1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overriden, then neither of
17 ** these two features are available.
18 */
19
20 #include "sqliteInt.h"
21
22 typedef struct PCache1 PCache1;
23 typedef struct PgHdr1 PgHdr1;
24 typedef struct PgFreeslot PgFreeslot;
25 typedef struct PGroup PGroup;
26
27 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
28 ** of one or more PCaches that are able to recycle each others unpinned
29 ** pages when they are under memory pressure. A PGroup is an instance of
30 ** the following object.
31 **
32 ** This page cache implementation works in one of two modes:
33 **
34 ** (1) Every PCache is the sole member of its own PGroup. There is
35 ** one PGroup per PCache.
36 **
37 ** (2) There is a single global PGroup that all PCaches are a member
38 ** of.
39 **
40 ** Mode 1 uses more memory (since PCache instances are not able to rob
41 ** unused pages from other PCaches) but it also operates without a mutex,
42 ** and is therefore often faster. Mode 2 requires a mutex in order to be
43 ** threadsafe, but is able recycle pages more efficient.
44 **
45 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
46 ** PGroup which is the pcache1.grp global variable and its mutex is
47 ** SQLITE_MUTEX_STATIC_LRU.
48 */
49 struct PGroup {
50 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
51 int nMaxPage; /* Sum of nMax for purgeable caches */
52 int nMinPage; /* Sum of nMin for purgeable caches */
53 int mxPinned; /* nMaxpage + 10 - nMinPage */
54 int nCurrentPage; /* Number of purgeable pages allocated */
55 PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
56 };
57
58 /* Each page cache is an instance of the following object. Every
59 ** open database file (including each in-memory database and each
60 ** temporary or transient database) has a single page cache which
61 ** is an instance of this object.
62 **
63 ** Pointers to structures of this type are cast and returned as
64 ** opaque sqlite3_pcache* handles.
65 */
66 struct PCache1 {
67 /* Cache configuration parameters. Page size (szPage) and the purgeable
68 ** flag (bPurgeable) are set when the cache is created. nMax may be
69 ** modified at any time by a call to the pcache1CacheSize() method.
70 ** The PGroup mutex must be held when accessing nMax.
71 */
72 PGroup *pGroup; /* PGroup this cache belongs to */
73 int szPage; /* Size of allocated pages in bytes */
74 int bPurgeable; /* True if cache is purgeable */
75 unsigned int nMin; /* Minimum number of pages reserved */
76 unsigned int nMax; /* Configured "cache_size" value */
77 unsigned int n90pct; /* nMax*9/10 */
78
79 /* Hash table of all pages. The following variables may only be accessed
80 ** when the accessor is holding the PGroup mutex.
81 */
82 unsigned int nRecyclable; /* Number of pages in the LRU list */
83 unsigned int nPage; /* Total number of pages in apHash */
84 unsigned int nHash; /* Number of slots in apHash[] */
85 PgHdr1 **apHash; /* Hash table for fast lookup by key */
86
87 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
88 };
89
90 /*
91 ** Each cache entry is represented by an instance of the following
92 ** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
93 ** directly before this structure in memory (see the PGHDR1_TO_PAGE()
94 ** macro below).
95 */
96 struct PgHdr1 {
97 unsigned int iKey; /* Key value (page number) */
98 PgHdr1 *pNext; /* Next in hash table chain */
99 PCache1 *pCache; /* Cache that currently owns this page */
100 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
101 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
102 };
103
104 /*
105 ** Free slots in the allocator used to divide up the buffer provided using
106 ** the SQLITE_CONFIG_PAGECACHE mechanism.
107 */
108 struct PgFreeslot {
109 PgFreeslot *pNext; /* Next free slot */
110 };
111
112 /*
113 ** Global data used by this cache.
114 */
115 static SQLITE_WSD struct PCacheGlobal {
116 PGroup grp; /* The global PGroup for mode (2) */
117
118 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
119 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
120 ** fixed at sqlite3_initialize() time and do not require mutex protection.
121 ** The nFreeSlot and pFree values do require mutex protection.
