• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed.  Initialize the pParse structure as needed.
30 */
sqlite3BeginParse(Parse * pParse,int explainFlag)31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32   pParse->explain = (u8)explainFlag;
33   pParse->nVar = 0;
34 }
35 
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42   int iDb;             /* The database containing the table to be locked */
43   int iTab;            /* The root page of the table to be locked */
44   u8 isWriteLock;      /* True for write lock.  False for a read lock */
45   const char *zName;   /* Name of the table */
46 };
47 
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired.  The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
sqlite3TableLock(Parse * pParse,int iDb,int iTab,u8 isWriteLock,const char * zName)58 void sqlite3TableLock(
59   Parse *pParse,     /* Parsing context */
60   int iDb,           /* Index of the database containing the table to lock */
61   int iTab,          /* Root page number of the table to be locked */
62   u8 isWriteLock,    /* True for a write lock */
63   const char *zName  /* Name of the table to be locked */
64 ){
65   Parse *pToplevel = sqlite3ParseToplevel(pParse);
66   int i;
67   int nBytes;
68   TableLock *p;
69   assert( iDb>=0 );
70 
71   for(i=0; i<pToplevel->nTableLock; i++){
72     p = &pToplevel->aTableLock[i];
73     if( p->iDb==iDb && p->iTab==iTab ){
74       p->isWriteLock = (p->isWriteLock || isWriteLock);
75       return;
76     }
77   }
78 
79   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80   pToplevel->aTableLock =
81       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82   if( pToplevel->aTableLock ){
83     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84     p->iDb = iDb;
85     p->iTab = iTab;
86     p->isWriteLock = isWriteLock;
87     p->zName = zName;
88   }else{
89     pToplevel->nTableLock = 0;
90     pToplevel->db->mallocFailed = 1;
91   }
92 }
93 
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
codeTableLocks(Parse * pParse)98 static void codeTableLocks(Parse *pParse){
99   int i;
100   Vdbe *pVdbe;
101 
102   pVdbe = sqlite3GetVdbe(pParse);
103   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104 
105   for(i=0; i<pParse->nTableLock; i++){
106     TableLock *p = &pParse->aTableLock[i];
107     int p1 = p->iDb;
108     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109                       p->zName, P4_STATIC);
110   }
111 }
112 #else
113   #define codeTableLocks(x)
114 #endif
115 
116 /*
117 ** This routine is called after a single SQL statement has been
118 ** parsed and a VDBE program to execute that statement has been
119 ** prepared.  This routine puts the finishing touches on the
120 ** VDBE program and resets the pParse structure for the next
121 ** parse.
122 **
123 ** Note that if an error occurred, it might be the case that
124 ** no VDBE code was generated.
125 */
sqlite3FinishCoding(Parse * pParse)126 void sqlite3FinishCoding(Parse *pParse){
127   sqlite3 *db;
128   Vdbe *v;
129 
130   db = pParse->db;
131   if( db->mallocFailed ) return;
132   if( pParse->nested ) return;
133   if( pParse->nErr ) return;
134 
135   /* Begin by generating some termination code at the end of the
136   ** vdbe program
137   */
138   v = sqlite3GetVdbe(pParse);
139   assert( !pParse->isMultiWrite
140        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
141   if( v ){
142     sqlite3VdbeAddOp0(v, OP_Halt);
143 
144     /* The cookie mask contains one bit for each database file open.
145     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
146     ** set for each database that is used.  Generate code to start a
147     ** transaction on each used database and to verify the schema cookie
148     ** on each used database.
149     */
150     if( pParse->cookieGoto>0 ){
151       yDbMask mask;
152       int iDb;
153       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
154       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
155         if( (mask & pParse->cookieMask)==0 ) continue;
156         sqlite3VdbeUsesBtree(v, iDb);
157         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
158         if( db->init.busy==0 ){
159           assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
160           sqlite3VdbeAddOp3(v, OP_VerifyCookie,
161                             iDb, pParse->cookieValue[iDb],
162                             db->aDb[iDb].pSchema->iGeneration);
163         }
164       }
165 #ifndef SQLITE_OMIT_VIRTUALTABLE
166       {
167         int i;
168         for(i=0; i<pParse->nVtabLock; i++){
169           char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
170           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
171         }
172         pParse->nVtabLock = 0;
173       }
174 #endif
175 
176       /* Once all the cookies have been verified and transactions opened,
177       ** obtain the required table-locks. This is a no-op unless the
178       ** shared-cache feature is enabled.
179       */
180       codeTableLocks(pParse);
181 
182       /* Initialize any AUTOINCREMENT data structures required.
183       */
184       sqlite3AutoincrementBegin(pParse);
185 
186       /* Finally, jump back to the beginning of the executable code. */
187       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
188     }
189   }
190 
191 
192   /* Get the VDBE program ready for execution
193   */
194   if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
195 #ifdef SQLITE_DEBUG
196     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
197     sqlite3VdbeTrace(v, trace);
198 #endif
199     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
200     /* A minimum of one cursor is required if autoincrement is used
201     *  See ticket [a696379c1f08866] */
202     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
203     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
204                          pParse->nTab, pParse->nMaxArg, pParse->explain,
205                          pParse->isMultiWrite && pParse->mayAbort);
206     pParse->rc = SQLITE_DONE;
207     pParse->colNamesSet = 0;
208   }else{
209     pParse->rc = SQLITE_ERROR;
210   }
211   pParse->nTab = 0;
212   pParse->nMem = 0;
213   pParse->nSet = 0;
214   pParse->nVar = 0;
215   pParse->cookieMask = 0;
216   pParse->cookieGoto = 0;
217 }
218 
219 /*
220 ** Run the parser and code generator recursively in order to generate
221 ** code for the SQL statement given onto the end of the pParse context
222 ** currently under construction.  When the parser is run recursively
223 ** this way, the final OP_Halt is not appended and other initialization
224 ** and finalization steps are omitted because those are handling by the
225 ** outermost parser.
226 **
227 ** Not everything is nestable.  This facility is designed to permit
228 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
229 ** care if you decide to try to use this routine for some other purposes.
230 */
sqlite3NestedParse(Parse * pParse,const char * zFormat,...)231 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
232   va_list ap;
233   char *zSql;
234   char *zErrMsg = 0;
235   sqlite3 *db = pParse->db;
236 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
237   char saveBuf[SAVE_SZ];
238 
239   if( pParse->nErr ) return;
240   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
241   va_start(ap, zFormat);
242   zSql = sqlite3VMPrintf(db, zFormat, ap);
243   va_end(ap);
244   if( zSql==0 ){
245     return;   /* A malloc must have failed */
246   }
247   pParse->nested++;
248   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
249   memset(&pParse->nVar, 0, SAVE_SZ);
250   sqlite3RunParser(pParse, zSql, &zErrMsg);
251   sqlite3DbFree(db, zErrMsg);
252   sqlite3DbFree(db, zSql);
253   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
254   pParse->nested--;
255 }
256 
257 /*
258 ** Locate the in-memory structure that describes a particular database
259 ** table given the name of that table and (optionally) the name of the
260 ** database containing the table.  Return NULL if not found.
261 **
262 ** If zDatabase is 0, all databases are searched for the table and the
263 ** first matching table is returned.  (No checking for duplicate table
264 ** names is done.)  The search order is TEMP first, then MAIN, then any
265 ** auxiliary databases added using the ATTACH command.
266 **
267 ** See also sqlite3LocateTable().
268 */
sqlite3FindTable(sqlite3 * db,const char * zName,const char * zDatabase)269 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
270   Table *p = 0;
271   int i;
272   int nName;
273   assert( zName!=0 );
274   nName = sqlite3Strlen30(zName);
275   /* All mutexes are required for schema access.  Make sure we hold them. */
276   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
277   for(i=OMIT_TEMPDB; i<db->nDb; i++){
278     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
279     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
280     assert( sqlite3SchemaMutexHeld(db, j, 0) );
281     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
282     if( p ) break;
283   }
284   return p;
285 }
286 
287 /*
288 ** Locate the in-memory structure that describes a particular database
289 ** table given the name of that table and (optionally) the name of the
290 ** database containing the table.  Return NULL if not found.  Also leave an
291 ** error message in pParse->zErrMsg.
292 **
293 ** The difference between this routine and sqlite3FindTable() is that this
294 ** routine leaves an error message in pParse->zErrMsg where
295 ** sqlite3FindTable() does not.
296 */
sqlite3LocateTable(Parse * pParse,int isView,const char * zName,const char * zDbase)297 Table *sqlite3LocateTable(
298   Parse *pParse,         /* context in which to report errors */
299   int isView,            /* True if looking for a VIEW rather than a TABLE */
300   const char *zName,     /* Name of the table we are looking for */
301   const char *zDbase     /* Name of the database.  Might be NULL */
302 ){
303   Table *p;
304 
305   /* Read the database schema. If an error occurs, leave an error message
306   ** and code in pParse and return NULL. */
307   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
308     return 0;
309   }
310 
311   p = sqlite3FindTable(pParse->db, zName, zDbase);
312   if( p==0 ){
313     const char *zMsg = isView ? "no such view" : "no such table";
314     if( zDbase ){
315       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
316     }else{
317       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
318     }
319     pParse->checkSchema = 1;
320   }
321   return p;
322 }
323 
324 /*
325 ** Locate the in-memory structure that describes
326 ** a particular index given the name of that index
327 ** and the name of the database that contains the index.
328 ** Return NULL if not found.
329 **
330 ** If zDatabase is 0, all databases are searched for the
331 ** table and the first matching index is returned.  (No checking
332 ** for duplicate index names is done.)  The search order is
333 ** TEMP first, then MAIN, then any auxiliary databases added
334 ** using the ATTACH command.
335 */
sqlite3FindIndex(sqlite3 * db,const char * zName,const char * zDb)336 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
337   Index *p = 0;
338   int i;
339   int nName = sqlite3Strlen30(zName);
340   /* All mutexes are required for schema access.  Make sure we hold them. */
341   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
342   for(i=OMIT_TEMPDB; i<db->nDb; i++){
343     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
344     Schema *pSchema = db->aDb[j].pSchema;
345     assert( pSchema );
346     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
347     assert( sqlite3SchemaMutexHeld(db, j, 0) );
348     p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
349     if( p ) break;
350   }
351   return p;
352 }
353 
354 /*
355 ** Reclaim the memory used by an index
356 */
freeIndex(sqlite3 * db,Index * p)357 static void freeIndex(sqlite3 *db, Index *p){
358 #ifndef SQLITE_OMIT_ANALYZE
359   sqlite3DeleteIndexSamples(db, p);
360 #endif
361   sqlite3DbFree(db, p->zColAff);
362   sqlite3DbFree(db, p);
363 }
364 
365 /*
366 ** For the index called zIdxName which is found in the database iDb,
367 ** unlike that index from its Table then remove the index from
368 ** the index hash table and free all memory structures associated
369 ** with the index.
370 */
sqlite3UnlinkAndDeleteIndex(sqlite3 * db,int iDb,const char * zIdxName)371 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
372   Index *pIndex;
373   int len;
374   Hash *pHash;
375 
376   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
377   pHash = &db->aDb[iDb].pSchema->idxHash;
378   len = sqlite3Strlen30(zIdxName);
379   pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
380   if( ALWAYS(pIndex) ){
381     if( pIndex->pTable->pIndex==pIndex ){
382       pIndex->pTable->pIndex = pIndex->pNext;
383     }else{
384       Index *p;
385       /* Justification of ALWAYS();  The index must be on the list of
386       ** indices. */
387       p = pIndex->pTable->pIndex;
388       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
389       if( ALWAYS(p && p->pNext==pIndex) ){
390         p->pNext = pIndex->pNext;
391       }
392     }
393     freeIndex(db, pIndex);
394   }
395   db->flags |= SQLITE_InternChanges;
396 }
397 
398 /*
399 ** Erase all schema information from the in-memory hash tables of
400 ** a single database.  This routine is called to reclaim memory
401 ** before the database closes.  It is also called during a rollback
402 ** if there were schema changes during the transaction or if a
403 ** schema-cookie mismatch occurs.
404 **
405 ** If iDb<0 then reset the internal schema tables for all database
406 ** files.  If iDb>=0 then reset the internal schema for only the
407 ** single file indicated.
408 */
sqlite3ResetInternalSchema(sqlite3 * db,int iDb)409 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
410   int i, j;
411   assert( iDb<db->nDb );
412 
413   if( iDb>=0 ){
414     /* Case 1:  Reset the single schema identified by iDb */
415     Db *pDb = &db->aDb[iDb];
416     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
417     assert( pDb->pSchema!=0 );
418     sqlite3SchemaClear(pDb->pSchema);
419 
420     /* If any database other than TEMP is reset, then also reset TEMP
421     ** since TEMP might be holding triggers that reference tables in the
422     ** other database.
423     */
424     if( iDb!=1 ){
425       pDb = &db->aDb[1];
426       assert( pDb->pSchema!=0 );
427       sqlite3SchemaClear(pDb->pSchema);
428     }
429     return;
430   }
431   /* Case 2 (from here to the end): Reset all schemas for all attached
432   ** databases. */
433   assert( iDb<0 );
434   sqlite3BtreeEnterAll(db);
435   for(i=0; i<db->nDb; i++){
436     Db *pDb = &db->aDb[i];
437     if( pDb->pSchema ){
438       sqlite3SchemaClear(pDb->pSchema);
439     }
440   }
441   db->flags &= ~SQLITE_InternChanges;
442   sqlite3VtabUnlockList(db);
443   sqlite3BtreeLeaveAll(db);
444 
445   /* If one or more of the auxiliary database files has been closed,
446   ** then remove them from the auxiliary database list.  We take the
447   ** opportunity to do this here since we have just deleted all of the
448   ** schema hash tables and therefore do not have to make any changes
449   ** to any of those tables.
450   */
451   for(i=j=2; i<db->nDb; i++){
452     struct Db *pDb = &db->aDb[i];
453     if( pDb->pBt==0 ){
454       sqlite3DbFree(db, pDb->zName);
455       pDb->zName = 0;
456       continue;
457     }
458     if( j<i ){
459       db->aDb[j] = db->aDb[i];
460     }
461     j++;
462   }
463   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
464   db->nDb = j;
465   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
466     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
467     sqlite3DbFree(db, db->aDb);
468     db->aDb = db->aDbStatic;
469   }
470 }
471 
472 /*
473 ** This routine is called when a commit occurs.
474 */
sqlite3CommitInternalChanges(sqlite3 * db)475 void sqlite3CommitInternalChanges(sqlite3 *db){
476   db->flags &= ~SQLITE_InternChanges;
477 }
478 
479 /*
480 ** Delete memory allocated for the column names of a table or view (the
481 ** Table.aCol[] array).
482 */
sqliteDeleteColumnNames(sqlite3 * db,Table * pTable)483 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
484   int i;
485   Column *pCol;
486   assert( pTable!=0 );
487   if( (pCol = pTable->aCol)!=0 ){
488     for(i=0; i<pTable->nCol; i++, pCol++){
489       sqlite3DbFree(db, pCol->zName);
490       sqlite3ExprDelete(db, pCol->pDflt);
491       sqlite3DbFree(db, pCol->zDflt);
492       sqlite3DbFree(db, pCol->zType);
493       sqlite3DbFree(db, pCol->zColl);
494     }
495     sqlite3DbFree(db, pTable->aCol);
496   }
497 }
498 
499 /*
500 ** Remove the memory data structures associated with the given
501 ** Table.  No changes are made to disk by this routine.
502 **
503 ** This routine just deletes the data structure.  It does not unlink
504 ** the table data structure from the hash table.  But it does destroy
505 ** memory structures of the indices and foreign keys associated with
506 ** the table.
507 */
sqlite3DeleteTable(sqlite3 * db,Table * pTable)508 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
509   Index *pIndex, *pNext;
510 
511   assert( !pTable || pTable->nRef>0 );
512 
513   /* Do not delete the table until the reference count reaches zero. */
514   if( !pTable ) return;
515   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
516 
517   /* Delete all indices associated with this table. */
518   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
519     pNext = pIndex->pNext;
520     assert( pIndex->pSchema==pTable->pSchema );
521     if( !db || db->pnBytesFreed==0 ){
522       char *zName = pIndex->zName;
523       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
524 	  &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
525       );
526       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
527       assert( pOld==pIndex || pOld==0 );
528     }
529     freeIndex(db, pIndex);
530   }
531 
532   /* Delete any foreign keys attached to this table. */
533   sqlite3FkDelete(db, pTable);
534 
535   /* Delete the Table structure itself.
