1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
24 */
25 #include "sqliteInt.h"
26
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed. Initialize the pParse structure as needed.
30 */
sqlite3BeginParse(Parse * pParse,int explainFlag)31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32 pParse->explain = (u8)explainFlag;
33 pParse->nVar = 0;
34 }
35
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42 int iDb; /* The database containing the table to be locked */
43 int iTab; /* The root page of the table to be locked */
44 u8 isWriteLock; /* True for write lock. False for a read lock */
45 const char *zName; /* Name of the table */
46 };
47
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired. The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
sqlite3TableLock(Parse * pParse,int iDb,int iTab,u8 isWriteLock,const char * zName)58 void sqlite3TableLock(
59 Parse *pParse, /* Parsing context */
60 int iDb, /* Index of the database containing the table to lock */
61 int iTab, /* Root page number of the table to be locked */
62 u8 isWriteLock, /* True for a write lock */
63 const char *zName /* Name of the table to be locked */
64 ){
65 Parse *pToplevel = sqlite3ParseToplevel(pParse);
66 int i;
67 int nBytes;
68 TableLock *p;
69 assert( iDb>=0 );
70
71 for(i=0; i<pToplevel->nTableLock; i++){
72 p = &pToplevel->aTableLock[i];
73 if( p->iDb==iDb && p->iTab==iTab ){
74 p->isWriteLock = (p->isWriteLock || isWriteLock);
75 return;
76 }
77 }
78
79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80 pToplevel->aTableLock =
81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82 if( pToplevel->aTableLock ){
83 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84 p->iDb = iDb;
85 p->iTab = iTab;
86 p->isWriteLock = isWriteLock;
87 p->zName = zName;
88 }else{
89 pToplevel->nTableLock = 0;
90 pToplevel->db->mallocFailed = 1;
91 }
92 }
93
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
codeTableLocks(Parse * pParse)98 static void codeTableLocks(Parse *pParse){
99 int i;
100 Vdbe *pVdbe;
101
102 pVdbe = sqlite3GetVdbe(pParse);
103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104
105 for(i=0; i<pParse->nTableLock; i++){
106 TableLock *p = &pParse->aTableLock[i];
107 int p1 = p->iDb;
108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109 p->zName, P4_STATIC);
110 }
111 }
112 #else
113 #define codeTableLocks(x)
114 #endif
115
116 /*
117 ** This routine is called after a single SQL statement has been
118 ** parsed and a VDBE program to execute that statement has been
119 ** prepared. This routine puts the finishing touches on the
120 ** VDBE program and resets the pParse structure for the next
121 ** parse.
122 **
123 ** Note that if an error occurred, it might be the case that
124 ** no VDBE code was generated.
125 */
sqlite3FinishCoding(Parse * pParse)126 void sqlite3FinishCoding(Parse *pParse){
127 sqlite3 *db;
128 Vdbe *v;
129
130 db = pParse->db;
131 if( db->mallocFailed ) return;
132 if( pParse->nested ) return;
133 if( pParse->nErr ) return;
134
135 /* Begin by generating some termination code at the end of the
136 ** vdbe program
137 */
138 v = sqlite3GetVdbe(pParse);
139 assert( !pParse->isMultiWrite
140 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
141 if( v ){
142 sqlite3VdbeAddOp0(v, OP_Halt);
143
144 /* The cookie mask contains one bit for each database file open.
145 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
146 ** set for each database that is used. Generate code to start a
147 ** transaction on each used database and to verify the schema cookie
148 ** on each used database.
149 */
150 if( pParse->cookieGoto>0 ){
151 yDbMask mask;
152 int iDb;
153 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
154 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
155 if( (mask & pParse->cookieMask)==0 ) continue;
156 sqlite3VdbeUsesBtree(v, iDb);
157 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
158 if( db->init.busy==0 ){
159 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
160 sqlite3VdbeAddOp3(v, OP_VerifyCookie,
161 iDb, pParse->cookieValue[iDb],
162 db->aDb[iDb].pSchema->iGeneration);
163 }
164 }
165 #ifndef SQLITE_OMIT_VIRTUALTABLE
166 {
167 int i;
168 for(i=0; i<pParse->nVtabLock; i++){
169 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
170 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
171 }
172 pParse->nVtabLock = 0;
173 }
174 #endif
175
176 /* Once all the cookies have been verified and transactions opened,
177 ** obtain the required table-locks. This is a no-op unless the
178 ** shared-cache feature is enabled.
179 */
180 codeTableLocks(pParse);
181
182 /* Initialize any AUTOINCREMENT data structures required.
183 */
184 sqlite3AutoincrementBegin(pParse);
185
186 /* Finally, jump back to the beginning of the executable code. */
187 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
188 }
189 }
190
191
192 /* Get the VDBE program ready for execution
193 */
194 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
195 #ifdef SQLITE_DEBUG
196 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
197 sqlite3VdbeTrace(v, trace);
198 #endif
199 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
200 /* A minimum of one cursor is required if autoincrement is used
201 * See ticket [a696379c1f08866] */
202 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
203 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
204 pParse->nTab, pParse->nMaxArg, pParse->explain,
205 pParse->isMultiWrite && pParse->mayAbort);
206 pParse->rc = SQLITE_DONE;
207 pParse->colNamesSet = 0;
208 }else{
209 pParse->rc = SQLITE_ERROR;
210 }
211 pParse->nTab = 0;
212 pParse->nMem = 0;
213 pParse->nSet = 0;
214 pParse->nVar = 0;
215 pParse->cookieMask = 0;
216 pParse->cookieGoto = 0;
217 }
218
219 /*
220 ** Run the parser and code generator recursively in order to generate
221 ** code for the SQL statement given onto the end of the pParse context
222 ** currently under construction. When the parser is run recursively
223 ** this way, the final OP_Halt is not appended and other initialization
224 ** and finalization steps are omitted because those are handling by the
225 ** outermost parser.
226 **
227 ** Not everything is nestable. This facility is designed to permit
228 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
229 ** care if you decide to try to use this routine for some other purposes.
230 */
sqlite3NestedParse(Parse * pParse,const char * zFormat,...)231 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
232 va_list ap;
233 char *zSql;
234 char *zErrMsg = 0;
235 sqlite3 *db = pParse->db;
236 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
237 char saveBuf[SAVE_SZ];
238
239 if( pParse->nErr ) return;
240 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
241 va_start(ap, zFormat);
242 zSql = sqlite3VMPrintf(db, zFormat, ap);
243 va_end(ap);
244 if( zSql==0 ){
245 return; /* A malloc must have failed */
246 }
247 pParse->nested++;
248 memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
249 memset(&pParse->nVar, 0, SAVE_SZ);
250 sqlite3RunParser(pParse, zSql, &zErrMsg);
251 sqlite3DbFree(db, zErrMsg);
252 sqlite3DbFree(db, zSql);
253 memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
254 pParse->nested--;
255 }
256
257 /*
258 ** Locate the in-memory structure that describes a particular database
259 ** table given the name of that table and (optionally) the name of the
260 ** database containing the table. Return NULL if not found.
261 **
262 ** If zDatabase is 0, all databases are searched for the table and the
263 ** first matching table is returned. (No checking for duplicate table
264 ** names is done.) The search order is TEMP first, then MAIN, then any
265 ** auxiliary databases added using the ATTACH command.
266 **
267 ** See also sqlite3LocateTable().
268 */
sqlite3FindTable(sqlite3 * db,const char * zName,const char * zDatabase)269 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
270 Table *p = 0;
271 int i;
272 int nName;
273 assert( zName!=0 );
274 nName = sqlite3Strlen30(zName);
275 /* All mutexes are required for schema access. Make sure we hold them. */
276 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
277 for(i=OMIT_TEMPDB; i<db->nDb; i++){
278 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
279 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
280 assert( sqlite3SchemaMutexHeld(db, j, 0) );
281 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
282 if( p ) break;
283 }
284 return p;
285 }
286
287 /*
288 ** Locate the in-memory structure that describes a particular database
289 ** table given the name of that table and (optionally) the name of the
290 ** database containing the table. Return NULL if not found. Also leave an
291 ** error message in pParse->zErrMsg.
292 **
293 ** The difference between this routine and sqlite3FindTable() is that this
294 ** routine leaves an error message in pParse->zErrMsg where
295 ** sqlite3FindTable() does not.
296 */
sqlite3LocateTable(Parse * pParse,int isView,const char * zName,const char * zDbase)297 Table *sqlite3LocateTable(
298 Parse *pParse, /* context in which to report errors */
299 int isView, /* True if looking for a VIEW rather than a TABLE */
300 const char *zName, /* Name of the table we are looking for */
301 const char *zDbase /* Name of the database. Might be NULL */
302 ){
303 Table *p;
304
305 /* Read the database schema. If an error occurs, leave an error message
306 ** and code in pParse and return NULL. */
307 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
308 return 0;
309 }
310
311 p = sqlite3FindTable(pParse->db, zName, zDbase);
312 if( p==0 ){
313 const char *zMsg = isView ? "no such view" : "no such table";
314 if( zDbase ){
315 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
316 }else{
317 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
318 }
319 pParse->checkSchema = 1;
320 }
321 return p;
322 }
323
324 /*
325 ** Locate the in-memory structure that describes
326 ** a particular index given the name of that index
327 ** and the name of the database that contains the index.
328 ** Return NULL if not found.
329 **
330 ** If zDatabase is 0, all databases are searched for the
331 ** table and the first matching index is returned. (No checking
332 ** for duplicate index names is done.) The search order is
333 ** TEMP first, then MAIN, then any auxiliary databases added
334 ** using the ATTACH command.
335 */
sqlite3FindIndex(sqlite3 * db,const char * zName,const char * zDb)336 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
337 Index *p = 0;
338 int i;
339 int nName = sqlite3Strlen30(zName);
340 /* All mutexes are required for schema access. Make sure we hold them. */
341 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
342 for(i=OMIT_TEMPDB; i<db->nDb; i++){
343 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
344 Schema *pSchema = db->aDb[j].pSchema;
345 assert( pSchema );
346 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
347 assert( sqlite3SchemaMutexHeld(db, j, 0) );
348 p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
349 if( p ) break;
350 }
351 return p;
352 }
353
354 /*
355 ** Reclaim the memory used by an index
356 */
freeIndex(sqlite3 * db,Index * p)357 static void freeIndex(sqlite3 *db, Index *p){
358 #ifndef SQLITE_OMIT_ANALYZE
359 sqlite3DeleteIndexSamples(db, p);
360 #endif
361 sqlite3DbFree(db, p->zColAff);
362 sqlite3DbFree(db, p);
363 }
364
365 /*
366 ** For the index called zIdxName which is found in the database iDb,
367 ** unlike that index from its Table then remove the index from
368 ** the index hash table and free all memory structures associated
369 ** with the index.
370 */
sqlite3UnlinkAndDeleteIndex(sqlite3 * db,int iDb,const char * zIdxName)371 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
372 Index *pIndex;
373 int len;
374 Hash *pHash;
375
376 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
377 pHash = &db->aDb[iDb].pSchema->idxHash;
378 len = sqlite3Strlen30(zIdxName);
379 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
380 if( ALWAYS(pIndex) ){
381 if( pIndex->pTable->pIndex==pIndex ){
382 pIndex->pTable->pIndex = pIndex->pNext;
383 }else{
384 Index *p;
385 /* Justification of ALWAYS(); The index must be on the list of
386 ** indices. */
387 p = pIndex->pTable->pIndex;
388 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
389 if( ALWAYS(p && p->pNext==pIndex) ){
390 p->pNext = pIndex->pNext;
391 }
392 }
393 freeIndex(db, pIndex);
394 }
395 db->flags |= SQLITE_InternChanges;
396 }
397
398 /*
399 ** Erase all schema information from the in-memory hash tables of
400 ** a single database. This routine is called to reclaim memory
401 ** before the database closes. It is also called during a rollback
402 ** if there were schema changes during the transaction or if a
403 ** schema-cookie mismatch occurs.
404 **
405 ** If iDb<0 then reset the internal schema tables for all database
406 ** files. If iDb>=0 then reset the internal schema for only the
407 ** single file indicated.
408 */
sqlite3ResetInternalSchema(sqlite3 * db,int iDb)409 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
410 int i, j;
411 assert( iDb<db->nDb );
412
413 if( iDb>=0 ){
414 /* Case 1: Reset the single schema identified by iDb */
415 Db *pDb = &db->aDb[iDb];
416 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
417 assert( pDb->pSchema!=0 );
418 sqlite3SchemaClear(pDb->pSchema);
419
420 /* If any database other than TEMP is reset, then also reset TEMP
421 ** since TEMP might be holding triggers that reference tables in the
422 ** other database.
423 */
424 if( iDb!=1 ){
425 pDb = &db->aDb[1];
426 assert( pDb->pSchema!=0 );
427 sqlite3SchemaClear(pDb->pSchema);
428 }
429 return;
430 }
431 /* Case 2 (from here to the end): Reset all schemas for all attached
432 ** databases. */
433 assert( iDb<0 );
434 sqlite3BtreeEnterAll(db);
435 for(i=0; i<db->nDb; i++){
436 Db *pDb = &db->aDb[i];
437 if( pDb->pSchema ){
438 sqlite3SchemaClear(pDb->pSchema);
439 }
440 }
441 db->flags &= ~SQLITE_InternChanges;
442 sqlite3VtabUnlockList(db);
443 sqlite3BtreeLeaveAll(db);
444
445 /* If one or more of the auxiliary database files has been closed,
446 ** then remove them from the auxiliary database list. We take the
447 ** opportunity to do this here since we have just deleted all of the
448 ** schema hash tables and therefore do not have to make any changes
449 ** to any of those tables.
450 */
451 for(i=j=2; i<db->nDb; i++){
452 struct Db *pDb = &db->aDb[i];
453 if( pDb->pBt==0 ){
454 sqlite3DbFree(db, pDb->zName);
455 pDb->zName = 0;
456 continue;
457 }
458 if( j<i ){
459 db->aDb[j] = db->aDb[i];
460 }
461 j++;
462 }
463 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
464 db->nDb = j;
465 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
466 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
467 sqlite3DbFree(db, db->aDb);
468 db->aDb = db->aDbStatic;
469 }
470 }
471
472 /*
473 ** This routine is called when a commit occurs.
474 */
sqlite3CommitInternalChanges(sqlite3 * db)475 void sqlite3CommitInternalChanges(sqlite3 *db){
476 db->flags &= ~SQLITE_InternChanges;
477 }
478
479 /*
480 ** Delete memory allocated for the column names of a table or view (the
481 ** Table.aCol[] array).
482 */
sqliteDeleteColumnNames(sqlite3 * db,Table * pTable)483 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
484 int i;
485 Column *pCol;
486 assert( pTable!=0 );
487 if( (pCol = pTable->aCol)!=0 ){
488 for(i=0; i<pTable->nCol; i++, pCol++){
489 sqlite3DbFree(db, pCol->zName);
490 sqlite3ExprDelete(db, pCol->pDflt);
491 sqlite3DbFree(db, pCol->zDflt);
492 sqlite3DbFree(db, pCol->zType);
493 sqlite3DbFree(db, pCol->zColl);
494 }
495 sqlite3DbFree(db, pTable->aCol);
496 }
497 }
498
499 /*
500 ** Remove the memory data structures associated with the given
501 ** Table. No changes are made to disk by this routine.
502 **
503 ** This routine just deletes the data structure. It does not unlink
504 ** the table data structure from the hash table. But it does destroy
505 ** memory structures of the indices and foreign keys associated with
506 ** the table.
507 */
sqlite3DeleteTable(sqlite3 * db,Table * pTable)508 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
509 Index *pIndex, *pNext;
510
511 assert( !pTable || pTable->nRef>0 );
512
513 /* Do not delete the table until the reference count reaches zero. */
514 if( !pTable ) return;
515 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
516
517 /* Delete all indices associated with this table. */
518 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
519 pNext = pIndex->pNext;
520 assert( pIndex->pSchema==pTable->pSchema );
521 if( !db || db->pnBytesFreed==0 ){
522 char *zName = pIndex->zName;
523 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
524 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
525 );
526 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
527 assert( pOld==pIndex || pOld==0 );
528 }
529 freeIndex(db, pIndex);
530 }
531
532 /* Delete any foreign keys attached to this table. */
533 sqlite3FkDelete(db, pTable);
534
535 /* Delete the Table structure itself.