122 */
123 int isInit; /* True if initialized */
124 int szSlot; /* Size of each free slot */
125 int nSlot; /* The number of pcache slots */
126 int nReserve; /* Try to keep nFreeSlot above this */
127 void *pStart, *pEnd; /* Bounds of pagecache malloc range */
128 /* Above requires no mutex. Use mutex below for variable that follow. */
129 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
130 int nFreeSlot; /* Number of unused pcache slots */
131 PgFreeslot *pFree; /* Free page blocks */
132 /* The following value requires a mutex to change. We skip the mutex on
133 ** reading because (1) most platforms read a 32-bit integer atomically and
134 ** (2) even if an incorrect value is read, no great harm is done since this
135 ** is really just an optimization. */
136 int bUnderPressure; /* True if low on PAGECACHE memory */
137 } pcache1_g;
138
139 /*
140 ** All code in this file should access the global structure above via the
141 ** alias "pcache1". This ensures that the WSD emulation is used when
142 ** compiling for systems that do not support real WSD.
143 */
144 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
145
146 /*
147 ** When a PgHdr1 structure is allocated, the associated PCache1.szPage
148 ** bytes of data are located directly before it in memory (i.e. the total
149 ** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The
150 ** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as
151 ** an argument and returns a pointer to the associated block of szPage
152 ** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is
153 ** a pointer to a block of szPage bytes of data and the return value is
154 ** a pointer to the associated PgHdr1 structure.
155 **
156 ** assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(pCache, X))==X );
157 */
158 #define PGHDR1_TO_PAGE(p) (void*)(((char*)p) - p->pCache->szPage)
159 #define PAGE_TO_PGHDR1(c, p) (PgHdr1*)(((char*)p) + c->szPage)
160
161 /*
162 ** Macros to enter and leave the PCache LRU mutex.
163 */
164 #define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
165 #define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
166
167 /******************************************************************************/
168 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
169
170 /*
171 ** This function is called during initialization if a static buffer is
172 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
173 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
174 ** enough to contain 'n' buffers of 'sz' bytes each.
175 **
176 ** This routine is called from sqlite3_initialize() and so it is guaranteed
177 ** to be serialized already. There is no need for further mutexing.
178 */
sqlite3PCacheBufferSetup(void * pBuf,int sz,int n)179 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
180 if( pcache1.isInit ){
181 PgFreeslot *p;
182 sz = ROUNDDOWN8(sz);
183 pcache1.szSlot = sz;
184 pcache1.nSlot = pcache1.nFreeSlot = n;
185 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
186 pcache1.pStart = pBuf;
187 pcache1.pFree = 0;
188 pcache1.bUnderPressure = 0;
189 while( n-- ){
190 p = (PgFreeslot*)pBuf;
191 p->pNext = pcache1.pFree;
192 pcache1.pFree = p;
193 pBuf = (void*)&((char*)pBuf)[sz];
194 }
195 pcache1.pEnd = pBuf;
196 }
197 }
198
199 /*
200 ** Malloc function used within this file to allocate space from the buffer
201 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
202 ** such buffer exists or there is no space left in it, this function falls
203 ** back to sqlite3Malloc().
204 **
205 ** Multiple threads can run this routine at the same time. Global variables
206 ** in pcache1 need to be protected via mutex.
207 */
pcache1Alloc(int nByte)208 static void *pcache1Alloc(int nByte){
209 void *p = 0;
210 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
211 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
212 if( nByte<=pcache1.szSlot ){
213 sqlite3_mutex_enter(pcache1.mutex);
214 p = (PgHdr1 *)pcache1.pFree;
215 if( p ){
216 pcache1.pFree = pcache1.pFree->pNext;
217 pcache1.nFreeSlot--;
218 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
219 assert( pcache1.nFreeSlot>=0 );
220 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
221 }
222 sqlite3_mutex_leave(pcache1.mutex);
223 }
224 if( p==0 ){
225 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
226 ** it from sqlite3Malloc instead.
227 */
228 p = sqlite3Malloc(nByte);
229 if( p ){
230 int sz = sqlite3MallocSize(p);
231 sqlite3_mutex_enter(pcache1.mutex);
232 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
233 sqlite3_mutex_leave(pcache1.mutex);
234 }
235 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
236 }
237 return p;
238 }
239
240 /*
241 ** Free an allocated buffer obtained from pcache1Alloc().