536   */
537   sqliteDeleteColumnNames(db, pTable);
538   sqlite3DbFree(db, pTable->zName);
539   sqlite3DbFree(db, pTable->zColAff);
540   sqlite3SelectDelete(db, pTable->pSelect);
541 #ifndef SQLITE_OMIT_CHECK
542   sqlite3ExprDelete(db, pTable->pCheck);
543 #endif
544 #ifndef SQLITE_OMIT_VIRTUALTABLE
545   sqlite3VtabClear(db, pTable);
546 #endif
547   sqlite3DbFree(db, pTable);
548 }
549 
550 /*
551 ** Unlink the given table from the hash tables and the delete the
552 ** table structure with all its indices and foreign keys.
553 */
sqlite3UnlinkAndDeleteTable(sqlite3 * db,int iDb,const char * zTabName)554 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
555   Table *p;
556   Db *pDb;
557 
558   assert( db!=0 );
559   assert( iDb>=0 && iDb<db->nDb );
560   assert( zTabName );
561   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
562   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
563   pDb = &db->aDb[iDb];
564   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
565                         sqlite3Strlen30(zTabName),0);
566   sqlite3DeleteTable(db, p);
567   db->flags |= SQLITE_InternChanges;
568 }
569 
570 /*
571 ** Given a token, return a string that consists of the text of that
572 ** token.  Space to hold the returned string
573 ** is obtained from sqliteMalloc() and must be freed by the calling
574 ** function.
575 **
576 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
577 ** surround the body of the token are removed.
578 **
579 ** Tokens are often just pointers into the original SQL text and so
580 ** are not \000 terminated and are not persistent.  The returned string
581 ** is \000 terminated and is persistent.
582 */
sqlite3NameFromToken(sqlite3 * db,Token * pName)583 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
584   char *zName;
585   if( pName ){
586     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
587     sqlite3Dequote(zName);
588   }else{
589     zName = 0;
590   }
591   return zName;
592 }
593 
594 /*
595 ** Open the sqlite_master table stored in database number iDb for
596 ** writing. The table is opened using cursor 0.
597 */
sqlite3OpenMasterTable(Parse * p,int iDb)598 void sqlite3OpenMasterTable(Parse *p, int iDb){
599   Vdbe *v = sqlite3GetVdbe(p);
600   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
601   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
602   sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32);  /* 5 column table */
603   if( p->nTab==0 ){
604     p->nTab = 1;
605   }
606 }
607 
608 /*
609 ** Parameter zName points to a nul-terminated buffer containing the name
610 ** of a database ("main", "temp" or the name of an attached db). This
611 ** function returns the index of the named database in db->aDb[], or
612 ** -1 if the named db cannot be found.
613 */
sqlite3FindDbName(sqlite3 * db,const char * zName)614 int sqlite3FindDbName(sqlite3 *db, const char *zName){
615   int i = -1;         /* Database number */
616   if( zName ){
617     Db *pDb;
618     int n = sqlite3Strlen30(zName);
619     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
620       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
621           0==sqlite3StrICmp(pDb->zName, zName) ){
622         break;
623       }
624     }
625   }
626   return i;
627 }
628 
629 /*
630 ** The token *pName contains the name of a database (either "main" or
631 ** "temp" or the name of an attached db). This routine returns the
632 ** index of the named database in db->aDb[], or -1 if the named db
633 ** does not exist.
634 */
sqlite3FindDb(sqlite3 * db,Token * pName)635 int sqlite3FindDb(sqlite3 *db, Token *pName){
636   int i;                               /* Database number */
637   char *zName;                         /* Name we are searching for */
638   zName = sqlite3NameFromToken(db, pName);
639   i = sqlite3FindDbName(db, zName);
640   sqlite3DbFree(db, zName);
641   return i;
642 }
643 
644 /* The table or view or trigger name is passed to this routine via tokens
645 ** pName1 and pName2. If the table name was fully qualified, for example:
646 **
647 ** CREATE TABLE xxx.yyy (...);
648 **
649 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
650 ** the table name is not fully qualified, i.e.:
651 **
652 ** CREATE TABLE yyy(...);
653 **
654 ** Then pName1 is set to "yyy" and pName2 is "".
655 **
656 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
657 ** pName2) that stores the unqualified table name.  The index of the
658 ** database "xxx" is returned.
659 */
sqlite3TwoPartName(Parse * pParse,Token * pName1,Token * pName2,Token ** pUnqual)660 int sqlite3TwoPartName(
661   Parse *pParse,      /* Parsing and code generating context */
662   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
663   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
664   Token **pUnqual     /* Write the unqualified object name here */
665 ){
666   int iDb;                    /* Database holding the object */
667   sqlite3 *db = pParse->db;
668 
669   if( ALWAYS(pName2!=0) && pName2->n>0 ){
670     if( db->init.busy ) {
671       sqlite3ErrorMsg(pParse, "corrupt database");
672       pParse->nErr++;
673       return -1;
674     }
675     *pUnqual = pName2;
676     iDb = sqlite3FindDb(db, pName1);
677     if( iDb<0 ){
678       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
679       pParse->nErr++;
680       return -1;
681     }
682   }else{
683     assert( db->init.iDb==0 || db->init.busy );
684     iDb = db->init.iDb;
685     *pUnqual = pName1;
686   }
687   return iDb;
688 }
689 
690 /*
691 ** This routine is used to check if the UTF-8 string zName is a legal
692 ** unqualified name for a new schema object (table, index, view or
693 ** trigger). All names are legal except those that begin with the string
694 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
695 ** is reserved for internal use.
696 */
sqlite3CheckObjectName(Parse * pParse,const char * zName)697 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
698   if( !pParse->db->init.busy && pParse->nested==0
699           && (pParse->db->flags & SQLITE_WriteSchema)==0
700           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
701     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
702     return SQLITE_ERROR;
703   }
704   return SQLITE_OK;
705 }
706 
707 /*
708 ** Begin constructing a new table representation in memory.  This is
709 ** the first of several action routines that get called in response
710 ** to a CREATE TABLE statement.  In particular, this routine is called
711 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
712 ** flag is true if the table should be stored in the auxiliary database
713 ** file instead of in the main database file.  This is normally the case
714 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
715 ** CREATE and TABLE.
716 **
717 ** The new table record is initialized and put in pParse->pNewTable.
718 ** As more of the CREATE TABLE statement is parsed, additional action
719 ** routines will be called to add more information to this record.
720 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
721 ** is called to complete the construction of the new table record.
722 */
sqlite3StartTable(Parse * pParse,Token * pName1,Token * pName2,int isTemp,int isView,int isVirtual,int noErr)723 void sqlite3StartTable(
724   Parse *pParse,   /* Parser context */
725   Token *pName1,   /* First part of the name of the table or view */
726   Token *pName2,   /* Second part of the name of the table or view */
727   int isTemp,      /* True if this is a TEMP table */
728   int isView,      /* True if this is a VIEW */
729   int isVirtual,   /* True if this is a VIRTUAL table */
730   int noErr        /* Do nothing if table already exists */
731 ){
732   Table *pTable;
733   char *zName = 0; /* The name of the new table */
734   sqlite3 *db = pParse->db;
735   Vdbe *v;
736   int iDb;         /* Database number to create the table in */
737   Token *pName;    /* Unqualified name of the table to create */
738 
739   /* The table or view name to create is passed to this routine via tokens
740   ** pName1 and pName2. If the table name was fully qualified, for example:
741   **
742   ** CREATE TABLE xxx.yyy (...);
743   **
744   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
745   ** the table name is not fully qualified, i.e.:
746   **
747   ** CREATE TABLE yyy(...);
748   **
749   ** Then pName1 is set to "yyy" and pName2 is "".
750   **
751   ** The call below sets the pName pointer to point at the token (pName1 or
752   ** pName2) that stores the unqualified table name. The variable iDb is
753   ** set to the index of the database that the table or view is to be
754   ** created in.
755   */
756   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
757   if( iDb<0 ) return;
758   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
759     /* If creating a temp table, the name may not be qualified. Unless
760     ** the database name is "temp" anyway.  */
761     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
762     return;
763   }
764   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
765 
766   pParse->sNameToken = *pName;
767   zName = sqlite3NameFromToken(db, pName);
768   if( zName==0 ) return;
769   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
770     goto begin_table_error;
771   }
772   if( db->init.iDb==1 ) isTemp = 1;
773 #ifndef SQLITE_OMIT_AUTHORIZATION
774   assert( (isTemp & 1)==isTemp );
775   {
776     int code;
777     char *zDb = db->aDb[iDb].zName;
778     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
779       goto begin_table_error;
780     }
781     if( isView ){
782       if( !OMIT_TEMPDB && isTemp ){
783         code = SQLITE_CREATE_TEMP_VIEW;
784       }else{
785         code = SQLITE_CREATE_VIEW;
786       }
787     }else{
788       if( !OMIT_TEMPDB && isTemp ){
789         code = SQLITE_CREATE_TEMP_TABLE;
790       }else{
791         code = SQLITE_CREATE_TABLE;
792       }
793     }
794     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
795       goto begin_table_error;
796     }
797   }
798 #endif
799 
800   /* Make sure the new table name does not collide with an existing
801   ** index or table name in the same database.  Issue an error message if
802   ** it does. The exception is if the statement being parsed was passed
803   ** to an sqlite3_declare_vtab() call. In that case only the column names
804   ** and types will be used, so there is no need to test for namespace
805   ** collisions.
806   */
807   if( !IN_DECLARE_VTAB ){
808     char *zDb = db->aDb[iDb].zName;
809     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
810       goto begin_table_error;
811     }
812     pTable = sqlite3FindTable(db, zName, zDb);
813     if( pTable ){
814       if( !noErr ){
815         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
816       }else{
817         assert( !db->init.busy );
818         sqlite3CodeVerifySchema(pParse, iDb);
819       }
820       goto begin_table_error;
821     }
822     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
823       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
824       goto begin_table_error;
825     }
826   }
827 
828   pTable = sqlite3DbMallocZero(db, sizeof(Table));
829   if( pTable==0 ){
830     db->mallocFailed = 1;
831     pParse->rc = SQLITE_NOMEM;
832     pParse->nErr++;
833     goto begin_table_error;
834   }
835   pTable->zName = zName;
836   pTable->iPKey = -1;
837   pTable->pSchema = db->aDb[iDb].pSchema;
838   pTable->nRef = 1;
839   pTable->nRowEst = 1000000;
840   assert( pParse->pNewTable==0 );
841   pParse->pNewTable = pTable;
842 
843   /* If this is the magic sqlite_sequence table used by autoincrement,
844   ** then record a pointer to this table in the main database structure
845   ** so that INSERT can find the table easily.
846   */
847 #ifndef SQLITE_OMIT_AUTOINCREMENT
848   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
849     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
850     pTable->pSchema->pSeqTab = pTable;
851   }
852 #endif
853 
854   /* Begin generating the code that will insert the table record into
855   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
856   ** and allocate the record number for the table entry now.  Before any
857   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
858   ** indices to be created and the table record must come before the
859   ** indices.  Hence, the record number for the table must be allocated
860   ** now.
861   */
862   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
863     int j1;
864     int fileFormat;
865     int reg1, reg2, reg3;
866     sqlite3BeginWriteOperation(pParse, 0, iDb);
867 
868 #ifndef SQLITE_OMIT_VIRTUALTABLE
869     if( isVirtual ){
870       sqlite3VdbeAddOp0(v, OP_VBegin);
871     }
872 #endif
873 
874     /* If the file format and encoding in the database have not been set,
875     ** set them now.
876     */
877     reg1 = pParse->regRowid = ++pParse->nMem;
878     reg2 = pParse->regRoot = ++pParse->nMem;
879     reg3 = ++pParse->nMem;
880     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
881     sqlite3VdbeUsesBtree(v, iDb);
882     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
883     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
884                   1 : SQLITE_MAX_FILE_FORMAT;
885     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
886     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
887     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
888     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
889     sqlite3VdbeJumpHere(v, j1);
890 
891     /* This just creates a place-holder record in the sqlite_master table.
892     ** The record created does not contain anything yet.  It will be replaced
893     ** by the real entry in code generated at sqlite3EndTable().
894     **
895     ** The rowid for the new entry is left in register pParse->regRowid.
896     ** The root page number of the new table is left in reg pParse->regRoot.
897     ** The rowid and root page number values are needed by the code that
898     ** sqlite3EndTable will generate.
899     */
900 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
901     if( isView || isVirtual ){
902       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
903     }else
904 #endif
905     {
906       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
907     }
908     sqlite3OpenMasterTable(pParse, iDb);
909     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
910     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
911     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
912     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
913     sqlite3VdbeAddOp0(v, OP_Close);
914   }
915 
916   /* Normal (non-error) return. */
917   return;
918 
919   /* If an error occurs, we jump here */
920 begin_table_error:
921   sqlite3DbFree(db, zName);
922   return;
923 }
924 
925 /*
926 ** This macro is used to compare two strings in a case-insensitive manner.
927 ** It is slightly faster than calling sqlite3StrICmp() directly, but
928 ** produces larger code.
929 **
930 ** WARNING: This macro is not compatible with the strcmp() family. It
931 ** returns true if the two strings are equal, otherwise false.
932 */
933 #define STRICMP(x, y) (\
934 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
935 sqlite3UpperToLower[*(unsigned char *)(y)]     \
936 && sqlite3StrICmp((x)+1,(y)+1)==0 )
937 
938 /*
939 ** Add a new column to the table currently being constructed.
940 **
941 ** The parser calls this routine once for each column declaration
942 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
943 ** first to get things going.  Then this routine is called for each
944 ** column.
945 */
sqlite3AddColumn(Parse * pParse,Token * pName)946 void sqlite3AddColumn(Parse *pParse, Token *pName){
947   Table *p;
948   int i;
949   char *z;
950   Column *pCol;
951   sqlite3 *db = pParse->db;
952   if( (p = pParse->pNewTable)==0 ) return;
953 #if SQLITE_MAX_COLUMN
954   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
955     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
956     return;
957   }
958 #endif
959   z = sqlite3NameFromToken(db, pName);
960   if( z==0 ) return;
961   for(i=0; i<p->nCol; i++){
962     if( STRICMP(z, p->aCol[i].zName) ){
963       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
964       sqlite3DbFree(db, z);
965       return;
966     }
967   }
968   if( (p->nCol & 0x7)==0 ){
969     Column *aNew;
970     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
971     if( aNew==0 ){
972       sqlite3DbFree(db, z);
973       return;
974     }
975     p->aCol = aNew;
976   }
977   pCol = &p->aCol[p->nCol];
978   memset(pCol, 0, sizeof(p->aCol[0]));
979   pCol->zName = z;
980 
981   /* If there is no type specified, columns have the default affinity
982   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
983   ** be called next to set pCol->affinity correctly.
984   */
985   pCol->affinity = SQLITE_AFF_NONE;
986   p->nCol++;
987 }
988 
989 /*
990 ** This routine is called by the parser while in the middle of
991 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
992 ** been seen on a column.  This routine sets the notNull flag on
993 ** the column currently under construction.
994 */
sqlite3AddNotNull(Parse * pParse,int onError)995 void sqlite3AddNotNull(Parse *pParse, int onError){
996   Table *p;
997   p = pParse->pNewTable;
998   if( p==0 || NEVER(p->nCol<1) ) return;
999   p->aCol[p->nCol-1].notNull = (u8)onError;
1000 }
1001 
1002 /*
1003 ** Scan the column type name zType (length nType) and return the
1004 ** associated affinity type.
1005 **
1006 ** This routine does a case-independent search of zType for the
1007 ** substrings in the following table. If one of the substrings is
1008 ** found, the corresponding affinity is returned. If zType contains
1009 ** more than one of the substrings, entries toward the top of
1010 ** the table take priority. For example, if zType is 'BLOBINT',
1011 ** SQLITE_AFF_INTEGER is returned.
