• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to manipulate "Mem" structure.  A "Mem"
14 ** stores a single value in the VDBE.  Mem is an opaque structure visible
15 ** only within the VDBE.  Interface routines refer to a Mem using the
16 ** name sqlite_value
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 /*
22 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
23 ** P if required.
24 */
25 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
26 
27 /*
28 ** If pMem is an object with a valid string representation, this routine
29 ** ensures the internal encoding for the string representation is
30 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
31 **
32 ** If pMem is not a string object, or the encoding of the string
33 ** representation is already stored using the requested encoding, then this
34 ** routine is a no-op.
35 **
36 ** SQLITE_OK is returned if the conversion is successful (or not required).
37 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
38 ** between formats.
39 */
sqlite3VdbeChangeEncoding(Mem * pMem,int desiredEnc)40 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
41   int rc;
42   assert( (pMem->flags&MEM_RowSet)==0 );
43   assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
44            || desiredEnc==SQLITE_UTF16BE );
45   if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
46     return SQLITE_OK;
47   }
48   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
49 #ifdef SQLITE_OMIT_UTF16
50   return SQLITE_ERROR;
51 #else
52 
53   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
54   ** then the encoding of the value may not have changed.
55   */
56   rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
57   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
58   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
59   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
60   return rc;
61 #endif
62 }
63 
64 /*
65 ** Make sure pMem->z points to a writable allocation of at least
66 ** n bytes.
67 **
68 ** If the memory cell currently contains string or blob data
69 ** and the third argument passed to this function is true, the
70 ** current content of the cell is preserved. Otherwise, it may
71 ** be discarded.
72 **
73 ** This function sets the MEM_Dyn flag and clears any xDel callback.
74 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
75 ** not set, Mem.n is zeroed.
76 */
sqlite3VdbeMemGrow(Mem * pMem,int n,int preserve)77 int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
78   assert( 1 >=
79     ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
80     (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
81     ((pMem->flags&MEM_Ephem) ? 1 : 0) +
82     ((pMem->flags&MEM_Static) ? 1 : 0)
83   );
84   assert( (pMem->flags&MEM_RowSet)==0 );
85 
86   if( n<32 ) n = 32;
87   if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
88     if( preserve && pMem->z==pMem->zMalloc ){
89       pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
90       preserve = 0;
91     }else{
92       sqlite3DbFree(pMem->db, pMem->zMalloc);
93       pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
94     }
95   }
96 
97   if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
98     memcpy(pMem->zMalloc, pMem->z, pMem->n);
99   }
100   if( pMem->flags&MEM_Dyn && pMem->xDel ){
101     pMem->xDel((void *)(pMem->z));
102   }
103 
104   pMem->z = pMem->zMalloc;
105   if( pMem->z==0 ){
106     pMem->flags = MEM_Null;
107   }else{
108     pMem->flags &= ~(MEM_Ephem|MEM_Static);
109   }
110   pMem->xDel = 0;
111   return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
112 }
113 
114 /*
115 ** Make the given Mem object MEM_Dyn.  In other words, make it so
116 ** that any TEXT or BLOB content is stored in memory obtained from
117 ** malloc().  In this way, we know that the memory is safe to be
118 ** overwritten or altered.
119 **
120 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
121 */
sqlite3VdbeMemMakeWriteable(Mem * pMem)122 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
123   int f;
124   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
125   assert( (pMem->flags&MEM_RowSet)==0 );
126   expandBlob(pMem);
127   f = pMem->flags;
128   if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
129     if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
130       return SQLITE_NOMEM;
131     }
132     pMem->z[pMem->n] = 0;
133     pMem->z[pMem->n+1] = 0;
134     pMem->flags |= MEM_Term;
135 #ifdef SQLITE_DEBUG
136     pMem->pScopyFrom = 0;
137 #endif
138   }
139 
140   return SQLITE_OK;
141 }
142 
143 /*
144 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
145 ** blob stored in dynamically allocated space.
146 */
147 #ifndef SQLITE_OMIT_INCRBLOB
sqlite3VdbeMemExpandBlob(Mem * pMem)148 int sqlite3VdbeMemExpandBlob(Mem *pMem){
149   if( pMem->flags & MEM_Zero ){
150     int nByte;
151     assert( pMem->flags&MEM_Blob );
152     assert( (pMem->flags&MEM_RowSet)==0 );
153     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
154 
155     /* Set nByte to the number of bytes required to store the expanded blob. */
156     nByte = pMem->n + pMem->u.nZero;
157     if( nByte<=0 ){
158       nByte = 1;
159     }
160     if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
161       return SQLITE_NOMEM;
162     }
163 
164     memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
165     pMem->n += pMem->u.nZero;
166     pMem->flags &= ~(MEM_Zero|MEM_Term);
167   }
168   return SQLITE_OK;
169 }
170 #endif
171 
172 
173 /*
174 ** Make sure the given Mem is \u0000 terminated.