242 */
pcache1Free(void * p)243 static void pcache1Free(void *p){
244 if( p==0 ) return;
245 if( p>=pcache1.pStart && p<pcache1.pEnd ){
246 PgFreeslot *pSlot;
247 sqlite3_mutex_enter(pcache1.mutex);
248 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
249 pSlot = (PgFreeslot*)p;
250 pSlot->pNext = pcache1.pFree;
251 pcache1.pFree = pSlot;
252 pcache1.nFreeSlot++;
253 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
254 assert( pcache1.nFreeSlot<=pcache1.nSlot );
255 sqlite3_mutex_leave(pcache1.mutex);
256 }else{
257 int iSize;
258 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
259 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
260 iSize = sqlite3MallocSize(p);
261 sqlite3_mutex_enter(pcache1.mutex);
262 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
263 sqlite3_mutex_leave(pcache1.mutex);
264 sqlite3_free(p);
265 }
266 }
267
268 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
269 /*
270 ** Return the size of a pcache allocation
271 */
pcache1MemSize(void * p)272 static int pcache1MemSize(void *p){
273 if( p>=pcache1.pStart && p<pcache1.pEnd ){
274 return pcache1.szSlot;
275 }else{
276 int iSize;
277 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
278 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
279 iSize = sqlite3MallocSize(p);
280 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
281 return iSize;
282 }
283 }
284 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
285
286 /*
287 ** Allocate a new page object initially associated with cache pCache.
288 */
pcache1AllocPage(PCache1 * pCache)289 static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
290 int nByte = sizeof(PgHdr1) + pCache->szPage;
291 void *pPg = pcache1Alloc(nByte);
292 PgHdr1 *p;
293 if( pPg ){
294 p = PAGE_TO_PGHDR1(pCache, pPg);
295 if( pCache->bPurgeable ){
296 pCache->pGroup->nCurrentPage++;
297 }
298 }else{
299 p = 0;
300 }
301 return p;
302 }
303
304 /*
305 ** Free a page object allocated by pcache1AllocPage().
306 **
307 ** The pointer is allowed to be NULL, which is prudent. But it turns out
308 ** that the current implementation happens to never call this routine
309 ** with a NULL pointer, so we mark the NULL test with ALWAYS().
310 */
pcache1FreePage(PgHdr1 * p)311 static void pcache1FreePage(PgHdr1 *p){
312 if( ALWAYS(p) ){
313 PCache1 *pCache = p->pCache;
314 if( pCache->bPurgeable ){
315 pCache->pGroup->nCurrentPage--;
316 }
317 pcache1Free(PGHDR1_TO_PAGE(p));
318 }
319 }
320
321 /*
322 ** Malloc function used by SQLite to obtain space from the buffer configured
323 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
324 ** exists, this function falls back to sqlite3Malloc().
325 */
sqlite3PageMalloc(int sz)326 void *sqlite3PageMalloc(int sz){
327 return pcache1Alloc(sz);
328 }
329
330 /*
331 ** Free an allocated buffer obtained from sqlite3PageMalloc().
332 */
sqlite3PageFree(void * p)333 void sqlite3PageFree(void *p){
334 pcache1Free(p);
335 }
336
337
338 /*
339 ** Return true if it desirable to avoid allocating a new page cache
340 ** entry.
341 **
342 ** If memory was allocated specifically to the page cache using
343 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
344 ** it is desirable to avoid allocating a new page cache entry because
345 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
346 ** for all page cache needs and we should not need to spill the
347 ** allocation onto the heap.
348 **
349 ** Or, the heap is used for all page cache memory put the heap is
350 ** under memory pressure, then again it is desirable to avoid
351 ** allocating a new page cache entry in order to avoid stressing
352 ** the heap even further.
353 */
pcache1UnderMemoryPressure(PCache1 * pCache)354 static int pcache1UnderMemoryPressure(PCache1 *pCache){
355 if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){
356 return pcache1.bUnderPressure;
357 }else{
358 return sqlite3HeapNearlyFull();
359 }
360 }
361
362 /******************************************************************************/
363 /******** General Implementation Functions ************************************/
364
365 /*
366 ** This function is used to resize the hash table used by the cache passed
367 ** as the first argument.
368 **
369 ** The PCache mutex must be held when this function is called.