1012 **
1013 ** Substring     | Affinity
1014 ** --------------------------------
1015 ** 'INT'         | SQLITE_AFF_INTEGER
1016 ** 'CHAR'        | SQLITE_AFF_TEXT
1017 ** 'CLOB'        | SQLITE_AFF_TEXT
1018 ** 'TEXT'        | SQLITE_AFF_TEXT
1019 ** 'BLOB'        | SQLITE_AFF_NONE
1020 ** 'REAL'        | SQLITE_AFF_REAL
1021 ** 'FLOA'        | SQLITE_AFF_REAL
1022 ** 'DOUB'        | SQLITE_AFF_REAL
1023 **
1024 ** If none of the substrings in the above table are found,
1025 ** SQLITE_AFF_NUMERIC is returned.
1026 */
sqlite3AffinityType(const char * zIn)1027 char sqlite3AffinityType(const char *zIn){
1028   u32 h = 0;
1029   char aff = SQLITE_AFF_NUMERIC;
1030 
1031   if( zIn ) while( zIn[0] ){
1032     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1033     zIn++;
1034     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1035       aff = SQLITE_AFF_TEXT;
1036     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1037       aff = SQLITE_AFF_TEXT;
1038     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1039       aff = SQLITE_AFF_TEXT;
1040     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1041         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1042       aff = SQLITE_AFF_NONE;
1043 #ifndef SQLITE_OMIT_FLOATING_POINT
1044     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1045         && aff==SQLITE_AFF_NUMERIC ){
1046       aff = SQLITE_AFF_REAL;
1047     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1048         && aff==SQLITE_AFF_NUMERIC ){
1049       aff = SQLITE_AFF_REAL;
1050     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1051         && aff==SQLITE_AFF_NUMERIC ){
1052       aff = SQLITE_AFF_REAL;
1053 #endif
1054     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1055       aff = SQLITE_AFF_INTEGER;
1056       break;
1057     }
1058   }
1059 
1060   return aff;
1061 }
1062 
1063 /*
1064 ** This routine is called by the parser while in the middle of
1065 ** parsing a CREATE TABLE statement.  The pFirst token is the first
1066 ** token in the sequence of tokens that describe the type of the
1067 ** column currently under construction.   pLast is the last token
1068 ** in the sequence.  Use this information to construct a string
1069 ** that contains the typename of the column and store that string
1070 ** in zType.
1071 */
sqlite3AddColumnType(Parse * pParse,Token * pType)1072 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1073   Table *p;
1074   Column *pCol;
1075 
1076   p = pParse->pNewTable;
1077   if( p==0 || NEVER(p->nCol<1) ) return;
1078   pCol = &p->aCol[p->nCol-1];
1079   assert( pCol->zType==0 );
1080   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1081   pCol->affinity = sqlite3AffinityType(pCol->zType);
1082 }
1083 
1084 /*
1085 ** The expression is the default value for the most recently added column
1086 ** of the table currently under construction.
1087 **
1088 ** Default value expressions must be constant.  Raise an exception if this
1089 ** is not the case.
1090 **
1091 ** This routine is called by the parser while in the middle of
1092 ** parsing a CREATE TABLE statement.
1093 */
sqlite3AddDefaultValue(Parse * pParse,ExprSpan * pSpan)1094 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1095   Table *p;
1096   Column *pCol;
1097   sqlite3 *db = pParse->db;
1098   p = pParse->pNewTable;
1099   if( p!=0 ){
1100     pCol = &(p->aCol[p->nCol-1]);
1101     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
1102       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1103           pCol->zName);
1104     }else{
1105       /* A copy of pExpr is used instead of the original, as pExpr contains
1106       ** tokens that point to volatile memory. The 'span' of the expression
1107       ** is required by pragma table_info.
1108       */
1109       sqlite3ExprDelete(db, pCol->pDflt);
1110       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1111       sqlite3DbFree(db, pCol->zDflt);
1112       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1113                                      (int)(pSpan->zEnd - pSpan->zStart));
1114     }
1115   }
1116   sqlite3ExprDelete(db, pSpan->pExpr);
1117 }
1118 
1119 /*
1120 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1121 ** of columns that form the primary key.  If pList is NULL, then the
1122 ** most recently added column of the table is the primary key.
1123 **
1124 ** A table can have at most one primary key.  If the table already has
1125 ** a primary key (and this is the second primary key) then create an
1126 ** error.
1127 **
1128 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1129 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1130 ** field of the table under construction to be the index of the
1131 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1132 ** no INTEGER PRIMARY KEY.
1133 **
1134 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1135 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1136 */
sqlite3AddPrimaryKey(Parse * pParse,ExprList * pList,int onError,int autoInc,int sortOrder)1137 void sqlite3AddPrimaryKey(
1138   Parse *pParse,    /* Parsing context */
1139   ExprList *pList,  /* List of field names to be indexed */
1140   int onError,      /* What to do with a uniqueness conflict */
1141   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1142   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1143 ){
1144   Table *pTab = pParse->pNewTable;
1145   char *zType = 0;
1146   int iCol = -1, i;
1147   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1148   if( pTab->tabFlags & TF_HasPrimaryKey ){
1149     sqlite3ErrorMsg(pParse,
1150       "table \"%s\" has more than one primary key", pTab->zName);
1151     goto primary_key_exit;
1152   }
1153   pTab->tabFlags |= TF_HasPrimaryKey;
1154   if( pList==0 ){
1155     iCol = pTab->nCol - 1;
1156     pTab->aCol[iCol].isPrimKey = 1;
1157   }else{
1158     for(i=0; i<pList->nExpr; i++){
1159       for(iCol=0; iCol<pTab->nCol; iCol++){
1160         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1161           break;
1162         }
1163       }
1164       if( iCol<pTab->nCol ){
1165         pTab->aCol[iCol].isPrimKey = 1;
1166       }
1167     }
1168     if( pList->nExpr>1 ) iCol = -1;
1169   }
1170   if( iCol>=0 && iCol<pTab->nCol ){
1171     zType = pTab->aCol[iCol].zType;
1172   }
1173   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1174         && sortOrder==SQLITE_SO_ASC ){
1175     pTab->iPKey = iCol;
1176     pTab->keyConf = (u8)onError;
1177     assert( autoInc==0 || autoInc==1 );
1178     pTab->tabFlags |= autoInc*TF_Autoincrement;
1179   }else if( autoInc ){
1180 #ifndef SQLITE_OMIT_AUTOINCREMENT
1181     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1182        "INTEGER PRIMARY KEY");
1183 #endif
1184   }else{
1185     Index *p;
1186     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1187     if( p ){
1188       p->autoIndex = 2;
1189     }
1190     pList = 0;
1191   }
1192 
1193 primary_key_exit:
1194   sqlite3ExprListDelete(pParse->db, pList);
1195   return;
1196 }
1197 
1198 /*
1199 ** Add a new CHECK constraint to the table currently under construction.
1200 */
sqlite3AddCheckConstraint(Parse * pParse,Expr * pCheckExpr)1201 void sqlite3AddCheckConstraint(
1202   Parse *pParse,    /* Parsing context */
1203   Expr *pCheckExpr  /* The check expression */
1204 ){
1205   sqlite3 *db = pParse->db;
1206 #ifndef SQLITE_OMIT_CHECK
1207   Table *pTab = pParse->pNewTable;
1208   if( pTab && !IN_DECLARE_VTAB ){
1209     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
1210   }else
1211 #endif
1212   {
1213     sqlite3ExprDelete(db, pCheckExpr);
1214   }
1215 }
1216 
1217 /*
1218 ** Set the collation function of the most recently parsed table column
1219 ** to the CollSeq given.
1220 */
sqlite3AddCollateType(Parse * pParse,Token * pToken)1221 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1222   Table *p;
1223   int i;
1224   char *zColl;              /* Dequoted name of collation sequence */
1225   sqlite3 *db;
1226 
1227   if( (p = pParse->pNewTable)==0 ) return;
1228   i = p->nCol-1;
1229   db = pParse->db;
1230   zColl = sqlite3NameFromToken(db, pToken);
1231   if( !zColl ) return;
1232 
1233   if( sqlite3LocateCollSeq(pParse, zColl) ){
1234     Index *pIdx;
1235     p->aCol[i].zColl = zColl;
1236 
1237     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1238     ** then an index may have been created on this column before the
1239     ** collation type was added. Correct this if it is the case.
1240     */
1241     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1242       assert( pIdx->nColumn==1 );
1243       if( pIdx->aiColumn[0]==i ){
1244         pIdx->azColl[0] = p->aCol[i].zColl;
1245       }
1246     }
1247   }else{
1248     sqlite3DbFree(db, zColl);
1249   }
1250 }
1251 
1252 /*
1253 ** This function returns the collation sequence for database native text
1254 ** encoding identified by the string zName, length nName.
1255 **
1256 ** If the requested collation sequence is not available, or not available
1257 ** in the database native encoding, the collation factory is invoked to
1258 ** request it. If the collation factory does not supply such a sequence,
1259 ** and the sequence is available in another text encoding, then that is
1260 ** returned instead.
1261 **
1262 ** If no versions of the requested collations sequence are available, or
1263 ** another error occurs, NULL is returned and an error message written into
1264 ** pParse.
1265 **
1266 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1267 ** invokes the collation factory if the named collation cannot be found
1268 ** and generates an error message.
1269 **
1270 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1271 */
sqlite3LocateCollSeq(Parse * pParse,const char * zName)1272 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1273   sqlite3 *db = pParse->db;
1274   u8 enc = ENC(db);
1275   u8 initbusy = db->init.busy;
1276   CollSeq *pColl;
1277 
1278   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1279   if( !initbusy && (!pColl || !pColl->xCmp) ){
1280     pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
1281     if( !pColl ){
1282       sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
1283     }
1284   }
1285 
1286   return pColl;
1287 }
1288 
1289 
1290 /*
1291 ** Generate code that will increment the schema cookie.
1292 **
1293 ** The schema cookie is used to determine when the schema for the
1294 ** database changes.  After each schema change, the cookie value
1295 ** changes.  When a process first reads the schema it records the
1296 ** cookie.  Thereafter, whenever it goes to access the database,
1297 ** it checks the cookie to make sure the schema has not changed
1298 ** since it was last read.
1299 **
1300 ** This plan is not completely bullet-proof.  It is possible for
1301 ** the schema to change multiple times and for the cookie to be
1302 ** set back to prior value.  But schema changes are infrequent
1303 ** and the probability of hitting the same cookie value is only
1304 ** 1 chance in 2^32.  So we're safe enough.
1305 */
sqlite3ChangeCookie(Parse * pParse,int iDb)1306 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1307   int r1 = sqlite3GetTempReg(pParse);
1308   sqlite3 *db = pParse->db;
1309   Vdbe *v = pParse->pVdbe;
1310   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1311   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1312   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1313   sqlite3ReleaseTempReg(pParse, r1);
1314 }
1315 
1316 /*
1317 ** Measure the number of characters needed to output the given
1318 ** identifier.  The number returned includes any quotes used
1319 ** but does not include the null terminator.
1320 **
1321 ** The estimate is conservative.  It might be larger that what is
1322 ** really needed.
1323 */
identLength(const char * z)1324 static int identLength(const char *z){
1325   int n;
1326   for(n=0; *z; n++, z++){
1327     if( *z=='"' ){ n++; }
1328   }
1329   return n + 2;
1330 }
1331 
1332 /*
1333 ** The first parameter is a pointer to an output buffer. The second
1334 ** parameter is a pointer to an integer that contains the offset at
1335 ** which to write into the output buffer. This function copies the
1336 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1337 ** to the specified offset in the buffer and updates *pIdx to refer
1338 ** to the first byte after the last byte written before returning.
1339 **
1340 ** If the string zSignedIdent consists entirely of alpha-numeric
1341 ** characters, does not begin with a digit and is not an SQL keyword,
1342 ** then it is copied to the output buffer exactly as it is. Otherwise,
1343 ** it is quoted using double-quotes.
1344 */
identPut(char * z,int * pIdx,char * zSignedIdent)1345 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1346   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1347   int i, j, needQuote;
1348   i = *pIdx;
1349 
1350   for(j=0; zIdent[j]; j++){
1351     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1352   }
1353   needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1354   if( !needQuote ){
1355     needQuote = zIdent[j];
1356   }
1357 
1358   if( needQuote ) z[i++] = '"';
1359   for(j=0; zIdent[j]; j++){
1360     z[i++] = zIdent[j];
1361     if( zIdent[j]=='"' ) z[i++] = '"';
1362   }
1363   if( needQuote ) z[i++] = '"';
1364   z[i] = 0;
1365   *pIdx = i;
1366 }
1367 
1368 /*
1369 ** Generate a CREATE TABLE statement appropriate for the given
1370 ** table.  Memory to hold the text of the statement is obtained
1371 ** from sqliteMalloc() and must be freed by the calling function.
1372 */
createTableStmt(sqlite3 * db,Table * p)1373 static char *createTableStmt(sqlite3 *db, Table *p){
1374   int i, k, n;
1375   char *zStmt;
1376   char *zSep, *zSep2, *zEnd;
1377   Column *pCol;
1378   n = 0;
1379   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1380     n += identLength(pCol->zName) + 5;
1381   }
1382   n += identLength(p->zName);
1383   if( n<50 ){
1384     zSep = "";
1385     zSep2 = ",";
1386     zEnd = ")";
1387   }else{
1388     zSep = "\n  ";
1389     zSep2 = ",\n  ";
1390     zEnd = "\n)";
1391   }
1392   n += 35 + 6*p->nCol;
1393   zStmt = sqlite3DbMallocRaw(0, n);
1394   if( zStmt==0 ){
1395     db->mallocFailed = 1;
1396     return 0;
1397   }
1398   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1399   k = sqlite3Strlen30(zStmt);
1400   identPut(zStmt, &k, p->zName);
1401   zStmt[k++] = '(';
1402   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1403     static const char * const azType[] = {
1404         /* SQLITE_AFF_TEXT    */ " TEXT",
1405         /* SQLITE_AFF_NONE    */ "",
1406         /* SQLITE_AFF_NUMERIC */ " NUM",
1407         /* SQLITE_AFF_INTEGER */ " INT",
1408         /* SQLITE_AFF_REAL    */ " REAL"
1409     };
1410     int len;
1411     const char *zType;
1412 
1413     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1414     k += sqlite3Strlen30(&zStmt[k]);
1415     zSep = zSep2;
1416     identPut(zStmt, &k, pCol->zName);
1417     assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
1418     assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
1419     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1420     testcase( pCol->affinity==SQLITE_AFF_NONE );
1421     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1422     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1423     testcase( pCol->affinity==SQLITE_AFF_REAL );
1424 
1425     zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
1426     len = sqlite3Strlen30(zType);
1427     assert( pCol->affinity==SQLITE_AFF_NONE
1428             || pCol->affinity==sqlite3AffinityType(zType) );
1429     memcpy(&zStmt[k], zType, len);
1430     k += len;
1431     assert( k<=n );
1432   }
1433   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1434   return zStmt;
1435 }
1436 
1437 /*
1438 ** This routine is called to report the final ")" that terminates
1439 ** a CREATE TABLE statement.
1440 **
1441 ** The table structure that other action routines have been building
1442 ** is added to the internal hash tables, assuming no errors have
1443 ** occurred.
1444 **
1445 ** An entry for the table is made in the master table on disk, unless
1446 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1447 ** it means we are reading the sqlite_master table because we just
1448 ** connected to the database or because the sqlite_master table has
1449 ** recently changed, so the entry for this table already exists in
1450 ** the sqlite_master table.  We do not want to create it again.
1451 **
1452 ** If the pSelect argument is not NULL, it means that this routine
1453 ** was called to create a table generated from a
1454 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1455 ** the new table will match the result set of the SELECT.
