processing for the operation.
667 **
668 ** For a DELETE operation, parameter regOld is passed the index of the
669 ** first register in an array of (pTab->nCol+1) registers containing the
670 ** rowid of the row being deleted, followed by each of the column values
671 ** of the row being deleted, from left to right. Parameter regNew is passed
672 ** zero in this case.
673 **
674 ** For an INSERT operation, regOld is passed zero and regNew is passed the
675 ** first register of an array of (pTab->nCol+1) registers containing the new
676 ** row data.
677 **
678 ** For an UPDATE operation, this function is called twice. Once before
679 ** the original record is deleted from the table using the calling convention
680 ** described for DELETE. Then again after the original record is deleted
681 ** but before the new record is inserted using the INSERT convention.
682 */
sqlite3FkCheck(Parse * pParse,Table * pTab,int regOld,int regNew)683 void sqlite3FkCheck(
684 Parse *pParse, /* Parse context */
685 Table *pTab, /* Row is being deleted from this table */
686 int regOld, /* Previous row data is stored here */
687 int regNew /* New row data is stored here */
688 ){
689 sqlite3 *db = pParse->db; /* Database handle */
690 FKey *pFKey; /* Used to iterate through FKs */
691 int iDb; /* Index of database containing pTab */
692 const char *zDb; /* Name of database containing pTab */
693 int isIgnoreErrors = pParse->disableTriggers;
694
695 /* Exactly one of regOld and regNew should be non-zero. */
696 assert( (regOld==0)!=(regNew==0) );
697
698 /* If foreign-keys are disabled, this function is a no-op. */
699 if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
700
701 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
702 zDb = db->aDb[iDb].zName;
703
704 /* Loop through all the foreign key constraints for which pTab is the
705 ** child table (the table that the foreign key definition is part of). */
706 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
707 Table *pTo; /* Parent table of foreign key pFKey */
708 Index *pIdx = 0; /* Index on key columns in pTo */
709 int *aiFree = 0;
710 int *aiCol;
711 int iCol;
712 int i;
713 int isIgnore = 0;
714
715 /* Find the parent table of this foreign key. Also find a unique index
716 ** on the parent key columns in the parent table. If either of these
717 ** schema items cannot be located, set an error in pParse and return
718 ** early. */
719 if( pParse->disableTriggers ){
720 pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
721 }else{
722 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
723 }
724 if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
725 if( !isIgnoreErrors || db->mallocFailed ) return;
726 continue;
727 }
728 assert( pFKey->nCol==1 || (aiFree && pIdx) );
729
730 if( aiFree ){
731 aiCol = aiFree;
732 }else{
733 iCol = pFKey->aCol[0].iFrom;
734 aiCol = &iCol;
735 }
736 for(i=0; i<pFKey->nCol; i++){
737 if( aiCol[i]==pTab->iPKey ){
738 aiCol[i] = -1;
739 }
740 #ifndef SQLITE_OMIT_AUTHORIZATION
741 /* Request permission to read the parent key columns. If the
742 ** authorization callback returns SQLITE_IGNORE, behave as if any
743 ** values read from the parent table are NULL. */
744 if( db->xAuth ){
745 int rcauth;
746 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
747 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
748 isIgnore = (rcauth==SQLITE_IGNORE);
749 }
750 #endif
751 }
752
753 /* Take a shared-cache advisory read-lock on the parent table. Allocate
754 ** a cursor to use to search the unique index on the parent key columns
755 ** in the parent table. */
756 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
757 pParse->nTab++;
758
759 if( regOld!=0 ){
760 /* A row is being removed from the child table. Search for the parent.