370 */
pcache1ResizeHash(PCache1 * p)371 static int pcache1ResizeHash(PCache1 *p){
372 PgHdr1 **apNew;
373 unsigned int nNew;
374 unsigned int i;
375
376 assert( sqlite3_mutex_held(p->pGroup->mutex) );
377
378 nNew = p->nHash*2;
379 if( nNew<256 ){
380 nNew = 256;
381 }
382
383 pcache1LeaveMutex(p->pGroup);
384 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
385 apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
386 if( p->nHash ){ sqlite3EndBenignMalloc(); }
387 pcache1EnterMutex(p->pGroup);
388 if( apNew ){
389 memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
390 for(i=0; i<p->nHash; i++){
391 PgHdr1 *pPage;
392 PgHdr1 *pNext = p->apHash[i];
393 while( (pPage = pNext)!=0 ){
394 unsigned int h = pPage->iKey % nNew;
395 pNext = pPage->pNext;
396 pPage->pNext = apNew[h];
397 apNew[h] = pPage;
398 }
399 }
400 sqlite3_free(p->apHash);
401 p->apHash = apNew;
402 p->nHash = nNew;
403 }
404
405 return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
406 }
407
408 /*
409 ** This function is used internally to remove the page pPage from the
410 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
411 ** LRU list, then this function is a no-op.
412 **
413 ** The PGroup mutex must be held when this function is called.
414 **
415 ** If pPage is NULL then this routine is a no-op.
416 */
pcache1PinPage(PgHdr1 * pPage)417 static void pcache1PinPage(PgHdr1 *pPage){
418 PCache1 *pCache;
419 PGroup *pGroup;
420
421 if( pPage==0 ) return;
422 pCache = pPage->pCache;
423 pGroup = pCache->pGroup;
424 assert( sqlite3_mutex_held(pGroup->mutex) );
425 if( pPage->pLruNext || pPage==pGroup->pLruTail ){
426 if( pPage->pLruPrev ){
427 pPage->pLruPrev->pLruNext = pPage->pLruNext;
428 }
429 if( pPage->pLruNext ){
430 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
431 }
432 if( pGroup->pLruHead==pPage ){
433 pGroup->pLruHead = pPage->pLruNext;
434 }
435 if( pGroup->pLruTail==pPage ){
436 pGroup->pLruTail = pPage->pLruPrev;
437 }
438 pPage->pLruNext = 0;
439 pPage->pLruPrev = 0;
440 pPage->pCache->nRecyclable--;
441 }
442 }
443
444
445 /*
446 ** Remove the page supplied as an argument from the hash table
447 ** (PCache1.apHash structure) that it is currently stored in.
448 **
449 ** The PGroup mutex must be held when this function is called.
450 */
pcache1RemoveFromHash(PgHdr1 * pPage)451 static void pcache1RemoveFromHash(PgHdr1 *pPage){
452 unsigned int h;
453 PCache1 *pCache = pPage->pCache;
454 PgHdr1 **pp;
455
456 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
457 h = pPage->iKey % pCache->nHash;
458 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
459 *pp = (*pp)->pNext;
460
461 pCache->nPage--;
462 }
463
464 /*
465 ** If there are currently more than nMaxPage pages allocated, try
466 ** to recycle pages to reduce the number allocated to nMaxPage.
467 */
pcache1EnforceMaxPage(PGroup * pGroup)468 static void pcache1EnforceMaxPage(PGroup *pGroup){
469 assert( sqlite3_mutex_held(pGroup->mutex) );
470 while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
471 PgHdr1 *p = pGroup->pLruTail;
472 assert( p->pCache->pGroup==pGroup );
473 pcache1PinPage(p);
474 pcache1RemoveFromHash(p);
475 pcache1FreePage(p);
476 }
477 }
478
479 /*
480 ** Discard all pages from cache pCache with a page number (key value)
481 ** greater than or equal to iLimit. Any pinned pages that meet this
482 ** criteria are unpinned before they are discarded.
483 **
484 ** The PCache mutex must be held when this function is called.
485 */
pcache1TruncateUnsafe(PCache1 * pCache,unsigned int iLimit)486 static void pcache1TruncateUnsafe(
487 PCache1 *pCache, /* The cache to truncate */
488 unsigned int iLimit /* Drop pages with this pgno or larger */
489 ){
490 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */
491 unsigned int h;
492 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
493 for(h=0; h<pCache->nHash; h++){
494 PgHdr1 **pp = &pCache->apHash[h];
495 PgHdr1 *pPage;
496 while( (pPage = *pp)!=0 ){
497 if( pPage->iKey>=iLimit ){
498 pCache->nPage--;
499 *pp = pPage->pNext;
500 pcache1PinPage(pPage);
501 pcache1FreePage(pPage);
502 }else{
503 pp = &pPage->pNext;
504 TESTONLY( nPage++; )
505 }
506 }
507 }
508 assert( pCache->nPage==nPage );
509 }
510
511 /******************************************************************************/
512 /******** sqlite3_pcache Methods **********************************************/
513
514 /*
515 ** Implementation of the sqlite3_pcache.xInit method.