1456 */
sqlite3EndTable(Parse * pParse,Token * pCons,Token * pEnd,Select * pSelect)1457 void sqlite3EndTable(
1458   Parse *pParse,          /* Parse context */
1459   Token *pCons,           /* The ',' token after the last column defn. */
1460   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
1461   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1462 ){
1463   Table *p;
1464   sqlite3 *db = pParse->db;
1465   int iDb;
1466 
1467   if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
1468     return;
1469   }
1470   p = pParse->pNewTable;
1471   if( p==0 ) return;
1472 
1473   assert( !db->init.busy || !pSelect );
1474 
1475   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1476 
1477 #ifndef SQLITE_OMIT_CHECK
1478   /* Resolve names in all CHECK constraint expressions.
1479   */
1480   if( p->pCheck ){
1481     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
1482     NameContext sNC;                /* Name context for pParse->pNewTable */
1483 
1484     memset(&sNC, 0, sizeof(sNC));
1485     memset(&sSrc, 0, sizeof(sSrc));
1486     sSrc.nSrc = 1;
1487     sSrc.a[0].zName = p->zName;
1488     sSrc.a[0].pTab = p;
1489     sSrc.a[0].iCursor = -1;
1490     sNC.pParse = pParse;
1491     sNC.pSrcList = &sSrc;
1492     sNC.isCheck = 1;
1493     if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
1494       return;
1495     }
1496   }
1497 #endif /* !defined(SQLITE_OMIT_CHECK) */
1498 
1499   /* If the db->init.busy is 1 it means we are reading the SQL off the
1500   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1501   ** So do not write to the disk again.  Extract the root page number
1502   ** for the table from the db->init.newTnum field.  (The page number
1503   ** should have been put there by the sqliteOpenCb routine.)
1504   */
1505   if( db->init.busy ){
1506     p->tnum = db->init.newTnum;
1507   }
1508 
1509   /* If not initializing, then create a record for the new table
1510   ** in the SQLITE_MASTER table of the database.
1511   **
1512   ** If this is a TEMPORARY table, write the entry into the auxiliary
1513   ** file instead of into the main database file.
1514   */
1515   if( !db->init.busy ){
1516     int n;
1517     Vdbe *v;
1518     char *zType;    /* "view" or "table" */
1519     char *zType2;   /* "VIEW" or "TABLE" */
1520     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1521 
1522     v = sqlite3GetVdbe(pParse);
1523     if( NEVER(v==0) ) return;
1524 
1525     sqlite3VdbeAddOp1(v, OP_Close, 0);
1526 
1527     /*
1528     ** Initialize zType for the new view or table.
1529     */
1530     if( p->pSelect==0 ){
1531       /* A regular table */
1532       zType = "table";
1533       zType2 = "TABLE";
1534 #ifndef SQLITE_OMIT_VIEW
1535     }else{
1536       /* A view */
1537       zType = "view";
1538       zType2 = "VIEW";
1539 #endif
1540     }
1541 
1542     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1543     ** statement to populate the new table. The root-page number for the
1544     ** new table is in register pParse->regRoot.
1545     **
1546     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1547     ** suitable state to query for the column names and types to be used
1548     ** by the new table.
1549     **
1550     ** A shared-cache write-lock is not required to write to the new table,
1551     ** as a schema-lock must have already been obtained to create it. Since
1552     ** a schema-lock excludes all other database users, the write-lock would
1553     ** be redundant.
1554     */
1555     if( pSelect ){
1556       SelectDest dest;
1557       Table *pSelTab;
1558 
1559       assert(pParse->nTab==1);
1560       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1561       sqlite3VdbeChangeP5(v, 1);
1562       pParse->nTab = 2;
1563       sqlite3SelectDestInit(&dest, SRT_Table, 1);
1564       sqlite3Select(pParse, pSelect, &dest);
1565       sqlite3VdbeAddOp1(v, OP_Close, 1);
1566       if( pParse->nErr==0 ){
1567         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1568         if( pSelTab==0 ) return;
1569         assert( p->aCol==0 );
1570         p->nCol = pSelTab->nCol;
1571         p->aCol = pSelTab->aCol;
1572         pSelTab->nCol = 0;
1573         pSelTab->aCol = 0;
1574         sqlite3DeleteTable(db, pSelTab);
1575       }
1576     }
1577 
1578     /* Compute the complete text of the CREATE statement */
1579     if( pSelect ){
1580       zStmt = createTableStmt(db, p);
1581     }else{
1582       n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
1583       zStmt = sqlite3MPrintf(db,
1584           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1585       );
1586     }
1587 
1588     /* A slot for the record has already been allocated in the
1589     ** SQLITE_MASTER table.  We just need to update that slot with all
1590     ** the information we've collected.
1591     */
1592     sqlite3NestedParse(pParse,
1593       "UPDATE %Q.%s "
1594          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1595        "WHERE rowid=#%d",
1596       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1597       zType,
1598       p->zName,
1599       p->zName,
1600       pParse->regRoot,
1601       zStmt,
1602       pParse->regRowid
1603     );
1604     sqlite3DbFree(db, zStmt);
1605     sqlite3ChangeCookie(pParse, iDb);
1606 
1607 #ifndef SQLITE_OMIT_AUTOINCREMENT
1608     /* Check to see if we need to create an sqlite_sequence table for
1609     ** keeping track of autoincrement keys.
1610     */
1611     if( p->tabFlags & TF_Autoincrement ){
1612       Db *pDb = &db->aDb[iDb];
1613       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1614       if( pDb->pSchema->pSeqTab==0 ){
1615         sqlite3NestedParse(pParse,
1616           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1617           pDb->zName
1618         );
1619       }
1620     }
1621 #endif
1622 
1623     /* Reparse everything to update our internal data structures */
1624     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
1625         sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
1626   }
1627 
1628 
1629   /* Add the table to the in-memory representation of the database.
1630   */
1631   if( db->init.busy ){
1632     Table *pOld;
1633     Schema *pSchema = p->pSchema;
1634     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1635     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
1636                              sqlite3Strlen30(p->zName),p);
1637     if( pOld ){
1638       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
1639       db->mallocFailed = 1;
1640       return;
1641     }
1642     pParse->pNewTable = 0;
1643     db->nTable++;
1644     db->flags |= SQLITE_InternChanges;
1645 
1646 #ifndef SQLITE_OMIT_ALTERTABLE
1647     if( !p->pSelect ){
1648       const char *zName = (const char *)pParse->sNameToken.z;
1649       int nName;
1650       assert( !pSelect && pCons && pEnd );
1651       if( pCons->z==0 ){
1652         pCons = pEnd;
1653       }
1654       nName = (int)((const char *)pCons->z - zName);
1655       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1656     }
1657 #endif
1658   }
1659 }
1660 
1661 #ifndef SQLITE_OMIT_VIEW
1662 /*
1663 ** The parser calls this routine in order to create a new VIEW
1664 */
sqlite3CreateView(Parse * pParse,Token * pBegin,Token * pName1,Token * pName2,Select * pSelect,int isTemp,int noErr)1665 void sqlite3CreateView(
1666   Parse *pParse,     /* The parsing context */
1667   Token *pBegin,     /* The CREATE token that begins the statement */
1668   Token *pName1,     /* The token that holds the name of the view */
1669   Token *pName2,     /* The token that holds the name of the view */
1670   Select *pSelect,   /* A SELECT statement that will become the new view */
1671   int isTemp,        /* TRUE for a TEMPORARY view */
1672   int noErr          /* Suppress error messages if VIEW already exists */
1673 ){
1674   Table *p;
1675   int n;
1676   const char *z;
1677   Token sEnd;
1678   DbFixer sFix;
1679   Token *pName;
1680   int iDb;
1681   sqlite3 *db = pParse->db;
1682 
1683   if( pParse->nVar>0 ){
1684     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1685     sqlite3SelectDelete(db, pSelect);
1686     return;
1687   }
1688   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1689   p = pParse->pNewTable;
1690   if( p==0 || pParse->nErr ){
1691     sqlite3SelectDelete(db, pSelect);
1692     return;
1693   }
1694   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1695   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1696   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1697     && sqlite3FixSelect(&sFix, pSelect)
1698   ){
1699     sqlite3SelectDelete(db, pSelect);
1700     return;
1701   }
1702 
1703   /* Make a copy of the entire SELECT statement that defines the view.
1704   ** This will force all the Expr.token.z values to be dynamically
1705   ** allocated rather than point to the input string - which means that
1706   ** they will persist after the current sqlite3_exec() call returns.
1707   */
1708   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1709   sqlite3SelectDelete(db, pSelect);
1710   if( db->mallocFailed ){
1711     return;
1712   }
1713   if( !db->init.busy ){
1714     sqlite3ViewGetColumnNames(pParse, p);
1715   }
1716 
1717   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
1718   ** the end.
1719   */
1720   sEnd = pParse->sLastToken;
1721   if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
1722     sEnd.z += sEnd.n;
1723   }
1724   sEnd.n = 0;
1725   n = (int)(sEnd.z - pBegin->z);
1726   z = pBegin->z;
1727   while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
1728   sEnd.z = &z[n-1];
1729   sEnd.n = 1;
1730 
1731   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1732   sqlite3EndTable(pParse, 0, &sEnd, 0);
1733   return;
1734 }
1735 #endif /* SQLITE_OMIT_VIEW */
1736 
1737 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1738 /*
1739 ** The Table structure pTable is really a VIEW.  Fill in the names of
1740 ** the columns of the view in the pTable structure.  Return the number
1741 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
1742 */
sqlite3ViewGetColumnNames(Parse * pParse,Table * pTable)1743 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1744   Table *pSelTab;   /* A fake table from which we get the result set */
1745   Select *pSel;     /* Copy of the SELECT that implements the view */
1746   int nErr = 0;     /* Number of errors encountered */
1747   int n;            /* Temporarily holds the number of cursors assigned */
1748   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
1749   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1750 
1751   assert( pTable );
1752 
1753 #ifndef SQLITE_OMIT_VIRTUALTABLE
1754   if( sqlite3VtabCallConnect(pParse, pTable) ){
1755     return SQLITE_ERROR;
1756   }
1757   if( IsVirtual(pTable) ) return 0;
1758 #endif
1759 
1760 #ifndef SQLITE_OMIT_VIEW
1761   /* A positive nCol means the columns names for this view are
1762   ** already known.
1763   */
1764   if( pTable->nCol>0 ) return 0;
1765 
1766   /* A negative nCol is a special marker meaning that we are currently
1767   ** trying to compute the column names.  If we enter this routine with
1768   ** a negative nCol, it means two or more views form a loop, like this:
1769   **
1770   **     CREATE VIEW one AS SELECT * FROM two;
1771   **     CREATE VIEW two AS SELECT * FROM one;
1772   **
1773   ** Actually, the error above is now caught prior to reaching this point.
1774   ** But the following test is still important as it does come up
1775   ** in the following:
1776   **
1777   **     CREATE TABLE main.ex1(a);
1778   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
1779   **     SELECT * FROM temp.ex1;
1780   */
1781   if( pTable->nCol<0 ){
1782     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1783     return 1;
1784   }
1785   assert( pTable->nCol>=0 );
1786 
1787   /* If we get this far, it means we need to compute the table names.
1788   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1789   ** "*" elements in the results set of the view and will assign cursors
1790   ** to the elements of the FROM clause.  But we do not want these changes
1791   ** to be permanent.  So the computation is done on a copy of the SELECT
1792   ** statement that defines the view.
1793   */
1794   assert( pTable->pSelect );
1795   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
1796   if( pSel ){
1797     u8 enableLookaside = db->lookaside.bEnabled;
1798     n = pParse->nTab;
1799     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1800     pTable->nCol = -1;
1801     db->lookaside.bEnabled = 0;
1802 #ifndef SQLITE_OMIT_AUTHORIZATION
1803     xAuth = db->xAuth;
1804     db->xAuth = 0;
1805     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1806     db->xAuth = xAuth;
1807 #else
1808     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1809 #endif
1810     db->lookaside.bEnabled = enableLookaside;
1811     pParse->nTab = n;
1812     if( pSelTab ){
1813       assert( pTable->aCol==0 );
1814       pTable->nCol = pSelTab->nCol;
1815       pTable->aCol = pSelTab->aCol;
1816       pSelTab->nCol = 0;
1817       pSelTab->aCol = 0;
1818       sqlite3DeleteTable(db, pSelTab);
1819       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
1820       pTable->pSchema->flags |= DB_UnresetViews;
1821     }else{
1822       pTable->nCol = 0;
1823       nErr++;
1824     }
1825     sqlite3SelectDelete(db, pSel);
1826   } else {
1827     nErr++;
1828   }
1829 #endif /* SQLITE_OMIT_VIEW */
1830   return nErr;
1831 }
1832 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1833 
1834 #ifndef SQLITE_OMIT_VIEW
1835 /*
1836 ** Clear the column names from every VIEW in database idx.
1837 */
sqliteViewResetAll(sqlite3 * db,int idx)1838 static void sqliteViewResetAll(sqlite3 *db, int idx){
1839   HashElem *i;
1840   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
1841   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1842   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1843     Table *pTab = sqliteHashData(i);
1844     if( pTab->pSelect ){
1845       sqliteDeleteColumnNames(db, pTab);
1846       pTab->aCol = 0;
1847       pTab->nCol = 0;
1848     }
1849   }
1850   DbClearProperty(db, idx, DB_UnresetViews);
1851 }
1852 #else
1853 # define sqliteViewResetAll(A,B)
1854 #endif /* SQLITE_OMIT_VIEW */
1855 
1856 /*
1857 ** This function is called by the VDBE to adjust the internal schema
1858 ** used by SQLite when the btree layer moves a table root page. The
1859 ** root-page of a table or index in database iDb has changed from iFrom
1860 ** to iTo.
1861 **
1862 ** Ticket #1728:  The symbol table might still contain information
1863 ** on tables and/or indices that are the process of being deleted.
1864 ** If you are unlucky, one of those deleted indices or tables might
1865 ** have the same rootpage number as the real table or index that is
1866 ** being moved.  So we cannot stop searching after the first match
1867 ** because the first match might be for one of the deleted indices
1868 ** or tables and not the table/index that is actually being moved.
1869 ** We must continue looping until all tables and indices with
1870 ** rootpage==iFrom have been converted to have a rootpage of iTo
1871 ** in order to be certain that we got the right one.
1872 */
1873 #ifndef SQLITE_OMIT_AUTOVACUUM
sqlite3RootPageMoved(sqlite3 * db,int iDb,int iFrom,int iTo)1874 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
1875   HashElem *pElem;
1876   Hash *pHash;
1877   Db *pDb;
1878 
1879   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1880   pDb = &db->aDb[iDb];
1881   pHash = &pDb->pSchema->tblHash;
1882   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1883     Table *pTab = sqliteHashData(pElem);
1884     if( pTab->tnum==iFrom ){
1885       pTab->tnum = iTo;
1886     }
1887   }
1888   pHash = &pDb->pSchema->idxHash;
1889   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1890     Index *pIdx = sqliteHashData(pElem);
1891     if( pIdx->tnum==iFrom ){
1892       pIdx->tnum = iTo;
1893     }
1894   }
1895 }
1896 #endif
1897 
1898 /*
1899 ** Write code to erase the table with root-page iTable from database iDb.
1900 ** Also write code to modify the sqlite_master table and internal schema
1901 ** if a root-page of another table is moved by the btree-layer whilst
1902 ** erasing iTable (this can happen with an auto-vacuum database).
1903 */
destroyRootPage(Parse * pParse,int iTable,int iDb)1904 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1905   Vdbe *v = sqlite3GetVdbe(pParse);
1906   int r1 = sqlite3GetTempReg(pParse);
1907   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1908   sqlite3MayAbort(pParse);
1909 #ifndef SQLITE_OMIT_AUTOVACUUM
1910   /* OP_Destroy stores an in integer r1. If this integer
1911   ** is non-zero, then it is the root page number of a table moved to
1912   ** location iTable. The following code modifies the sqlite_master table to
1913   ** reflect this.
1914   **
1915   ** The "#NNN" in the SQL is a special constant that means whatever value
1916   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
1917   ** token for additional information.
1918   */
1919   sqlite3NestedParse(pParse,
1920      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1921      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1922 #endif
1923   sqlite3ReleaseTempReg(pParse, r1);
1924 }
1925 
1926 /*
1927 ** Write VDBE code to erase table pTab and all associated indices on disk.