536 */
537 sqliteDeleteColumnNames(db, pTable);
538 sqlite3DbFree(db, pTable->zName);
539 sqlite3DbFree(db, pTable->zColAff);
540 sqlite3SelectDelete(db, pTable->pSelect);
541 #ifndef SQLITE_OMIT_CHECK
542 sqlite3ExprDelete(db, pTable->pCheck);
543 #endif
544 #ifndef SQLITE_OMIT_VIRTUALTABLE
545 sqlite3VtabClear(db, pTable);
546 #endif
547 sqlite3DbFree(db, pTable);
548 }
549
550 /*
551 ** Unlink the given table from the hash tables and the delete the
552 ** table structure with all its indices and foreign keys.
553 */
sqlite3UnlinkAndDeleteTable(sqlite3 * db,int iDb,const char * zTabName)554 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
555 Table *p;
556 Db *pDb;
557
558 assert( db!=0 );
559 assert( iDb>=0 && iDb<db->nDb );
560 assert( zTabName );
561 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
562 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
563 pDb = &db->aDb[iDb];
564 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
565 sqlite3Strlen30(zTabName),0);
566 sqlite3DeleteTable(db, p);
567 db->flags |= SQLITE_InternChanges;
568 }
569
570 /*
571 ** Given a token, return a string that consists of the text of that
572 ** token. Space to hold the returned string
573 ** is obtained from sqliteMalloc() and must be freed by the calling
574 ** function.
575 **
576 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
577 ** surround the body of the token are removed.
578 **
579 ** Tokens are often just pointers into the original SQL text and so
580 ** are not \000 terminated and are not persistent. The returned string
581 ** is \000 terminated and is persistent.
582 */
sqlite3NameFromToken(sqlite3 * db,Token * pName)583 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
584 char *zName;
585 if( pName ){
586 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
587 sqlite3Dequote(zName);
588 }else{
589 zName = 0;
590 }
591 return zName;
592 }
593
594 /*
595 ** Open the sqlite_master table stored in database number iDb for
596 ** writing. The table is opened using cursor 0.
597 */
sqlite3OpenMasterTable(Parse * p,int iDb)598 void sqlite3OpenMasterTable(Parse *p, int iDb){
599 Vdbe *v = sqlite3GetVdbe(p);
600 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
601 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
602 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */
603 if( p->nTab==0 ){
604 p->nTab = 1;
605 }
606 }
607
608 /*
609 ** Parameter zName points to a nul-terminated buffer containing the name
610 ** of a database ("main", "temp" or the name of an attached db). This
611 ** function returns the index of the named database in db->aDb[], or
612 ** -1 if the named db cannot be found.
613 */
sqlite3FindDbName(sqlite3 * db,const char * zName)614 int sqlite3FindDbName(sqlite3 *db, const char *zName){
615 int i = -1; /* Database number */
616 if( zName ){
617 Db *pDb;
618 int n = sqlite3Strlen30(zName);
619 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
620 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
621 0==sqlite3StrICmp(pDb->zName, zName) ){
622 break;
623 }
624 }
625 }
626 return i;
627 }
628
629 /*
630 ** The token *pName contains the name of a database (either "main" or
631 ** "temp" or the name of an attached db). This routine returns the
632 ** index of the named database in db->aDb[], or -1 if the named db
633 ** does not exist.
634 */
sqlite3FindDb(sqlite3 * db,Token * pName)635 int sqlite3FindDb(sqlite3 *db, Token *pName){
636 int i; /* Database number */
637 char *zName; /* Name we are searching for */
638 zName = sqlite3NameFromToken(db, pName);
639 i = sqlite3FindDbName(db, zName);
640 sqlite3DbFree(db, zName);
641 return i;
642 }
643
644 /* The table or view or trigger name is passed to this routine via tokens
645 ** pName1 and pName2. If the table name was fully qualified, for example:
646 **
647 ** CREATE TABLE xxx.yyy (...);
648 **
649 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
650 ** the table name is not fully qualified, i.e.:
651 **
652 ** CREATE TABLE yyy(...);
653 **
654 ** Then pName1 is set to "yyy" and pName2 is "".
655 **
656 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
657 ** pName2) that stores the unqualified table name. The index of the
658 ** database "xxx" is returned.
659 */
sqlite3TwoPartName(Parse * pParse,Token * pName1,Token * pName2,Token ** pUnqual)660 int sqlite3TwoPartName(
661 Parse *pParse, /* Parsing and code generating context */
662 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
663 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
664 Token **pUnqual /* Write the unqualified object name here */
665 ){
666 int iDb; /* Database holding the object */
667 sqlite3 *db = pParse->db;
668
669 if( ALWAYS(pName2!=0) && pName2->n>0 ){
670 if( db->init.busy ) {
671 sqlite3ErrorMsg(pParse, "corrupt database");
672 pParse->nErr++;
673 return -1;
674 }
675 *pUnqual = pName2;
676 iDb = sqlite3FindDb(db, pName1);
677 if( iDb<0 ){
678 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
679 pParse->nErr++;
680 return -1;
681 }
682 }else{
683 assert( db->init.iDb==0 || db->init.busy );
684 iDb = db->init.iDb;
685 *pUnqual = pName1;
686 }
687 return iDb;
688 }
689
690 /*
691 ** This routine is used to check if the UTF-8 string zName is a legal
692 ** unqualified name for a new schema object (table, index, view or
693 ** trigger). All names are legal except those that begin with the string
694 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
695 ** is reserved for internal use.
696 */
sqlite3CheckObjectName(Parse * pParse,const char * zName)697 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
698 if( !pParse->db->init.busy && pParse->nested==0
699 && (pParse->db->flags & SQLITE_WriteSchema)==0
700 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
701 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
702 return SQLITE_ERROR;
703 }
704 return SQLITE_OK;
705 }
706
707 /*
708 ** Begin constructing a new table representation in memory. This is
709 ** the first of several action routines that get called in response
710 ** to a CREATE TABLE statement. In particular, this routine is called
711 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
712 ** flag is true if the table should be stored in the auxiliary database
713 ** file instead of in the main database file. This is normally the case
714 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
715 ** CREATE and TABLE.
716 **
717 ** The new table record is initialized and put in pParse->pNewTable.
718 ** As more of the CREATE TABLE statement is parsed, additional action
719 ** routines will be called to add more information to this record.
720 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
721 ** is called to complete the construction of the new table record.
722 */
sqlite3StartTable(Parse * pParse,Token * pName1,Token * pName2,int isTemp,int isView,int isVirtual,int noErr)723 void sqlite3StartTable(
724 Parse *pParse, /* Parser context */
725 Token *pName1, /* First part of the name of the table or view */
726 Token *pName2, /* Second part of the name of the table or view */
727 int isTemp, /* True if this is a TEMP table */
728 int isView, /* True if this is a VIEW */
729 int isVirtual, /* True if this is a VIRTUAL table */
730 int noErr /* Do nothing if table already exists */
731 ){
732 Table *pTable;
733 char *zName = 0; /* The name of the new table */
734 sqlite3 *db = pParse->db;
735 Vdbe *v;
736 int iDb; /* Database number to create the table in */
737 Token *pName; /* Unqualified name of the table to create */
738
739 /* The table or view name to create is passed to this routine via tokens
740 ** pName1 and pName2. If the table name was fully qualified, for example:
741 **
742 ** CREATE TABLE xxx.yyy (...);
743 **
744 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
745 ** the table name is not fully qualified, i.e.:
746 **
747 ** CREATE TABLE yyy(...);
748 **
749 ** Then pName1 is set to "yyy" and pName2 is "".
750 **
751 ** The call below sets the pName pointer to point at the token (pName1 or
752 ** pName2) that stores the unqualified table name. The variable iDb is
753 ** set to the index of the database that the table or view is to be
754 ** created in.
755 */
756 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
757 if( iDb<0 ) return;
758 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
759 /* If creating a temp table, the name may not be qualified. Unless
760 ** the database name is "temp" anyway. */
761 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
762 return;
763 }
764 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
765
766 pParse->sNameToken = *pName;
767 zName = sqlite3NameFromToken(db, pName);
768 if( zName==0 ) return;
769 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
770 goto begin_table_error;
771 }
772 if( db->init.iDb==1 ) isTemp = 1;
773 #ifndef SQLITE_OMIT_AUTHORIZATION
774 assert( (isTemp & 1)==isTemp );
775 {
776 int code;
777 char *zDb = db->aDb[iDb].zName;
778 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
779 goto begin_table_error;
780 }
781 if( isView ){
782 if( !OMIT_TEMPDB && isTemp ){
783 code = SQLITE_CREATE_TEMP_VIEW;
784 }else{
785 code = SQLITE_CREATE_VIEW;
786 }
787 }else{
788 if( !OMIT_TEMPDB && isTemp ){
789 code = SQLITE_CREATE_TEMP_TABLE;
790 }else{
791 code = SQLITE_CREATE_TABLE;
792 }
793 }
794 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
795 goto begin_table_error;
796 }
797 }
798 #endif
799
800 /* Make sure the new table name does not collide with an existing
801 ** index or table name in the same database. Issue an error message if
802 ** it does. The exception is if the statement being parsed was passed
803 ** to an sqlite3_declare_vtab() call. In that case only the column names
804 ** and types will be used, so there is no need to test for namespace
805 ** collisions.
806 */
807 if( !IN_DECLARE_VTAB ){
808 char *zDb = db->aDb[iDb].zName;
809 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
810 goto begin_table_error;
811 }
812 pTable = sqlite3FindTable(db, zName, zDb);
813 if( pTable ){
814 if( !noErr ){
815 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
816 }else{
817 assert( !db->init.busy );
818 sqlite3CodeVerifySchema(pParse, iDb);
819 }
820 goto begin_table_error;
821 }
822 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
823 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
824 goto begin_table_error;
825 }
826 }
827
828 pTable = sqlite3DbMallocZero(db, sizeof(Table));
829 if( pTable==0 ){
830 db->mallocFailed = 1;
831 pParse->rc = SQLITE_NOMEM;
832 pParse->nErr++;
833 goto begin_table_error;
834 }
835 pTable->zName = zName;
836 pTable->iPKey = -1;
837 pTable->pSchema = db->aDb[iDb].pSchema;
838 pTable->nRef = 1;
839 pTable->nRowEst = 1000000;
840 assert( pParse->pNewTable==0 );
841 pParse->pNewTable = pTable;
842
843 /* If this is the magic sqlite_sequence table used by autoincrement,
844 ** then record a pointer to this table in the main database structure
845 ** so that INSERT can find the table easily.
846 */
847 #ifndef SQLITE_OMIT_AUTOINCREMENT
848 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
849 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
850 pTable->pSchema->pSeqTab = pTable;
851 }
852 #endif
853
854 /* Begin generating the code that will insert the table record into
855 ** the SQLITE_MASTER table. Note in particular that we must go ahead
856 ** and allocate the record number for the table entry now. Before any
857 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
858 ** indices to be created and the table record must come before the
859 ** indices. Hence, the record number for the table must be allocated
860 ** now.
861 */
862 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
863 int j1;
864 int fileFormat;
865 int reg1, reg2, reg3;
866 sqlite3BeginWriteOperation(pParse, 0, iDb);
867
868 #ifndef SQLITE_OMIT_VIRTUALTABLE
869 if( isVirtual ){
870 sqlite3VdbeAddOp0(v, OP_VBegin);
871 }
872 #endif
873
874 /* If the file format and encoding in the database have not been set,
875 ** set them now.
876 */
877 reg1 = pParse->regRowid = ++pParse->nMem;
878 reg2 = pParse->regRoot = ++pParse->nMem;
879 reg3 = ++pParse->nMem;
880 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
881 sqlite3VdbeUsesBtree(v, iDb);
882 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
883 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
884 1 : SQLITE_MAX_FILE_FORMAT;
885 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
886 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
887 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
888 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
889 sqlite3VdbeJumpHere(v, j1);
890
891 /* This just creates a place-holder record in the sqlite_master table.
892 ** The record created does not contain anything yet. It will be replaced
893 ** by the real entry in code generated at sqlite3EndTable().
894 **
895 ** The rowid for the new entry is left in register pParse->regRowid.
896 ** The root page number of the new table is left in reg pParse->regRoot.
897 ** The rowid and root page number values are needed by the code that
898 ** sqlite3EndTable will generate.
899 */
900 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
901 if( isView || isVirtual ){
902 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
903 }else
904 #endif
905 {
906 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
907 }
908 sqlite3OpenMasterTable(pParse, iDb);
909 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
910 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
911 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
912 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
913 sqlite3VdbeAddOp0(v, OP_Close);
914 }
915
916 /* Normal (non-error) return. */
917 return;
918
919 /* If an error occurs, we jump here */
920 begin_table_error:
921 sqlite3DbFree(db, zName);
922 return;
923 }
924
925 /*
926 ** This macro is used to compare two strings in a case-insensitive manner.
927 ** It is slightly faster than calling sqlite3StrICmp() directly, but
928 ** produces larger code.
929 **
930 ** WARNING: This macro is not compatible with the strcmp() family. It
931 ** returns true if the two strings are equal, otherwise false.
932 */
933 #define STRICMP(x, y) (\
934 sqlite3UpperToLower[*(unsigned char *)(x)]== \
935 sqlite3UpperToLower[*(unsigned char *)(y)] \
936 && sqlite3StrICmp((x)+1,(y)+1)==0 )
937
938 /*
939 ** Add a new column to the table currently being constructed.
940 **
941 ** The parser calls this routine once for each column declaration
942 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
943 ** first to get things going. Then this routine is called for each
944 ** column.
945 */
sqlite3AddColumn(Parse * pParse,Token * pName)946 void sqlite3AddColumn(Parse *pParse, Token *pName){
947 Table *p;
948 int i;
949 char *z;
950 Column *pCol;
951 sqlite3 *db = pParse->db;
952 if( (p = pParse->pNewTable)==0 ) return;
953 #if SQLITE_MAX_COLUMN
954 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
955 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
956 return;
957 }
958 #endif
959 z = sqlite3NameFromToken(db, pName);
960 if( z==0 ) return;
961 for(i=0; i<p->nCol; i++){
962 if( STRICMP(z, p->aCol[i].zName) ){
963 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
964 sqlite3DbFree(db, z);
965 return;
966 }
967 }
968 if( (p->nCol & 0x7)==0 ){
969 Column *aNew;
970 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
971 if( aNew==0 ){
972 sqlite3DbFree(db, z);
973 return;
974 }
975 p->aCol = aNew;
976 }
977 pCol = &p->aCol[p->nCol];
978 memset(pCol, 0, sizeof(p->aCol[0]));
979 pCol->zName = z;
980
981 /* If there is no type specified, columns have the default affinity
982 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
983 ** be called next to set pCol->affinity correctly.
984 */
985 pCol->affinity = SQLITE_AFF_NONE;
986 p->nCol++;
987 }
988
989 /*
990 ** This routine is called by the parser while in the middle of
991 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
992 ** been seen on a column. This routine sets the notNull flag on
993 ** the column currently under construction.
994 */
sqlite3AddNotNull(Parse * pParse,int onError)995 void sqlite3AddNotNull(Parse *pParse, int onError){
996 Table *p;
997 p = pParse->pNewTable;
998 if( p==0 || NEVER(p->nCol<1) ) return;
999 p->aCol[p->nCol-1].notNull = (u8)onError;
1000 }
1001
1002 /*
1003 ** Scan the column type name zType (length nType) and return the
1004 ** associated affinity type.
1005 **
1006 ** This routine does a case-independent search of zType for the
1007 ** substrings in the following table. If one of the substrings is
1008 ** found, the corresponding affinity is returned. If zType contains
1009 ** more than one of the substrings, entries toward the top of
1010 ** the table take priority. For example, if zType is 'BLOBINT',
1011 ** SQLITE_AFF_INTEGER is returned.