516 */
pcache1Init(void * NotUsed)517 static int pcache1Init(void *NotUsed){
518 UNUSED_PARAMETER(NotUsed);
519 assert( pcache1.isInit==0 );
520 memset(&pcache1, 0, sizeof(pcache1));
521 if( sqlite3GlobalConfig.bCoreMutex ){
522 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
523 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
524 }
525 pcache1.grp.mxPinned = 10;
526 pcache1.isInit = 1;
527 return SQLITE_OK;
528 }
529
530 /*
531 ** Implementation of the sqlite3_pcache.xShutdown method.
532 ** Note that the static mutex allocated in xInit does
533 ** not need to be freed.
534 */
pcache1Shutdown(void * NotUsed)535 static void pcache1Shutdown(void *NotUsed){
536 UNUSED_PARAMETER(NotUsed);
537 assert( pcache1.isInit!=0 );
538 memset(&pcache1, 0, sizeof(pcache1));
539 }
540
541 /*
542 ** Implementation of the sqlite3_pcache.xCreate method.
543 **
544 ** Allocate a new cache.
545 */
pcache1Create(int szPage,int bPurgeable)546 static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){
547 PCache1 *pCache; /* The newly created page cache */
548 PGroup *pGroup; /* The group the new page cache will belong to */
549 int sz; /* Bytes of memory required to allocate the new cache */
550
551 /*
552 ** The separateCache variable is true if each PCache has its own private
553 ** PGroup. In other words, separateCache is true for mode (1) where no
554 ** mutexing is required.
555 **
556 ** * Always use separate caches (mode-1) if SQLITE_SEPARATE_CACHE_POOLS
557 **
558 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
559 **
560 ** * Always use a unified cache in single-threaded applications
561 **
562 ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
563 ** use separate caches (mode-1)
564 */
565 #ifdef SQLITE_SEPARATE_CACHE_POOLS
566 const int separateCache = 1;
567 #elif defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
568 const int separateCache = 0;
569 #else
570 int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
571 #endif
572
573 sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
574 pCache = (PCache1 *)sqlite3_malloc(sz);
575 if( pCache ){
576 memset(pCache, 0, sz);
577 if( separateCache ){
578 pGroup = (PGroup*)&pCache[1];
579 pGroup->mxPinned = 10;
580 }else{
581 pGroup = &pcache1_g.grp;
582 }
583 pCache->pGroup = pGroup;
584 pCache->szPage = szPage;
585 pCache->bPurgeable = (bPurgeable ? 1 : 0);
586 if( bPurgeable ){
587 pCache->nMin = 10;
588 pcache1EnterMutex(pGroup);
589 pGroup->nMinPage += pCache->nMin;
590 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
591 pcache1LeaveMutex(pGroup);
592 }
593 }
594 return (sqlite3_pcache *)pCache;
595 }
596
597 /*
598 ** Implementation of the sqlite3_pcache.xCachesize method.
599 **
600 ** Configure the cache_size limit for a cache.
601 */
pcache1Cachesize(sqlite3_pcache * p,int nMax)602 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
603 PCache1 *pCache = (PCache1 *)p;
604 if( pCache->bPurgeable ){
605 PGroup *pGroup = pCache->pGroup;
606 pcache1EnterMutex(pGroup);
607 pGroup->nMaxPage += (nMax - pCache->nMax);
608 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
609 pCache->nMax = nMax;
610 pCache->n90pct = pCache->nMax*9/10;
611 pcache1EnforceMaxPage(pGroup);
612 pcache1LeaveMutex(pGroup);
613 }
614 }
615
616 /*
617 ** Implementation of the sqlite3_pcache.xPagecount method.
618 */
pcache1Pagecount(sqlite3_pcache * p)619 static int pcache1Pagecount(sqlite3_pcache *p){
620 int n;
621 PCache1 *pCache = (PCache1*)p;
622 pcache1EnterMutex(pCache->pGroup);
623 n = pCache->nPage;
624 pcache1LeaveMutex(pCache->pGroup);
625 return n;
626 }
627
628 /*
629 ** Implementation of the sqlite3_pcache.xFetch method.