1928 ** Code to update the sqlite_master tables and internal schema definitions
1929 ** in case a root-page belonging to another table is moved by the btree layer
1930 ** is also added (this can happen with an auto-vacuum database).
1931 */
destroyTable(Parse * pParse,Table * pTab)1932 static void destroyTable(Parse *pParse, Table *pTab){
1933 #ifdef SQLITE_OMIT_AUTOVACUUM
1934   Index *pIdx;
1935   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1936   destroyRootPage(pParse, pTab->tnum, iDb);
1937   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1938     destroyRootPage(pParse, pIdx->tnum, iDb);
1939   }
1940 #else
1941   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1942   ** is not defined), then it is important to call OP_Destroy on the
1943   ** table and index root-pages in order, starting with the numerically
1944   ** largest root-page number. This guarantees that none of the root-pages
1945   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1946   ** following were coded:
1947   **
1948   ** OP_Destroy 4 0
1949   ** ...
1950   ** OP_Destroy 5 0
1951   **
1952   ** and root page 5 happened to be the largest root-page number in the
1953   ** database, then root page 5 would be moved to page 4 by the
1954   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1955   ** a free-list page.
1956   */
1957   int iTab = pTab->tnum;
1958   int iDestroyed = 0;
1959 
1960   while( 1 ){
1961     Index *pIdx;
1962     int iLargest = 0;
1963 
1964     if( iDestroyed==0 || iTab<iDestroyed ){
1965       iLargest = iTab;
1966     }
1967     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1968       int iIdx = pIdx->tnum;
1969       assert( pIdx->pSchema==pTab->pSchema );
1970       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1971         iLargest = iIdx;
1972       }
1973     }
1974     if( iLargest==0 ){
1975       return;
1976     }else{
1977       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1978       destroyRootPage(pParse, iLargest, iDb);
1979       iDestroyed = iLargest;
1980     }
1981   }
1982 #endif
1983 }
1984 
1985 /*
1986 ** This routine is called to do the work of a DROP TABLE statement.
1987 ** pName is the name of the table to be dropped.
1988 */
sqlite3DropTable(Parse * pParse,SrcList * pName,int isView,int noErr)1989 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
1990   Table *pTab;
1991   Vdbe *v;
1992   sqlite3 *db = pParse->db;
1993   int iDb;
1994 
1995   if( db->mallocFailed ){
1996     goto exit_drop_table;
1997   }
1998   assert( pParse->nErr==0 );
1999   assert( pName->nSrc==1 );
2000   if( noErr ) db->suppressErr++;
2001   pTab = sqlite3LocateTable(pParse, isView,
2002                             pName->a[0].zName, pName->a[0].zDatabase);
2003   if( noErr ) db->suppressErr--;
2004 
2005   if( pTab==0 ){
2006     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2007     goto exit_drop_table;
2008   }
2009   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2010   assert( iDb>=0 && iDb<db->nDb );
2011 
2012   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2013   ** it is initialized.
2014   */
2015   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2016     goto exit_drop_table;
2017   }
2018 #ifndef SQLITE_OMIT_AUTHORIZATION
2019   {
2020     int code;
2021     const char *zTab = SCHEMA_TABLE(iDb);
2022     const char *zDb = db->aDb[iDb].zName;
2023     const char *zArg2 = 0;
2024     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2025       goto exit_drop_table;
2026     }
2027     if( isView ){
2028       if( !OMIT_TEMPDB && iDb==1 ){
2029         code = SQLITE_DROP_TEMP_VIEW;
2030       }else{
2031         code = SQLITE_DROP_VIEW;
2032       }
2033 #ifndef SQLITE_OMIT_VIRTUALTABLE
2034     }else if( IsVirtual(pTab) ){
2035       code = SQLITE_DROP_VTABLE;
2036       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2037 #endif
2038     }else{
2039       if( !OMIT_TEMPDB && iDb==1 ){
2040         code = SQLITE_DROP_TEMP_TABLE;
2041       }else{
2042         code = SQLITE_DROP_TABLE;
2043       }
2044     }
2045     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2046       goto exit_drop_table;
2047     }
2048     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2049       goto exit_drop_table;
2050     }
2051   }
2052 #endif
2053   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
2054     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2055     goto exit_drop_table;
2056   }
2057 
2058 #ifndef SQLITE_OMIT_VIEW
2059   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2060   ** on a table.
2061   */
2062   if( isView && pTab->pSelect==0 ){
2063     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2064     goto exit_drop_table;
2065   }
2066   if( !isView && pTab->pSelect ){
2067     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2068     goto exit_drop_table;
2069   }
2070 #endif
2071 
2072   /* Generate code to remove the table from the master table
2073   ** on disk.
2074   */
2075   v = sqlite3GetVdbe(pParse);
2076   if( v ){
2077     Trigger *pTrigger;
2078     Db *pDb = &db->aDb[iDb];
2079     sqlite3BeginWriteOperation(pParse, 1, iDb);
2080 
2081 #ifndef SQLITE_OMIT_VIRTUALTABLE
2082     if( IsVirtual(pTab) ){
2083       sqlite3VdbeAddOp0(v, OP_VBegin);
2084     }
2085 #endif
2086     sqlite3FkDropTable(pParse, pName, pTab);
2087 
2088     /* Drop all triggers associated with the table being dropped. Code
2089     ** is generated to remove entries from sqlite_master and/or
2090     ** sqlite_temp_master if required.
2091     */
2092     pTrigger = sqlite3TriggerList(pParse, pTab);
2093     while( pTrigger ){
2094       assert( pTrigger->pSchema==pTab->pSchema ||
2095           pTrigger->pSchema==db->aDb[1].pSchema );
2096       sqlite3DropTriggerPtr(pParse, pTrigger);
2097       pTrigger = pTrigger->pNext;
2098     }
2099 
2100 #ifndef SQLITE_OMIT_AUTOINCREMENT
2101     /* Remove any entries of the sqlite_sequence table associated with
2102     ** the table being dropped. This is done before the table is dropped
2103     ** at the btree level, in case the sqlite_sequence table needs to
2104     ** move as a result of the drop (can happen in auto-vacuum mode).
2105     */
2106     if( pTab->tabFlags & TF_Autoincrement ){
2107       sqlite3NestedParse(pParse,
2108         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
2109         pDb->zName, pTab->zName
2110       );
2111     }
2112 #endif
2113 
2114     /* Drop all SQLITE_MASTER table and index entries that refer to the
2115     ** table. The program name loops through the master table and deletes
2116     ** every row that refers to a table of the same name as the one being
2117     ** dropped. Triggers are handled seperately because a trigger can be
2118     ** created in the temp database that refers to a table in another
2119     ** database.
2120     */
2121     sqlite3NestedParse(pParse,
2122         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2123         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2124 
2125     /* Drop any statistics from the sqlite_stat1 table, if it exists */
2126     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2127       sqlite3NestedParse(pParse,
2128         "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
2129       );
2130     }
2131 
2132     if( !isView && !IsVirtual(pTab) ){
2133       destroyTable(pParse, pTab);
2134     }
2135 
2136     /* Remove the table entry from SQLite's internal schema and modify
2137     ** the schema cookie.
2138     */
2139     if( IsVirtual(pTab) ){
2140       sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2141     }
2142     sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2143     sqlite3ChangeCookie(pParse, iDb);
2144   }
2145   sqliteViewResetAll(db, iDb);
2146 
2147 exit_drop_table:
2148   sqlite3SrcListDelete(db, pName);
2149 }
2150 
2151 /*
2152 ** This routine is called to create a new foreign key on the table
2153 ** currently under construction.  pFromCol determines which columns
2154 ** in the current table point to the foreign key.  If pFromCol==0 then
2155 ** connect the key to the last column inserted.  pTo is the name of
2156 ** the table referred to.  pToCol is a list of tables in the other
2157 ** pTo table that the foreign key points to.  flags contains all
2158 ** information about the conflict resolution algorithms specified
2159 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2160 **
2161 ** An FKey structure is created and added to the table currently
2162 ** under construction in the pParse->pNewTable field.
2163 **
2164 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2165 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2166 */
sqlite3CreateForeignKey(Parse * pParse,ExprList * pFromCol,Token * pTo,ExprList * pToCol,int flags)2167 void sqlite3CreateForeignKey(
2168   Parse *pParse,       /* Parsing context */
2169   ExprList *pFromCol,  /* Columns in this table that point to other table */
2170   Token *pTo,          /* Name of the other table */
2171   ExprList *pToCol,    /* Columns in the other table */
2172   int flags            /* Conflict resolution algorithms. */
2173 ){
2174   sqlite3 *db = pParse->db;
2175 #ifndef SQLITE_OMIT_FOREIGN_KEY
2176   FKey *pFKey = 0;
2177   FKey *pNextTo;
2178   Table *p = pParse->pNewTable;
2179   int nByte;
2180   int i;
2181   int nCol;
2182   char *z;
2183 
2184   assert( pTo!=0 );
2185   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2186   if( pFromCol==0 ){
2187     int iCol = p->nCol-1;
2188     if( NEVER(iCol<0) ) goto fk_end;
2189     if( pToCol && pToCol->nExpr!=1 ){
2190       sqlite3ErrorMsg(pParse, "foreign key on %s"
2191          " should reference only one column of table %T",
2192          p->aCol[iCol].zName, pTo);
2193       goto fk_end;
2194     }
2195     nCol = 1;
2196   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2197     sqlite3ErrorMsg(pParse,
2198         "number of columns in foreign key does not match the number of "
2199         "columns in the referenced table");
2200     goto fk_end;
2201   }else{
2202     nCol = pFromCol->nExpr;
2203   }
2204   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2205   if( pToCol ){
2206     for(i=0; i<pToCol->nExpr; i++){
2207       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2208     }
2209   }
2210   pFKey = sqlite3DbMallocZero(db, nByte );
2211   if( pFKey==0 ){
2212     goto fk_end;
2213   }
2214   pFKey->pFrom = p;
2215   pFKey->pNextFrom = p->pFKey;
2216   z = (char*)&pFKey->aCol[nCol];
2217   pFKey->zTo = z;
2218   memcpy(z, pTo->z, pTo->n);
2219   z[pTo->n] = 0;
2220   sqlite3Dequote(z);
2221   z += pTo->n+1;
2222   pFKey->nCol = nCol;
2223   if( pFromCol==0 ){
2224     pFKey->aCol[0].iFrom = p->nCol-1;
2225   }else{
2226     for(i=0; i<nCol; i++){
2227       int j;
2228       for(j=0; j<p->nCol; j++){
2229         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2230           pFKey->aCol[i].iFrom = j;
2231           break;
2232         }
2233       }
2234       if( j>=p->nCol ){
2235         sqlite3ErrorMsg(pParse,
2236           "unknown column \"%s\" in foreign key definition",
2237           pFromCol->a[i].zName);
2238         goto fk_end;
2239       }
2240     }
2241   }
2242   if( pToCol ){
2243     for(i=0; i<nCol; i++){
2244       int n = sqlite3Strlen30(pToCol->a[i].zName);
2245       pFKey->aCol[i].zCol = z;
2246       memcpy(z, pToCol->a[i].zName, n);
2247       z[n] = 0;
2248       z += n+1;
2249     }
2250   }
2251   pFKey->isDeferred = 0;
2252   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2253   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2254 
2255   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2256   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2257       pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
2258   );
2259   if( pNextTo==pFKey ){
2260     db->mallocFailed = 1;
2261     goto fk_end;
2262   }
2263   if( pNextTo ){
2264     assert( pNextTo->pPrevTo==0 );
2265     pFKey->pNextTo = pNextTo;
2266     pNextTo->pPrevTo = pFKey;
2267   }
2268 
2269   /* Link the foreign key to the table as the last step.
2270   */
2271   p->pFKey = pFKey;
2272   pFKey = 0;
2273 
2274 fk_end:
2275   sqlite3DbFree(db, pFKey);
2276 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2277   sqlite3ExprListDelete(db, pFromCol);
2278   sqlite3ExprListDelete(db, pToCol);
2279 }
2280 
2281 /*
2282 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2283 ** clause is seen as part of a foreign key definition.  The isDeferred
2284 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2285 ** The behavior of the most recently created foreign key is adjusted
2286 ** accordingly.
2287 */
sqlite3DeferForeignKey(Parse * pParse,int isDeferred)2288 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2289 #ifndef SQLITE_OMIT_FOREIGN_KEY
2290   Table *pTab;
2291   FKey *pFKey;
2292   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2293   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2294   pFKey->isDeferred = (u8)isDeferred;
2295 #endif
2296 }
2297 
2298 /*
2299 ** Generate code that will erase and refill index *pIdx.  This is
2300 ** used to initialize a newly created index or to recompute the
2301 ** content of an index in response to a REINDEX command.
2302 **
2303 ** if memRootPage is not negative, it means that the index is newly
2304 ** created.  The register specified by memRootPage contains the
2305 ** root page number of the index.  If memRootPage is negative, then
2306 ** the index already exists and must be cleared before being refilled and
2307 ** the root page number of the index is taken from pIndex->tnum.
2308 */
sqlite3RefillIndex(Parse * pParse,Index * pIndex,int memRootPage)2309 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2310   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2311   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2312   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2313   int addr1;                     /* Address of top of loop */
2314   int tnum;                      /* Root page of index */
2315   Vdbe *v;                       /* Generate code into this virtual machine */
2316   KeyInfo *pKey;                 /* KeyInfo for index */
2317   int regIdxKey;                 /* Registers containing the index key */
2318   int regRecord;                 /* Register holding assemblied index record */
2319   sqlite3 *db = pParse->db;      /* The database connection */
2320   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2321 
2322 #ifndef SQLITE_OMIT_AUTHORIZATION
2323   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2324       db->aDb[iDb].zName ) ){
2325     return;
2326   }
2327 #endif
2328 
2329   /* Require a write-lock on the table to perform this operation */
2330   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2331 
2332   v = sqlite3GetVdbe(pParse);
2333   if( v==0 ) return;
2334   if( memRootPage>=0 ){
2335     tnum = memRootPage;
2336   }else{
2337     tnum = pIndex->tnum;
2338     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2339   }
2340   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2341   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2342                     (char *)pKey, P4_KEYINFO_HANDOFF);
2343   if( memRootPage>=0 ){
2344     sqlite3VdbeChangeP5(v, 1);
2345   }
2346   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2347   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2348   regRecord = sqlite3GetTempReg(pParse);
2349   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2350   if( pIndex->onError!=OE_None ){
2351     const int regRowid = regIdxKey + pIndex->nColumn;
2352     const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
2353     void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
2354 
2355     /* The registers accessed by the OP_IsUnique opcode were allocated
2356     ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
2357     ** call above. Just before that function was freed they were released
2358     ** (made available to the compiler for reuse) using
2359     ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
2360     ** opcode use the values stored within seems dangerous. However, since
2361     ** we can be sure that no other temp registers have been allocated
2362     ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
2363     */
2364     sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
2365     sqlite3HaltConstraint(
2366         pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
2367   }
2368   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2369   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2370   sqlite3ReleaseTempReg(pParse, regRecord);
2371   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2372   sqlite3VdbeJumpHere(v, addr1);
2373   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2374   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2375 }
2376 
2377 /*
2378 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2379 ** and pTblList is the name of the table that is to be indexed.  Both will
2380 ** be NULL for a primary key or an index that is created to satisfy a
2381 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2382 ** as the table to be indexed.  pParse->pNewTable is a table that is
2383 ** currently being constructed by a CREATE TABLE statement.
2384 **
2385 ** pList is a list of columns to be indexed.  pList will be NULL if this
2386 ** is a primary key or unique-constraint on the most recent column added
2387 ** to the table currently under construction.
2388 **
2389 ** If the index is created successfully, return a pointer to the new Index
2390 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2391 ** as the tables primary key (Index.autoIndex==2).