1012 **
1013 ** Substring | Affinity
1014 ** --------------------------------
1015 ** 'INT' | SQLITE_AFF_INTEGER
1016 ** 'CHAR' | SQLITE_AFF_TEXT
1017 ** 'CLOB' | SQLITE_AFF_TEXT
1018 ** 'TEXT' | SQLITE_AFF_TEXT
1019 ** 'BLOB' | SQLITE_AFF_NONE
1020 ** 'REAL' | SQLITE_AFF_REAL
1021 ** 'FLOA' | SQLITE_AFF_REAL
1022 ** 'DOUB' | SQLITE_AFF_REAL
1023 **
1024 ** If none of the substrings in the above table are found,
1025 ** SQLITE_AFF_NUMERIC is returned.
1026 */
sqlite3AffinityType(const char * zIn)1027 char sqlite3AffinityType(const char *zIn){
1028 u32 h = 0;
1029 char aff = SQLITE_AFF_NUMERIC;
1030
1031 if( zIn ) while( zIn[0] ){
1032 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1033 zIn++;
1034 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1035 aff = SQLITE_AFF_TEXT;
1036 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1037 aff = SQLITE_AFF_TEXT;
1038 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1039 aff = SQLITE_AFF_TEXT;
1040 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1041 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1042 aff = SQLITE_AFF_NONE;
1043 #ifndef SQLITE_OMIT_FLOATING_POINT
1044 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1045 && aff==SQLITE_AFF_NUMERIC ){
1046 aff = SQLITE_AFF_REAL;
1047 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1048 && aff==SQLITE_AFF_NUMERIC ){
1049 aff = SQLITE_AFF_REAL;
1050 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1051 && aff==SQLITE_AFF_NUMERIC ){
1052 aff = SQLITE_AFF_REAL;
1053 #endif
1054 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1055 aff = SQLITE_AFF_INTEGER;
1056 break;
1057 }
1058 }
1059
1060 return aff;
1061 }
1062
1063 /*
1064 ** This routine is called by the parser while in the middle of
1065 ** parsing a CREATE TABLE statement. The pFirst token is the first
1066 ** token in the sequence of tokens that describe the type of the
1067 ** column currently under construction. pLast is the last token
1068 ** in the sequence. Use this information to construct a string
1069 ** that contains the typename of the column and store that string
1070 ** in zType.
1071 */
sqlite3AddColumnType(Parse * pParse,Token * pType)1072 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1073 Table *p;
1074 Column *pCol;
1075
1076 p = pParse->pNewTable;
1077 if( p==0 || NEVER(p->nCol<1) ) return;
1078 pCol = &p->aCol[p->nCol-1];
1079 assert( pCol->zType==0 );
1080 pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1081 pCol->affinity = sqlite3AffinityType(pCol->zType);
1082 }
1083
1084 /*
1085 ** The expression is the default value for the most recently added column
1086 ** of the table currently under construction.
1087 **
1088 ** Default value expressions must be constant. Raise an exception if this
1089 ** is not the case.
1090 **
1091 ** This routine is called by the parser while in the middle of
1092 ** parsing a CREATE TABLE statement.
1093 */
sqlite3AddDefaultValue(Parse * pParse,ExprSpan * pSpan)1094 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1095 Table *p;
1096 Column *pCol;
1097 sqlite3 *db = pParse->db;
1098 p = pParse->pNewTable;
1099 if( p!=0 ){
1100 pCol = &(p->aCol[p->nCol-1]);
1101 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
1102 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1103 pCol->zName);
1104 }else{
1105 /* A copy of pExpr is used instead of the original, as pExpr contains
1106 ** tokens that point to volatile memory. The 'span' of the expression
1107 ** is required by pragma table_info.
1108 */
1109 sqlite3ExprDelete(db, pCol->pDflt);
1110 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1111 sqlite3DbFree(db, pCol->zDflt);
1112 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1113 (int)(pSpan->zEnd - pSpan->zStart));
1114 }
1115 }
1116 sqlite3ExprDelete(db, pSpan->pExpr);
1117 }
1118
1119 /*
1120 ** Designate the PRIMARY KEY for the table. pList is a list of names
1121 ** of columns that form the primary key. If pList is NULL, then the
1122 ** most recently added column of the table is the primary key.
1123 **
1124 ** A table can have at most one primary key. If the table already has
1125 ** a primary key (and this is the second primary key) then create an
1126 ** error.
1127 **
1128 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1129 ** then we will try to use that column as the rowid. Set the Table.iPKey
1130 ** field of the table under construction to be the index of the
1131 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1132 ** no INTEGER PRIMARY KEY.
1133 **
1134 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1135 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1136 */
sqlite3AddPrimaryKey(Parse * pParse,ExprList * pList,int onError,int autoInc,int sortOrder)1137 void sqlite3AddPrimaryKey(
1138 Parse *pParse, /* Parsing context */
1139 ExprList *pList, /* List of field names to be indexed */
1140 int onError, /* What to do with a uniqueness conflict */
1141 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1142 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1143 ){
1144 Table *pTab = pParse->pNewTable;
1145 char *zType = 0;
1146 int iCol = -1, i;
1147 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1148 if( pTab->tabFlags & TF_HasPrimaryKey ){
1149 sqlite3ErrorMsg(pParse,
1150 "table \"%s\" has more than one primary key", pTab->zName);
1151 goto primary_key_exit;
1152 }
1153 pTab->tabFlags |= TF_HasPrimaryKey;
1154 if( pList==0 ){
1155 iCol = pTab->nCol - 1;
1156 pTab->aCol[iCol].isPrimKey = 1;
1157 }else{
1158 for(i=0; i<pList->nExpr; i++){
1159 for(iCol=0; iCol<pTab->nCol; iCol++){
1160 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1161 break;
1162 }
1163 }
1164 if( iCol<pTab->nCol ){
1165 pTab->aCol[iCol].isPrimKey = 1;
1166 }
1167 }
1168 if( pList->nExpr>1 ) iCol = -1;
1169 }
1170 if( iCol>=0 && iCol<pTab->nCol ){
1171 zType = pTab->aCol[iCol].zType;
1172 }
1173 if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1174 && sortOrder==SQLITE_SO_ASC ){
1175 pTab->iPKey = iCol;
1176 pTab->keyConf = (u8)onError;
1177 assert( autoInc==0 || autoInc==1 );
1178 pTab->tabFlags |= autoInc*TF_Autoincrement;
1179 }else if( autoInc ){
1180 #ifndef SQLITE_OMIT_AUTOINCREMENT
1181 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1182 "INTEGER PRIMARY KEY");
1183 #endif
1184 }else{
1185 Index *p;
1186 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1187 if( p ){
1188 p->autoIndex = 2;
1189 }
1190 pList = 0;
1191 }
1192
1193 primary_key_exit:
1194 sqlite3ExprListDelete(pParse->db, pList);
1195 return;
1196 }
1197
1198 /*
1199 ** Add a new CHECK constraint to the table currently under construction.
1200 */
sqlite3AddCheckConstraint(Parse * pParse,Expr * pCheckExpr)1201 void sqlite3AddCheckConstraint(
1202 Parse *pParse, /* Parsing context */
1203 Expr *pCheckExpr /* The check expression */
1204 ){
1205 sqlite3 *db = pParse->db;
1206 #ifndef SQLITE_OMIT_CHECK
1207 Table *pTab = pParse->pNewTable;
1208 if( pTab && !IN_DECLARE_VTAB ){
1209 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
1210 }else
1211 #endif
1212 {
1213 sqlite3ExprDelete(db, pCheckExpr);
1214 }
1215 }
1216
1217 /*
1218 ** Set the collation function of the most recently parsed table column
1219 ** to the CollSeq given.
1220 */
sqlite3AddCollateType(Parse * pParse,Token * pToken)1221 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1222 Table *p;
1223 int i;
1224 char *zColl; /* Dequoted name of collation sequence */
1225 sqlite3 *db;
1226
1227 if( (p = pParse->pNewTable)==0 ) return;
1228 i = p->nCol-1;
1229 db = pParse->db;
1230 zColl = sqlite3NameFromToken(db, pToken);
1231 if( !zColl ) return;
1232
1233 if( sqlite3LocateCollSeq(pParse, zColl) ){
1234 Index *pIdx;
1235 p->aCol[i].zColl = zColl;
1236
1237 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1238 ** then an index may have been created on this column before the
1239 ** collation type was added. Correct this if it is the case.
1240 */
1241 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1242 assert( pIdx->nColumn==1 );
1243 if( pIdx->aiColumn[0]==i ){
1244 pIdx->azColl[0] = p->aCol[i].zColl;
1245 }
1246 }
1247 }else{
1248 sqlite3DbFree(db, zColl);
1249 }
1250 }
1251
1252 /*
1253 ** This function returns the collation sequence for database native text
1254 ** encoding identified by the string zName, length nName.
1255 **
1256 ** If the requested collation sequence is not available, or not available
1257 ** in the database native encoding, the collation factory is invoked to
1258 ** request it. If the collation factory does not supply such a sequence,
1259 ** and the sequence is available in another text encoding, then that is
1260 ** returned instead.
1261 **
1262 ** If no versions of the requested collations sequence are available, or
1263 ** another error occurs, NULL is returned and an error message written into
1264 ** pParse.
1265 **
1266 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1267 ** invokes the collation factory if the named collation cannot be found
1268 ** and generates an error message.
1269 **
1270 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1271 */
sqlite3LocateCollSeq(Parse * pParse,const char * zName)1272 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1273 sqlite3 *db = pParse->db;
1274 u8 enc = ENC(db);
1275 u8 initbusy = db->init.busy;
1276 CollSeq *pColl;
1277
1278 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1279 if( !initbusy && (!pColl || !pColl->xCmp) ){
1280 pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
1281 if( !pColl ){
1282 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
1283 }
1284 }
1285
1286 return pColl;
1287 }
1288
1289
1290 /*
1291 ** Generate code that will increment the schema cookie.
1292 **
1293 ** The schema cookie is used to determine when the schema for the
1294 ** database changes. After each schema change, the cookie value
1295 ** changes. When a process first reads the schema it records the
1296 ** cookie. Thereafter, whenever it goes to access the database,
1297 ** it checks the cookie to make sure the schema has not changed
1298 ** since it was last read.
1299 **
1300 ** This plan is not completely bullet-proof. It is possible for
1301 ** the schema to change multiple times and for the cookie to be
1302 ** set back to prior value. But schema changes are infrequent
1303 ** and the probability of hitting the same cookie value is only
1304 ** 1 chance in 2^32. So we're safe enough.
1305 */
sqlite3ChangeCookie(Parse * pParse,int iDb)1306 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1307 int r1 = sqlite3GetTempReg(pParse);
1308 sqlite3 *db = pParse->db;
1309 Vdbe *v = pParse->pVdbe;
1310 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1311 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1312 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1313 sqlite3ReleaseTempReg(pParse, r1);
1314 }
1315
1316 /*
1317 ** Measure the number of characters needed to output the given
1318 ** identifier. The number returned includes any quotes used
1319 ** but does not include the null terminator.
1320 **
1321 ** The estimate is conservative. It might be larger that what is
1322 ** really needed.
1323 */
identLength(const char * z)1324 static int identLength(const char *z){
1325 int n;
1326 for(n=0; *z; n++, z++){
1327 if( *z=='"' ){ n++; }
1328 }
1329 return n + 2;
1330 }
1331
1332 /*
1333 ** The first parameter is a pointer to an output buffer. The second
1334 ** parameter is a pointer to an integer that contains the offset at
1335 ** which to write into the output buffer. This function copies the
1336 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1337 ** to the specified offset in the buffer and updates *pIdx to refer
1338 ** to the first byte after the last byte written before returning.
1339 **
1340 ** If the string zSignedIdent consists entirely of alpha-numeric
1341 ** characters, does not begin with a digit and is not an SQL keyword,
1342 ** then it is copied to the output buffer exactly as it is. Otherwise,
1343 ** it is quoted using double-quotes.
1344 */
identPut(char * z,int * pIdx,char * zSignedIdent)1345 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1346 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1347 int i, j, needQuote;
1348 i = *pIdx;
1349
1350 for(j=0; zIdent[j]; j++){
1351 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1352 }
1353 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1354 if( !needQuote ){
1355 needQuote = zIdent[j];
1356 }
1357
1358 if( needQuote ) z[i++] = '"';
1359 for(j=0; zIdent[j]; j++){
1360 z[i++] = zIdent[j];
1361 if( zIdent[j]=='"' ) z[i++] = '"';
1362 }
1363 if( needQuote ) z[i++] = '"';
1364 z[i] = 0;
1365 *pIdx = i;
1366 }
1367
1368 /*
1369 ** Generate a CREATE TABLE statement appropriate for the given
1370 ** table. Memory to hold the text of the statement is obtained
1371 ** from sqliteMalloc() and must be freed by the calling function.
1372 */
createTableStmt(sqlite3 * db,Table * p)1373 static char *createTableStmt(sqlite3 *db, Table *p){
1374 int i, k, n;
1375 char *zStmt;
1376 char *zSep, *zSep2, *zEnd;
1377 Column *pCol;
1378 n = 0;
1379 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1380 n += identLength(pCol->zName) + 5;
1381 }
1382 n += identLength(p->zName);
1383 if( n<50 ){
1384 zSep = "";
1385 zSep2 = ",";
1386 zEnd = ")";
1387 }else{
1388 zSep = "\n ";
1389 zSep2 = ",\n ";
1390 zEnd = "\n)";
1391 }
1392 n += 35 + 6*p->nCol;
1393 zStmt = sqlite3DbMallocRaw(0, n);
1394 if( zStmt==0 ){
1395 db->mallocFailed = 1;
1396 return 0;
1397 }
1398 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1399 k = sqlite3Strlen30(zStmt);
1400 identPut(zStmt, &k, p->zName);
1401 zStmt[k++] = '(';
1402 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1403 static const char * const azType[] = {
1404 /* SQLITE_AFF_TEXT */ " TEXT",
1405 /* SQLITE_AFF_NONE */ "",
1406 /* SQLITE_AFF_NUMERIC */ " NUM",
1407 /* SQLITE_AFF_INTEGER */ " INT",
1408 /* SQLITE_AFF_REAL */ " REAL"
1409 };
1410 int len;
1411 const char *zType;
1412
1413 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1414 k += sqlite3Strlen30(&zStmt[k]);
1415 zSep = zSep2;
1416 identPut(zStmt, &k, pCol->zName);
1417 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
1418 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
1419 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1420 testcase( pCol->affinity==SQLITE_AFF_NONE );
1421 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1422 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1423 testcase( pCol->affinity==SQLITE_AFF_REAL );
1424
1425 zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
1426 len = sqlite3Strlen30(zType);
1427 assert( pCol->affinity==SQLITE_AFF_NONE
1428 || pCol->affinity==sqlite3AffinityType(zType) );
1429 memcpy(&zStmt[k], zType, len);
1430 k += len;
1431 assert( k<=n );
1432 }
1433 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1434 return zStmt;
1435 }
1436
1437 /*
1438 ** This routine is called to report the final ")" that terminates
1439 ** a CREATE TABLE statement.
1440 **
1441 ** The table structure that other action routines have been building
1442 ** is added to the internal hash tables, assuming no errors have
1443 ** occurred.
1444 **
1445 ** An entry for the table is made in the master table on disk, unless
1446 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1447 ** it means we are reading the sqlite_master table because we just
1448 ** connected to the database or because the sqlite_master table has
1449 ** recently changed, so the entry for this table already exists in
1450 ** the sqlite_master table. We do not want to create it again.
1451 **
1452 ** If the pSelect argument is not NULL, it means that this routine
1453 ** was called to create a table generated from a
1454 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1455 ** the new table will match the result set of the SELECT.