175 */
sqlite3VdbeMemNulTerminate(Mem * pMem)176 int sqlite3VdbeMemNulTerminate(Mem *pMem){
177   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
178   if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
179     return SQLITE_OK;   /* Nothing to do */
180   }
181   if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
182     return SQLITE_NOMEM;
183   }
184   pMem->z[pMem->n] = 0;
185   pMem->z[pMem->n+1] = 0;
186   pMem->flags |= MEM_Term;
187   return SQLITE_OK;
188 }
189 
190 /*
191 ** Add MEM_Str to the set of representations for the given Mem.  Numbers
192 ** are converted using sqlite3_snprintf().  Converting a BLOB to a string
193 ** is a no-op.
194 **
195 ** Existing representations MEM_Int and MEM_Real are *not* invalidated.
196 **
197 ** A MEM_Null value will never be passed to this function. This function is
198 ** used for converting values to text for returning to the user (i.e. via
199 ** sqlite3_value_text()), or for ensuring that values to be used as btree
200 ** keys are strings. In the former case a NULL pointer is returned the
201 ** user and the later is an internal programming error.
202 */
sqlite3VdbeMemStringify(Mem * pMem,int enc)203 int sqlite3VdbeMemStringify(Mem *pMem, int enc){
204   int rc = SQLITE_OK;
205   int fg = pMem->flags;
206   const int nByte = 32;
207 
208   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
209   assert( !(fg&MEM_Zero) );
210   assert( !(fg&(MEM_Str|MEM_Blob)) );
211   assert( fg&(MEM_Int|MEM_Real) );
212   assert( (pMem->flags&MEM_RowSet)==0 );
213   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
214 
215 
216   if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
217     return SQLITE_NOMEM;
218   }
219 
220   /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
221   ** string representation of the value. Then, if the required encoding
222   ** is UTF-16le or UTF-16be do a translation.
223   **
224   ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
225   */
226   if( fg & MEM_Int ){
227     sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
228   }else{
229     assert( fg & MEM_Real );
230     sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
231   }
232   pMem->n = sqlite3Strlen30(pMem->z);
233   pMem->enc = SQLITE_UTF8;
234   pMem->flags |= MEM_Str|MEM_Term;
235   sqlite3VdbeChangeEncoding(pMem, enc);
236   return rc;
237 }
238 
239 /*
240 ** Memory cell pMem contains the context of an aggregate function.
241 ** This routine calls the finalize method for that function.  The
242 ** result of the aggregate is stored back into pMem.
243 **
244 ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
245 ** otherwise.
246 */
sqlite3VdbeMemFinalize(Mem * pMem,FuncDef * pFunc)247 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
248   int rc = SQLITE_OK;
249   if( ALWAYS(pFunc && pFunc->xFinalize) ){
250     sqlite3_context ctx;
251     assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
252     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
253     memset(&ctx, 0, sizeof(ctx));
254     ctx.s.flags = MEM_Null;
255     ctx.s.db = pMem->db;
256     ctx.pMem = pMem;
257     ctx.pFunc = pFunc;
258     pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
259     assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
260     sqlite3DbFree(pMem->db, pMem->zMalloc);
261     memcpy(pMem, &ctx.s, sizeof(ctx.s));
262     rc = ctx.isError;
263   }
264   return rc;
265 }
266 
267 /*
268 ** If the memory cell contains a string value that must be freed by
269 ** invoking an external callback, free it now. Calling this function
270 ** does not free any Mem.zMalloc buffer.
271 */
sqlite3VdbeMemReleaseExternal(Mem * p)272 void sqlite3VdbeMemReleaseExternal(Mem *p){
273   assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
274   testcase( p->flags & MEM_Agg );
275   testcase( p->flags & MEM_Dyn );
276   testcase( p->flags & MEM_RowSet );
277   testcase( p->flags & MEM_Frame );
278   if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){
279     if( p->flags&MEM_Agg ){
280       sqlite3VdbeMemFinalize(p, p->u.pDef);
281       assert( (p->flags & MEM_Agg)==0 );
282       sqlite3VdbeMemRelease(p);
283     }else if( p->flags&MEM_Dyn && p->xDel ){
284       assert( (p->flags&MEM_RowSet)==0 );
285       p->xDel((void *)p->z);
286       p->xDel = 0;
287     }else if( p->flags&MEM_RowSet ){
288       sqlite3RowSetClear(p->u.pRowSet);
289     }else if( p->flags&MEM_Frame ){
290       sqlite3VdbeMemSetNull(p);
291     }
292   }
293 }
294 
295 /*
296 ** Release any memory held by the Mem. This may leave the Mem in an
297 ** inconsistent state, for example with (Mem.z==0) and
298 ** (Mem.type==SQLITE_TEXT).
299 */
sqlite3VdbeMemRelease(Mem * p)300 void sqlite3VdbeMemRelease(Mem *p){
301   sqlite3VdbeMemReleaseExternal(p);
302   sqlite3DbFree(p->db, p->zMalloc);
303   p->z = 0;
304   p->zMalloc = 0;
305   p->xDel = 0;
306 }
307 
308 /*
309 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
310 ** If the double is too large, return 0x8000000000000000.