2392 */
sqlite3CreateIndex(Parse * pParse,Token * pName1,Token * pName2,SrcList * pTblName,ExprList * pList,int onError,Token * pStart,Token * pEnd,int sortOrder,int ifNotExist)2393 Index *sqlite3CreateIndex(
2394   Parse *pParse,     /* All information about this parse */
2395   Token *pName1,     /* First part of index name. May be NULL */
2396   Token *pName2,     /* Second part of index name. May be NULL */
2397   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2398   ExprList *pList,   /* A list of columns to be indexed */
2399   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2400   Token *pStart,     /* The CREATE token that begins this statement */
2401   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
2402   int sortOrder,     /* Sort order of primary key when pList==NULL */
2403   int ifNotExist     /* Omit error if index already exists */
2404 ){
2405   Index *pRet = 0;     /* Pointer to return */
2406   Table *pTab = 0;     /* Table to be indexed */
2407   Index *pIndex = 0;   /* The index to be created */
2408   char *zName = 0;     /* Name of the index */
2409   int nName;           /* Number of characters in zName */
2410   int i, j;
2411   Token nullId;        /* Fake token for an empty ID list */
2412   DbFixer sFix;        /* For assigning database names to pTable */
2413   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2414   sqlite3 *db = pParse->db;
2415   Db *pDb;             /* The specific table containing the indexed database */
2416   int iDb;             /* Index of the database that is being written */
2417   Token *pName = 0;    /* Unqualified name of the index to create */
2418   struct ExprList_item *pListItem; /* For looping over pList */
2419   int nCol;
2420   int nExtra = 0;
2421   char *zExtra;
2422 
2423   assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
2424   assert( pParse->nErr==0 );      /* Never called with prior errors */
2425   if( db->mallocFailed || IN_DECLARE_VTAB ){
2426     goto exit_create_index;
2427   }
2428   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2429     goto exit_create_index;
2430   }
2431 
2432   /*
2433   ** Find the table that is to be indexed.  Return early if not found.
2434   */
2435   if( pTblName!=0 ){
2436 
2437     /* Use the two-part index name to determine the database
2438     ** to search for the table. 'Fix' the table name to this db
2439     ** before looking up the table.
2440     */
2441     assert( pName1 && pName2 );
2442     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2443     if( iDb<0 ) goto exit_create_index;
2444 
2445 #ifndef SQLITE_OMIT_TEMPDB
2446     /* If the index name was unqualified, check if the the table
2447     ** is a temp table. If so, set the database to 1. Do not do this
2448     ** if initialising a database schema.
2449     */
2450     if( !db->init.busy ){
2451       pTab = sqlite3SrcListLookup(pParse, pTblName);
2452       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2453         iDb = 1;
2454       }
2455     }
2456 #endif
2457 
2458     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2459         sqlite3FixSrcList(&sFix, pTblName)
2460     ){
2461       /* Because the parser constructs pTblName from a single identifier,
2462       ** sqlite3FixSrcList can never fail. */
2463       assert(0);
2464     }
2465     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2466         pTblName->a[0].zDatabase);
2467     if( !pTab || db->mallocFailed ) goto exit_create_index;
2468     assert( db->aDb[iDb].pSchema==pTab->pSchema );
2469   }else{
2470     assert( pName==0 );
2471     pTab = pParse->pNewTable;
2472     if( !pTab ) goto exit_create_index;
2473     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2474   }
2475   pDb = &db->aDb[iDb];
2476 
2477   assert( pTab!=0 );
2478   assert( pParse->nErr==0 );
2479   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2480        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2481     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2482     goto exit_create_index;
2483   }
2484 #ifndef SQLITE_OMIT_VIEW
2485   if( pTab->pSelect ){
2486     sqlite3ErrorMsg(pParse, "views may not be indexed");
2487     goto exit_create_index;
2488   }
2489 #endif
2490 #ifndef SQLITE_OMIT_VIRTUALTABLE
2491   if( IsVirtual(pTab) ){
2492     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2493     goto exit_create_index;
2494   }
2495 #endif
2496 
2497   /*
2498   ** Find the name of the index.  Make sure there is not already another
2499   ** index or table with the same name.
2500   **
2501   ** Exception:  If we are reading the names of permanent indices from the
2502   ** sqlite_master table (because some other process changed the schema) and
2503   ** one of the index names collides with the name of a temporary table or
2504   ** index, then we will continue to process this index.
2505   **
2506   ** If pName==0 it means that we are
2507   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
2508   ** own name.
2509   */
2510   if( pName ){
2511     zName = sqlite3NameFromToken(db, pName);
2512     if( zName==0 ) goto exit_create_index;
2513     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2514       goto exit_create_index;
2515     }
2516     if( !db->init.busy ){
2517       if( sqlite3FindTable(db, zName, 0)!=0 ){
2518         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2519         goto exit_create_index;
2520       }
2521     }
2522     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2523       if( !ifNotExist ){
2524         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2525       }else{
2526         assert( !db->init.busy );
2527         sqlite3CodeVerifySchema(pParse, iDb);
2528       }
2529       goto exit_create_index;
2530     }
2531   }else{
2532     int n;
2533     Index *pLoop;
2534     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2535     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2536     if( zName==0 ){
2537       goto exit_create_index;
2538     }
2539   }
2540 
2541   /* Check for authorization to create an index.
2542   */
2543 #ifndef SQLITE_OMIT_AUTHORIZATION
2544   {
2545     const char *zDb = pDb->zName;
2546     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2547       goto exit_create_index;
2548     }
2549     i = SQLITE_CREATE_INDEX;
2550     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2551     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2552       goto exit_create_index;
2553     }
2554   }
2555 #endif
2556 
2557   /* If pList==0, it means this routine was called to make a primary
2558   ** key out of the last column added to the table under construction.
2559   ** So create a fake list to simulate this.
2560   */
2561   if( pList==0 ){
2562     nullId.z = pTab->aCol[pTab->nCol-1].zName;
2563     nullId.n = sqlite3Strlen30((char*)nullId.z);
2564     pList = sqlite3ExprListAppend(pParse, 0, 0);
2565     if( pList==0 ) goto exit_create_index;
2566     sqlite3ExprListSetName(pParse, pList, &nullId, 0);
2567     pList->a[0].sortOrder = (u8)sortOrder;
2568   }
2569 
2570   /* Figure out how many bytes of space are required to store explicitly
2571   ** specified collation sequence names.
2572   */
2573   for(i=0; i<pList->nExpr; i++){
2574     Expr *pExpr = pList->a[i].pExpr;
2575     if( pExpr ){
2576       CollSeq *pColl = pExpr->pColl;
2577       /* Either pColl!=0 or there was an OOM failure.  But if an OOM
2578       ** failure we have quit before reaching this point. */
2579       if( ALWAYS(pColl) ){
2580         nExtra += (1 + sqlite3Strlen30(pColl->zName));
2581       }
2582     }
2583   }
2584 
2585   /*
2586   ** Allocate the index structure.
2587   */
2588   nName = sqlite3Strlen30(zName);
2589   nCol = pList->nExpr;
2590   pIndex = sqlite3DbMallocZero(db,
2591       sizeof(Index) +              /* Index structure  */
2592       sizeof(int)*nCol +           /* Index.aiColumn   */
2593       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
2594       sizeof(char *)*nCol +        /* Index.azColl     */
2595       sizeof(u8)*nCol +            /* Index.aSortOrder */
2596       nName + 1 +                  /* Index.zName      */
2597       nExtra                       /* Collation sequence names */
2598   );
2599   if( db->mallocFailed ){
2600     goto exit_create_index;
2601   }
2602   pIndex->azColl = (char**)(&pIndex[1]);
2603   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2604   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
2605   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
2606   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2607   zExtra = (char *)(&pIndex->zName[nName+1]);
2608   memcpy(pIndex->zName, zName, nName+1);
2609   pIndex->pTable = pTab;
2610   pIndex->nColumn = pList->nExpr;
2611   pIndex->onError = (u8)onError;
2612   pIndex->autoIndex = (u8)(pName==0);
2613   pIndex->pSchema = db->aDb[iDb].pSchema;
2614   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2615 
2616   /* Check to see if we should honor DESC requests on index columns
2617   */
2618   if( pDb->pSchema->file_format>=4 ){
2619     sortOrderMask = -1;   /* Honor DESC */
2620   }else{
2621     sortOrderMask = 0;    /* Ignore DESC */
2622   }
2623 
2624   /* Scan the names of the columns of the table to be indexed and
2625   ** load the column indices into the Index structure.  Report an error
2626   ** if any column is not found.
2627   **
2628   ** TODO:  Add a test to make sure that the same column is not named
2629   ** more than once within the same index.  Only the first instance of
2630   ** the column will ever be used by the optimizer.  Note that using the
2631   ** same column more than once cannot be an error because that would
2632   ** break backwards compatibility - it needs to be a warning.
2633   */
2634   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2635     const char *zColName = pListItem->zName;
2636     Column *pTabCol;
2637     int requestedSortOrder;
2638     char *zColl;                   /* Collation sequence name */
2639 
2640     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2641       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2642     }
2643     if( j>=pTab->nCol ){
2644       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2645         pTab->zName, zColName);
2646       pParse->checkSchema = 1;
2647       goto exit_create_index;
2648     }
2649     pIndex->aiColumn[i] = j;
2650     /* Justification of the ALWAYS(pListItem->pExpr->pColl):  Because of
2651     ** the way the "idxlist" non-terminal is constructed by the parser,
2652     ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
2653     ** must exist or else there must have been an OOM error.  But if there
2654     ** was an OOM error, we would never reach this point. */
2655     if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
2656       int nColl;
2657       zColl = pListItem->pExpr->pColl->zName;
2658       nColl = sqlite3Strlen30(zColl) + 1;
2659       assert( nExtra>=nColl );
2660       memcpy(zExtra, zColl, nColl);
2661       zColl = zExtra;
2662       zExtra += nColl;
2663       nExtra -= nColl;
2664     }else{
2665       zColl = pTab->aCol[j].zColl;
2666       if( !zColl ){
2667         zColl = db->pDfltColl->zName;
2668       }
2669     }
2670     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
2671       goto exit_create_index;
2672     }
2673     pIndex->azColl[i] = zColl;
2674     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2675     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
2676   }
2677   sqlite3DefaultRowEst(pIndex);
2678 
2679   if( pTab==pParse->pNewTable ){
2680     /* This routine has been called to create an automatic index as a
2681     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2682     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2683     ** i.e. one of:
2684     **
2685     ** CREATE TABLE t(x PRIMARY KEY, y);
2686     ** CREATE TABLE t(x, y, UNIQUE(x, y));
2687     **
2688     ** Either way, check to see if the table already has such an index. If
2689     ** so, don't bother creating this one. This only applies to
2690     ** automatically created indices. Users can do as they wish with
2691     ** explicit indices.
2692     **
2693     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
2694     ** (and thus suppressing the second one) even if they have different
2695     ** sort orders.
2696     **
2697     ** If there are different collating sequences or if the columns of
2698     ** the constraint occur in different orders, then the constraints are
2699     ** considered distinct and both result in separate indices.
2700     */
2701     Index *pIdx;
2702     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2703       int k;
2704       assert( pIdx->onError!=OE_None );
2705       assert( pIdx->autoIndex );
2706       assert( pIndex->onError!=OE_None );
2707 
2708       if( pIdx->nColumn!=pIndex->nColumn ) continue;
2709       for(k=0; k<pIdx->nColumn; k++){
2710         const char *z1;
2711         const char *z2;
2712         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2713         z1 = pIdx->azColl[k];
2714         z2 = pIndex->azColl[k];
2715         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2716       }
2717       if( k==pIdx->nColumn ){
2718         if( pIdx->onError!=pIndex->onError ){
2719           /* This constraint creates the same index as a previous
2720           ** constraint specified somewhere in the CREATE TABLE statement.
2721           ** However the ON CONFLICT clauses are different. If both this
2722           ** constraint and the previous equivalent constraint have explicit
2723           ** ON CONFLICT clauses this is an error. Otherwise, use the
2724           ** explicitly specified behaviour for the index.
2725           */
2726           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2727             sqlite3ErrorMsg(pParse,
2728                 "conflicting ON CONFLICT clauses specified", 0);
2729           }
2730           if( pIdx->onError==OE_Default ){
2731             pIdx->onError = pIndex->onError;
2732           }
2733         }
2734         goto exit_create_index;
2735       }
2736     }
2737   }
2738 
2739   /* Link the new Index structure to its table and to the other
2740   ** in-memory database structures.
2741   */
2742   if( db->init.busy ){
2743     Index *p;
2744     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
2745     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2746                           pIndex->zName, sqlite3Strlen30(pIndex->zName),
2747                           pIndex);
2748     if( p ){
2749       assert( p==pIndex );  /* Malloc must have failed */
2750       db->mallocFailed = 1;
2751       goto exit_create_index;
2752     }
2753     db->flags |= SQLITE_InternChanges;
2754     if( pTblName!=0 ){
2755       pIndex->tnum = db->init.newTnum;
2756     }
2757   }
2758 
2759   /* If the db->init.busy is 0 then create the index on disk.  This
2760   ** involves writing the index into the master table and filling in the
2761   ** index with the current table contents.
2762   **
2763   ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2764   ** command.  db->init.busy is 1 when a database is opened and
2765   ** CREATE INDEX statements are read out of the master table.  In
2766   ** the latter case the index already exists on disk, which is why
2767   ** we don't want to recreate it.
2768   **
2769   ** If pTblName==0 it means this index is generated as a primary key
2770   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
2771   ** has just been created, it contains no data and the index initialization
2772   ** step can be skipped.
2773   */
2774   else{ /* if( db->init.busy==0 ) */
2775     Vdbe *v;
2776     char *zStmt;
2777     int iMem = ++pParse->nMem;
2778 
2779     v = sqlite3GetVdbe(pParse);
2780     if( v==0 ) goto exit_create_index;
2781 
2782 
2783     /* Create the rootpage for the index
2784     */
2785     sqlite3BeginWriteOperation(pParse, 1, iDb);
2786     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2787 
2788     /* Gather the complete text of the CREATE INDEX statement into
2789     ** the zStmt variable
2790     */
2791     if( pStart ){
2792       assert( pEnd!=0 );
2793       /* A named index with an explicit CREATE INDEX statement */
2794       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2795         onError==OE_None ? "" : " UNIQUE",
2796         pEnd->z - pName->z + 1,
2797         pName->z);
2798     }else{
2799       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2800       /* zStmt = sqlite3MPrintf(""); */
2801       zStmt = 0;
2802     }
2803 
2804     /* Add an entry in sqlite_master for this index
2805     */
2806     sqlite3NestedParse(pParse,
2807         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2808         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2809         pIndex->zName,
2810         pTab->zName,
2811         iMem,
2812         zStmt
2813     );
2814     sqlite3DbFree(db, zStmt);
2815 
2816     /* Fill the index with data and reparse the schema. Code an OP_Expire
2817     ** to invalidate all pre-compiled statements.
2818     */
2819     if( pTblName ){
2820       sqlite3RefillIndex(pParse, pIndex, iMem);
2821       sqlite3ChangeCookie(pParse, iDb);
2822       sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
2823          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName),
2824          P4_DYNAMIC);
2825       sqlite3VdbeAddOp1(v, OP_Expire, 0);
2826     }
2827   }
2828 
2829   /* When adding an index to the list of indices for a table, make
2830   ** sure all indices labeled OE_Replace come after all those labeled
2831   ** OE_Ignore.  This is necessary for the correct constraint check
2832   ** processing (in sqlite3GenerateConstraintChecks()) as part of
2833   ** UPDATE and INSERT statements.
2834   */
2835   if( db->init.busy || pTblName==0 ){
2836     if( onError!=OE_Replace || pTab->pIndex==0
2837          || pTab->pIndex->onError==OE_Replace){
2838       pIndex->pNext = pTab->pIndex;
2839       pTab->pIndex = pIndex;
2840     }else{
2841       Index *pOther = pTab->pIndex;
2842       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2843         pOther = pOther->pNext;
2844       }
2845       pIndex->pNext = pOther->pNext;
2846       pOther->pNext = pIndex;
2847     }
2848     pRet = pIndex;
2849     pIndex = 0;
2850   }
2851 
2852   /* Clean up before exiting */
2853 exit_create_index:
2854   if( pIndex ){
2855     sqlite3DbFree(db, pIndex->zColAff);
2856     sqlite3DbFree(db, pIndex);
2857   }
2858   sqlite3ExprListDelete(db, pList);
2859   sqlite3SrcListDelete(db, pTblName);
2860   sqlite3DbFree(db, zName);
2861   return pRet;
2862 }
2863 
2864 /*
2865 ** Fill the Index.aiRowEst[] array with default information - information
2866 ** to be used when we have not run the ANALYZE command.