1456 */
sqlite3EndTable(Parse * pParse,Token * pCons,Token * pEnd,Select * pSelect)1457 void sqlite3EndTable(
1458 Parse *pParse, /* Parse context */
1459 Token *pCons, /* The ',' token after the last column defn. */
1460 Token *pEnd, /* The final ')' token in the CREATE TABLE */
1461 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1462 ){
1463 Table *p;
1464 sqlite3 *db = pParse->db;
1465 int iDb;
1466
1467 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
1468 return;
1469 }
1470 p = pParse->pNewTable;
1471 if( p==0 ) return;
1472
1473 assert( !db->init.busy || !pSelect );
1474
1475 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1476
1477 #ifndef SQLITE_OMIT_CHECK
1478 /* Resolve names in all CHECK constraint expressions.
1479 */
1480 if( p->pCheck ){
1481 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
1482 NameContext sNC; /* Name context for pParse->pNewTable */
1483
1484 memset(&sNC, 0, sizeof(sNC));
1485 memset(&sSrc, 0, sizeof(sSrc));
1486 sSrc.nSrc = 1;
1487 sSrc.a[0].zName = p->zName;
1488 sSrc.a[0].pTab = p;
1489 sSrc.a[0].iCursor = -1;
1490 sNC.pParse = pParse;
1491 sNC.pSrcList = &sSrc;
1492 sNC.isCheck = 1;
1493 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
1494 return;
1495 }
1496 }
1497 #endif /* !defined(SQLITE_OMIT_CHECK) */
1498
1499 /* If the db->init.busy is 1 it means we are reading the SQL off the
1500 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1501 ** So do not write to the disk again. Extract the root page number
1502 ** for the table from the db->init.newTnum field. (The page number
1503 ** should have been put there by the sqliteOpenCb routine.)
1504 */
1505 if( db->init.busy ){
1506 p->tnum = db->init.newTnum;
1507 }
1508
1509 /* If not initializing, then create a record for the new table
1510 ** in the SQLITE_MASTER table of the database.
1511 **
1512 ** If this is a TEMPORARY table, write the entry into the auxiliary
1513 ** file instead of into the main database file.
1514 */
1515 if( !db->init.busy ){
1516 int n;
1517 Vdbe *v;
1518 char *zType; /* "view" or "table" */
1519 char *zType2; /* "VIEW" or "TABLE" */
1520 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1521
1522 v = sqlite3GetVdbe(pParse);
1523 if( NEVER(v==0) ) return;
1524
1525 sqlite3VdbeAddOp1(v, OP_Close, 0);
1526
1527 /*
1528 ** Initialize zType for the new view or table.
1529 */
1530 if( p->pSelect==0 ){
1531 /* A regular table */
1532 zType = "table";
1533 zType2 = "TABLE";
1534 #ifndef SQLITE_OMIT_VIEW
1535 }else{
1536 /* A view */
1537 zType = "view";
1538 zType2 = "VIEW";
1539 #endif
1540 }
1541
1542 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1543 ** statement to populate the new table. The root-page number for the
1544 ** new table is in register pParse->regRoot.
1545 **
1546 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1547 ** suitable state to query for the column names and types to be used
1548 ** by the new table.
1549 **
1550 ** A shared-cache write-lock is not required to write to the new table,
1551 ** as a schema-lock must have already been obtained to create it. Since
1552 ** a schema-lock excludes all other database users, the write-lock would
1553 ** be redundant.
1554 */
1555 if( pSelect ){
1556 SelectDest dest;
1557 Table *pSelTab;
1558
1559 assert(pParse->nTab==1);
1560 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1561 sqlite3VdbeChangeP5(v, 1);
1562 pParse->nTab = 2;
1563 sqlite3SelectDestInit(&dest, SRT_Table, 1);
1564 sqlite3Select(pParse, pSelect, &dest);
1565 sqlite3VdbeAddOp1(v, OP_Close, 1);
1566 if( pParse->nErr==0 ){
1567 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1568 if( pSelTab==0 ) return;
1569 assert( p->aCol==0 );
1570 p->nCol = pSelTab->nCol;
1571 p->aCol = pSelTab->aCol;
1572 pSelTab->nCol = 0;
1573 pSelTab->aCol = 0;
1574 sqlite3DeleteTable(db, pSelTab);
1575 }
1576 }
1577
1578 /* Compute the complete text of the CREATE statement */
1579 if( pSelect ){
1580 zStmt = createTableStmt(db, p);
1581 }else{
1582 n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
1583 zStmt = sqlite3MPrintf(db,
1584 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1585 );
1586 }
1587
1588 /* A slot for the record has already been allocated in the
1589 ** SQLITE_MASTER table. We just need to update that slot with all
1590 ** the information we've collected.
1591 */
1592 sqlite3NestedParse(pParse,
1593 "UPDATE %Q.%s "
1594 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1595 "WHERE rowid=#%d",
1596 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1597 zType,
1598 p->zName,
1599 p->zName,
1600 pParse->regRoot,
1601 zStmt,
1602 pParse->regRowid
1603 );
1604 sqlite3DbFree(db, zStmt);
1605 sqlite3ChangeCookie(pParse, iDb);
1606
1607 #ifndef SQLITE_OMIT_AUTOINCREMENT
1608 /* Check to see if we need to create an sqlite_sequence table for
1609 ** keeping track of autoincrement keys.
1610 */
1611 if( p->tabFlags & TF_Autoincrement ){
1612 Db *pDb = &db->aDb[iDb];
1613 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1614 if( pDb->pSchema->pSeqTab==0 ){
1615 sqlite3NestedParse(pParse,
1616 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1617 pDb->zName
1618 );
1619 }
1620 }
1621 #endif
1622
1623 /* Reparse everything to update our internal data structures */
1624 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
1625 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
1626 }
1627
1628
1629 /* Add the table to the in-memory representation of the database.
1630 */
1631 if( db->init.busy ){
1632 Table *pOld;
1633 Schema *pSchema = p->pSchema;
1634 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1635 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
1636 sqlite3Strlen30(p->zName),p);
1637 if( pOld ){
1638 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
1639 db->mallocFailed = 1;
1640 return;
1641 }
1642 pParse->pNewTable = 0;
1643 db->nTable++;
1644 db->flags |= SQLITE_InternChanges;
1645
1646 #ifndef SQLITE_OMIT_ALTERTABLE
1647 if( !p->pSelect ){
1648 const char *zName = (const char *)pParse->sNameToken.z;
1649 int nName;
1650 assert( !pSelect && pCons && pEnd );
1651 if( pCons->z==0 ){
1652 pCons = pEnd;
1653 }
1654 nName = (int)((const char *)pCons->z - zName);
1655 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1656 }
1657 #endif
1658 }
1659 }
1660
1661 #ifndef SQLITE_OMIT_VIEW
1662 /*
1663 ** The parser calls this routine in order to create a new VIEW
1664 */
sqlite3CreateView(Parse * pParse,Token * pBegin,Token * pName1,Token * pName2,Select * pSelect,int isTemp,int noErr)1665 void sqlite3CreateView(
1666 Parse *pParse, /* The parsing context */
1667 Token *pBegin, /* The CREATE token that begins the statement */
1668 Token *pName1, /* The token that holds the name of the view */
1669 Token *pName2, /* The token that holds the name of the view */
1670 Select *pSelect, /* A SELECT statement that will become the new view */
1671 int isTemp, /* TRUE for a TEMPORARY view */
1672 int noErr /* Suppress error messages if VIEW already exists */
1673 ){
1674 Table *p;
1675 int n;
1676 const char *z;
1677 Token sEnd;
1678 DbFixer sFix;
1679 Token *pName;
1680 int iDb;
1681 sqlite3 *db = pParse->db;
1682
1683 if( pParse->nVar>0 ){
1684 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1685 sqlite3SelectDelete(db, pSelect);
1686 return;
1687 }
1688 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1689 p = pParse->pNewTable;
1690 if( p==0 || pParse->nErr ){
1691 sqlite3SelectDelete(db, pSelect);
1692 return;
1693 }
1694 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1695 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1696 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1697 && sqlite3FixSelect(&sFix, pSelect)
1698 ){
1699 sqlite3SelectDelete(db, pSelect);
1700 return;
1701 }
1702
1703 /* Make a copy of the entire SELECT statement that defines the view.
1704 ** This will force all the Expr.token.z values to be dynamically
1705 ** allocated rather than point to the input string - which means that
1706 ** they will persist after the current sqlite3_exec() call returns.
1707 */
1708 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1709 sqlite3SelectDelete(db, pSelect);
1710 if( db->mallocFailed ){
1711 return;
1712 }
1713 if( !db->init.busy ){
1714 sqlite3ViewGetColumnNames(pParse, p);
1715 }
1716
1717 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
1718 ** the end.
1719 */
1720 sEnd = pParse->sLastToken;
1721 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
1722 sEnd.z += sEnd.n;
1723 }
1724 sEnd.n = 0;
1725 n = (int)(sEnd.z - pBegin->z);
1726 z = pBegin->z;
1727 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
1728 sEnd.z = &z[n-1];
1729 sEnd.n = 1;
1730
1731 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1732 sqlite3EndTable(pParse, 0, &sEnd, 0);
1733 return;
1734 }
1735 #endif /* SQLITE_OMIT_VIEW */
1736
1737 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1738 /*
1739 ** The Table structure pTable is really a VIEW. Fill in the names of
1740 ** the columns of the view in the pTable structure. Return the number
1741 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
1742 */
sqlite3ViewGetColumnNames(Parse * pParse,Table * pTable)1743 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1744 Table *pSelTab; /* A fake table from which we get the result set */
1745 Select *pSel; /* Copy of the SELECT that implements the view */
1746 int nErr = 0; /* Number of errors encountered */
1747 int n; /* Temporarily holds the number of cursors assigned */
1748 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
1749 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1750
1751 assert( pTable );
1752
1753 #ifndef SQLITE_OMIT_VIRTUALTABLE
1754 if( sqlite3VtabCallConnect(pParse, pTable) ){
1755 return SQLITE_ERROR;
1756 }
1757 if( IsVirtual(pTable) ) return 0;
1758 #endif
1759
1760 #ifndef SQLITE_OMIT_VIEW
1761 /* A positive nCol means the columns names for this view are
1762 ** already known.
1763 */
1764 if( pTable->nCol>0 ) return 0;
1765
1766 /* A negative nCol is a special marker meaning that we are currently
1767 ** trying to compute the column names. If we enter this routine with
1768 ** a negative nCol, it means two or more views form a loop, like this:
1769 **
1770 ** CREATE VIEW one AS SELECT * FROM two;
1771 ** CREATE VIEW two AS SELECT * FROM one;
1772 **
1773 ** Actually, the error above is now caught prior to reaching this point.
1774 ** But the following test is still important as it does come up
1775 ** in the following:
1776 **
1777 ** CREATE TABLE main.ex1(a);
1778 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
1779 ** SELECT * FROM temp.ex1;
1780 */
1781 if( pTable->nCol<0 ){
1782 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1783 return 1;
1784 }
1785 assert( pTable->nCol>=0 );
1786
1787 /* If we get this far, it means we need to compute the table names.
1788 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1789 ** "*" elements in the results set of the view and will assign cursors
1790 ** to the elements of the FROM clause. But we do not want these changes
1791 ** to be permanent. So the computation is done on a copy of the SELECT
1792 ** statement that defines the view.
1793 */
1794 assert( pTable->pSelect );
1795 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
1796 if( pSel ){
1797 u8 enableLookaside = db->lookaside.bEnabled;
1798 n = pParse->nTab;
1799 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1800 pTable->nCol = -1;
1801 db->lookaside.bEnabled = 0;
1802 #ifndef SQLITE_OMIT_AUTHORIZATION
1803 xAuth = db->xAuth;
1804 db->xAuth = 0;
1805 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1806 db->xAuth = xAuth;
1807 #else
1808 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1809 #endif
1810 db->lookaside.bEnabled = enableLookaside;
1811 pParse->nTab = n;
1812 if( pSelTab ){
1813 assert( pTable->aCol==0 );
1814 pTable->nCol = pSelTab->nCol;
1815 pTable->aCol = pSelTab->aCol;
1816 pSelTab->nCol = 0;
1817 pSelTab->aCol = 0;
1818 sqlite3DeleteTable(db, pSelTab);
1819 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
1820 pTable->pSchema->flags |= DB_UnresetViews;
1821 }else{
1822 pTable->nCol = 0;
1823 nErr++;
1824 }
1825 sqlite3SelectDelete(db, pSel);
1826 } else {
1827 nErr++;
1828 }
1829 #endif /* SQLITE_OMIT_VIEW */
1830 return nErr;
1831 }
1832 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1833
1834 #ifndef SQLITE_OMIT_VIEW
1835 /*
1836 ** Clear the column names from every VIEW in database idx.
1837 */
sqliteViewResetAll(sqlite3 * db,int idx)1838 static void sqliteViewResetAll(sqlite3 *db, int idx){
1839 HashElem *i;
1840 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
1841 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1842 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1843 Table *pTab = sqliteHashData(i);
1844 if( pTab->pSelect ){
1845 sqliteDeleteColumnNames(db, pTab);
1846 pTab->aCol = 0;
1847 pTab->nCol = 0;
1848 }
1849 }
1850 DbClearProperty(db, idx, DB_UnresetViews);
1851 }
1852 #else
1853 # define sqliteViewResetAll(A,B)
1854 #endif /* SQLITE_OMIT_VIEW */
1855
1856 /*
1857 ** This function is called by the VDBE to adjust the internal schema
1858 ** used by SQLite when the btree layer moves a table root page. The
1859 ** root-page of a table or index in database iDb has changed from iFrom
1860 ** to iTo.
1861 **
1862 ** Ticket #1728: The symbol table might still contain information
1863 ** on tables and/or indices that are the process of being deleted.
1864 ** If you are unlucky, one of those deleted indices or tables might
1865 ** have the same rootpage number as the real table or index that is
1866 ** being moved. So we cannot stop searching after the first match
1867 ** because the first match might be for one of the deleted indices
1868 ** or tables and not the table/index that is actually being moved.
1869 ** We must continue looping until all tables and indices with
1870 ** rootpage==iFrom have been converted to have a rootpage of iTo
1871 ** in order to be certain that we got the right one.
1872 */
1873 #ifndef SQLITE_OMIT_AUTOVACUUM
sqlite3RootPageMoved(sqlite3 * db,int iDb,int iFrom,int iTo)1874 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
1875 HashElem *pElem;
1876 Hash *pHash;
1877 Db *pDb;
1878
1879 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1880 pDb = &db->aDb[iDb];
1881 pHash = &pDb->pSchema->tblHash;
1882 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1883 Table *pTab = sqliteHashData(pElem);
1884 if( pTab->tnum==iFrom ){
1885 pTab->tnum = iTo;
1886 }
1887 }
1888 pHash = &pDb->pSchema->idxHash;
1889 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1890 Index *pIdx = sqliteHashData(pElem);
1891 if( pIdx->tnum==iFrom ){
1892 pIdx->tnum = iTo;
1893 }
1894 }
1895 }
1896 #endif
1897
1898 /*
1899 ** Write code to erase the table with root-page iTable from database iDb.
1900 ** Also write code to modify the sqlite_master table and internal schema
1901 ** if a root-page of another table is moved by the btree-layer whilst
1902 ** erasing iTable (this can happen with an auto-vacuum database).
1903 */
destroyRootPage(Parse * pParse,int iTable,int iDb)1904 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1905 Vdbe *v = sqlite3GetVdbe(pParse);
1906 int r1 = sqlite3GetTempReg(pParse);
1907 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1908 sqlite3MayAbort(pParse);
1909 #ifndef SQLITE_OMIT_AUTOVACUUM
1910 /* OP_Destroy stores an in integer r1. If this integer
1911 ** is non-zero, then it is the root page number of a table moved to
1912 ** location iTable. The following code modifies the sqlite_master table to
1913 ** reflect this.
1914 **
1915 ** The "#NNN" in the SQL is a special constant that means whatever value
1916 ** is in register NNN. See grammar rules associated with the TK_REGISTER
1917 ** token for additional information.
1918 */
1919 sqlite3NestedParse(pParse,
1920 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1921 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1922 #endif
1923 sqlite3ReleaseTempReg(pParse, r1);
1924 }
1925
1926 /*
1927 ** Write VDBE code to erase table pTab and all associated indices on disk.