311 **
312 ** Most systems appear to do this simply by assigning
313 ** variables and without the extra range tests.  But
314 ** there are reports that windows throws an expection
315 ** if the floating point value is out of range. (See ticket #2880.)
316 ** Because we do not completely understand the problem, we will
317 ** take the conservative approach and always do range tests
318 ** before attempting the conversion.
319 */
doubleToInt64(double r)320 static i64 doubleToInt64(double r){
321 #ifdef SQLITE_OMIT_FLOATING_POINT
322   /* When floating-point is omitted, double and int64 are the same thing */
323   return r;
324 #else
325   /*
326   ** Many compilers we encounter do not define constants for the
327   ** minimum and maximum 64-bit integers, or they define them
328   ** inconsistently.  And many do not understand the "LL" notation.
329   ** So we define our own static constants here using nothing
330   ** larger than a 32-bit integer constant.
331   */
332   static const i64 maxInt = LARGEST_INT64;
333   static const i64 minInt = SMALLEST_INT64;
334 
335   if( r<(double)minInt ){
336     return minInt;
337   }else if( r>(double)maxInt ){
338     /* minInt is correct here - not maxInt.  It turns out that assigning
339     ** a very large positive number to an integer results in a very large
340     ** negative integer.  This makes no sense, but it is what x86 hardware
341     ** does so for compatibility we will do the same in software. */
342     return minInt;
343   }else{
344     return (i64)r;
345   }
346 #endif
347 }
348 
349 /*
350 ** Return some kind of integer value which is the best we can do
351 ** at representing the value that *pMem describes as an integer.
352 ** If pMem is an integer, then the value is exact.  If pMem is
353 ** a floating-point then the value returned is the integer part.
354 ** If pMem is a string or blob, then we make an attempt to convert
355 ** it into a integer and return that.  If pMem represents an
356 ** an SQL-NULL value, return 0.
357 **
358 ** If pMem represents a string value, its encoding might be changed.
359 */
sqlite3VdbeIntValue(Mem * pMem)360 i64 sqlite3VdbeIntValue(Mem *pMem){
361   int flags;
362   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
363   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
364   flags = pMem->flags;
365   if( flags & MEM_Int ){
366     return pMem->u.i;
367   }else if( flags & MEM_Real ){
368     return doubleToInt64(pMem->r);
369   }else if( flags & (MEM_Str|MEM_Blob) ){
370     i64 value = 0;
371     assert( pMem->z || pMem->n==0 );
372     testcase( pMem->z==0 );
373     sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
374     return value;
375   }else{
376     return 0;
377   }
378 }
379 
380 /*
381 ** Return the best representation of pMem that we can get into a
382 ** double.  If pMem is already a double or an integer, return its
383 ** value.  If it is a string or blob, try to convert it to a double.
384 ** If it is a NULL, return 0.0.
385 */
sqlite3VdbeRealValue(Mem * pMem)386 double sqlite3VdbeRealValue(Mem *pMem){
387   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
388   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
389   if( pMem->flags & MEM_Real ){
390     return pMem->r;
391   }else if( pMem->flags & MEM_Int ){
392     return (double)pMem->u.i;
393   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
394     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
395     double val = (double)0;
396     sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
397     return val;
398   }else{
399     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
400     return (double)0;
401   }
402 }
403 
404 /*
405 ** The MEM structure is already a MEM_Real.  Try to also make it a
406 ** MEM_Int if we can.
407 */
sqlite3VdbeIntegerAffinity(Mem * pMem)408 void sqlite3VdbeIntegerAffinity(Mem *pMem){
409   assert( pMem->flags & MEM_Real );
410   assert( (pMem->flags & MEM_RowSet)==0 );
411   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
412   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
413 
414   pMem->u.i = doubleToInt64(pMem->r);
415 
416   /* Only mark the value as an integer if
417   **
418   **    (1) the round-trip conversion real->int->real is a no-op, and
419   **    (2) The integer is neither the largest nor the smallest
420   **        possible integer (ticket #3922)
421   **
422   ** The second and third terms in the following conditional enforces
423   ** the second condition under the assumption that addition overflow causes
424   ** values to wrap around.  On x86 hardware, the third term is always
425   ** true and could be omitted.  But we leave it in because other
426   ** architectures might behave differently.
427   */
428   if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64
429       && ALWAYS(pMem->u.i<LARGEST_INT64) ){
430     pMem->flags |= MEM_Int;
431   }
432 }
433 
434 /*
435 ** Convert pMem to type integer.  Invalidate any prior representations.
436 */
sqlite3VdbeMemIntegerify(Mem * pMem)437 int sqlite3VdbeMemIntegerify(Mem *pMem){
438   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
439   assert( (pMem->flags & MEM_RowSet)==0 );
440   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
441 
442   pMem->u.i = sqlite3VdbeIntValue(pMem);
443   MemSetTypeFlag(pMem, MEM_Int);
444   return SQLITE_OK;
445 }
446 
447 /*
448 ** Convert pMem so that it is of type MEM_Real.