761 ** If the parent does not exist, removing the child row resolves an
762 ** outstanding foreign key constraint violation. */
763 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
764 }
765 if( regNew!=0 ){
766 /* A row is being added to the child table. If a parent row cannot
767 ** be found, adding the child row has violated the FK constraint. */
768 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
769 }
770
771 sqlite3DbFree(db, aiFree);
772 }
773
774 /* Loop through all the foreign key constraints that refer to this table */
775 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
776 Index *pIdx = 0; /* Foreign key index for pFKey */
777 SrcList *pSrc;
778 int *aiCol = 0;
779
780 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
781 assert( regOld==0 && regNew!=0 );
782 /* Inserting a single row into a parent table cannot cause an immediate
783 ** foreign key violation. So do nothing in this case. */
784 continue;
785 }
786
787 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
788 if( !isIgnoreErrors || db->mallocFailed ) return;
789 continue;
790 }
791 assert( aiCol || pFKey->nCol==1 );
792
793 /* Create a SrcList structure containing a single table (the table
794 ** the foreign key that refers to this table is attached to). This
795 ** is required for the sqlite3WhereXXX() interface. */
796 pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
797 if( pSrc ){
798 struct SrcList_item *pItem = pSrc->a;
799 pItem->pTab = pFKey->pFrom;
800 pItem->zName = pFKey->pFrom->zName;
801 pItem->pTab->nRef++;
802 pItem->iCursor = pParse->nTab++;
803
804 if( regNew!=0 ){
805 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
806 }
807 if( regOld!=0 ){
808 /* If there is a RESTRICT action configured for the current operation
809 ** on the parent table of this FK, then throw an exception
810 ** immediately if the FK constraint is violated, even if this is a
811 ** deferred trigger. That's what RESTRICT means. To defer checking
812 ** the constraint, the FK should specify NO ACTION (represented
813 ** using OE_None). NO ACTION is the default. */
814 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
815 }
816 pItem->zName = 0;
817 sqlite3SrcListDelete(db, pSrc);
818 }
819 sqlite3DbFree(db, aiCol);
820 }
821 }
822
823 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
824
825 /*
826 ** This function is called before generating code to update or delete a
827 ** row contained in table pTab.
828 */
sqlite3FkOldmask(Parse * pParse,Table * pTab)829 u32 sqlite3FkOldmask(
830 Parse *pParse, /* Parse context */
831 Table *pTab /* Table being modified */
832 ){
833 u32 mask = 0;
834 if( pParse->db->flags&SQLITE_ForeignKeys ){
835 FKey *p;
836 int i;
837 for(p=pTab->pFKey; p; p=p->pNextFrom){
838 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
839 }
840 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
841 Index *pIdx = 0;
842 locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
843 if( pIdx ){
844 for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
845 }
846 }
847 }
848 return mask;
849 }
850
851 /*
852 ** This function is called before generating code to update or delete a
853 ** row contained in table pTab. If the operation is a DELETE, then
854 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
855 ** to an array of size N, where N is the number of columns in table pTab.
856 ** If the i'th column is not modified by the UPDATE, then the corresponding
857 ** entry in the aChange[] array is set to -1. If the column is modified,
858 ** the value is 0 or greater. Parameter chngRowid is set to true if the
859 ** UPDATE statement modifies the rowid fields of the table.
860 **
861 ** If any foreign key processing will be required, this function returns
862 ** true. If there is no foreign key related processing, this function
863 ** returns false.
864 */
sqlite3FkRequired(Parse * pParse,Table * pTab,int * aChange,int chngRowid)865 int sqlite3FkRequired(
866 Parse *pParse, /* Parse context */
867 Table *pTab, /* Table being modified */
868 int *aChange, /* Non-NULL for UPDATE operations */
869 int chngRowid /* True for UPDATE that affects rowid */
870 ){
871 if( pParse->db->flags&SQLITE_ForeignKeys ){
872 if( !aChange ){
873 /* A DELETE operation. Foreign key processing is required if the
874 ** table in question is either the child or parent table for any
875 ** foreign key constraint. */
876 return (sqlite3FkReferences(pTab) || pTab->pFKey);
877 }else{
878 /* This is an UPDATE. Foreign key processing is only required if the
879 ** operation modifies one or more child or parent key columns. */
880 int i;
881 FKey *p;
882
883 /* Check if any child key columns are being modified. */
884 for(p=pTab->pFKey; p; p=p->pNextFrom){
885 for(i=0; i<p->nCol; i++){
886 int iChildKey = p->aCol[i].iFrom;
887 if( aChange[iChildKey]>=0 ) return 1;
888 if( iChildKey==pTab->iPKey && chngRowid ) return 1;
889 }
890 }
891
892 /* Check if any parent key columns are being modified. */
893 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
894 for(i=0; i<p->nCol; i++){
895 char *zKey = p->aCol[i].zCol;
896 int iKey;
897 for(iKey=0; iKey<pTab->nCol; iKey++){
898 Column *pCol = &pTab->aCol[iKey];
899 if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){
900 if( aChange[iKey]>=0 ) return 1;
901 if( iKey==pTab->iPKey && chngRowid ) return 1;
902 }
903 }
904 }
905 }
906 }
907 }
908 return 0;
909 }
910
911 /*
912 ** This function is called when an UPDATE or DELETE operation is being
913 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
914 ** If the current operation is an UPDATE, then the pChanges parameter is
915 ** passed a pointer to the list of columns being modified. If it is a
916 ** DELETE, pChanges is passed a NULL pointer.