2867 **
2868 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2869 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
2870 ** number of rows in the table that match any particular value of the
2871 ** first column of the index.  aiRowEst[2] is an estimate of the number
2872 ** of rows that match any particular combiniation of the first 2 columns
2873 ** of the index.  And so forth.  It must always be the case that
2874 *
2875 **           aiRowEst[N]<=aiRowEst[N-1]
2876 **           aiRowEst[N]>=1
2877 **
2878 ** Apart from that, we have little to go on besides intuition as to
2879 ** how aiRowEst[] should be initialized.  The numbers generated here
2880 ** are based on typical values found in actual indices.
2881 */
sqlite3DefaultRowEst(Index * pIdx)2882 void sqlite3DefaultRowEst(Index *pIdx){
2883   unsigned *a = pIdx->aiRowEst;
2884   int i;
2885   unsigned n;
2886   assert( a!=0 );
2887   a[0] = pIdx->pTable->nRowEst;
2888   if( a[0]<10 ) a[0] = 10;
2889   n = 10;
2890   for(i=1; i<=pIdx->nColumn; i++){
2891     a[i] = n;
2892     if( n>5 ) n--;
2893   }
2894   if( pIdx->onError!=OE_None ){
2895     a[pIdx->nColumn] = 1;
2896   }
2897 }
2898 
2899 /*
2900 ** This routine will drop an existing named index.  This routine
2901 ** implements the DROP INDEX statement.
2902 */
sqlite3DropIndex(Parse * pParse,SrcList * pName,int ifExists)2903 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
2904   Index *pIndex;
2905   Vdbe *v;
2906   sqlite3 *db = pParse->db;
2907   int iDb;
2908 
2909   assert( pParse->nErr==0 );   /* Never called with prior errors */
2910   if( db->mallocFailed ){
2911     goto exit_drop_index;
2912   }
2913   assert( pName->nSrc==1 );
2914   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2915     goto exit_drop_index;
2916   }
2917   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
2918   if( pIndex==0 ){
2919     if( !ifExists ){
2920       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
2921     }else{
2922       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2923     }
2924     pParse->checkSchema = 1;
2925     goto exit_drop_index;
2926   }
2927   if( pIndex->autoIndex ){
2928     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
2929       "or PRIMARY KEY constraint cannot be dropped", 0);
2930     goto exit_drop_index;
2931   }
2932   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2933 #ifndef SQLITE_OMIT_AUTHORIZATION
2934   {
2935     int code = SQLITE_DROP_INDEX;
2936     Table *pTab = pIndex->pTable;
2937     const char *zDb = db->aDb[iDb].zName;
2938     const char *zTab = SCHEMA_TABLE(iDb);
2939     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
2940       goto exit_drop_index;
2941     }
2942     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
2943     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
2944       goto exit_drop_index;
2945     }
2946   }
2947 #endif
2948 
2949   /* Generate code to remove the index and from the master table */
2950   v = sqlite3GetVdbe(pParse);
2951   if( v ){
2952     sqlite3BeginWriteOperation(pParse, 1, iDb);
2953     sqlite3NestedParse(pParse,
2954        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
2955        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2956        pIndex->zName
2957     );
2958     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2959       sqlite3NestedParse(pParse,
2960         "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
2961         db->aDb[iDb].zName, pIndex->zName
2962       );
2963     }
2964     sqlite3ChangeCookie(pParse, iDb);
2965     destroyRootPage(pParse, pIndex->tnum, iDb);
2966     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
2967   }
2968 
2969 exit_drop_index:
2970   sqlite3SrcListDelete(db, pName);
2971 }
2972 
2973 /*
2974 ** pArray is a pointer to an array of objects.  Each object in the
2975 ** array is szEntry bytes in size.  This routine allocates a new
2976 ** object on the end of the array.
2977 **
2978 ** *pnEntry is the number of entries already in use.  *pnAlloc is
2979 ** the previously allocated size of the array.  initSize is the
2980 ** suggested initial array size allocation.
2981 **
2982 ** The index of the new entry is returned in *pIdx.
2983 **
2984 ** This routine returns a pointer to the array of objects.  This
2985 ** might be the same as the pArray parameter or it might be a different
2986 ** pointer if the array was resized.
2987 */
sqlite3ArrayAllocate(sqlite3 * db,void * pArray,int szEntry,int initSize,int * pnEntry,int * pnAlloc,int * pIdx)2988 void *sqlite3ArrayAllocate(
2989   sqlite3 *db,      /* Connection to notify of malloc failures */
2990   void *pArray,     /* Array of objects.  Might be reallocated */
2991   int szEntry,      /* Size of each object in the array */
2992   int initSize,     /* Suggested initial allocation, in elements */
2993   int *pnEntry,     /* Number of objects currently in use */
2994   int *pnAlloc,     /* Current size of the allocation, in elements */
2995   int *pIdx         /* Write the index of a new slot here */
2996 ){
2997   char *z;
2998   if( *pnEntry >= *pnAlloc ){
2999     void *pNew;
3000     int newSize;
3001     newSize = (*pnAlloc)*2 + initSize;
3002     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
3003     if( pNew==0 ){
3004       *pIdx = -1;
3005       return pArray;
3006     }
3007     *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
3008     pArray = pNew;
3009   }
3010   z = (char*)pArray;
3011   memset(&z[*pnEntry * szEntry], 0, szEntry);
3012   *pIdx = *pnEntry;
3013   ++*pnEntry;
3014   return pArray;
3015 }
3016 
3017 /*
3018 ** Append a new element to the given IdList.  Create a new IdList if
3019 ** need be.
3020 **
3021 ** A new IdList is returned, or NULL if malloc() fails.
3022 */
sqlite3IdListAppend(sqlite3 * db,IdList * pList,Token * pToken)3023 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3024   int i;
3025   if( pList==0 ){
3026     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3027     if( pList==0 ) return 0;
3028     pList->nAlloc = 0;
3029   }
3030   pList->a = sqlite3ArrayAllocate(
3031       db,
3032       pList->a,
3033       sizeof(pList->a[0]),
3034       5,
3035       &pList->nId,
3036       &pList->nAlloc,
3037       &i
3038   );
3039   if( i<0 ){
3040     sqlite3IdListDelete(db, pList);
3041     return 0;
3042   }
3043   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3044   return pList;
3045 }
3046 
3047 /*
3048 ** Delete an IdList.
3049 */
sqlite3IdListDelete(sqlite3 * db,IdList * pList)3050 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3051   int i;
3052   if( pList==0 ) return;
3053   for(i=0; i<pList->nId; i++){
3054     sqlite3DbFree(db, pList->a[i].zName);
3055   }
3056   sqlite3DbFree(db, pList->a);
3057   sqlite3DbFree(db, pList);
3058 }
3059 
3060 /*
3061 ** Return the index in pList of the identifier named zId.  Return -1
3062 ** if not found.
3063 */
sqlite3IdListIndex(IdList * pList,const char * zName)3064 int sqlite3IdListIndex(IdList *pList, const char *zName){
3065   int i;
3066   if( pList==0 ) return -1;
3067   for(i=0; i<pList->nId; i++){
3068     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3069   }
3070   return -1;
3071 }
3072 
3073 /*
3074 ** Expand the space allocated for the given SrcList object by
3075 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3076 ** New slots are zeroed.
3077 **
3078 ** For example, suppose a SrcList initially contains two entries: A,B.
3079 ** To append 3 new entries onto the end, do this:
3080 **
3081 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3082 **
3083 ** After the call above it would contain:  A, B, nil, nil, nil.
3084 ** If the iStart argument had been 1 instead of 2, then the result
3085 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3086 ** the iStart value would be 0.  The result then would
3087 ** be: nil, nil, nil, A, B.
3088 **
3089 ** If a memory allocation fails the SrcList is unchanged.  The
3090 ** db->mallocFailed flag will be set to true.
3091 */
sqlite3SrcListEnlarge(sqlite3 * db,SrcList * pSrc,int nExtra,int iStart)3092 SrcList *sqlite3SrcListEnlarge(
3093   sqlite3 *db,       /* Database connection to notify of OOM errors */
3094   SrcList *pSrc,     /* The SrcList to be enlarged */
3095   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3096   int iStart         /* Index in pSrc->a[] of first new slot */
3097 ){
3098   int i;
3099 
3100   /* Sanity checking on calling parameters */
3101   assert( iStart>=0 );
3102   assert( nExtra>=1 );
3103   assert( pSrc!=0 );
3104   assert( iStart<=pSrc->nSrc );
3105 
3106   /* Allocate additional space if needed */
3107   if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
3108     SrcList *pNew;
3109     int nAlloc = pSrc->nSrc+nExtra;
3110     int nGot;
3111     pNew = sqlite3DbRealloc(db, pSrc,
3112                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3113     if( pNew==0 ){
3114       assert( db->mallocFailed );
3115       return pSrc;
3116     }
3117     pSrc = pNew;
3118     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3119     pSrc->nAlloc = (u16)nGot;
3120   }
3121 
3122   /* Move existing slots that come after the newly inserted slots
3123   ** out of the way */
3124   for(i=pSrc->nSrc-1; i>=iStart; i--){
3125     pSrc->a[i+nExtra] = pSrc->a[i];
3126   }
3127   pSrc->nSrc += (i16)nExtra;
3128 
3129   /* Zero the newly allocated slots */
3130   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3131   for(i=iStart; i<iStart+nExtra; i++){
3132     pSrc->a[i].iCursor = -1;
3133   }
3134 
3135   /* Return a pointer to the enlarged SrcList */
3136   return pSrc;
3137 }
3138 
3139 
3140 /*
3141 ** Append a new table name to the given SrcList.  Create a new SrcList if
3142 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3143 **
3144 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3145 ** SrcList might be the same as the SrcList that was input or it might be
3146 ** a new one.  If an OOM error does occurs, then the prior value of pList
3147 ** that is input to this routine is automatically freed.
3148 **
3149 ** If pDatabase is not null, it means that the table has an optional
3150 ** database name prefix.  Like this:  "database.table".  The pDatabase
3151 ** points to the table name and the pTable points to the database name.
3152 ** The SrcList.a[].zName field is filled with the table name which might
3153 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3154 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3155 ** or with NULL if no database is specified.
3156 **
3157 ** In other words, if call like this:
3158 **
3159 **         sqlite3SrcListAppend(D,A,B,0);
3160 **
3161 ** Then B is a table name and the database name is unspecified.  If called
3162 ** like this:
3163 **
3164 **         sqlite3SrcListAppend(D,A,B,C);
3165 **
3166 ** Then C is the table name and B is the database name.  If C is defined
3167 ** then so is B.  In other words, we never have a case where:
3168 **
3169 **         sqlite3SrcListAppend(D,A,0,C);
3170 **
3171 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3172 ** before being added to the SrcList.
3173 */
sqlite3SrcListAppend(sqlite3 * db,SrcList * pList,Token * pTable,Token * pDatabase)3174 SrcList *sqlite3SrcListAppend(
3175   sqlite3 *db,        /* Connection to notify of malloc failures */
3176   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3177   Token *pTable,      /* Table to append */
3178   Token *pDatabase    /* Database of the table */
3179 ){
3180   struct SrcList_item *pItem;
3181   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3182   if( pList==0 ){
3183     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3184     if( pList==0 ) return 0;
3185     pList->nAlloc = 1;
3186   }
3187   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3188   if( db->mallocFailed ){
3189     sqlite3SrcListDelete(db, pList);
3190     return 0;
3191   }
3192   pItem = &pList->a[pList->nSrc-1];
3193   if( pDatabase && pDatabase->z==0 ){
3194     pDatabase = 0;
3195   }
3196   if( pDatabase ){
3197     Token *pTemp = pDatabase;
3198     pDatabase = pTable;
3199     pTable = pTemp;
3200   }
3201   pItem->zName = sqlite3NameFromToken(db, pTable);
3202   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3203   return pList;
3204 }
3205 
3206 /*
3207 ** Assign VdbeCursor index numbers to all tables in a SrcList
3208 */
sqlite3SrcListAssignCursors(Parse * pParse,SrcList * pList)3209 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3210   int i;
3211   struct SrcList_item *pItem;
3212   assert(pList || pParse->db->mallocFailed );
3213   if( pList ){
3214     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3215       if( pItem->iCursor>=0 ) break;
3216       pItem->iCursor = pParse->nTab++;
3217       if( pItem->pSelect ){
3218         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3219       }
3220     }
3221   }
3222 }
3223 
3224 /*
3225 ** Delete an entire SrcList including all its substructure.
3226 */
sqlite3SrcListDelete(sqlite3 * db,SrcList * pList)3227 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3228   int i;
3229   struct SrcList_item *pItem;
3230   if( pList==0 ) return;
3231   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3232     sqlite3DbFree(db, pItem->zDatabase);
3233     sqlite3DbFree(db, pItem->zName);
3234     sqlite3DbFree(db, pItem->zAlias);
3235     sqlite3DbFree(db, pItem->zIndex);
3236     sqlite3DeleteTable(db, pItem->pTab);
3237     sqlite3SelectDelete(db, pItem->pSelect);
3238     sqlite3ExprDelete(db, pItem->pOn);
3239     sqlite3IdListDelete(db, pItem->pUsing);
3240   }
3241   sqlite3DbFree(db, pList);
3242 }
3243 
3244 /*
3245 ** This routine is called by the parser to add a new term to the
3246 ** end of a growing FROM clause.  The "p" parameter is the part of
3247 ** the FROM clause that has already been constructed.  "p" is NULL
3248 ** if this is the first term of the FROM clause.  pTable and pDatabase
3249 ** are the name of the table and database named in the FROM clause term.
3250 ** pDatabase is NULL if the database name qualifier is missing - the
3251 ** usual case.  If the term has a alias, then pAlias points to the
3252 ** alias token.  If the term is a subquery, then pSubquery is the
3253 ** SELECT statement that the subquery encodes.  The pTable and
3254 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3255 ** parameters are the content of the ON and USING clauses.
3256 **
3257 ** Return a new SrcList which encodes is the FROM with the new
3258 ** term added.
3259 */
sqlite3SrcListAppendFromTerm(Parse * pParse,SrcList * p,Token * pTable,Token * pDatabase,Token * pAlias,Select * pSubquery,Expr * pOn,IdList * pUsing)3260 SrcList *sqlite3SrcListAppendFromTerm(
3261   Parse *pParse,          /* Parsing context */
3262   SrcList *p,             /* The left part of the FROM clause already seen */
3263   Token *pTable,          /* Name of the table to add to the FROM clause */
3264   Token *pDatabase,       /* Name of the database containing pTable */
3265   Token *pAlias,          /* The right-hand side of the AS subexpression */
3266   Select *pSubquery,      /* A subquery used in place of a table name */
3267   Expr *pOn,              /* The ON clause of a join */
3268   IdList *pUsing          /* The USING clause of a join */
3269 ){
3270   struct SrcList_item *pItem;
3271   sqlite3 *db = pParse->db;
3272   if( !p && (pOn || pUsing) ){
3273     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3274       (pOn ? "ON" : "USING")
3275     );
3276     goto append_from_error;
3277   }
3278   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3279   if( p==0 || NEVER(p->nSrc==0) ){
3280     goto append_from_error;
3281   }
3282   pItem = &p->a[p->nSrc-1];
3283   assert( pAlias!=0 );
3284   if( pAlias->n ){
3285     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3286   }
3287   pItem->pSelect = pSubquery;
3288   pItem->pOn = pOn;
3289   pItem->pUsing = pUsing;
3290   return p;
3291 
3292  append_from_error:
3293   assert( p==0 );
3294   sqlite3ExprDelete(db, pOn);
3295   sqlite3IdListDelete(db, pUsing);
3296   sqlite3SelectDelete(db, pSubquery);
3297   return 0;
3298 }
3299 
3300 /*
3301 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3302 ** element of the source-list passed as the second argument.