449 ** Invalidate any prior representations.
450 */
sqlite3VdbeMemRealify(Mem * pMem)451 int sqlite3VdbeMemRealify(Mem *pMem){
452   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
453   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
454 
455   pMem->r = sqlite3VdbeRealValue(pMem);
456   MemSetTypeFlag(pMem, MEM_Real);
457   return SQLITE_OK;
458 }
459 
460 /*
461 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
462 ** Invalidate any prior representations.
463 **
464 ** Every effort is made to force the conversion, even if the input
465 ** is a string that does not look completely like a number.  Convert
466 ** as much of the string as we can and ignore the rest.
467 */
sqlite3VdbeMemNumerify(Mem * pMem)468 int sqlite3VdbeMemNumerify(Mem *pMem){
469   if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
470     assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
471     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
472     if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
473       MemSetTypeFlag(pMem, MEM_Int);
474     }else{
475       pMem->r = sqlite3VdbeRealValue(pMem);
476       MemSetTypeFlag(pMem, MEM_Real);
477       sqlite3VdbeIntegerAffinity(pMem);
478     }
479   }
480   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
481   pMem->flags &= ~(MEM_Str|MEM_Blob);
482   return SQLITE_OK;
483 }
484 
485 /*
486 ** Delete any previous value and set the value stored in *pMem to NULL.
487 */
sqlite3VdbeMemSetNull(Mem * pMem)488 void sqlite3VdbeMemSetNull(Mem *pMem){
489   if( pMem->flags & MEM_Frame ){
490     VdbeFrame *pFrame = pMem->u.pFrame;
491     pFrame->pParent = pFrame->v->pDelFrame;
492     pFrame->v->pDelFrame = pFrame;
493   }
494   if( pMem->flags & MEM_RowSet ){
495     sqlite3RowSetClear(pMem->u.pRowSet);
496   }
497   MemSetTypeFlag(pMem, MEM_Null);
498   pMem->type = SQLITE_NULL;
499 }
500 
501 /*
502 ** Delete any previous value and set the value to be a BLOB of length
503 ** n containing all zeros.
504 */
sqlite3VdbeMemSetZeroBlob(Mem * pMem,int n)505 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
506   sqlite3VdbeMemRelease(pMem);
507   pMem->flags = MEM_Blob|MEM_Zero;
508   pMem->type = SQLITE_BLOB;
509   pMem->n = 0;
510   if( n<0 ) n = 0;
511   pMem->u.nZero = n;
512   pMem->enc = SQLITE_UTF8;
513 
514 #ifdef SQLITE_OMIT_INCRBLOB
515   sqlite3VdbeMemGrow(pMem, n, 0);
516   if( pMem->z ){
517     pMem->n = n;
518     memset(pMem->z, 0, n);
519   }
520 #endif
521 }
522 
523 /*
524 ** Delete any previous value and set the value stored in *pMem to val,
525 ** manifest type INTEGER.
526 */
sqlite3VdbeMemSetInt64(Mem * pMem,i64 val)527 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
528   sqlite3VdbeMemRelease(pMem);
529   pMem->u.i = val;
530   pMem->flags = MEM_Int;
531   pMem->type = SQLITE_INTEGER;
532 }
533 
534 #ifndef SQLITE_OMIT_FLOATING_POINT
535 /*
536 ** Delete any previous value and set the value stored in *pMem to val,
537 ** manifest type REAL.
538 */
sqlite3VdbeMemSetDouble(Mem * pMem,double val)539 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
540   if( sqlite3IsNaN(val) ){
541     sqlite3VdbeMemSetNull(pMem);
542   }else{
543     sqlite3VdbeMemRelease(pMem);
544     pMem->r = val;
545     pMem->flags = MEM_Real;
546     pMem->type = SQLITE_FLOAT;
547   }
548 }
549 #endif
550 
551 /*
552 ** Delete any previous value and set the value of pMem to be an
553 ** empty boolean index.
554 */
sqlite3VdbeMemSetRowSet(Mem * pMem)555 void sqlite3VdbeMemSetRowSet(Mem *pMem){
556   sqlite3 *db = pMem->db;
557   assert( db!=0 );
558   assert( (pMem->flags & MEM_RowSet)==0 );
559   sqlite3VdbeMemRelease(pMem);
560   pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
561   if( db->mallocFailed ){
562     pMem->flags = MEM_Null;
563   }else{
564     assert( pMem->zMalloc );
565     pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc,
566                                        sqlite3DbMallocSize(db, pMem->zMalloc));
567     assert( pMem->u.pRowSet!=0 );
568     pMem->flags = MEM_RowSet;
569   }
570 }
571 
572 /*
573 ** Return true if the Mem object contains a TEXT or BLOB that is
574 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
575 */
sqlite3VdbeMemTooBig(Mem * p)576 int sqlite3VdbeMemTooBig(Mem *p){
577   assert( p->db!=0 );
578   if( p->flags & (MEM_Str|MEM_Blob) ){
579     int n = p->n;
580     if( p->flags & MEM_Zero ){
581       n += p->u.nZero;
582     }
583     return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
584   }
585   return 0;
586 }
587 
588 #ifdef SQLITE_DEBUG
589 /*
590 ** This routine prepares a memory cell for modication by breaking
591 ** its link to a shallow copy and by marking any current shallow
592 ** copies of this cell as invalid.