630 **
631 ** Fetch a page by key value.
632 **
633 ** Whether or not a new page may be allocated by this function depends on
634 ** the value of the createFlag argument. 0 means do not allocate a new
635 ** page. 1 means allocate a new page if space is easily available. 2
636 ** means to try really hard to allocate a new page.
637 **
638 ** For a non-purgeable cache (a cache used as the storage for an in-memory
639 ** database) there is really no difference between createFlag 1 and 2. So
640 ** the calling function (pcache.c) will never have a createFlag of 1 on
641 ** a non-purgable cache.
642 **
643 ** There are three different approaches to obtaining space for a page,
644 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
645 **
646 ** 1. Regardless of the value of createFlag, the cache is searched for a
647 ** copy of the requested page. If one is found, it is returned.
648 **
649 ** 2. If createFlag==0 and the page is not already in the cache, NULL is
650 ** returned.
651 **
652 ** 3. If createFlag is 1, and the page is not already in the cache, then
653 ** return NULL (do not allocate a new page) if any of the following
654 ** conditions are true:
655 **
656 ** (a) the number of pages pinned by the cache is greater than
657 ** PCache1.nMax, or
658 **
659 ** (b) the number of pages pinned by the cache is greater than
660 ** the sum of nMax for all purgeable caches, less the sum of
661 ** nMin for all other purgeable caches, or
662 **
663 ** 4. If none of the first three conditions apply and the cache is marked
664 ** as purgeable, and if one of the following is true:
665 **
666 ** (a) The number of pages allocated for the cache is already
667 ** PCache1.nMax, or
668 **
669 ** (b) The number of pages allocated for all purgeable caches is
670 ** already equal to or greater than the sum of nMax for all
671 ** purgeable caches,
672 **
673 ** (c) The system is under memory pressure and wants to avoid
674 ** unnecessary pages cache entry allocations
675 **
676 ** then attempt to recycle a page from the LRU list. If it is the right
677 ** size, return the recycled buffer. Otherwise, free the buffer and
678 ** proceed to step 5.
679 **
680 ** 5. Otherwise, allocate and return a new page buffer.
681 */
pcache1Fetch(sqlite3_pcache * p,unsigned int iKey,int createFlag)682 static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
683 int nPinned;
684 PCache1 *pCache = (PCache1 *)p;
685 PGroup *pGroup;
686 PgHdr1 *pPage = 0;
687
688 assert( pCache->bPurgeable || createFlag!=1 );
689 assert( pCache->bPurgeable || pCache->nMin==0 );
690 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
691 assert( pCache->nMin==0 || pCache->bPurgeable );
692 pcache1EnterMutex(pGroup = pCache->pGroup);
693
694 /* Step 1: Search the hash table for an existing entry. */
695 if( pCache->nHash>0 ){
696 unsigned int h = iKey % pCache->nHash;
697 for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
698 }
699
700 /* Step 2: Abort if no existing page is found and createFlag is 0 */
701 if( pPage || createFlag==0 ){
702 pcache1PinPage(pPage);
703 goto fetch_out;
704 }
705
706 /* The pGroup local variable will normally be initialized by the
707 ** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined,
708 ** then pcache1EnterMutex() is a no-op, so we have to initialize the
709 ** local variable here. Delaying the initialization of pGroup is an
710 ** optimization: The common case is to exit the module before reaching
711 ** this point.
712 */
713 #ifdef SQLITE_MUTEX_OMIT
714 pGroup = pCache->pGroup;
715 #endif
716
717
718 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
719 nPinned = pCache->nPage - pCache->nRecyclable;
720 assert( nPinned>=0 );
721 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
722 assert( pCache->n90pct == pCache->nMax*9/10 );
723 if( createFlag==1 && (
724 nPinned>=pGroup->mxPinned
725 || nPinned>=(int)pCache->n90pct
726 || pcache1UnderMemoryPressure(pCache)
727 )){
728 goto fetch_out;
729 }
730
731 if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
732 goto fetch_out;
733 }
734
735 /* Step 4. Try to recycle a page. */
736 if( pCache->bPurgeable && pGroup->pLruTail && (
737 (pCache->nPage+1>=pCache->nMax)
738 || pGroup->nCurrentPage>=pGroup->nMaxPage
739 || pcache1UnderMemoryPressure(pCache)
740 )){
741 PCache1 *pOtherCache;
742 pPage = pGroup->pLruTail;
743 pcache1RemoveFromHash(pPage);
744 pcache1PinPage(pPage);
745 if( (pOtherCache = pPage->pCache)->szPage!=pCache->szPage ){
746 pcache1FreePage(pPage);
747 pPage = 0;
748 }else{
749 pGroup->nCurrentPage -=
750 (pOtherCache->bPurgeable - pCache->bPurgeable);
751 }
752 }
753
754 /* Step 5. If a usable page buffer has still not been found,
755 ** attempt to allocate a new one.
