1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20
21 /*
22 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
23 ** P if required.
24 */
25 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
26
27 /*
28 ** If pMem is an object with a valid string representation, this routine
29 ** ensures the internal encoding for the string representation is
30 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
31 **
32 ** If pMem is not a string object, or the encoding of the string
33 ** representation is already stored using the requested encoding, then this
34 ** routine is a no-op.
35 **
36 ** SQLITE_OK is returned if the conversion is successful (or not required).
37 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
38 ** between formats.
39 */
sqlite3VdbeChangeEncoding(Mem * pMem,int desiredEnc)40 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
41 int rc;
42 assert( (pMem->flags&MEM_RowSet)==0 );
43 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
44 || desiredEnc==SQLITE_UTF16BE );
45 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
46 return SQLITE_OK;
47 }
48 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
49 #ifdef SQLITE_OMIT_UTF16
50 return SQLITE_ERROR;
51 #else
52
53 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
54 ** then the encoding of the value may not have changed.
55 */
56 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
57 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
58 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
59 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
60 return rc;
61 #endif
62 }
63
64 /*
65 ** Make sure pMem->z points to a writable allocation of at least
66 ** n bytes.
67 **
68 ** If the memory cell currently contains string or blob data
69 ** and the third argument passed to this function is true, the
70 ** current content of the cell is preserved. Otherwise, it may
71 ** be discarded.
72 **
73 ** This function sets the MEM_Dyn flag and clears any xDel callback.
74 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
75 ** not set, Mem.n is zeroed.
76 */
sqlite3VdbeMemGrow(Mem * pMem,int n,int preserve)77 int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
78 assert( 1 >=
79 ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
80 (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
81 ((pMem->flags&MEM_Ephem) ? 1 : 0) +
82 ((pMem->flags&MEM_Static) ? 1 : 0)
83 );
84 assert( (pMem->flags&MEM_RowSet)==0 );
85
86 if( n<32 ) n = 32;
87 if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
88 if( preserve && pMem->z==pMem->zMalloc ){
89 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
90 preserve = 0;
91 }else{
92 sqlite3DbFree(pMem->db, pMem->zMalloc);
93 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
94 }
95 }
96
97 if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
98 memcpy(pMem->zMalloc, pMem->z, pMem->n);
99 }
100 if( pMem->flags&MEM_Dyn && pMem->xDel ){
101 pMem->xDel((void *)(pMem->z));
102 }
103
104 pMem->z = pMem->zMalloc;
105 if( pMem->z==0 ){
106 pMem->flags = MEM_Null;
107 }else{
108 pMem->flags &= ~(MEM_Ephem|MEM_Static);
109 }
110 pMem->xDel = 0;
111 return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
112 }
113
114 /*
115 ** Make the given Mem object MEM_Dyn. In other words, make it so
116 ** that any TEXT or BLOB content is stored in memory obtained from
117 ** malloc(). In this way, we know that the memory is safe to be
118 ** overwritten or altered.
119 **
120 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
121 */
sqlite3VdbeMemMakeWriteable(Mem * pMem)122 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
123 int f;
124 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
125 assert( (pMem->flags&MEM_RowSet)==0 );
126 expandBlob(pMem);
127 f = pMem->flags;
128 if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
129 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
130 return SQLITE_NOMEM;
131 }
132 pMem->z[pMem->n] = 0;
133 pMem->z[pMem->n+1] = 0;
134 pMem->flags |= MEM_Term;
135 #ifdef SQLITE_DEBUG
136 pMem->pScopyFrom = 0;
137 #endif
138 }
139
140 return SQLITE_OK;
141 }
142
143 /*
144 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
145 ** blob stored in dynamically allocated space.
146 */
147 #ifndef SQLITE_OMIT_INCRBLOB
sqlite3VdbeMemExpandBlob(Mem * pMem)148 int sqlite3VdbeMemExpandBlob(Mem *pMem){
149 if( pMem->flags & MEM_Zero ){
150 int nByte;
151 assert( pMem->flags&MEM_Blob );
152 assert( (pMem->flags&MEM_RowSet)==0 );
153 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
154
155 /* Set nByte to the number of bytes required to store the expanded blob. */
156 nByte = pMem->n + pMem->u.nZero;
157 if( nByte<=0 ){
158 nByte = 1;
159 }
160 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
161 return SQLITE_NOMEM;
162 }
163
164 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
165 pMem->n += pMem->u.nZero;
166 pMem->flags &= ~(MEM_Zero|MEM_Term);
167 }
168 return SQLITE_OK;
169 }
170 #endif
171
172
173 /*
174 ** Make sure the given Mem is \u0000 terminated.