1928 ** Code to update the sqlite_master tables and internal schema definitions
1929 ** in case a root-page belonging to another table is moved by the btree layer
1930 ** is also added (this can happen with an auto-vacuum database).
1931 */
destroyTable(Parse * pParse,Table * pTab)1932 static void destroyTable(Parse *pParse, Table *pTab){
1933 #ifdef SQLITE_OMIT_AUTOVACUUM
1934 Index *pIdx;
1935 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1936 destroyRootPage(pParse, pTab->tnum, iDb);
1937 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1938 destroyRootPage(pParse, pIdx->tnum, iDb);
1939 }
1940 #else
1941 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1942 ** is not defined), then it is important to call OP_Destroy on the
1943 ** table and index root-pages in order, starting with the numerically
1944 ** largest root-page number. This guarantees that none of the root-pages
1945 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1946 ** following were coded:
1947 **
1948 ** OP_Destroy 4 0
1949 ** ...
1950 ** OP_Destroy 5 0
1951 **
1952 ** and root page 5 happened to be the largest root-page number in the
1953 ** database, then root page 5 would be moved to page 4 by the
1954 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1955 ** a free-list page.
1956 */
1957 int iTab = pTab->tnum;
1958 int iDestroyed = 0;
1959
1960 while( 1 ){
1961 Index *pIdx;
1962 int iLargest = 0;
1963
1964 if( iDestroyed==0 || iTab<iDestroyed ){
1965 iLargest = iTab;
1966 }
1967 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1968 int iIdx = pIdx->tnum;
1969 assert( pIdx->pSchema==pTab->pSchema );
1970 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1971 iLargest = iIdx;
1972 }
1973 }
1974 if( iLargest==0 ){
1975 return;
1976 }else{
1977 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1978 destroyRootPage(pParse, iLargest, iDb);
1979 iDestroyed = iLargest;
1980 }
1981 }
1982 #endif
1983 }
1984
1985 /*
1986 ** This routine is called to do the work of a DROP TABLE statement.
1987 ** pName is the name of the table to be dropped.
1988 */
sqlite3DropTable(Parse * pParse,SrcList * pName,int isView,int noErr)1989 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
1990 Table *pTab;
1991 Vdbe *v;
1992 sqlite3 *db = pParse->db;
1993 int iDb;
1994
1995 if( db->mallocFailed ){
1996 goto exit_drop_table;
1997 }
1998 assert( pParse->nErr==0 );
1999 assert( pName->nSrc==1 );
2000 if( noErr ) db->suppressErr++;
2001 pTab = sqlite3LocateTable(pParse, isView,
2002 pName->a[0].zName, pName->a[0].zDatabase);
2003 if( noErr ) db->suppressErr--;
2004
2005 if( pTab==0 ){
2006 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2007 goto exit_drop_table;
2008 }
2009 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2010 assert( iDb>=0 && iDb<db->nDb );
2011
2012 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2013 ** it is initialized.
2014 */
2015 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2016 goto exit_drop_table;
2017 }
2018 #ifndef SQLITE_OMIT_AUTHORIZATION
2019 {
2020 int code;
2021 const char *zTab = SCHEMA_TABLE(iDb);
2022 const char *zDb = db->aDb[iDb].zName;
2023 const char *zArg2 = 0;
2024 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2025 goto exit_drop_table;
2026 }
2027 if( isView ){
2028 if( !OMIT_TEMPDB && iDb==1 ){
2029 code = SQLITE_DROP_TEMP_VIEW;
2030 }else{
2031 code = SQLITE_DROP_VIEW;
2032 }
2033 #ifndef SQLITE_OMIT_VIRTUALTABLE
2034 }else if( IsVirtual(pTab) ){
2035 code = SQLITE_DROP_VTABLE;
2036 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2037 #endif
2038 }else{
2039 if( !OMIT_TEMPDB && iDb==1 ){
2040 code = SQLITE_DROP_TEMP_TABLE;
2041 }else{
2042 code = SQLITE_DROP_TABLE;
2043 }
2044 }
2045 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2046 goto exit_drop_table;
2047 }
2048 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2049 goto exit_drop_table;
2050 }
2051 }
2052 #endif
2053 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
2054 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2055 goto exit_drop_table;
2056 }
2057
2058 #ifndef SQLITE_OMIT_VIEW
2059 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2060 ** on a table.
2061 */
2062 if( isView && pTab->pSelect==0 ){
2063 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2064 goto exit_drop_table;
2065 }
2066 if( !isView && pTab->pSelect ){
2067 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2068 goto exit_drop_table;
2069 }
2070 #endif
2071
2072 /* Generate code to remove the table from the master table
2073 ** on disk.
2074 */
2075 v = sqlite3GetVdbe(pParse);
2076 if( v ){
2077 Trigger *pTrigger;
2078 Db *pDb = &db->aDb[iDb];
2079 sqlite3BeginWriteOperation(pParse, 1, iDb);
2080
2081 #ifndef SQLITE_OMIT_VIRTUALTABLE
2082 if( IsVirtual(pTab) ){
2083 sqlite3VdbeAddOp0(v, OP_VBegin);
2084 }
2085 #endif
2086 sqlite3FkDropTable(pParse, pName, pTab);
2087
2088 /* Drop all triggers associated with the table being dropped. Code
2089 ** is generated to remove entries from sqlite_master and/or
2090 ** sqlite_temp_master if required.
2091 */
2092 pTrigger = sqlite3TriggerList(pParse, pTab);
2093 while( pTrigger ){
2094 assert( pTrigger->pSchema==pTab->pSchema ||
2095 pTrigger->pSchema==db->aDb[1].pSchema );
2096 sqlite3DropTriggerPtr(pParse, pTrigger);
2097 pTrigger = pTrigger->pNext;
2098 }
2099
2100 #ifndef SQLITE_OMIT_AUTOINCREMENT
2101 /* Remove any entries of the sqlite_sequence table associated with
2102 ** the table being dropped. This is done before the table is dropped
2103 ** at the btree level, in case the sqlite_sequence table needs to
2104 ** move as a result of the drop (can happen in auto-vacuum mode).
2105 */
2106 if( pTab->tabFlags & TF_Autoincrement ){
2107 sqlite3NestedParse(pParse,
2108 "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
2109 pDb->zName, pTab->zName
2110 );
2111 }
2112 #endif
2113
2114 /* Drop all SQLITE_MASTER table and index entries that refer to the
2115 ** table. The program name loops through the master table and deletes
2116 ** every row that refers to a table of the same name as the one being
2117 ** dropped. Triggers are handled seperately because a trigger can be
2118 ** created in the temp database that refers to a table in another
2119 ** database.
2120 */
2121 sqlite3NestedParse(pParse,
2122 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2123 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2124
2125 /* Drop any statistics from the sqlite_stat1 table, if it exists */
2126 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2127 sqlite3NestedParse(pParse,
2128 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
2129 );
2130 }
2131
2132 if( !isView && !IsVirtual(pTab) ){
2133 destroyTable(pParse, pTab);
2134 }
2135
2136 /* Remove the table entry from SQLite's internal schema and modify
2137 ** the schema cookie.
2138 */
2139 if( IsVirtual(pTab) ){
2140 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2141 }
2142 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2143 sqlite3ChangeCookie(pParse, iDb);
2144 }
2145 sqliteViewResetAll(db, iDb);
2146
2147 exit_drop_table:
2148 sqlite3SrcListDelete(db, pName);
2149 }
2150
2151 /*
2152 ** This routine is called to create a new foreign key on the table
2153 ** currently under construction. pFromCol determines which columns
2154 ** in the current table point to the foreign key. If pFromCol==0 then
2155 ** connect the key to the last column inserted. pTo is the name of
2156 ** the table referred to. pToCol is a list of tables in the other
2157 ** pTo table that the foreign key points to. flags contains all
2158 ** information about the conflict resolution algorithms specified
2159 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2160 **
2161 ** An FKey structure is created and added to the table currently
2162 ** under construction in the pParse->pNewTable field.
2163 **
2164 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2165 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2166 */
sqlite3CreateForeignKey(Parse * pParse,ExprList * pFromCol,Token * pTo,ExprList * pToCol,int flags)2167 void sqlite3CreateForeignKey(
2168 Parse *pParse, /* Parsing context */
2169 ExprList *pFromCol, /* Columns in this table that point to other table */
2170 Token *pTo, /* Name of the other table */
2171 ExprList *pToCol, /* Columns in the other table */
2172 int flags /* Conflict resolution algorithms. */
2173 ){
2174 sqlite3 *db = pParse->db;
2175 #ifndef SQLITE_OMIT_FOREIGN_KEY
2176 FKey *pFKey = 0;
2177 FKey *pNextTo;
2178 Table *p = pParse->pNewTable;
2179 int nByte;
2180 int i;
2181 int nCol;
2182 char *z;
2183
2184 assert( pTo!=0 );
2185 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2186 if( pFromCol==0 ){
2187 int iCol = p->nCol-1;
2188 if( NEVER(iCol<0) ) goto fk_end;
2189 if( pToCol && pToCol->nExpr!=1 ){
2190 sqlite3ErrorMsg(pParse, "foreign key on %s"
2191 " should reference only one column of table %T",
2192 p->aCol[iCol].zName, pTo);
2193 goto fk_end;
2194 }
2195 nCol = 1;
2196 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2197 sqlite3ErrorMsg(pParse,
2198 "number of columns in foreign key does not match the number of "
2199 "columns in the referenced table");
2200 goto fk_end;
2201 }else{
2202 nCol = pFromCol->nExpr;
2203 }
2204 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2205 if( pToCol ){
2206 for(i=0; i<pToCol->nExpr; i++){
2207 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2208 }
2209 }
2210 pFKey = sqlite3DbMallocZero(db, nByte );
2211 if( pFKey==0 ){
2212 goto fk_end;
2213 }
2214 pFKey->pFrom = p;
2215 pFKey->pNextFrom = p->pFKey;
2216 z = (char*)&pFKey->aCol[nCol];
2217 pFKey->zTo = z;
2218 memcpy(z, pTo->z, pTo->n);
2219 z[pTo->n] = 0;
2220 sqlite3Dequote(z);
2221 z += pTo->n+1;
2222 pFKey->nCol = nCol;
2223 if( pFromCol==0 ){
2224 pFKey->aCol[0].iFrom = p->nCol-1;
2225 }else{
2226 for(i=0; i<nCol; i++){
2227 int j;
2228 for(j=0; j<p->nCol; j++){
2229 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2230 pFKey->aCol[i].iFrom = j;
2231 break;
2232 }
2233 }
2234 if( j>=p->nCol ){
2235 sqlite3ErrorMsg(pParse,
2236 "unknown column \"%s\" in foreign key definition",
2237 pFromCol->a[i].zName);
2238 goto fk_end;
2239 }
2240 }
2241 }
2242 if( pToCol ){
2243 for(i=0; i<nCol; i++){
2244 int n = sqlite3Strlen30(pToCol->a[i].zName);
2245 pFKey->aCol[i].zCol = z;
2246 memcpy(z, pToCol->a[i].zName, n);
2247 z[n] = 0;
2248 z += n+1;
2249 }
2250 }
2251 pFKey->isDeferred = 0;
2252 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2253 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2254
2255 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2256 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2257 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
2258 );
2259 if( pNextTo==pFKey ){
2260 db->mallocFailed = 1;
2261 goto fk_end;
2262 }
2263 if( pNextTo ){
2264 assert( pNextTo->pPrevTo==0 );
2265 pFKey->pNextTo = pNextTo;
2266 pNextTo->pPrevTo = pFKey;
2267 }
2268
2269 /* Link the foreign key to the table as the last step.
2270 */
2271 p->pFKey = pFKey;
2272 pFKey = 0;
2273
2274 fk_end:
2275 sqlite3DbFree(db, pFKey);
2276 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2277 sqlite3ExprListDelete(db, pFromCol);
2278 sqlite3ExprListDelete(db, pToCol);
2279 }
2280
2281 /*
2282 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2283 ** clause is seen as part of a foreign key definition. The isDeferred
2284 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2285 ** The behavior of the most recently created foreign key is adjusted
2286 ** accordingly.
2287 */
sqlite3DeferForeignKey(Parse * pParse,int isDeferred)2288 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2289 #ifndef SQLITE_OMIT_FOREIGN_KEY
2290 Table *pTab;
2291 FKey *pFKey;
2292 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2293 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2294 pFKey->isDeferred = (u8)isDeferred;
2295 #endif
2296 }
2297
2298 /*
2299 ** Generate code that will erase and refill index *pIdx. This is
2300 ** used to initialize a newly created index or to recompute the
2301 ** content of an index in response to a REINDEX command.
2302 **
2303 ** if memRootPage is not negative, it means that the index is newly
2304 ** created. The register specified by memRootPage contains the
2305 ** root page number of the index. If memRootPage is negative, then
2306 ** the index already exists and must be cleared before being refilled and
2307 ** the root page number of the index is taken from pIndex->tnum.
2308 */
sqlite3RefillIndex(Parse * pParse,Index * pIndex,int memRootPage)2309 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2310 Table *pTab = pIndex->pTable; /* The table that is indexed */
2311 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2312 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2313 int addr1; /* Address of top of loop */
2314 int tnum; /* Root page of index */
2315 Vdbe *v; /* Generate code into this virtual machine */
2316 KeyInfo *pKey; /* KeyInfo for index */
2317 int regIdxKey; /* Registers containing the index key */
2318 int regRecord; /* Register holding assemblied index record */
2319 sqlite3 *db = pParse->db; /* The database connection */
2320 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2321
2322 #ifndef SQLITE_OMIT_AUTHORIZATION
2323 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2324 db->aDb[iDb].zName ) ){
2325 return;
2326 }
2327 #endif
2328
2329 /* Require a write-lock on the table to perform this operation */
2330 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2331
2332 v = sqlite3GetVdbe(pParse);
2333 if( v==0 ) return;
2334 if( memRootPage>=0 ){
2335 tnum = memRootPage;
2336 }else{
2337 tnum = pIndex->tnum;
2338 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2339 }
2340 pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2341 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2342 (char *)pKey, P4_KEYINFO_HANDOFF);
2343 if( memRootPage>=0 ){
2344 sqlite3VdbeChangeP5(v, 1);
2345 }
2346 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2347 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2348 regRecord = sqlite3GetTempReg(pParse);
2349 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2350 if( pIndex->onError!=OE_None ){
2351 const int regRowid = regIdxKey + pIndex->nColumn;
2352 const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
2353 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
2354
2355 /* The registers accessed by the OP_IsUnique opcode were allocated
2356 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
2357 ** call above. Just before that function was freed they were released
2358 ** (made available to the compiler for reuse) using
2359 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
2360 ** opcode use the values stored within seems dangerous. However, since
2361 ** we can be sure that no other temp registers have been allocated
2362 ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
2363 */
2364 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
2365 sqlite3HaltConstraint(
2366 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
2367 }
2368 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2369 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2370 sqlite3ReleaseTempReg(pParse, regRecord);
2371 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2372 sqlite3VdbeJumpHere(v, addr1);
2373 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2374 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2375 }
2376
2377 /*
2378 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2379 ** and pTblList is the name of the table that is to be indexed. Both will
2380 ** be NULL for a primary key or an index that is created to satisfy a
2381 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2382 ** as the table to be indexed. pParse->pNewTable is a table that is
2383 ** currently being constructed by a CREATE TABLE statement.
2384 **
2385 ** pList is a list of columns to be indexed. pList will be NULL if this
2386 ** is a primary key or unique-constraint on the most recent column added
2387 ** to the table currently under construction.
2388 **
2389 ** If the index is created successfully, return a pointer to the new Index
2390 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2391 ** as the tables primary key (Index.autoIndex==2).