917 **
918 ** It returns a pointer to a Trigger structure containing a trigger
919 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
920 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
921 ** returned (these actions require no special handling by the triggers
922 ** sub-system, code for them is created by fkScanChildren()).
923 **
924 ** For example, if pFKey is the foreign key and pTab is table "p" in
925 ** the following schema:
926 **
927 ** CREATE TABLE p(pk PRIMARY KEY);
928 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
929 **
930 ** then the returned trigger structure is equivalent to:
931 **
932 ** CREATE TRIGGER ... DELETE ON p BEGIN
933 ** DELETE FROM c WHERE ck = old.pk;
934 ** END;
935 **
936 ** The returned pointer is cached as part of the foreign key object. It
937 ** is eventually freed along with the rest of the foreign key object by
938 ** sqlite3FkDelete().
939 */
fkActionTrigger(Parse * pParse,Table * pTab,FKey * pFKey,ExprList * pChanges)940 static Trigger *fkActionTrigger(
941 Parse *pParse, /* Parse context */
942 Table *pTab, /* Table being updated or deleted from */
943 FKey *pFKey, /* Foreign key to get action for */
944 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
945 ){
946 sqlite3 *db = pParse->db; /* Database handle */
947 int action; /* One of OE_None, OE_Cascade etc. */
948 Trigger *pTrigger; /* Trigger definition to return */
949 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
950
951 action = pFKey->aAction[iAction];
952 pTrigger = pFKey->apTrigger[iAction];
953
954 if( action!=OE_None && !pTrigger ){
955 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */
956 char const *zFrom; /* Name of child table */
957 int nFrom; /* Length in bytes of zFrom */
958 Index *pIdx = 0; /* Parent key index for this FK */
959 int *aiCol = 0; /* child table cols -> parent key cols */
960 TriggerStep *pStep = 0; /* First (only) step of trigger program */
961 Expr *pWhere = 0; /* WHERE clause of trigger step */
962 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
963 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
964 int i; /* Iterator variable */
965 Expr *pWhen = 0; /* WHEN clause for the trigger */
966
967 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
968 assert( aiCol || pFKey->nCol==1 );
969
970 for(i=0; i<pFKey->nCol; i++){
971 Token tOld = { "old", 3 }; /* Literal "old" token */
972 Token tNew = { "new", 3 }; /* Literal "new" token */
973 Token tFromCol; /* Name of column in child table */
974 Token tToCol; /* Name of column in parent table */
975 int iFromCol; /* Idx of column in child table */
976 Expr *pEq; /* tFromCol = OLD.tToCol */
977
978 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
979 assert( iFromCol>=0 );
980 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
981 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
982
983 tToCol.n = sqlite3Strlen30(tToCol.z);
984 tFromCol.n = sqlite3Strlen30(tFromCol.z);
985
986 /* Create the expression "OLD.zToCol = zFromCol". It is important
987 ** that the "OLD.zToCol" term is on the LHS of the = operator, so
988 ** that the affinity and collation sequence associated with the
989 ** parent table are used for the comparison. */
990 pEq = sqlite3PExpr(pParse, TK_EQ,
991 sqlite3PExpr(pParse, TK_DOT,
992 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
993 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
994 , 0),
995 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
996 , 0);
997 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
998
999 /* For ON UPDATE, construct the next term of the WHEN clause.