175 */
sqlite3VdbeMemNulTerminate(Mem * pMem)176 int sqlite3VdbeMemNulTerminate(Mem *pMem){
177 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
178 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
179 return SQLITE_OK; /* Nothing to do */
180 }
181 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
182 return SQLITE_NOMEM;
183 }
184 pMem->z[pMem->n] = 0;
185 pMem->z[pMem->n+1] = 0;
186 pMem->flags |= MEM_Term;
187 return SQLITE_OK;
188 }
189
190 /*
191 ** Add MEM_Str to the set of representations for the given Mem. Numbers
192 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
193 ** is a no-op.
194 **
195 ** Existing representations MEM_Int and MEM_Real are *not* invalidated.
196 **
197 ** A MEM_Null value will never be passed to this function. This function is
198 ** used for converting values to text for returning to the user (i.e. via
199 ** sqlite3_value_text()), or for ensuring that values to be used as btree
200 ** keys are strings. In the former case a NULL pointer is returned the
201 ** user and the later is an internal programming error.
202 */
sqlite3VdbeMemStringify(Mem * pMem,int enc)203 int sqlite3VdbeMemStringify(Mem *pMem, int enc){
204 int rc = SQLITE_OK;
205 int fg = pMem->flags;
206 const int nByte = 32;
207
208 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
209 assert( !(fg&MEM_Zero) );
210 assert( !(fg&(MEM_Str|MEM_Blob)) );
211 assert( fg&(MEM_Int|MEM_Real) );
212 assert( (pMem->flags&MEM_RowSet)==0 );
213 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
214
215
216 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
217 return SQLITE_NOMEM;
218 }
219
220 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
221 ** string representation of the value. Then, if the required encoding
222 ** is UTF-16le or UTF-16be do a translation.
223 **
224 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
225 */
226 if( fg & MEM_Int ){
227 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
228 }else{
229 assert( fg & MEM_Real );
230 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
231 }
232 pMem->n = sqlite3Strlen30(pMem->z);
233 pMem->enc = SQLITE_UTF8;
234 pMem->flags |= MEM_Str|MEM_Term;
235 sqlite3VdbeChangeEncoding(pMem, enc);
236 return rc;
237 }
238
239 /*
240 ** Memory cell pMem contains the context of an aggregate function.
241 ** This routine calls the finalize method for that function. The
242 ** result of the aggregate is stored back into pMem.
243 **
244 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
245 ** otherwise.
246 */
sqlite3VdbeMemFinalize(Mem * pMem,FuncDef * pFunc)247 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
248 int rc = SQLITE_OK;
249 if( ALWAYS(pFunc && pFunc->xFinalize) ){
250 sqlite3_context ctx;
251 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
252 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
253 memset(&ctx, 0, sizeof(ctx));
254 ctx.s.flags = MEM_Null;
255 ctx.s.db = pMem->db;
256 ctx.pMem = pMem;
257 ctx.pFunc = pFunc;
258 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
259 assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
260 sqlite3DbFree(pMem->db, pMem->zMalloc);
261 memcpy(pMem, &ctx.s, sizeof(ctx.s));
262 rc = ctx.isError;
263 }
264 return rc;
265 }
266
267 /*
268 ** If the memory cell contains a string value that must be freed by
269 ** invoking an external callback, free it now. Calling this function
270 ** does not free any Mem.zMalloc buffer.