593 **
594 ** This is used for testing and debugging only - to make sure shallow
595 ** copies are not misused.
596 */
sqlite3VdbeMemPrepareToChange(Vdbe * pVdbe,Mem * pMem)597 void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){
598   int i;
599   Mem *pX;
600   for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
601     if( pX->pScopyFrom==pMem ){
602       pX->flags |= MEM_Invalid;
603       pX->pScopyFrom = 0;
604     }
605   }
606   pMem->pScopyFrom = 0;
607 }
608 #endif /* SQLITE_DEBUG */
609 
610 /*
611 ** Size of struct Mem not including the Mem.zMalloc member.
612 */
613 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
614 
615 /*
616 ** Make an shallow copy of pFrom into pTo.  Prior contents of
617 ** pTo are freed.  The pFrom->z field is not duplicated.  If
618 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
619 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
620 */
sqlite3VdbeMemShallowCopy(Mem * pTo,const Mem * pFrom,int srcType)621 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
622   assert( (pFrom->flags & MEM_RowSet)==0 );
623   sqlite3VdbeMemReleaseExternal(pTo);
624   memcpy(pTo, pFrom, MEMCELLSIZE);
625   pTo->xDel = 0;
626   if( (pFrom->flags&MEM_Static)==0 ){
627     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
628     assert( srcType==MEM_Ephem || srcType==MEM_Static );
629     pTo->flags |= srcType;
630   }
631 }
632 
633 /*
634 ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
635 ** freed before the copy is made.
636 */
sqlite3VdbeMemCopy(Mem * pTo,const Mem * pFrom)637 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
638   int rc = SQLITE_OK;
639 
640   assert( (pFrom->flags & MEM_RowSet)==0 );
641   sqlite3VdbeMemReleaseExternal(pTo);
642   memcpy(pTo, pFrom, MEMCELLSIZE);
643   pTo->flags &= ~MEM_Dyn;
644 
645   if( pTo->flags&(MEM_Str|MEM_Blob) ){
646     if( 0==(pFrom->flags&MEM_Static) ){
647       pTo->flags |= MEM_Ephem;
648       rc = sqlite3VdbeMemMakeWriteable(pTo);
649     }
650   }
651 
652   return rc;
653 }
654 
655 /*
656 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
657 ** freed. If pFrom contains ephemeral data, a copy is made.
658 **
659 ** pFrom contains an SQL NULL when this routine returns.
660 */
sqlite3VdbeMemMove(Mem * pTo,Mem * pFrom)661 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
662   assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
663   assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
664   assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
665 
666   sqlite3VdbeMemRelease(pTo);
667   memcpy(pTo, pFrom, sizeof(Mem));
668   pFrom->flags = MEM_Null;
669   pFrom->xDel = 0;
670   pFrom->zMalloc = 0;
671 }
672 
673 /*
674 ** Change the value of a Mem to be a string or a BLOB.
675 **
676 ** The memory management strategy depends on the value of the xDel
677 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
678 ** string is copied into a (possibly existing) buffer managed by the
679 ** Mem structure. Otherwise, any existing buffer is freed and the
680 ** pointer copied.
681 **
682 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
683 ** size limit) then no memory allocation occurs.  If the string can be
684 ** stored without allocating memory, then it is.  If a memory allocation
685 ** is required to store the string, then value of pMem is unchanged.  In
686 ** either case, SQLITE_TOOBIG is returned.
687 */
sqlite3VdbeMemSetStr(Mem * pMem,const char * z,int n,u8 enc,void (* xDel)(void *))688 int sqlite3VdbeMemSetStr(
689   Mem *pMem,          /* Memory cell to set to string value */
690   const char *z,      /* String pointer */
691   int n,              /* Bytes in string, or negative */
692   u8 enc,             /* Encoding of z.  0 for BLOBs */
693   void (*xDel)(void*) /* Destructor function */
694 ){
695   int nByte = n;      /* New value for pMem->n */
696   int iLimit;         /* Maximum allowed string or blob size */
697   u16 flags = 0;      /* New value for pMem->flags */
698 
699   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
700   assert( (pMem->flags & MEM_RowSet)==0 );
701 
702   /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
703   if( !z ){
704     sqlite3VdbeMemSetNull(pMem);
705     return SQLITE_OK;
706   }
707 
708   if( pMem->db ){
709     iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
710   }else{
711     iLimit = SQLITE_MAX_LENGTH;
712   }
713   flags = (enc==0?MEM_Blob:MEM_Str);
714   if( nByte<0 ){
715     assert( enc!=0 );
716     if( enc==SQLITE_UTF8 ){
717       for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
718     }else{
719       for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
720     }
721     flags |= MEM_Term;
722   }
723 
724   /* The following block sets the new values of Mem.z and Mem.xDel. It
725   ** also sets a flag in local variable "flags" to indicate the memory
726   ** management (one of MEM_Dyn or MEM_Static).