756 */
757 if( !pPage ){
758 if( createFlag==1 ) sqlite3BeginBenignMalloc();
759 pcache1LeaveMutex(pGroup);
760 pPage = pcache1AllocPage(pCache);
761 pcache1EnterMutex(pGroup);
762 if( createFlag==1 ) sqlite3EndBenignMalloc();
763 }
764
765 if( pPage ){
766 unsigned int h = iKey % pCache->nHash;
767 pCache->nPage++;
768 pPage->iKey = iKey;
769 pPage->pNext = pCache->apHash[h];
770 pPage->pCache = pCache;
771 pPage->pLruPrev = 0;
772 pPage->pLruNext = 0;
773 *(void **)(PGHDR1_TO_PAGE(pPage)) = 0;
774 pCache->apHash[h] = pPage;
775 }
776
777 fetch_out:
778 if( pPage && iKey>pCache->iMaxKey ){
779 pCache->iMaxKey = iKey;
780 }
781 pcache1LeaveMutex(pGroup);
782 return (pPage ? PGHDR1_TO_PAGE(pPage) : 0);
783 }
784
785
786 /*
787 ** Implementation of the sqlite3_pcache.xUnpin method.
788 **
789 ** Mark a page as unpinned (eligible for asynchronous recycling).
790 */
pcache1Unpin(sqlite3_pcache * p,void * pPg,int reuseUnlikely)791 static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){
792 PCache1 *pCache = (PCache1 *)p;
793 PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
794 PGroup *pGroup = pCache->pGroup;
795
796 assert( pPage->pCache==pCache );
797 pcache1EnterMutex(pGroup);
798
799 /* It is an error to call this function if the page is already
800 ** part of the PGroup LRU list.
801 */
802 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
803 assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
804
805 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
806 pcache1RemoveFromHash(pPage);
807 pcache1FreePage(pPage);
808 }else{
809 /* Add the page to the PGroup LRU list. */
810 if( pGroup->pLruHead ){
811 pGroup->pLruHead->pLruPrev = pPage;
812 pPage->pLruNext = pGroup->pLruHead;
813 pGroup->pLruHead = pPage;
814 }else{
815 pGroup->pLruTail = pPage;
816 pGroup->pLruHead = pPage;
817 }
818 pCache->nRecyclable++;
819 }
820
821 pcache1LeaveMutex(pCache->pGroup);
822 }
823
824 /*
825 ** Implementation of the sqlite3_pcache.xRekey method.
826 */
pcache1Rekey(sqlite3_pcache * p,void * pPg,unsigned int iOld,unsigned int iNew)827 static void pcache1Rekey(
828 sqlite3_pcache *p,
829 void *pPg,
830 unsigned int iOld,
831 unsigned int iNew
832 ){
833 PCache1 *pCache = (PCache1 *)p;
834 PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
835 PgHdr1 **pp;
836 unsigned int h;
837 assert( pPage->iKey==iOld );
838 assert( pPage->pCache==pCache );
839
840 pcache1EnterMutex(pCache->pGroup);
841
842 h = iOld%pCache->nHash;
843 pp = &pCache->apHash[h];
844 while( (*pp)!=pPage ){
845 pp = &(*pp)->pNext;
846 }
847 *pp = pPage->pNext;
848
849 h = iNew%pCache->nHash;
850 pPage->iKey = iNew;
851 pPage->pNext = pCache->apHash[h];
852 pCache->apHash[h] = pPage;
853 if( iNew>pCache->iMaxKey ){
854 pCache->iMaxKey = iNew;
855 }
856
857 pcache1LeaveMutex(pCache->pGroup);
858 }
859
860 /*
861 ** Implementation of the sqlite3_pcache.xTruncate method.