271 */
sqlite3VdbeMemReleaseExternal(Mem * p)272 void sqlite3VdbeMemReleaseExternal(Mem *p){
273 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
274 testcase( p->flags & MEM_Agg );
275 testcase( p->flags & MEM_Dyn );
276 testcase( p->flags & MEM_RowSet );
277 testcase( p->flags & MEM_Frame );
278 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){
279 if( p->flags&MEM_Agg ){
280 sqlite3VdbeMemFinalize(p, p->u.pDef);
281 assert( (p->flags & MEM_Agg)==0 );
282 sqlite3VdbeMemRelease(p);
283 }else if( p->flags&MEM_Dyn && p->xDel ){
284 assert( (p->flags&MEM_RowSet)==0 );
285 p->xDel((void *)p->z);
286 p->xDel = 0;
287 }else if( p->flags&MEM_RowSet ){
288 sqlite3RowSetClear(p->u.pRowSet);
289 }else if( p->flags&MEM_Frame ){
290 sqlite3VdbeMemSetNull(p);
291 }
292 }
293 }
294
295 /*
296 ** Release any memory held by the Mem. This may leave the Mem in an
297 ** inconsistent state, for example with (Mem.z==0) and
298 ** (Mem.type==SQLITE_TEXT).
299 */
sqlite3VdbeMemRelease(Mem * p)300 void sqlite3VdbeMemRelease(Mem *p){
301 sqlite3VdbeMemReleaseExternal(p);
302 sqlite3DbFree(p->db, p->zMalloc);
303 p->z = 0;
304 p->zMalloc = 0;
305 p->xDel = 0;
306 }
307
308 /*
309 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
310 ** If the double is too large, return 0x8000000000000000.
311 **
312 ** Most systems appear to do this simply by assigning
313 ** variables and without the extra range tests. But
314 ** there are reports that windows throws an expection
315 ** if the floating point value is out of range. (See ticket #2880.)
316 ** Because we do not completely understand the problem, we will
317 ** take the conservative approach and always do range tests
318 ** before attempting the conversion.
319 */
doubleToInt64(double r)320 static i64 doubleToInt64(double r){
321 #ifdef SQLITE_OMIT_FLOATING_POINT
322 /* When floating-point is omitted, double and int64 are the same thing */
323 return r;
324 #else
325 /*
326 ** Many compilers we encounter do not define constants for the
327 ** minimum and maximum 64-bit integers, or they define them
328 ** inconsistently. And many do not understand the "LL" notation.
329 ** So we define our own static constants here using nothing
330 ** larger than a 32-bit integer constant.
331 */
332 static const i64 maxInt = LARGEST_INT64;
333 static const i64 minInt = SMALLEST_INT64;
334
335 if( r<(double)minInt ){
336 return minInt;
337 }else if( r>(double)maxInt ){
338 /* minInt is correct here - not maxInt. It turns out that assigning
339 ** a very large positive number to an integer results in a very large
340 ** negative integer. This makes no sense, but it is what x86 hardware
341 ** does so for compatibility we will do the same in software. */
342 return minInt;
343 }else{
344 return (i64)r;
345 }
346 #endif
347 }
348
349 /*
350 ** Return some kind of integer value which is the best we can do
351 ** at representing the value that *pMem describes as an integer.
352 ** If pMem is an integer, then the value is exact. If pMem is
353 ** a floating-point then the value returned is the integer part.
354 ** If pMem is a string or blob, then we make an attempt to convert
355 ** it into a integer and return that. If pMem represents an
356 ** an SQL-NULL value, return 0.
357 **
358 ** If pMem represents a string value, its encoding might be changed.
359 */
sqlite3VdbeIntValue(Mem * pMem)360 i64 sqlite3VdbeIntValue(Mem *pMem){
361 int flags;
362 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
363 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
364 flags = pMem->flags;
365 if( flags & MEM_Int ){
366 return pMem->u.i;
367 }else if( flags & MEM_Real ){
368 return doubleToInt64(pMem->r);
369 }else if( flags & (MEM_Str|MEM_Blob) ){
370 i64 value = 0;
371 assert( pMem->z || pMem->n==0 );
372 testcase( pMem->z==0 );
373 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
374 return value;
375 }else{
376 return 0;
377 }
378 }
379
380 /*
381 ** Return the best representation of pMem that we can get into a
382 ** double. If pMem is already a double or an integer, return its
383 ** value. If it is a string or blob, try to convert it to a double.
384 ** If it is a NULL, return 0.0.