727   */
728   if( xDel==SQLITE_TRANSIENT ){
729     int nAlloc = nByte;
730     if( flags&MEM_Term ){
731       nAlloc += (enc==SQLITE_UTF8?1:2);
732     }
733     if( nByte>iLimit ){
734       return SQLITE_TOOBIG;
735     }
736     if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
737       return SQLITE_NOMEM;
738     }
739     memcpy(pMem->z, z, nAlloc);
740   }else if( xDel==SQLITE_DYNAMIC ){
741     sqlite3VdbeMemRelease(pMem);
742     pMem->zMalloc = pMem->z = (char *)z;
743     pMem->xDel = 0;
744   }else{
745     sqlite3VdbeMemRelease(pMem);
746     pMem->z = (char *)z;
747     pMem->xDel = xDel;
748     flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
749   }
750 
751   pMem->n = nByte;
752   pMem->flags = flags;
753   pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
754   pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
755 
756 #ifndef SQLITE_OMIT_UTF16
757   if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
758     return SQLITE_NOMEM;
759   }
760 #endif
761 
762   if( nByte>iLimit ){
763     return SQLITE_TOOBIG;
764   }
765 
766   return SQLITE_OK;
767 }
768 
769 /*
770 ** Compare the values contained by the two memory cells, returning
771 ** negative, zero or positive if pMem1 is less than, equal to, or greater
772 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
773 ** and reals) sorted numerically, followed by text ordered by the collating
774 ** sequence pColl and finally blob's ordered by memcmp().
775 **
776 ** Two NULL values are considered equal by this function.
777 */
sqlite3MemCompare(const Mem * pMem1,const Mem * pMem2,const CollSeq * pColl)778 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
779   int rc;
780   int f1, f2;
781   int combined_flags;
782 
783   f1 = pMem1->flags;
784   f2 = pMem2->flags;
785   combined_flags = f1|f2;
786   assert( (combined_flags & MEM_RowSet)==0 );
787 
788   /* If one value is NULL, it is less than the other. If both values
789   ** are NULL, return 0.
790   */
791   if( combined_flags&MEM_Null ){
792     return (f2&MEM_Null) - (f1&MEM_Null);
793   }
794 
795   /* If one value is a number and the other is not, the number is less.
796   ** If both are numbers, compare as reals if one is a real, or as integers
797   ** if both values are integers.
798   */
799   if( combined_flags&(MEM_Int|MEM_Real) ){
800     if( !(f1&(MEM_Int|MEM_Real)) ){
801       return 1;
802     }
803     if( !(f2&(MEM_Int|MEM_Real)) ){
804       return -1;
805     }
806     if( (f1 & f2 & MEM_Int)==0 ){
807       double r1, r2;
808       if( (f1&MEM_Real)==0 ){
809         r1 = (double)pMem1->u.i;
810       }else{
811         r1 = pMem1->r;
812       }
813       if( (f2&MEM_Real)==0 ){
814         r2 = (double)pMem2->u.i;
815       }else{
816         r2 = pMem2->r;
817       }
818       if( r1<r2 ) return -1;
819       if( r1>r2 ) return 1;
820       return 0;
821     }else{
822       assert( f1&MEM_Int );
823       assert( f2&MEM_Int );
824       if( pMem1->u.i < pMem2->u.i ) return -1;
825       if( pMem1->u.i > pMem2->u.i ) return 1;
826       return 0;
827     }
828   }
829 
830   /* If one value is a string and the other is a blob, the string is less.
831   ** If both are strings, compare using the collating functions.
832   */
833   if( combined_flags&MEM_Str ){
834     if( (f1 & MEM_Str)==0 ){
835       return 1;
836     }
837     if( (f2 & MEM_Str)==0 ){
838       return -1;
839     }
840 
841     assert( pMem1->enc==pMem2->enc );
842     assert( pMem1->enc==SQLITE_UTF8 ||
843             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
844 
845     /* The collation sequence must be defined at this point, even if
846     ** the user deletes the collation sequence after the vdbe program is
847     ** compiled (this was not always the case).
848     */
849     assert( !pColl || pColl->xCmp );
850 
851     if( pColl ){
852       if( pMem1->enc==pColl->enc ){
853         /* The strings are already in the correct encoding.  Call the
854         ** comparison function directly */
855         return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
856       }else{
857         const void *v1, *v2;
858         int n1, n2;
859         Mem c1;
860         Mem c2;
861         memset(&c1, 0, sizeof(c1));
862         memset(&c2, 0, sizeof(c2));
863         sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
864         sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
865         v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
866         n1 = v1==0 ? 0 : c1.n;
867         v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
868         n2 = v2==0 ? 0 : c2.n;
869         rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
870         sqlite3VdbeMemRelease(&c1);
871         sqlite3VdbeMemRelease(&c2);
872         return rc;
873       }
874     }
875     /* If a NULL pointer was passed as the collate function, fall through
876     ** to the blob case and use memcmp().  */
877   }
878 
879   /* Both values must be blobs.  Compare using memcmp().  */
880   rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
881   if( rc==0 ){
882     rc = pMem1->n - pMem2->n;
883   }
884   return rc;
885 }
886 
887 /*
888 ** Move data out of a btree key or data field and into a Mem structure.