862 **
863 ** Discard all unpinned pages in the cache with a page number equal to
864 ** or greater than parameter iLimit. Any pinned pages with a page number
865 ** equal to or greater than iLimit are implicitly unpinned.
866 */
pcache1Truncate(sqlite3_pcache * p,unsigned int iLimit)867 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
868 PCache1 *pCache = (PCache1 *)p;
869 pcache1EnterMutex(pCache->pGroup);
870 if( iLimit<=pCache->iMaxKey ){
871 pcache1TruncateUnsafe(pCache, iLimit);
872 pCache->iMaxKey = iLimit-1;
873 }
874 pcache1LeaveMutex(pCache->pGroup);
875 }
876
877 /*
878 ** Implementation of the sqlite3_pcache.xDestroy method.
879 **
880 ** Destroy a cache allocated using pcache1Create().
881 */
pcache1Destroy(sqlite3_pcache * p)882 static void pcache1Destroy(sqlite3_pcache *p){
883 PCache1 *pCache = (PCache1 *)p;
884 PGroup *pGroup = pCache->pGroup;
885 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
886 pcache1EnterMutex(pGroup);
887 pcache1TruncateUnsafe(pCache, 0);
888 pGroup->nMaxPage -= pCache->nMax;
889 pGroup->nMinPage -= pCache->nMin;
890 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
891 pcache1EnforceMaxPage(pGroup);
892 pcache1LeaveMutex(pGroup);
893 sqlite3_free(pCache->apHash);
894 sqlite3_free(pCache);
895 }
896
897 /*
898 ** This function is called during initialization (sqlite3_initialize()) to
899 ** install the default pluggable cache module, assuming the user has not
900 ** already provided an alternative.
901 */
sqlite3PCacheSetDefault(void)902 void sqlite3PCacheSetDefault(void){
903 static const sqlite3_pcache_methods defaultMethods = {
904 0, /* pArg */
905 pcache1Init, /* xInit */
906 pcache1Shutdown, /* xShutdown */
907 pcache1Create, /* xCreate */
908 pcache1Cachesize, /* xCachesize */
909 pcache1Pagecount, /* xPagecount */
910 pcache1Fetch, /* xFetch */
911 pcache1Unpin, /* xUnpin */
912 pcache1Rekey, /* xRekey */
913 pcache1Truncate, /* xTruncate */
914 pcache1Destroy /* xDestroy */
915 };
916 sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods);
917 }
918
919 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
920 /*
921 ** This function is called to free superfluous dynamically allocated memory
922 ** held by the pager system. Memory in use by any SQLite pager allocated
923 ** by the current thread may be sqlite3_free()ed.
924 **
925 ** nReq is the number of bytes of memory required. Once this much has
926 ** been released, the function returns. The return value is the total number
927 ** of bytes of memory released.
928 */
sqlite3PcacheReleaseMemory(int nReq)929 int sqlite3PcacheReleaseMemory(int nReq){
930 int nFree = 0;
931 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
932 assert( sqlite3_mutex_notheld(pcache1.mutex) );
933 if( pcache1.pStart==0 ){
934 PgHdr1 *p;
935 pcache1EnterMutex(&pcache1.grp);
936 while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
937 nFree += pcache1MemSize(PGHDR1_TO_PAGE(p));
938 pcache1PinPage(p);
939 pcache1RemoveFromHash(p);
940 pcache1FreePage(p);
941 }
942 pcache1LeaveMutex(&pcache1.grp);
943 }
944 return nFree;
945 }
946 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
947
948 #ifdef SQLITE_TEST
949 /*
950 ** This function is used by test procedures to inspect the internal state
951 ** of the global cache.
952 */
sqlite3PcacheStats(int * pnCurrent,int * pnMax,int * pnMin,int * pnRecyclable)953 void sqlite3PcacheStats(
954 int *pnCurrent, /* OUT: Total number of pages cached */
955 int *pnMax, /* OUT: Global maximum cache size */
956 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
957 int *pnRecyclable /* OUT: Total number of pages available for recycling */
958 ){
959 PgHdr1 *p;
960 int nRecyclable = 0;
961 for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
962 nRecyclable++;
963 }
964 *pnCurrent = pcache1.grp.nCurrentPage;
965 *pnMax = pcache1.grp.nMaxPage;
966 *pnMin = pcache1.grp.nMinPage;
967 *pnRecyclable = nRecyclable;
968 }
969 #endif
970