385 */
sqlite3VdbeRealValue(Mem * pMem)386 double sqlite3VdbeRealValue(Mem *pMem){
387 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
388 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
389 if( pMem->flags & MEM_Real ){
390 return pMem->r;
391 }else if( pMem->flags & MEM_Int ){
392 return (double)pMem->u.i;
393 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
394 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
395 double val = (double)0;
396 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
397 return val;
398 }else{
399 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
400 return (double)0;
401 }
402 }
403
404 /*
405 ** The MEM structure is already a MEM_Real. Try to also make it a
406 ** MEM_Int if we can.
407 */
sqlite3VdbeIntegerAffinity(Mem * pMem)408 void sqlite3VdbeIntegerAffinity(Mem *pMem){
409 assert( pMem->flags & MEM_Real );
410 assert( (pMem->flags & MEM_RowSet)==0 );
411 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
412 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
413
414 pMem->u.i = doubleToInt64(pMem->r);
415
416 /* Only mark the value as an integer if
417 **
418 ** (1) the round-trip conversion real->int->real is a no-op, and
419 ** (2) The integer is neither the largest nor the smallest
420 ** possible integer (ticket #3922)
421 **
422 ** The second and third terms in the following conditional enforces
423 ** the second condition under the assumption that addition overflow causes
424 ** values to wrap around. On x86 hardware, the third term is always
425 ** true and could be omitted. But we leave it in because other
426 ** architectures might behave differently.
427 */
428 if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64
429 && ALWAYS(pMem->u.i<LARGEST_INT64) ){
430 pMem->flags |= MEM_Int;
431 }
432 }
433
434 /*
435 ** Convert pMem to type integer. Invalidate any prior representations.
436 */
sqlite3VdbeMemIntegerify(Mem * pMem)437 int sqlite3VdbeMemIntegerify(Mem *pMem){
438 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
439 assert( (pMem->flags & MEM_RowSet)==0 );
440 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
441
442 pMem->u.i = sqlite3VdbeIntValue(pMem);
443 MemSetTypeFlag(pMem, MEM_Int);
444 return SQLITE_OK;
445 }
446
447 /*
448 ** Convert pMem so that it is of type MEM_Real.
449 ** Invalidate any prior representations.
450 */
sqlite3VdbeMemRealify(Mem * pMem)451 int sqlite3VdbeMemRealify(Mem *pMem){
452 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
453 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
454
455 pMem->r = sqlite3VdbeRealValue(pMem);
456 MemSetTypeFlag(pMem, MEM_Real);
457 return SQLITE_OK;
458 }
459
460 /*
461 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
462 ** Invalidate any prior representations.
463 **
464 ** Every effort is made to force the conversion, even if the input
465 ** is a string that does not look completely like a number. Convert
466 ** as much of the string as we can and ignore the rest.
467 */
sqlite3VdbeMemNumerify(Mem * pMem)468 int sqlite3VdbeMemNumerify(Mem *pMem){
469 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
470 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
471 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
472 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
473 MemSetTypeFlag(pMem, MEM_Int);
474 }else{
475 pMem->r = sqlite3VdbeRealValue(pMem);
476 MemSetTypeFlag(pMem, MEM_Real);
477 sqlite3VdbeIntegerAffinity(pMem);
478 }
479 }
480 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
481 pMem->flags &= ~(MEM_Str|MEM_Blob);
482 return SQLITE_OK;
483 }
484
485 /*
486 ** Delete any previous value and set the value stored in *pMem to NULL.
487 */
sqlite3VdbeMemSetNull(Mem * pMem)488 void sqlite3VdbeMemSetNull(Mem *pMem){
489 if( pMem->flags & MEM_Frame ){
490 VdbeFrame *pFrame = pMem->u.pFrame;
491 pFrame->pParent = pFrame->v->pDelFrame;
492 pFrame->v->pDelFrame = pFrame;
493 }
494 if( pMem->flags & MEM_RowSet ){
495 sqlite3RowSetClear(pMem->u.pRowSet);
496 }
497 MemSetTypeFlag(pMem, MEM_Null);
498 pMem->type = SQLITE_NULL;
499 }
500
501 /*
502 ** Delete any previous value and set the value to be a BLOB of length
503 ** n containing all zeros.