2392 */
sqlite3CreateIndex(Parse * pParse,Token * pName1,Token * pName2,SrcList * pTblName,ExprList * pList,int onError,Token * pStart,Token * pEnd,int sortOrder,int ifNotExist)2393 Index *sqlite3CreateIndex(
2394 Parse *pParse, /* All information about this parse */
2395 Token *pName1, /* First part of index name. May be NULL */
2396 Token *pName2, /* Second part of index name. May be NULL */
2397 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2398 ExprList *pList, /* A list of columns to be indexed */
2399 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2400 Token *pStart, /* The CREATE token that begins this statement */
2401 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
2402 int sortOrder, /* Sort order of primary key when pList==NULL */
2403 int ifNotExist /* Omit error if index already exists */
2404 ){
2405 Index *pRet = 0; /* Pointer to return */
2406 Table *pTab = 0; /* Table to be indexed */
2407 Index *pIndex = 0; /* The index to be created */
2408 char *zName = 0; /* Name of the index */
2409 int nName; /* Number of characters in zName */
2410 int i, j;
2411 Token nullId; /* Fake token for an empty ID list */
2412 DbFixer sFix; /* For assigning database names to pTable */
2413 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2414 sqlite3 *db = pParse->db;
2415 Db *pDb; /* The specific table containing the indexed database */
2416 int iDb; /* Index of the database that is being written */
2417 Token *pName = 0; /* Unqualified name of the index to create */
2418 struct ExprList_item *pListItem; /* For looping over pList */
2419 int nCol;
2420 int nExtra = 0;
2421 char *zExtra;
2422
2423 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
2424 assert( pParse->nErr==0 ); /* Never called with prior errors */
2425 if( db->mallocFailed || IN_DECLARE_VTAB ){
2426 goto exit_create_index;
2427 }
2428 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2429 goto exit_create_index;
2430 }
2431
2432 /*
2433 ** Find the table that is to be indexed. Return early if not found.
2434 */
2435 if( pTblName!=0 ){
2436
2437 /* Use the two-part index name to determine the database
2438 ** to search for the table. 'Fix' the table name to this db
2439 ** before looking up the table.
2440 */
2441 assert( pName1 && pName2 );
2442 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2443 if( iDb<0 ) goto exit_create_index;
2444
2445 #ifndef SQLITE_OMIT_TEMPDB
2446 /* If the index name was unqualified, check if the the table
2447 ** is a temp table. If so, set the database to 1. Do not do this
2448 ** if initialising a database schema.
2449 */
2450 if( !db->init.busy ){
2451 pTab = sqlite3SrcListLookup(pParse, pTblName);
2452 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2453 iDb = 1;
2454 }
2455 }
2456 #endif
2457
2458 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2459 sqlite3FixSrcList(&sFix, pTblName)
2460 ){
2461 /* Because the parser constructs pTblName from a single identifier,
2462 ** sqlite3FixSrcList can never fail. */
2463 assert(0);
2464 }
2465 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2466 pTblName->a[0].zDatabase);
2467 if( !pTab || db->mallocFailed ) goto exit_create_index;
2468 assert( db->aDb[iDb].pSchema==pTab->pSchema );
2469 }else{
2470 assert( pName==0 );
2471 pTab = pParse->pNewTable;
2472 if( !pTab ) goto exit_create_index;
2473 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2474 }
2475 pDb = &db->aDb[iDb];
2476
2477 assert( pTab!=0 );
2478 assert( pParse->nErr==0 );
2479 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2480 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2481 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2482 goto exit_create_index;
2483 }
2484 #ifndef SQLITE_OMIT_VIEW
2485 if( pTab->pSelect ){
2486 sqlite3ErrorMsg(pParse, "views may not be indexed");
2487 goto exit_create_index;
2488 }
2489 #endif
2490 #ifndef SQLITE_OMIT_VIRTUALTABLE
2491 if( IsVirtual(pTab) ){
2492 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2493 goto exit_create_index;
2494 }
2495 #endif
2496
2497 /*
2498 ** Find the name of the index. Make sure there is not already another
2499 ** index or table with the same name.
2500 **
2501 ** Exception: If we are reading the names of permanent indices from the
2502 ** sqlite_master table (because some other process changed the schema) and
2503 ** one of the index names collides with the name of a temporary table or
2504 ** index, then we will continue to process this index.
2505 **
2506 ** If pName==0 it means that we are
2507 ** dealing with a primary key or UNIQUE constraint. We have to invent our
2508 ** own name.
2509 */
2510 if( pName ){
2511 zName = sqlite3NameFromToken(db, pName);
2512 if( zName==0 ) goto exit_create_index;
2513 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2514 goto exit_create_index;
2515 }
2516 if( !db->init.busy ){
2517 if( sqlite3FindTable(db, zName, 0)!=0 ){
2518 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2519 goto exit_create_index;
2520 }
2521 }
2522 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2523 if( !ifNotExist ){
2524 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2525 }else{
2526 assert( !db->init.busy );
2527 sqlite3CodeVerifySchema(pParse, iDb);
2528 }
2529 goto exit_create_index;
2530 }
2531 }else{
2532 int n;
2533 Index *pLoop;
2534 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2535 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2536 if( zName==0 ){
2537 goto exit_create_index;
2538 }
2539 }
2540
2541 /* Check for authorization to create an index.
2542 */
2543 #ifndef SQLITE_OMIT_AUTHORIZATION
2544 {
2545 const char *zDb = pDb->zName;
2546 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2547 goto exit_create_index;
2548 }
2549 i = SQLITE_CREATE_INDEX;
2550 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2551 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2552 goto exit_create_index;
2553 }
2554 }
2555 #endif
2556
2557 /* If pList==0, it means this routine was called to make a primary
2558 ** key out of the last column added to the table under construction.
2559 ** So create a fake list to simulate this.
2560 */
2561 if( pList==0 ){
2562 nullId.z = pTab->aCol[pTab->nCol-1].zName;
2563 nullId.n = sqlite3Strlen30((char*)nullId.z);
2564 pList = sqlite3ExprListAppend(pParse, 0, 0);
2565 if( pList==0 ) goto exit_create_index;
2566 sqlite3ExprListSetName(pParse, pList, &nullId, 0);
2567 pList->a[0].sortOrder = (u8)sortOrder;
2568 }
2569
2570 /* Figure out how many bytes of space are required to store explicitly
2571 ** specified collation sequence names.
2572 */
2573 for(i=0; i<pList->nExpr; i++){
2574 Expr *pExpr = pList->a[i].pExpr;
2575 if( pExpr ){
2576 CollSeq *pColl = pExpr->pColl;
2577 /* Either pColl!=0 or there was an OOM failure. But if an OOM
2578 ** failure we have quit before reaching this point. */
2579 if( ALWAYS(pColl) ){
2580 nExtra += (1 + sqlite3Strlen30(pColl->zName));
2581 }
2582 }
2583 }
2584
2585 /*
2586 ** Allocate the index structure.
2587 */
2588 nName = sqlite3Strlen30(zName);
2589 nCol = pList->nExpr;
2590 pIndex = sqlite3DbMallocZero(db,
2591 sizeof(Index) + /* Index structure */
2592 sizeof(int)*nCol + /* Index.aiColumn */
2593 sizeof(int)*(nCol+1) + /* Index.aiRowEst */
2594 sizeof(char *)*nCol + /* Index.azColl */
2595 sizeof(u8)*nCol + /* Index.aSortOrder */
2596 nName + 1 + /* Index.zName */
2597 nExtra /* Collation sequence names */
2598 );
2599 if( db->mallocFailed ){
2600 goto exit_create_index;
2601 }
2602 pIndex->azColl = (char**)(&pIndex[1]);
2603 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2604 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
2605 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
2606 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2607 zExtra = (char *)(&pIndex->zName[nName+1]);
2608 memcpy(pIndex->zName, zName, nName+1);
2609 pIndex->pTable = pTab;
2610 pIndex->nColumn = pList->nExpr;
2611 pIndex->onError = (u8)onError;
2612 pIndex->autoIndex = (u8)(pName==0);
2613 pIndex->pSchema = db->aDb[iDb].pSchema;
2614 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2615
2616 /* Check to see if we should honor DESC requests on index columns
2617 */
2618 if( pDb->pSchema->file_format>=4 ){
2619 sortOrderMask = -1; /* Honor DESC */
2620 }else{
2621 sortOrderMask = 0; /* Ignore DESC */
2622 }
2623
2624 /* Scan the names of the columns of the table to be indexed and
2625 ** load the column indices into the Index structure. Report an error
2626 ** if any column is not found.
2627 **
2628 ** TODO: Add a test to make sure that the same column is not named
2629 ** more than once within the same index. Only the first instance of
2630 ** the column will ever be used by the optimizer. Note that using the
2631 ** same column more than once cannot be an error because that would
2632 ** break backwards compatibility - it needs to be a warning.
2633 */
2634 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2635 const char *zColName = pListItem->zName;
2636 Column *pTabCol;
2637 int requestedSortOrder;
2638 char *zColl; /* Collation sequence name */
2639
2640 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2641 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2642 }
2643 if( j>=pTab->nCol ){
2644 sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2645 pTab->zName, zColName);
2646 pParse->checkSchema = 1;
2647 goto exit_create_index;
2648 }
2649 pIndex->aiColumn[i] = j;
2650 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of
2651 ** the way the "idxlist" non-terminal is constructed by the parser,
2652 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
2653 ** must exist or else there must have been an OOM error. But if there
2654 ** was an OOM error, we would never reach this point. */
2655 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
2656 int nColl;
2657 zColl = pListItem->pExpr->pColl->zName;
2658 nColl = sqlite3Strlen30(zColl) + 1;
2659 assert( nExtra>=nColl );
2660 memcpy(zExtra, zColl, nColl);
2661 zColl = zExtra;
2662 zExtra += nColl;
2663 nExtra -= nColl;
2664 }else{
2665 zColl = pTab->aCol[j].zColl;
2666 if( !zColl ){
2667 zColl = db->pDfltColl->zName;
2668 }
2669 }
2670 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
2671 goto exit_create_index;
2672 }
2673 pIndex->azColl[i] = zColl;
2674 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2675 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
2676 }
2677 sqlite3DefaultRowEst(pIndex);
2678
2679 if( pTab==pParse->pNewTable ){
2680 /* This routine has been called to create an automatic index as a
2681 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2682 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2683 ** i.e. one of:
2684 **
2685 ** CREATE TABLE t(x PRIMARY KEY, y);
2686 ** CREATE TABLE t(x, y, UNIQUE(x, y));
2687 **
2688 ** Either way, check to see if the table already has such an index. If
2689 ** so, don't bother creating this one. This only applies to
2690 ** automatically created indices. Users can do as they wish with
2691 ** explicit indices.
2692 **
2693 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
2694 ** (and thus suppressing the second one) even if they have different
2695 ** sort orders.
2696 **
2697 ** If there are different collating sequences or if the columns of
2698 ** the constraint occur in different orders, then the constraints are
2699 ** considered distinct and both result in separate indices.
2700 */
2701 Index *pIdx;
2702 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2703 int k;
2704 assert( pIdx->onError!=OE_None );
2705 assert( pIdx->autoIndex );
2706 assert( pIndex->onError!=OE_None );
2707
2708 if( pIdx->nColumn!=pIndex->nColumn ) continue;
2709 for(k=0; k<pIdx->nColumn; k++){
2710 const char *z1;
2711 const char *z2;
2712 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2713 z1 = pIdx->azColl[k];
2714 z2 = pIndex->azColl[k];
2715 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2716 }
2717 if( k==pIdx->nColumn ){
2718 if( pIdx->onError!=pIndex->onError ){
2719 /* This constraint creates the same index as a previous
2720 ** constraint specified somewhere in the CREATE TABLE statement.
2721 ** However the ON CONFLICT clauses are different. If both this
2722 ** constraint and the previous equivalent constraint have explicit
2723 ** ON CONFLICT clauses this is an error. Otherwise, use the
2724 ** explicitly specified behaviour for the index.
2725 */
2726 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2727 sqlite3ErrorMsg(pParse,
2728 "conflicting ON CONFLICT clauses specified", 0);
2729 }
2730 if( pIdx->onError==OE_Default ){
2731 pIdx->onError = pIndex->onError;
2732 }
2733 }
2734 goto exit_create_index;
2735 }
2736 }
2737 }
2738
2739 /* Link the new Index structure to its table and to the other
2740 ** in-memory database structures.
2741 */
2742 if( db->init.busy ){
2743 Index *p;
2744 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
2745 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2746 pIndex->zName, sqlite3Strlen30(pIndex->zName),
2747 pIndex);
2748 if( p ){
2749 assert( p==pIndex ); /* Malloc must have failed */
2750 db->mallocFailed = 1;
2751 goto exit_create_index;
2752 }
2753 db->flags |= SQLITE_InternChanges;
2754 if( pTblName!=0 ){
2755 pIndex->tnum = db->init.newTnum;
2756 }
2757 }
2758
2759 /* If the db->init.busy is 0 then create the index on disk. This
2760 ** involves writing the index into the master table and filling in the
2761 ** index with the current table contents.
2762 **
2763 ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2764 ** command. db->init.busy is 1 when a database is opened and
2765 ** CREATE INDEX statements are read out of the master table. In
2766 ** the latter case the index already exists on disk, which is why
2767 ** we don't want to recreate it.
2768 **
2769 ** If pTblName==0 it means this index is generated as a primary key
2770 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
2771 ** has just been created, it contains no data and the index initialization
2772 ** step can be skipped.
2773 */
2774 else{ /* if( db->init.busy==0 ) */
2775 Vdbe *v;
2776 char *zStmt;
2777 int iMem = ++pParse->nMem;
2778
2779 v = sqlite3GetVdbe(pParse);
2780 if( v==0 ) goto exit_create_index;
2781
2782
2783 /* Create the rootpage for the index
2784 */
2785 sqlite3BeginWriteOperation(pParse, 1, iDb);
2786 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2787
2788 /* Gather the complete text of the CREATE INDEX statement into
2789 ** the zStmt variable
2790 */
2791 if( pStart ){
2792 assert( pEnd!=0 );
2793 /* A named index with an explicit CREATE INDEX statement */
2794 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2795 onError==OE_None ? "" : " UNIQUE",
2796 pEnd->z - pName->z + 1,
2797 pName->z);
2798 }else{
2799 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2800 /* zStmt = sqlite3MPrintf(""); */
2801 zStmt = 0;
2802 }
2803
2804 /* Add an entry in sqlite_master for this index
2805 */
2806 sqlite3NestedParse(pParse,
2807 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2808 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2809 pIndex->zName,
2810 pTab->zName,
2811 iMem,
2812 zStmt
2813 );
2814 sqlite3DbFree(db, zStmt);
2815
2816 /* Fill the index with data and reparse the schema. Code an OP_Expire
2817 ** to invalidate all pre-compiled statements.
2818 */
2819 if( pTblName ){
2820 sqlite3RefillIndex(pParse, pIndex, iMem);
2821 sqlite3ChangeCookie(pParse, iDb);
2822 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
2823 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName),
2824 P4_DYNAMIC);
2825 sqlite3VdbeAddOp1(v, OP_Expire, 0);
2826 }
2827 }
2828
2829 /* When adding an index to the list of indices for a table, make
2830 ** sure all indices labeled OE_Replace come after all those labeled
2831 ** OE_Ignore. This is necessary for the correct constraint check
2832 ** processing (in sqlite3GenerateConstraintChecks()) as part of
2833 ** UPDATE and INSERT statements.
2834 */
2835 if( db->init.busy || pTblName==0 ){
2836 if( onError!=OE_Replace || pTab->pIndex==0
2837 || pTab->pIndex->onError==OE_Replace){
2838 pIndex->pNext = pTab->pIndex;
2839 pTab->pIndex = pIndex;
2840 }else{
2841 Index *pOther = pTab->pIndex;
2842 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2843 pOther = pOther->pNext;
2844 }
2845 pIndex->pNext = pOther->pNext;
2846 pOther->pNext = pIndex;
2847 }
2848 pRet = pIndex;
2849 pIndex = 0;
2850 }
2851
2852 /* Clean up before exiting */
2853 exit_create_index:
2854 if( pIndex ){
2855 sqlite3DbFree(db, pIndex->zColAff);
2856 sqlite3DbFree(db, pIndex);
2857 }
2858 sqlite3ExprListDelete(db, pList);
2859 sqlite3SrcListDelete(db, pTblName);
2860 sqlite3DbFree(db, zName);
2861 return pRet;
2862 }
2863
2864 /*
2865 ** Fill the Index.aiRowEst[] array with default information - information
2866 ** to be used when we have not run the ANALYZE command.