1000 ** The final WHEN clause will be like this:
1001 **
1002 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1003 */
1004 if( pChanges ){
1005 pEq = sqlite3PExpr(pParse, TK_IS,
1006 sqlite3PExpr(pParse, TK_DOT,
1007 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1008 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1009 0),
1010 sqlite3PExpr(pParse, TK_DOT,
1011 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1012 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1013 0),
1014 0);
1015 pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1016 }
1017
1018 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1019 Expr *pNew;
1020 if( action==OE_Cascade ){
1021 pNew = sqlite3PExpr(pParse, TK_DOT,
1022 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1023 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1024 , 0);
1025 }else if( action==OE_SetDflt ){
1026 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
1027 if( pDflt ){
1028 pNew = sqlite3ExprDup(db, pDflt, 0);
1029 }else{
1030 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1031 }
1032 }else{
1033 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1034 }
1035 pList = sqlite3ExprListAppend(pParse, pList, pNew);
1036 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1037 }
1038 }
1039 sqlite3DbFree(db, aiCol);
1040
1041 zFrom = pFKey->pFrom->zName;
1042 nFrom = sqlite3Strlen30(zFrom);
1043
1044 if( action==OE_Restrict ){
1045 Token tFrom;
1046 Expr *pRaise;
1047
1048 tFrom.z = zFrom;
1049 tFrom.n = nFrom;
1050 pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
1051 if( pRaise ){
1052 pRaise->affinity = OE_Abort;
1053 }
1054 pSelect = sqlite3SelectNew(pParse,
1055 sqlite3ExprListAppend(pParse, 0, pRaise),
1056 sqlite3SrcListAppend(db, 0, &tFrom, 0),
1057 pWhere,
1058 0, 0, 0, 0, 0, 0
1059 );
1060 pWhere = 0;
1061 }
1062
1063 /* Disable lookaside memory allocation */
1064 enableLookaside = db->lookaside.bEnabled;
1065 db->lookaside.bEnabled = 0;
1066
1067 pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1068 sizeof(Trigger) + /* struct Trigger */
1069 sizeof(TriggerStep) + /* Single step in trigger program */
1070 nFrom + 1 /* Space for pStep->target.z */
1071 );
1072 if( pTrigger ){
1073 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1074 pStep->target.z = (char *)&pStep[1];
1075 pStep->target.n = nFrom;
1076 memcpy((char *)pStep->target.z, zFrom, nFrom);
1077
1078 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1079 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1080 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1081 if( pWhen ){
1082 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
1083 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1084 }
1085 }
1086
1087 /* Re-enable the lookaside buffer, if it was disabled earlier. */
1088 db->lookaside.bEnabled = enableLookaside;
1089
1090 sqlite3ExprDelete(db, pWhere);
1091 sqlite3ExprDelete(db, pWhen);
1092 sqlite3ExprListDelete(db, pList);
1093 sqlite3SelectDelete(db, pSelect);
1094 if( db->mallocFailed==1 ){
1095 fkTriggerDelete(db, pTrigger);
1096 return 0;
1097 }
1098
1099 switch( action ){
1100 case OE_Restrict:
1101 pStep->op = TK_SELECT;
1102 break;
1103 case OE_Cascade:
1104 if( !pChanges ){
1105 pStep->op = TK_DELETE;
1106 break;
1107 }
1108 default:
1109 pStep->op = TK_UPDATE;
1110 }
1111 pStep->pTrig = pTrigger;
1112 pTrigger->pSchema = pTab->pSchema;
1113 pTrigger->pTabSchema = pTab->pSchema;
1114 pFKey->apTrigger[iAction] = pTrigger;
1115 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1116 }
1117
1118 return pTrigger;
1119 }
1120
1121 /*
1122 ** This function is called when deleting or updating a row to implement
1123 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1124 */
sqlite3FkActions(Parse * pParse,Table * pTab,ExprList * pChanges,int regOld)1125 void sqlite3FkActions(
1126 Parse *pParse, /* Parse context */
1127 Table *pTab, /* Table being updated or deleted from */
1128 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
1129 int regOld /* Address of array containing old row */
1130 ){
1131 /* If foreign-key support is enabled, iterate through all FKs that
1132 ** refer to table pTab. If there is an action associated with the FK
1133 ** for this operation (either update or delete), invoke the associated
1134 ** trigger sub-program. */
1135 if( pParse->db->flags&SQLITE_ForeignKeys ){
1136 FKey *pFKey; /* Iterator variable */
1137 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1138 Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1139 if( pAction ){
1140 sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
1141 }
1142 }
1143 }
1144 }
1145
1146 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1147
1148 /*
1149 ** Free all memory associated with foreign key definitions attached to
1150 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1151 ** hash table.
1152 */
sqlite3FkDelete(sqlite3 * db,Table * pTab)1153 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1154 FKey *pFKey; /* Iterator variable */
1155 FKey *pNext; /* Copy of pFKey->pNextFrom */
1156
1157 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1158 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1159
1160 /* Remove the FK from the fkeyHash hash table. */
1161 if( !db || db->pnBytesFreed==0 ){
1162 if( pFKey->pPrevTo ){
1163 pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1164 }else{
1165 void *p = (void *)pFKey->pNextTo;
1166 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1167 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
1168 }
1169 if( pFKey->pNextTo ){
1170 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1171 }
1172 }
1173
1174 /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1175 ** classified as either immediate or deferred.
1176 */
1177 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1178
1179 /* Delete any triggers created to implement actions for this FK. */
1180 #ifndef SQLITE_OMIT_TRIGGER
1181 fkTriggerDelete(db, pFKey->apTrigger[0]);
1182 fkTriggerDelete(db, pFKey->apTrigger[1]);
1183 #endif
1184
1185 pNext = pFKey->pNextFrom;
1186 sqlite3DbFree(db, pFKey);
1187 }
1188 }
1189 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1190