504 */
sqlite3VdbeMemSetZeroBlob(Mem * pMem,int n)505 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
506 sqlite3VdbeMemRelease(pMem);
507 pMem->flags = MEM_Blob|MEM_Zero;
508 pMem->type = SQLITE_BLOB;
509 pMem->n = 0;
510 if( n<0 ) n = 0;
511 pMem->u.nZero = n;
512 pMem->enc = SQLITE_UTF8;
513
514 #ifdef SQLITE_OMIT_INCRBLOB
515 sqlite3VdbeMemGrow(pMem, n, 0);
516 if( pMem->z ){
517 pMem->n = n;
518 memset(pMem->z, 0, n);
519 }
520 #endif
521 }
522
523 /*
524 ** Delete any previous value and set the value stored in *pMem to val,
525 ** manifest type INTEGER.
526 */
sqlite3VdbeMemSetInt64(Mem * pMem,i64 val)527 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
528 sqlite3VdbeMemRelease(pMem);
529 pMem->u.i = val;
530 pMem->flags = MEM_Int;
531 pMem->type = SQLITE_INTEGER;
532 }
533
534 #ifndef SQLITE_OMIT_FLOATING_POINT
535 /*
536 ** Delete any previous value and set the value stored in *pMem to val,
537 ** manifest type REAL.
538 */
sqlite3VdbeMemSetDouble(Mem * pMem,double val)539 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
540 if( sqlite3IsNaN(val) ){
541 sqlite3VdbeMemSetNull(pMem);
542 }else{
543 sqlite3VdbeMemRelease(pMem);
544 pMem->r = val;
545 pMem->flags = MEM_Real;
546 pMem->type = SQLITE_FLOAT;
547 }
548 }
549 #endif
550
551 /*
552 ** Delete any previous value and set the value of pMem to be an
553 ** empty boolean index.
554 */
sqlite3VdbeMemSetRowSet(Mem * pMem)555 void sqlite3VdbeMemSetRowSet(Mem *pMem){
556 sqlite3 *db = pMem->db;
557 assert( db!=0 );
558 assert( (pMem->flags & MEM_RowSet)==0 );
559 sqlite3VdbeMemRelease(pMem);
560 pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
561 if( db->mallocFailed ){
562 pMem->flags = MEM_Null;
563 }else{
564 assert( pMem->zMalloc );
565 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc,
566 sqlite3DbMallocSize(db, pMem->zMalloc));
567 assert( pMem->u.pRowSet!=0 );
568 pMem->flags = MEM_RowSet;
569 }
570 }
571
572 /*
573 ** Return true if the Mem object contains a TEXT or BLOB that is
574 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
575 */
sqlite3VdbeMemTooBig(Mem * p)576 int sqlite3VdbeMemTooBig(Mem *p){
577 assert( p->db!=0 );
578 if( p->flags & (MEM_Str|MEM_Blob) ){
579 int n = p->n;
580 if( p->flags & MEM_Zero ){
581 n += p->u.nZero;
582 }
583 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
584 }
585 return 0;
586 }
587
588 #ifdef SQLITE_DEBUG
589 /*
590 ** This routine prepares a memory cell for modication by breaking
591 ** its link to a shallow copy and by marking any current shallow
592 ** copies of this cell as invalid.
593 **
594 ** This is used for testing and debugging only - to make sure shallow
595 ** copies are not misused.
596 */
sqlite3VdbeMemPrepareToChange(Vdbe * pVdbe,Mem * pMem)597 void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){
598 int i;
599 Mem *pX;
600 for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
601 if( pX->pScopyFrom==pMem ){
602 pX->flags |= MEM_Invalid;
603 pX->pScopyFrom = 0;
604 }
605 }
606 pMem->pScopyFrom = 0;
607 }
608 #endif /* SQLITE_DEBUG */
609
610 /*
611 ** Size of struct Mem not including the Mem.zMalloc member.
612 */
613 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
614
615 /*
616 ** Make an shallow copy of pFrom into pTo. Prior contents of
617 ** pTo are freed. The pFrom->z field is not duplicated. If
618 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
619 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
620 */
sqlite3VdbeMemShallowCopy(Mem * pTo,const Mem * pFrom,int srcType)621 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
622 assert( (pFrom->flags & MEM_RowSet)==0 );
623 sqlite3VdbeMemReleaseExternal(pTo);
624 memcpy(pTo, pFrom, MEMCELLSIZE);
625 pTo->xDel = 0;
626 if( (pFrom->flags&MEM_Static)==0 ){
627 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
628 assert( srcType==MEM_Ephem || srcType==MEM_Static );
629 pTo->flags |= srcType;
630 }
631 }
632
633 /*
634 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
635 ** freed before the copy is made.