889 ** The data or key is taken from the entry that pCur is currently pointing
890 ** to.  offset and amt determine what portion of the data or key to retrieve.
891 ** key is true to get the key or false to get data.  The result is written
892 ** into the pMem element.
893 **
894 ** The pMem structure is assumed to be uninitialized.  Any prior content
895 ** is overwritten without being freed.
896 **
897 ** If this routine fails for any reason (malloc returns NULL or unable
898 ** to read from the disk) then the pMem is left in an inconsistent state.
899 */
sqlite3VdbeMemFromBtree(BtCursor * pCur,int offset,int amt,int key,Mem * pMem)900 int sqlite3VdbeMemFromBtree(
901   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
902   int offset,       /* Offset from the start of data to return bytes from. */
903   int amt,          /* Number of bytes to return. */
904   int key,          /* If true, retrieve from the btree key, not data. */
905   Mem *pMem         /* OUT: Return data in this Mem structure. */
906 ){
907   char *zData;        /* Data from the btree layer */
908   int available = 0;  /* Number of bytes available on the local btree page */
909   int rc = SQLITE_OK; /* Return code */
910 
911   assert( sqlite3BtreeCursorIsValid(pCur) );
912 
913   /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
914   ** that both the BtShared and database handle mutexes are held. */
915   assert( (pMem->flags & MEM_RowSet)==0 );
916   if( key ){
917     zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
918   }else{
919     zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
920   }
921   assert( zData!=0 );
922 
923   if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){
924     sqlite3VdbeMemRelease(pMem);
925     pMem->z = &zData[offset];
926     pMem->flags = MEM_Blob|MEM_Ephem;
927   }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
928     pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
929     pMem->enc = 0;
930     pMem->type = SQLITE_BLOB;
931     if( key ){
932       rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
933     }else{
934       rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
935     }
936     pMem->z[amt] = 0;
937     pMem->z[amt+1] = 0;
938     if( rc!=SQLITE_OK ){
939       sqlite3VdbeMemRelease(pMem);
940     }
941   }
942   pMem->n = amt;
943 
944   return rc;
945 }
946 
947 /* This function is only available internally, it is not part of the
948 ** external API. It works in a similar way to sqlite3_value_text(),
949 ** except the data returned is in the encoding specified by the second
950 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
951 ** SQLITE_UTF8.
952 **
953 ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
954 ** If that is the case, then the result must be aligned on an even byte
955 ** boundary.
956 */
sqlite3ValueText(sqlite3_value * pVal,u8 enc)957 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
958   if( !pVal ) return 0;
959 
960   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
961   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
962   assert( (pVal->flags & MEM_RowSet)==0 );
963 
964   if( pVal->flags&MEM_Null ){
965     return 0;
966   }
967   assert( (MEM_Blob>>3) == MEM_Str );
968   pVal->flags |= (pVal->flags & MEM_Blob)>>3;
969   expandBlob(pVal);
970   if( pVal->flags&MEM_Str ){
971     sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
972     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
973       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
974       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
975         return 0;
976       }
977     }
978     sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-59893-45467 */
979   }else{
980     assert( (pVal->flags&MEM_Blob)==0 );
981     sqlite3VdbeMemStringify(pVal, enc);
982     assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
983   }
984   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
985               || pVal->db->mallocFailed );
986   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
987     return pVal->z;
988   }else{
989     return 0;
990   }
991 }
992 
993 /*
994 ** Create a new sqlite3_value object.
995 */
sqlite3ValueNew(sqlite3 * db)996 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
997   Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
998   if( p ){
999     p->flags = MEM_Null;
1000     p->type = SQLITE_NULL;
1001     p->db = db;
1002   }
1003   return p;
1004 }
1005 
1006 /*
1007 ** Create a new sqlite3_value object, containing the value of pExpr.
1008 **
1009 ** This only works for very simple expressions that consist of one constant
1010 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1011 ** be converted directly into a value, then the value is allocated and
1012 ** a pointer written to *ppVal. The caller is responsible for deallocating
1013 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1014 ** cannot be converted to a value, then *ppVal is set to NULL.