2867 **
2868 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2869 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
2870 ** number of rows in the table that match any particular value of the
2871 ** first column of the index. aiRowEst[2] is an estimate of the number
2872 ** of rows that match any particular combiniation of the first 2 columns
2873 ** of the index. And so forth. It must always be the case that
2874 *
2875 ** aiRowEst[N]<=aiRowEst[N-1]
2876 ** aiRowEst[N]>=1
2877 **
2878 ** Apart from that, we have little to go on besides intuition as to
2879 ** how aiRowEst[] should be initialized. The numbers generated here
2880 ** are based on typical values found in actual indices.
2881 */
sqlite3DefaultRowEst(Index * pIdx)2882 void sqlite3DefaultRowEst(Index *pIdx){
2883 unsigned *a = pIdx->aiRowEst;
2884 int i;
2885 unsigned n;
2886 assert( a!=0 );
2887 a[0] = pIdx->pTable->nRowEst;
2888 if( a[0]<10 ) a[0] = 10;
2889 n = 10;
2890 for(i=1; i<=pIdx->nColumn; i++){
2891 a[i] = n;
2892 if( n>5 ) n--;
2893 }
2894 if( pIdx->onError!=OE_None ){
2895 a[pIdx->nColumn] = 1;
2896 }
2897 }
2898
2899 /*
2900 ** This routine will drop an existing named index. This routine
2901 ** implements the DROP INDEX statement.
2902 */
sqlite3DropIndex(Parse * pParse,SrcList * pName,int ifExists)2903 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
2904 Index *pIndex;
2905 Vdbe *v;
2906 sqlite3 *db = pParse->db;
2907 int iDb;
2908
2909 assert( pParse->nErr==0 ); /* Never called with prior errors */
2910 if( db->mallocFailed ){
2911 goto exit_drop_index;
2912 }
2913 assert( pName->nSrc==1 );
2914 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2915 goto exit_drop_index;
2916 }
2917 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
2918 if( pIndex==0 ){
2919 if( !ifExists ){
2920 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
2921 }else{
2922 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2923 }
2924 pParse->checkSchema = 1;
2925 goto exit_drop_index;
2926 }
2927 if( pIndex->autoIndex ){
2928 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
2929 "or PRIMARY KEY constraint cannot be dropped", 0);
2930 goto exit_drop_index;
2931 }
2932 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2933 #ifndef SQLITE_OMIT_AUTHORIZATION
2934 {
2935 int code = SQLITE_DROP_INDEX;
2936 Table *pTab = pIndex->pTable;
2937 const char *zDb = db->aDb[iDb].zName;
2938 const char *zTab = SCHEMA_TABLE(iDb);
2939 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
2940 goto exit_drop_index;
2941 }
2942 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
2943 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
2944 goto exit_drop_index;
2945 }
2946 }
2947 #endif
2948
2949 /* Generate code to remove the index and from the master table */
2950 v = sqlite3GetVdbe(pParse);
2951 if( v ){
2952 sqlite3BeginWriteOperation(pParse, 1, iDb);
2953 sqlite3NestedParse(pParse,
2954 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
2955 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2956 pIndex->zName
2957 );
2958 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2959 sqlite3NestedParse(pParse,
2960 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
2961 db->aDb[iDb].zName, pIndex->zName
2962 );
2963 }
2964 sqlite3ChangeCookie(pParse, iDb);
2965 destroyRootPage(pParse, pIndex->tnum, iDb);
2966 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
2967 }
2968
2969 exit_drop_index:
2970 sqlite3SrcListDelete(db, pName);
2971 }
2972
2973 /*
2974 ** pArray is a pointer to an array of objects. Each object in the
2975 ** array is szEntry bytes in size. This routine allocates a new
2976 ** object on the end of the array.
2977 **
2978 ** *pnEntry is the number of entries already in use. *pnAlloc is
2979 ** the previously allocated size of the array. initSize is the
2980 ** suggested initial array size allocation.
2981 **
2982 ** The index of the new entry is returned in *pIdx.
2983 **
2984 ** This routine returns a pointer to the array of objects. This
2985 ** might be the same as the pArray parameter or it might be a different
2986 ** pointer if the array was resized.
2987 */
sqlite3ArrayAllocate(sqlite3 * db,void * pArray,int szEntry,int initSize,int * pnEntry,int * pnAlloc,int * pIdx)2988 void *sqlite3ArrayAllocate(
2989 sqlite3 *db, /* Connection to notify of malloc failures */
2990 void *pArray, /* Array of objects. Might be reallocated */
2991 int szEntry, /* Size of each object in the array */
2992 int initSize, /* Suggested initial allocation, in elements */
2993 int *pnEntry, /* Number of objects currently in use */
2994 int *pnAlloc, /* Current size of the allocation, in elements */
2995 int *pIdx /* Write the index of a new slot here */
2996 ){
2997 char *z;
2998 if( *pnEntry >= *pnAlloc ){
2999 void *pNew;
3000 int newSize;
3001 newSize = (*pnAlloc)*2 + initSize;
3002 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
3003 if( pNew==0 ){
3004 *pIdx = -1;
3005 return pArray;
3006 }
3007 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
3008 pArray = pNew;
3009 }
3010 z = (char*)pArray;
3011 memset(&z[*pnEntry * szEntry], 0, szEntry);
3012 *pIdx = *pnEntry;
3013 ++*pnEntry;
3014 return pArray;
3015 }
3016
3017 /*
3018 ** Append a new element to the given IdList. Create a new IdList if
3019 ** need be.
3020 **
3021 ** A new IdList is returned, or NULL if malloc() fails.
3022 */
sqlite3IdListAppend(sqlite3 * db,IdList * pList,Token * pToken)3023 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3024 int i;
3025 if( pList==0 ){
3026 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3027 if( pList==0 ) return 0;
3028 pList->nAlloc = 0;
3029 }
3030 pList->a = sqlite3ArrayAllocate(
3031 db,
3032 pList->a,
3033 sizeof(pList->a[0]),
3034 5,
3035 &pList->nId,
3036 &pList->nAlloc,
3037 &i
3038 );
3039 if( i<0 ){
3040 sqlite3IdListDelete(db, pList);
3041 return 0;
3042 }
3043 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3044 return pList;
3045 }
3046
3047 /*
3048 ** Delete an IdList.
3049 */
sqlite3IdListDelete(sqlite3 * db,IdList * pList)3050 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3051 int i;
3052 if( pList==0 ) return;
3053 for(i=0; i<pList->nId; i++){
3054 sqlite3DbFree(db, pList->a[i].zName);
3055 }
3056 sqlite3DbFree(db, pList->a);
3057 sqlite3DbFree(db, pList);
3058 }
3059
3060 /*
3061 ** Return the index in pList of the identifier named zId. Return -1
3062 ** if not found.
3063 */
sqlite3IdListIndex(IdList * pList,const char * zName)3064 int sqlite3IdListIndex(IdList *pList, const char *zName){
3065 int i;
3066 if( pList==0 ) return -1;
3067 for(i=0; i<pList->nId; i++){
3068 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3069 }
3070 return -1;
3071 }
3072
3073 /*
3074 ** Expand the space allocated for the given SrcList object by
3075 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3076 ** New slots are zeroed.
3077 **
3078 ** For example, suppose a SrcList initially contains two entries: A,B.
3079 ** To append 3 new entries onto the end, do this:
3080 **
3081 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3082 **
3083 ** After the call above it would contain: A, B, nil, nil, nil.
3084 ** If the iStart argument had been 1 instead of 2, then the result
3085 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3086 ** the iStart value would be 0. The result then would
3087 ** be: nil, nil, nil, A, B.
3088 **
3089 ** If a memory allocation fails the SrcList is unchanged. The
3090 ** db->mallocFailed flag will be set to true.
3091 */
sqlite3SrcListEnlarge(sqlite3 * db,SrcList * pSrc,int nExtra,int iStart)3092 SrcList *sqlite3SrcListEnlarge(
3093 sqlite3 *db, /* Database connection to notify of OOM errors */
3094 SrcList *pSrc, /* The SrcList to be enlarged */
3095 int nExtra, /* Number of new slots to add to pSrc->a[] */
3096 int iStart /* Index in pSrc->a[] of first new slot */
3097 ){
3098 int i;
3099
3100 /* Sanity checking on calling parameters */
3101 assert( iStart>=0 );
3102 assert( nExtra>=1 );
3103 assert( pSrc!=0 );
3104 assert( iStart<=pSrc->nSrc );
3105
3106 /* Allocate additional space if needed */
3107 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
3108 SrcList *pNew;
3109 int nAlloc = pSrc->nSrc+nExtra;
3110 int nGot;
3111 pNew = sqlite3DbRealloc(db, pSrc,
3112 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3113 if( pNew==0 ){
3114 assert( db->mallocFailed );
3115 return pSrc;
3116 }
3117 pSrc = pNew;
3118 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3119 pSrc->nAlloc = (u16)nGot;
3120 }
3121
3122 /* Move existing slots that come after the newly inserted slots
3123 ** out of the way */
3124 for(i=pSrc->nSrc-1; i>=iStart; i--){
3125 pSrc->a[i+nExtra] = pSrc->a[i];
3126 }
3127 pSrc->nSrc += (i16)nExtra;
3128
3129 /* Zero the newly allocated slots */
3130 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3131 for(i=iStart; i<iStart+nExtra; i++){
3132 pSrc->a[i].iCursor = -1;
3133 }
3134
3135 /* Return a pointer to the enlarged SrcList */
3136 return pSrc;
3137 }
3138
3139
3140 /*
3141 ** Append a new table name to the given SrcList. Create a new SrcList if
3142 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3143 **
3144 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3145 ** SrcList might be the same as the SrcList that was input or it might be
3146 ** a new one. If an OOM error does occurs, then the prior value of pList
3147 ** that is input to this routine is automatically freed.
3148 **
3149 ** If pDatabase is not null, it means that the table has an optional
3150 ** database name prefix. Like this: "database.table". The pDatabase
3151 ** points to the table name and the pTable points to the database name.
3152 ** The SrcList.a[].zName field is filled with the table name which might
3153 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3154 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3155 ** or with NULL if no database is specified.
3156 **
3157 ** In other words, if call like this:
3158 **
3159 ** sqlite3SrcListAppend(D,A,B,0);
3160 **
3161 ** Then B is a table name and the database name is unspecified. If called
3162 ** like this:
3163 **
3164 ** sqlite3SrcListAppend(D,A,B,C);
3165 **
3166 ** Then C is the table name and B is the database name. If C is defined
3167 ** then so is B. In other words, we never have a case where:
3168 **
3169 ** sqlite3SrcListAppend(D,A,0,C);
3170 **
3171 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3172 ** before being added to the SrcList.
3173 */
sqlite3SrcListAppend(sqlite3 * db,SrcList * pList,Token * pTable,Token * pDatabase)3174 SrcList *sqlite3SrcListAppend(
3175 sqlite3 *db, /* Connection to notify of malloc failures */
3176 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3177 Token *pTable, /* Table to append */
3178 Token *pDatabase /* Database of the table */
3179 ){
3180 struct SrcList_item *pItem;
3181 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3182 if( pList==0 ){
3183 pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3184 if( pList==0 ) return 0;
3185 pList->nAlloc = 1;
3186 }
3187 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3188 if( db->mallocFailed ){
3189 sqlite3SrcListDelete(db, pList);
3190 return 0;
3191 }
3192 pItem = &pList->a[pList->nSrc-1];
3193 if( pDatabase && pDatabase->z==0 ){
3194 pDatabase = 0;
3195 }
3196 if( pDatabase ){
3197 Token *pTemp = pDatabase;
3198 pDatabase = pTable;
3199 pTable = pTemp;
3200 }
3201 pItem->zName = sqlite3NameFromToken(db, pTable);
3202 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3203 return pList;
3204 }
3205
3206 /*
3207 ** Assign VdbeCursor index numbers to all tables in a SrcList
3208 */
sqlite3SrcListAssignCursors(Parse * pParse,SrcList * pList)3209 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3210 int i;
3211 struct SrcList_item *pItem;
3212 assert(pList || pParse->db->mallocFailed );
3213 if( pList ){
3214 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3215 if( pItem->iCursor>=0 ) break;
3216 pItem->iCursor = pParse->nTab++;
3217 if( pItem->pSelect ){
3218 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3219 }
3220 }
3221 }
3222 }
3223
3224 /*
3225 ** Delete an entire SrcList including all its substructure.
3226 */
sqlite3SrcListDelete(sqlite3 * db,SrcList * pList)3227 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3228 int i;
3229 struct SrcList_item *pItem;
3230 if( pList==0 ) return;
3231 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3232 sqlite3DbFree(db, pItem->zDatabase);
3233 sqlite3DbFree(db, pItem->zName);
3234 sqlite3DbFree(db, pItem->zAlias);
3235 sqlite3DbFree(db, pItem->zIndex);
3236 sqlite3DeleteTable(db, pItem->pTab);
3237 sqlite3SelectDelete(db, pItem->pSelect);
3238 sqlite3ExprDelete(db, pItem->pOn);
3239 sqlite3IdListDelete(db, pItem->pUsing);
3240 }
3241 sqlite3DbFree(db, pList);
3242 }
3243
3244 /*
3245 ** This routine is called by the parser to add a new term to the
3246 ** end of a growing FROM clause. The "p" parameter is the part of
3247 ** the FROM clause that has already been constructed. "p" is NULL
3248 ** if this is the first term of the FROM clause. pTable and pDatabase
3249 ** are the name of the table and database named in the FROM clause term.
3250 ** pDatabase is NULL if the database name qualifier is missing - the
3251 ** usual case. If the term has a alias, then pAlias points to the
3252 ** alias token. If the term is a subquery, then pSubquery is the
3253 ** SELECT statement that the subquery encodes. The pTable and
3254 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3255 ** parameters are the content of the ON and USING clauses.
3256 **
3257 ** Return a new SrcList which encodes is the FROM with the new
3258 ** term added.
3259 */
sqlite3SrcListAppendFromTerm(Parse * pParse,SrcList * p,Token * pTable,Token * pDatabase,Token * pAlias,Select * pSubquery,Expr * pOn,IdList * pUsing)3260 SrcList *sqlite3SrcListAppendFromTerm(
3261 Parse *pParse, /* Parsing context */
3262 SrcList *p, /* The left part of the FROM clause already seen */
3263 Token *pTable, /* Name of the table to add to the FROM clause */
3264 Token *pDatabase, /* Name of the database containing pTable */
3265 Token *pAlias, /* The right-hand side of the AS subexpression */
3266 Select *pSubquery, /* A subquery used in place of a table name */
3267 Expr *pOn, /* The ON clause of a join */
3268 IdList *pUsing /* The USING clause of a join */
3269 ){
3270 struct SrcList_item *pItem;
3271 sqlite3 *db = pParse->db;
3272 if( !p && (pOn || pUsing) ){
3273 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3274 (pOn ? "ON" : "USING")
3275 );
3276 goto append_from_error;
3277 }
3278 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3279 if( p==0 || NEVER(p->nSrc==0) ){
3280 goto append_from_error;
3281 }
3282 pItem = &p->a[p->nSrc-1];
3283 assert( pAlias!=0 );
3284 if( pAlias->n ){
3285 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3286 }
3287 pItem->pSelect = pSubquery;
3288 pItem->pOn = pOn;
3289 pItem->pUsing = pUsing;
3290 return p;
3291
3292 append_from_error:
3293 assert( p==0 );
3294 sqlite3ExprDelete(db, pOn);
3295 sqlite3IdListDelete(db, pUsing);
3296 sqlite3SelectDelete(db, pSubquery);
3297 return 0;
3298 }
3299
3300 /*
3301 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3302 ** element of the source-list passed as the second argument.