3303 */
sqlite3SrcListIndexedBy(Parse * pParse,SrcList * p,Token * pIndexedBy)3304 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3305   assert( pIndexedBy!=0 );
3306   if( p && ALWAYS(p->nSrc>0) ){
3307     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3308     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3309     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3310       /* A "NOT INDEXED" clause was supplied. See parse.y
3311       ** construct "indexed_opt" for details. */
3312       pItem->notIndexed = 1;
3313     }else{
3314       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3315     }
3316   }
3317 }
3318 
3319 /*
3320 ** When building up a FROM clause in the parser, the join operator
3321 ** is initially attached to the left operand.  But the code generator
3322 ** expects the join operator to be on the right operand.  This routine
3323 ** Shifts all join operators from left to right for an entire FROM
3324 ** clause.
3325 **
3326 ** Example: Suppose the join is like this:
3327 **
3328 **           A natural cross join B
3329 **
3330 ** The operator is "natural cross join".  The A and B operands are stored
3331 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3332 ** operator with A.  This routine shifts that operator over to B.
3333 */
sqlite3SrcListShiftJoinType(SrcList * p)3334 void sqlite3SrcListShiftJoinType(SrcList *p){
3335   if( p && p->a ){
3336     int i;
3337     for(i=p->nSrc-1; i>0; i--){
3338       p->a[i].jointype = p->a[i-1].jointype;
3339     }
3340     p->a[0].jointype = 0;
3341   }
3342 }
3343 
3344 /*
3345 ** Begin a transaction
3346 */
sqlite3BeginTransaction(Parse * pParse,int type)3347 void sqlite3BeginTransaction(Parse *pParse, int type){
3348   sqlite3 *db;
3349   Vdbe *v;
3350   int i;
3351 
3352   assert( pParse!=0 );
3353   db = pParse->db;
3354   assert( db!=0 );
3355 /*  if( db->aDb[0].pBt==0 ) return; */
3356   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3357     return;
3358   }
3359   v = sqlite3GetVdbe(pParse);
3360   if( !v ) return;
3361   if( type!=TK_DEFERRED ){
3362     for(i=0; i<db->nDb; i++){
3363       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3364       sqlite3VdbeUsesBtree(v, i);
3365     }
3366   }
3367   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3368 }
3369 
3370 /*
3371 ** Commit a transaction
3372 */
sqlite3CommitTransaction(Parse * pParse)3373 void sqlite3CommitTransaction(Parse *pParse){
3374   sqlite3 *db;
3375   Vdbe *v;
3376 
3377   assert( pParse!=0 );
3378   db = pParse->db;
3379   assert( db!=0 );
3380 /*  if( db->aDb[0].pBt==0 ) return; */
3381   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3382     return;
3383   }
3384   v = sqlite3GetVdbe(pParse);
3385   if( v ){
3386     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3387   }
3388 }
3389 
3390 /*
3391 ** Rollback a transaction
3392 */
sqlite3RollbackTransaction(Parse * pParse)3393 void sqlite3RollbackTransaction(Parse *pParse){
3394   sqlite3 *db;
3395   Vdbe *v;
3396 
3397   assert( pParse!=0 );
3398   db = pParse->db;
3399   assert( db!=0 );
3400 /*  if( db->aDb[0].pBt==0 ) return; */
3401   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3402     return;
3403   }
3404   v = sqlite3GetVdbe(pParse);
3405   if( v ){
3406     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3407   }
3408 }
3409 
3410 /*
3411 ** This function is called by the parser when it parses a command to create,
3412 ** release or rollback an SQL savepoint.
3413 */
sqlite3Savepoint(Parse * pParse,int op,Token * pName)3414 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3415   char *zName = sqlite3NameFromToken(pParse->db, pName);
3416   if( zName ){
3417     Vdbe *v = sqlite3GetVdbe(pParse);
3418 #ifndef SQLITE_OMIT_AUTHORIZATION
3419     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3420     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3421 #endif
3422     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3423       sqlite3DbFree(pParse->db, zName);
3424       return;
3425     }
3426     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3427   }
3428 }
3429 
3430 /*
3431 ** Make sure the TEMP database is open and available for use.  Return
3432 ** the number of errors.  Leave any error messages in the pParse structure.
3433 */
sqlite3OpenTempDatabase(Parse * pParse)3434 int sqlite3OpenTempDatabase(Parse *pParse){
3435   sqlite3 *db = pParse->db;
3436   if( db->aDb[1].pBt==0 && !pParse->explain ){
3437     int rc;
3438     Btree *pBt;
3439     static const int flags =
3440           SQLITE_OPEN_READWRITE |
3441           SQLITE_OPEN_CREATE |
3442           SQLITE_OPEN_EXCLUSIVE |
3443           SQLITE_OPEN_DELETEONCLOSE |
3444           SQLITE_OPEN_TEMP_DB;
3445 
3446     rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags);
3447     if( rc!=SQLITE_OK ){
3448       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3449         "file for storing temporary tables");
3450       pParse->rc = rc;
3451       return 1;
3452     }
3453     db->aDb[1].pBt = pBt;
3454     assert( db->aDb[1].pSchema );
3455     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3456       db->mallocFailed = 1;
3457       return 1;
3458     }
3459   }
3460   return 0;
3461 }
3462 
3463 /*
3464 ** Generate VDBE code that will verify the schema cookie and start
3465 ** a read-transaction for all named database files.
3466 **
3467 ** It is important that all schema cookies be verified and all
3468 ** read transactions be started before anything else happens in
3469 ** the VDBE program.  But this routine can be called after much other
3470 ** code has been generated.  So here is what we do:
3471 **
3472 ** The first time this routine is called, we code an OP_Goto that
3473 ** will jump to a subroutine at the end of the program.  Then we
3474 ** record every database that needs its schema verified in the
3475 ** pParse->cookieMask field.  Later, after all other code has been
3476 ** generated, the subroutine that does the cookie verifications and
3477 ** starts the transactions will be coded and the OP_Goto P2 value
3478 ** will be made to point to that subroutine.  The generation of the
3479 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3480 **
3481 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3482 ** schema on any databases.  This can be used to position the OP_Goto
3483 ** early in the code, before we know if any database tables will be used.
3484 */
sqlite3CodeVerifySchema(Parse * pParse,int iDb)3485 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3486   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3487 
3488   if( pToplevel->cookieGoto==0 ){
3489     Vdbe *v = sqlite3GetVdbe(pToplevel);
3490     if( v==0 ) return;  /* This only happens if there was a prior error */
3491     pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3492   }
3493   if( iDb>=0 ){
3494     sqlite3 *db = pToplevel->db;
3495     yDbMask mask;
3496 
3497     assert( iDb<db->nDb );
3498     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3499     assert( iDb<SQLITE_MAX_ATTACHED+2 );
3500     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3501     mask = ((yDbMask)1)<<iDb;
3502     if( (pToplevel->cookieMask & mask)==0 ){
3503       pToplevel->cookieMask |= mask;
3504       pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3505       if( !OMIT_TEMPDB && iDb==1 ){
3506         sqlite3OpenTempDatabase(pToplevel);
3507       }
3508     }
3509   }
3510 }
3511 
3512 /*
3513 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
3514 ** attached database. Otherwise, invoke it for the database named zDb only.
3515 */
sqlite3CodeVerifyNamedSchema(Parse * pParse,const char * zDb)3516 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
3517   sqlite3 *db = pParse->db;
3518   int i;
3519   for(i=0; i<db->nDb; i++){
3520     Db *pDb = &db->aDb[i];
3521     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
3522       sqlite3CodeVerifySchema(pParse, i);
3523     }
3524   }
3525 }
3526 
3527 /*
3528 ** Generate VDBE code that prepares for doing an operation that
3529 ** might change the database.
3530 **
3531 ** This routine starts a new transaction if we are not already within
3532 ** a transaction.  If we are already within a transaction, then a checkpoint
3533 ** is set if the setStatement parameter is true.  A checkpoint should
3534 ** be set for operations that might fail (due to a constraint) part of
3535 ** the way through and which will need to undo some writes without having to
3536 ** rollback the whole transaction.  For operations where all constraints
3537 ** can be checked before any changes are made to the database, it is never
3538 ** necessary to undo a write and the checkpoint should not be set.
3539 */
sqlite3BeginWriteOperation(Parse * pParse,int setStatement,int iDb)3540 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3541   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3542   sqlite3CodeVerifySchema(pParse, iDb);
3543   pToplevel->writeMask |= ((yDbMask)1)<<iDb;
3544   pToplevel->isMultiWrite |= setStatement;
3545 }
3546 
3547 /*
3548 ** Indicate that the statement currently under construction might write
3549 ** more than one entry (example: deleting one row then inserting another,
3550 ** inserting multiple rows in a table, or inserting a row and index entries.)
3551 ** If an abort occurs after some of these writes have completed, then it will
3552 ** be necessary to undo the completed writes.
3553 */
sqlite3MultiWrite(Parse * pParse)3554 void sqlite3MultiWrite(Parse *pParse){
3555   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3556   pToplevel->isMultiWrite = 1;
3557 }
3558 
3559 /*
3560 ** The code generator calls this routine if is discovers that it is
3561 ** possible to abort a statement prior to completion.  In order to
3562 ** perform this abort without corrupting the database, we need to make
3563 ** sure that the statement is protected by a statement transaction.
3564 **
3565 ** Technically, we only need to set the mayAbort flag if the
3566 ** isMultiWrite flag was previously set.  There is a time dependency
3567 ** such that the abort must occur after the multiwrite.  This makes
3568 ** some statements involving the REPLACE conflict resolution algorithm
3569 ** go a little faster.  But taking advantage of this time dependency
3570 ** makes it more difficult to prove that the code is correct (in
3571 ** particular, it prevents us from writing an effective
3572 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3573 ** to take the safe route and skip the optimization.
3574 */
sqlite3MayAbort(Parse * pParse)3575 void sqlite3MayAbort(Parse *pParse){
3576   Parse *pToplevel = sqlite3ParseToplevel(pParse);
3577   pToplevel->mayAbort = 1;
3578 }
3579 
3580 /*
3581 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3582 ** error. The onError parameter determines which (if any) of the statement
3583 ** and/or current transaction is rolled back.
3584 */
sqlite3HaltConstraint(Parse * pParse,int onError,char * p4,int p4type)3585 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
3586   Vdbe *v = sqlite3GetVdbe(pParse);
3587   if( onError==OE_Abort ){
3588     sqlite3MayAbort(pParse);
3589   }
3590   sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
3591 }
3592 
3593 /*
3594 ** Check to see if pIndex uses the collating sequence pColl.  Return
3595 ** true if it does and false if it does not.
3596 */
3597 #ifndef SQLITE_OMIT_REINDEX
collationMatch(const char * zColl,Index * pIndex)3598 static int collationMatch(const char *zColl, Index *pIndex){
3599   int i;
3600   assert( zColl!=0 );
3601   for(i=0; i<pIndex->nColumn; i++){
3602     const char *z = pIndex->azColl[i];
3603     assert( z!=0 );
3604     if( 0==sqlite3StrICmp(z, zColl) ){
3605       return 1;
3606     }
3607   }
3608   return 0;
3609 }
3610 #endif
3611 
3612 /*
3613 ** Recompute all indices of pTab that use the collating sequence pColl.
3614 ** If pColl==0 then recompute all indices of pTab.
3615 */
3616 #ifndef SQLITE_OMIT_REINDEX
reindexTable(Parse * pParse,Table * pTab,char const * zColl)3617 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3618   Index *pIndex;              /* An index associated with pTab */
3619 
3620   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3621     if( zColl==0 || collationMatch(zColl, pIndex) ){
3622       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3623       sqlite3BeginWriteOperation(pParse, 0, iDb);
3624       sqlite3RefillIndex(pParse, pIndex, -1);
3625     }
3626   }
3627 }
3628 #endif
3629 
3630 /*
3631 ** Recompute all indices of all tables in all databases where the
3632 ** indices use the collating sequence pColl.  If pColl==0 then recompute
3633 ** all indices everywhere.
3634 */
3635 #ifndef SQLITE_OMIT_REINDEX
reindexDatabases(Parse * pParse,char const * zColl)3636 static void reindexDatabases(Parse *pParse, char const *zColl){
3637   Db *pDb;                    /* A single database */
3638   int iDb;                    /* The database index number */
3639   sqlite3 *db = pParse->db;   /* The database connection */
3640   HashElem *k;                /* For looping over tables in pDb */
3641   Table *pTab;                /* A table in the database */
3642 
3643   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
3644   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3645     assert( pDb!=0 );
3646     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
3647       pTab = (Table*)sqliteHashData(k);
3648       reindexTable(pParse, pTab, zColl);
3649     }
3650   }
3651 }
3652 #endif
3653 
3654 /*
3655 ** Generate code for the REINDEX command.
3656 **
3657 **        REINDEX                            -- 1
3658 **        REINDEX  <collation>               -- 2
3659 **        REINDEX  ?<database>.?<tablename>  -- 3
3660 **        REINDEX  ?<database>.?<indexname>  -- 4
3661 **
3662 ** Form 1 causes all indices in all attached databases to be rebuilt.
3663 ** Form 2 rebuilds all indices in all databases that use the named
3664 ** collating function.  Forms 3 and 4 rebuild the named index or all
3665 ** indices associated with the named table.
3666 */
3667 #ifndef SQLITE_OMIT_REINDEX
sqlite3Reindex(Parse * pParse,Token * pName1,Token * pName2)3668 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3669   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
3670   char *z;                    /* Name of a table or index */
3671   const char *zDb;            /* Name of the database */
3672   Table *pTab;                /* A table in the database */
3673   Index *pIndex;              /* An index associated with pTab */
3674   int iDb;                    /* The database index number */
3675   sqlite3 *db = pParse->db;   /* The database connection */
3676   Token *pObjName;            /* Name of the table or index to be reindexed */
3677 
3678   /* Read the database schema. If an error occurs, leave an error message
3679   ** and code in pParse and return NULL. */
3680   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3681     return;
3682   }
3683 
3684   if( pName1==0 ){
3685     reindexDatabases(pParse, 0);
3686     return;
3687   }else if( NEVER(pName2==0) || pName2->z==0 ){
3688     char *zColl;
3689     assert( pName1->z );
3690     zColl = sqlite3NameFromToken(pParse->db, pName1);
3691     if( !zColl ) return;
3692     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
3693     if( pColl ){
3694       reindexDatabases(pParse, zColl);
3695       sqlite3DbFree(db, zColl);
3696       return;
3697     }
3698     sqlite3DbFree(db, zColl);
3699   }
3700   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3701   if( iDb<0 ) return;
3702   z = sqlite3NameFromToken(db, pObjName);
3703   if( z==0 ) return;
3704   zDb = db->aDb[iDb].zName;
3705   pTab = sqlite3FindTable(db, z, zDb);
3706   if( pTab ){
3707     reindexTable(pParse, pTab, 0);
3708     sqlite3DbFree(db, z);
3709     return;
3710   }
3711   pIndex = sqlite3FindIndex(db, z, zDb);
3712   sqlite3DbFree(db, z);
3713   if( pIndex ){
3714     sqlite3BeginWriteOperation(pParse, 0, iDb);
3715     sqlite3RefillIndex(pParse, pIndex, -1);
3716     return;
3717   }
3718   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3719 }
3720 #endif
3721 
3722 /*
3723 ** Return a dynamicly allocated KeyInfo structure that can be used
3724 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3725 **
3726 ** If successful, a pointer to the new structure is returned. In this case
3727 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3728 ** pointer. If an error occurs (out of memory or missing collation
3729 ** sequence), NULL is returned and the state of pParse updated to reflect
3730 ** the error.
3731 */
sqlite3IndexKeyinfo(Parse * pParse,Index * pIdx)3732 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3733   int i;
3734   int nCol = pIdx->nColumn;
3735   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3736   sqlite3 *db = pParse->db;
3737   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3738 
3739   if( pKey ){
3740     pKey->db = pParse->db;
3741     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3742     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3743     for(i=0; i<nCol; i++){
3744       char *zColl = pIdx->azColl[i];
3745       assert( zColl );
3746       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
3747       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3748     }
3749     pKey->nField = (u16)nCol;
3750   }
3751 
3752   if( pParse->nErr ){
3753     sqlite3DbFree(db, pKey);
3754     pKey = 0;
3755   }
3756   return pKey;
3757 }
3758