1015 */
sqlite3ValueFromExpr(sqlite3 * db,Expr * pExpr,u8 enc,u8 affinity,sqlite3_value ** ppVal)1016 int sqlite3ValueFromExpr(
1017   sqlite3 *db,              /* The database connection */
1018   Expr *pExpr,              /* The expression to evaluate */
1019   u8 enc,                   /* Encoding to use */
1020   u8 affinity,              /* Affinity to use */
1021   sqlite3_value **ppVal     /* Write the new value here */
1022 ){
1023   int op;
1024   char *zVal = 0;
1025   sqlite3_value *pVal = 0;
1026   int negInt = 1;
1027   const char *zNeg = "";
1028 
1029   if( !pExpr ){
1030     *ppVal = 0;
1031     return SQLITE_OK;
1032   }
1033   op = pExpr->op;
1034 
1035   /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2.
1036   ** The ifdef here is to enable us to achieve 100% branch test coverage even
1037   ** when SQLITE_ENABLE_STAT2 is omitted.
1038   */
1039 #ifdef SQLITE_ENABLE_STAT2
1040   if( op==TK_REGISTER ) op = pExpr->op2;
1041 #else
1042   if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1043 #endif
1044 
1045   /* Handle negative integers in a single step.  This is needed in the
1046   ** case when the value is -9223372036854775808.
1047   */
1048   if( op==TK_UMINUS
1049    && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1050     pExpr = pExpr->pLeft;
1051     op = pExpr->op;
1052     negInt = -1;
1053     zNeg = "-";
1054   }
1055 
1056   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1057     pVal = sqlite3ValueNew(db);
1058     if( pVal==0 ) goto no_mem;
1059     if( ExprHasProperty(pExpr, EP_IntValue) ){
1060       sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1061     }else{
1062       zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1063       if( zVal==0 ) goto no_mem;
1064       sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1065       if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
1066     }
1067     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
1068       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1069     }else{
1070       sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1071     }
1072     if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1073     if( enc!=SQLITE_UTF8 ){
1074       sqlite3VdbeChangeEncoding(pVal, enc);
1075     }
1076   }else if( op==TK_UMINUS ) {
1077     /* This branch happens for multiple negative signs.  Ex: -(-5) */
1078     if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
1079       sqlite3VdbeMemNumerify(pVal);
1080       if( pVal->u.i==SMALLEST_INT64 ){
1081         pVal->flags &= MEM_Int;
1082         pVal->flags |= MEM_Real;
1083         pVal->r = (double)LARGEST_INT64;
1084       }else{
1085         pVal->u.i = -pVal->u.i;
1086       }
1087       pVal->r = -pVal->r;
1088       sqlite3ValueApplyAffinity(pVal, affinity, enc);
1089     }
1090   }else if( op==TK_NULL ){
1091     pVal = sqlite3ValueNew(db);
1092     if( pVal==0 ) goto no_mem;
1093   }
1094 #ifndef SQLITE_OMIT_BLOB_LITERAL
1095   else if( op==TK_BLOB ){
1096     int nVal;
1097     assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1098     assert( pExpr->u.zToken[1]=='\'' );
1099     pVal = sqlite3ValueNew(db);
1100     if( !pVal ) goto no_mem;
1101     zVal = &pExpr->u.zToken[2];
1102     nVal = sqlite3Strlen30(zVal)-1;
1103     assert( zVal[nVal]=='\'' );
1104     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1105                          0, SQLITE_DYNAMIC);
1106   }
1107 #endif
1108 
1109   if( pVal ){
1110     sqlite3VdbeMemStoreType(pVal);
1111   }
1112   *ppVal = pVal;
1113   return SQLITE_OK;
1114 
1115 no_mem:
1116   db->mallocFailed = 1;
1117   sqlite3DbFree(db, zVal);
1118   sqlite3ValueFree(pVal);
1119   *ppVal = 0;
1120   return SQLITE_NOMEM;
1121 }
1122 
1123 /*
1124 ** Change the string value of an sqlite3_value object
1125 */
sqlite3ValueSetStr(sqlite3_value * v,int n,const void * z,u8 enc,void (* xDel)(void *))1126 void sqlite3ValueSetStr(
1127   sqlite3_value *v,     /* Value to be set */
1128   int n,                /* Length of string z */
1129   const void *z,        /* Text of the new string */
1130   u8 enc,               /* Encoding to use */
1131   void (*xDel)(void*)   /* Destructor for the string */
1132 ){
1133   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1134 }
1135 
1136 /*
1137 ** Free an sqlite3_value object
1138 */
sqlite3ValueFree(sqlite3_value * v)1139 void sqlite3ValueFree(sqlite3_value *v){
1140   if( !v ) return;
1141   sqlite3VdbeMemRelease((Mem *)v);
1142   sqlite3DbFree(((Mem*)v)->db, v);
1143 }
1144 
1145 /*
1146 ** Return the number of bytes in the sqlite3_value object assuming
1147 ** that it uses the encoding "enc"
1148 */
sqlite3ValueBytes(sqlite3_value * pVal,u8 enc)1149 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1150   Mem *p = (Mem*)pVal;
1151   if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
1152     if( p->flags & MEM_Zero ){
1153       return p->n + p->u.nZero;
1154     }else{
1155       return p->n;
1156     }
1157   }
1158   return 0;
1159 }
1160