3303 */
sqlite3SrcListIndexedBy(Parse * pParse,SrcList * p,Token * pIndexedBy)3304 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3305 assert( pIndexedBy!=0 );
3306 if( p && ALWAYS(p->nSrc>0) ){
3307 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3308 assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3309 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3310 /* A "NOT INDEXED" clause was supplied. See parse.y
3311 ** construct "indexed_opt" for details. */
3312 pItem->notIndexed = 1;
3313 }else{
3314 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3315 }
3316 }
3317 }
3318
3319 /*
3320 ** When building up a FROM clause in the parser, the join operator
3321 ** is initially attached to the left operand. But the code generator
3322 ** expects the join operator to be on the right operand. This routine
3323 ** Shifts all join operators from left to right for an entire FROM
3324 ** clause.
3325 **
3326 ** Example: Suppose the join is like this:
3327 **
3328 ** A natural cross join B
3329 **
3330 ** The operator is "natural cross join". The A and B operands are stored
3331 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3332 ** operator with A. This routine shifts that operator over to B.
3333 */
sqlite3SrcListShiftJoinType(SrcList * p)3334 void sqlite3SrcListShiftJoinType(SrcList *p){
3335 if( p && p->a ){
3336 int i;
3337 for(i=p->nSrc-1; i>0; i--){
3338 p->a[i].jointype = p->a[i-1].jointype;
3339 }
3340 p->a[0].jointype = 0;
3341 }
3342 }
3343
3344 /*
3345 ** Begin a transaction
3346 */
sqlite3BeginTransaction(Parse * pParse,int type)3347 void sqlite3BeginTransaction(Parse *pParse, int type){
3348 sqlite3 *db;
3349 Vdbe *v;
3350 int i;
3351
3352 assert( pParse!=0 );
3353 db = pParse->db;
3354 assert( db!=0 );
3355 /* if( db->aDb[0].pBt==0 ) return; */
3356 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3357 return;
3358 }
3359 v = sqlite3GetVdbe(pParse);
3360 if( !v ) return;
3361 if( type!=TK_DEFERRED ){
3362 for(i=0; i<db->nDb; i++){
3363 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3364 sqlite3VdbeUsesBtree(v, i);
3365 }
3366 }
3367 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3368 }
3369
3370 /*
3371 ** Commit a transaction
3372 */
sqlite3CommitTransaction(Parse * pParse)3373 void sqlite3CommitTransaction(Parse *pParse){
3374 sqlite3 *db;
3375 Vdbe *v;
3376
3377 assert( pParse!=0 );
3378 db = pParse->db;
3379 assert( db!=0 );
3380 /* if( db->aDb[0].pBt==0 ) return; */
3381 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3382 return;
3383 }
3384 v = sqlite3GetVdbe(pParse);
3385 if( v ){
3386 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3387 }
3388 }
3389
3390 /*
3391 ** Rollback a transaction
3392 */
sqlite3RollbackTransaction(Parse * pParse)3393 void sqlite3RollbackTransaction(Parse *pParse){
3394 sqlite3 *db;
3395 Vdbe *v;
3396
3397 assert( pParse!=0 );
3398 db = pParse->db;
3399 assert( db!=0 );
3400 /* if( db->aDb[0].pBt==0 ) return; */
3401 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3402 return;
3403 }
3404 v = sqlite3GetVdbe(pParse);
3405 if( v ){
3406 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3407 }
3408 }
3409
3410 /*
3411 ** This function is called by the parser when it parses a command to create,
3412 ** release or rollback an SQL savepoint.
3413 */
sqlite3Savepoint(Parse * pParse,int op,Token * pName)3414 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3415 char *zName = sqlite3NameFromToken(pParse->db, pName);
3416 if( zName ){
3417 Vdbe *v = sqlite3GetVdbe(pParse);
3418 #ifndef SQLITE_OMIT_AUTHORIZATION
3419 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3420 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3421 #endif
3422 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3423 sqlite3DbFree(pParse->db, zName);
3424 return;
3425 }
3426 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3427 }
3428 }
3429
3430 /*
3431 ** Make sure the TEMP database is open and available for use. Return
3432 ** the number of errors. Leave any error messages in the pParse structure.
3433 */
sqlite3OpenTempDatabase(Parse * pParse)3434 int sqlite3OpenTempDatabase(Parse *pParse){
3435 sqlite3 *db = pParse->db;
3436 if( db->aDb[1].pBt==0 && !pParse->explain ){
3437 int rc;
3438 Btree *pBt;
3439 static const int flags =
3440 SQLITE_OPEN_READWRITE |
3441 SQLITE_OPEN_CREATE |
3442 SQLITE_OPEN_EXCLUSIVE |
3443 SQLITE_OPEN_DELETEONCLOSE |
3444 SQLITE_OPEN_TEMP_DB;
3445
3446 rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags);
3447 if( rc!=SQLITE_OK ){
3448 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3449 "file for storing temporary tables");
3450 pParse->rc = rc;
3451 return 1;
3452 }
3453 db->aDb[1].pBt = pBt;
3454 assert( db->aDb[1].pSchema );
3455 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3456 db->mallocFailed = 1;
3457 return 1;
3458 }
3459 }
3460 return 0;
3461 }
3462
3463 /*
3464 ** Generate VDBE code that will verify the schema cookie and start
3465 ** a read-transaction for all named database files.
3466 **
3467 ** It is important that all schema cookies be verified and all
3468 ** read transactions be started before anything else happens in
3469 ** the VDBE program. But this routine can be called after much other
3470 ** code has been generated. So here is what we do:
3471 **
3472 ** The first time this routine is called, we code an OP_Goto that
3473 ** will jump to a subroutine at the end of the program. Then we
3474 ** record every database that needs its schema verified in the
3475 ** pParse->cookieMask field. Later, after all other code has been
3476 ** generated, the subroutine that does the cookie verifications and
3477 ** starts the transactions will be coded and the OP_Goto P2 value
3478 ** will be made to point to that subroutine. The generation of the
3479 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3480 **
3481 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3482 ** schema on any databases. This can be used to position the OP_Goto
3483 ** early in the code, before we know if any database tables will be used.
3484 */
sqlite3CodeVerifySchema(Parse * pParse,int iDb)3485 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3486 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3487
3488 if( pToplevel->cookieGoto==0 ){
3489 Vdbe *v = sqlite3GetVdbe(pToplevel);
3490 if( v==0 ) return; /* This only happens if there was a prior error */
3491 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3492 }
3493 if( iDb>=0 ){
3494 sqlite3 *db = pToplevel->db;
3495 yDbMask mask;
3496
3497 assert( iDb<db->nDb );
3498 assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3499 assert( iDb<SQLITE_MAX_ATTACHED+2 );
3500 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3501 mask = ((yDbMask)1)<<iDb;
3502 if( (pToplevel->cookieMask & mask)==0 ){
3503 pToplevel->cookieMask |= mask;
3504 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3505 if( !OMIT_TEMPDB && iDb==1 ){
3506 sqlite3OpenTempDatabase(pToplevel);
3507 }
3508 }
3509 }
3510 }
3511
3512 /*
3513 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
3514 ** attached database. Otherwise, invoke it for the database named zDb only.
3515 */
sqlite3CodeVerifyNamedSchema(Parse * pParse,const char * zDb)3516 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
3517 sqlite3 *db = pParse->db;
3518 int i;
3519 for(i=0; i<db->nDb; i++){
3520 Db *pDb = &db->aDb[i];
3521 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
3522 sqlite3CodeVerifySchema(pParse, i);
3523 }
3524 }
3525 }
3526
3527 /*
3528 ** Generate VDBE code that prepares for doing an operation that
3529 ** might change the database.
3530 **
3531 ** This routine starts a new transaction if we are not already within
3532 ** a transaction. If we are already within a transaction, then a checkpoint
3533 ** is set if the setStatement parameter is true. A checkpoint should
3534 ** be set for operations that might fail (due to a constraint) part of
3535 ** the way through and which will need to undo some writes without having to
3536 ** rollback the whole transaction. For operations where all constraints
3537 ** can be checked before any changes are made to the database, it is never
3538 ** necessary to undo a write and the checkpoint should not be set.
3539 */
sqlite3BeginWriteOperation(Parse * pParse,int setStatement,int iDb)3540 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3541 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3542 sqlite3CodeVerifySchema(pParse, iDb);
3543 pToplevel->writeMask |= ((yDbMask)1)<<iDb;
3544 pToplevel->isMultiWrite |= setStatement;
3545 }
3546
3547 /*
3548 ** Indicate that the statement currently under construction might write
3549 ** more than one entry (example: deleting one row then inserting another,
3550 ** inserting multiple rows in a table, or inserting a row and index entries.)
3551 ** If an abort occurs after some of these writes have completed, then it will
3552 ** be necessary to undo the completed writes.
3553 */
sqlite3MultiWrite(Parse * pParse)3554 void sqlite3MultiWrite(Parse *pParse){
3555 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3556 pToplevel->isMultiWrite = 1;
3557 }
3558
3559 /*
3560 ** The code generator calls this routine if is discovers that it is
3561 ** possible to abort a statement prior to completion. In order to
3562 ** perform this abort without corrupting the database, we need to make
3563 ** sure that the statement is protected by a statement transaction.
3564 **
3565 ** Technically, we only need to set the mayAbort flag if the
3566 ** isMultiWrite flag was previously set. There is a time dependency
3567 ** such that the abort must occur after the multiwrite. This makes
3568 ** some statements involving the REPLACE conflict resolution algorithm
3569 ** go a little faster. But taking advantage of this time dependency
3570 ** makes it more difficult to prove that the code is correct (in
3571 ** particular, it prevents us from writing an effective
3572 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3573 ** to take the safe route and skip the optimization.
3574 */
sqlite3MayAbort(Parse * pParse)3575 void sqlite3MayAbort(Parse *pParse){
3576 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3577 pToplevel->mayAbort = 1;
3578 }
3579
3580 /*
3581 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3582 ** error. The onError parameter determines which (if any) of the statement
3583 ** and/or current transaction is rolled back.
3584 */
sqlite3HaltConstraint(Parse * pParse,int onError,char * p4,int p4type)3585 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
3586 Vdbe *v = sqlite3GetVdbe(pParse);
3587 if( onError==OE_Abort ){
3588 sqlite3MayAbort(pParse);
3589 }
3590 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
3591 }
3592
3593 /*
3594 ** Check to see if pIndex uses the collating sequence pColl. Return
3595 ** true if it does and false if it does not.
3596 */
3597 #ifndef SQLITE_OMIT_REINDEX
collationMatch(const char * zColl,Index * pIndex)3598 static int collationMatch(const char *zColl, Index *pIndex){
3599 int i;
3600 assert( zColl!=0 );
3601 for(i=0; i<pIndex->nColumn; i++){
3602 const char *z = pIndex->azColl[i];
3603 assert( z!=0 );
3604 if( 0==sqlite3StrICmp(z, zColl) ){
3605 return 1;
3606 }
3607 }
3608 return 0;
3609 }
3610 #endif
3611
3612 /*
3613 ** Recompute all indices of pTab that use the collating sequence pColl.
3614 ** If pColl==0 then recompute all indices of pTab.
3615 */
3616 #ifndef SQLITE_OMIT_REINDEX
reindexTable(Parse * pParse,Table * pTab,char const * zColl)3617 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3618 Index *pIndex; /* An index associated with pTab */
3619
3620 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3621 if( zColl==0 || collationMatch(zColl, pIndex) ){
3622 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3623 sqlite3BeginWriteOperation(pParse, 0, iDb);
3624 sqlite3RefillIndex(pParse, pIndex, -1);
3625 }
3626 }
3627 }
3628 #endif
3629
3630 /*
3631 ** Recompute all indices of all tables in all databases where the
3632 ** indices use the collating sequence pColl. If pColl==0 then recompute
3633 ** all indices everywhere.
3634 */
3635 #ifndef SQLITE_OMIT_REINDEX
reindexDatabases(Parse * pParse,char const * zColl)3636 static void reindexDatabases(Parse *pParse, char const *zColl){
3637 Db *pDb; /* A single database */
3638 int iDb; /* The database index number */
3639 sqlite3 *db = pParse->db; /* The database connection */
3640 HashElem *k; /* For looping over tables in pDb */
3641 Table *pTab; /* A table in the database */
3642
3643 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
3644 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3645 assert( pDb!=0 );
3646 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
3647 pTab = (Table*)sqliteHashData(k);
3648 reindexTable(pParse, pTab, zColl);
3649 }
3650 }
3651 }
3652 #endif
3653
3654 /*
3655 ** Generate code for the REINDEX command.
3656 **
3657 ** REINDEX -- 1
3658 ** REINDEX <collation> -- 2
3659 ** REINDEX ?<database>.?<tablename> -- 3
3660 ** REINDEX ?<database>.?<indexname> -- 4
3661 **
3662 ** Form 1 causes all indices in all attached databases to be rebuilt.
3663 ** Form 2 rebuilds all indices in all databases that use the named
3664 ** collating function. Forms 3 and 4 rebuild the named index or all
3665 ** indices associated with the named table.
3666 */
3667 #ifndef SQLITE_OMIT_REINDEX
sqlite3Reindex(Parse * pParse,Token * pName1,Token * pName2)3668 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3669 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
3670 char *z; /* Name of a table or index */
3671 const char *zDb; /* Name of the database */
3672 Table *pTab; /* A table in the database */
3673 Index *pIndex; /* An index associated with pTab */
3674 int iDb; /* The database index number */
3675 sqlite3 *db = pParse->db; /* The database connection */
3676 Token *pObjName; /* Name of the table or index to be reindexed */
3677
3678 /* Read the database schema. If an error occurs, leave an error message
3679 ** and code in pParse and return NULL. */
3680 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3681 return;
3682 }
3683
3684 if( pName1==0 ){
3685 reindexDatabases(pParse, 0);
3686 return;
3687 }else if( NEVER(pName2==0) || pName2->z==0 ){
3688 char *zColl;
3689 assert( pName1->z );
3690 zColl = sqlite3NameFromToken(pParse->db, pName1);
3691 if( !zColl ) return;
3692 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
3693 if( pColl ){
3694 reindexDatabases(pParse, zColl);
3695 sqlite3DbFree(db, zColl);
3696 return;
3697 }
3698 sqlite3DbFree(db, zColl);
3699 }
3700 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3701 if( iDb<0 ) return;
3702 z = sqlite3NameFromToken(db, pObjName);
3703 if( z==0 ) return;
3704 zDb = db->aDb[iDb].zName;
3705 pTab = sqlite3FindTable(db, z, zDb);
3706 if( pTab ){
3707 reindexTable(pParse, pTab, 0);
3708 sqlite3DbFree(db, z);
3709 return;
3710 }
3711 pIndex = sqlite3FindIndex(db, z, zDb);
3712 sqlite3DbFree(db, z);
3713 if( pIndex ){
3714 sqlite3BeginWriteOperation(pParse, 0, iDb);
3715 sqlite3RefillIndex(pParse, pIndex, -1);
3716 return;
3717 }
3718 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3719 }
3720 #endif
3721
3722 /*
3723 ** Return a dynamicly allocated KeyInfo structure that can be used
3724 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3725 **
3726 ** If successful, a pointer to the new structure is returned. In this case
3727 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3728 ** pointer. If an error occurs (out of memory or missing collation
3729 ** sequence), NULL is returned and the state of pParse updated to reflect
3730 ** the error.
3731 */
sqlite3IndexKeyinfo(Parse * pParse,Index * pIdx)3732 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3733 int i;
3734 int nCol = pIdx->nColumn;
3735 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3736 sqlite3 *db = pParse->db;
3737 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3738
3739 if( pKey ){
3740 pKey->db = pParse->db;
3741 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3742 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3743 for(i=0; i<nCol; i++){
3744 char *zColl = pIdx->azColl[i];
3745 assert( zColl );
3746 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
3747 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3748 }
3749 pKey->nField = (u16)nCol;
3750 }
3751
3752 if( pParse->nErr ){
3753 sqlite3DbFree(db, pKey);
3754 pKey = 0;
3755 }
3756 return pKey;
3757 }
3758