636 */
sqlite3VdbeMemCopy(Mem * pTo,const Mem * pFrom)637 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
638 int rc = SQLITE_OK;
639
640 assert( (pFrom->flags & MEM_RowSet)==0 );
641 sqlite3VdbeMemReleaseExternal(pTo);
642 memcpy(pTo, pFrom, MEMCELLSIZE);
643 pTo->flags &= ~MEM_Dyn;
644
645 if( pTo->flags&(MEM_Str|MEM_Blob) ){
646 if( 0==(pFrom->flags&MEM_Static) ){
647 pTo->flags |= MEM_Ephem;
648 rc = sqlite3VdbeMemMakeWriteable(pTo);
649 }
650 }
651
652 return rc;
653 }
654
655 /*
656 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
657 ** freed. If pFrom contains ephemeral data, a copy is made.
658 **
659 ** pFrom contains an SQL NULL when this routine returns.
660 */
sqlite3VdbeMemMove(Mem * pTo,Mem * pFrom)661 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
662 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
663 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
664 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
665
666 sqlite3VdbeMemRelease(pTo);
667 memcpy(pTo, pFrom, sizeof(Mem));
668 pFrom->flags = MEM_Null;
669 pFrom->xDel = 0;
670 pFrom->zMalloc = 0;
671 }
672
673 /*
674 ** Change the value of a Mem to be a string or a BLOB.
675 **
676 ** The memory management strategy depends on the value of the xDel
677 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
678 ** string is copied into a (possibly existing) buffer managed by the
679 ** Mem structure. Otherwise, any existing buffer is freed and the
680 ** pointer copied.
681 **
682 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
683 ** size limit) then no memory allocation occurs. If the string can be
684 ** stored without allocating memory, then it is. If a memory allocation
685 ** is required to store the string, then value of pMem is unchanged. In
686 ** either case, SQLITE_TOOBIG is returned.
687 */
sqlite3VdbeMemSetStr(Mem * pMem,const char * z,int n,u8 enc,void (* xDel)(void *))688 int sqlite3VdbeMemSetStr(
689 Mem *pMem, /* Memory cell to set to string value */
690 const char *z, /* String pointer */
691 int n, /* Bytes in string, or negative */
692 u8 enc, /* Encoding of z. 0 for BLOBs */
693 void (*xDel)(void*) /* Destructor function */
694 ){
695 int nByte = n; /* New value for pMem->n */
696 int iLimit; /* Maximum allowed string or blob size */
697 u16 flags = 0; /* New value for pMem->flags */
698
699 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
700 assert( (pMem->flags & MEM_RowSet)==0 );
701
702 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
703 if( !z ){
704 sqlite3VdbeMemSetNull(pMem);
705 return SQLITE_OK;
706 }
707
708 if( pMem->db ){
709 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
710 }else{
711 iLimit = SQLITE_MAX_LENGTH;
712 }
713 flags = (enc==0?MEM_Blob:MEM_Str);
714 if( nByte<0 ){
715 assert( enc!=0 );
716 if( enc==SQLITE_UTF8 ){
717 for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
718 }else{
719 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
720 }
721 flags |= MEM_Term;
722 }
723
724 /* The following block sets the new values of Mem.z and Mem.xDel. It
725 ** also sets a flag in local variable "flags" to indicate the memory
726 ** management (one of MEM_Dyn or MEM_Static).
727 */
728 if( xDel==SQLITE_TRANSIENT ){
729 int nAlloc = nByte;
730 if( flags&MEM_Term ){
731 nAlloc += (enc==SQLITE_UTF8?1:2);
732 }
733 if( nByte>iLimit ){
734 return SQLITE_TOOBIG;
735 }
736 if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
737 return SQLITE_NOMEM;
738 }
739 memcpy(pMem->z, z, nAlloc);
740 }else if( xDel==SQLITE_DYNAMIC ){
741 sqlite3VdbeMemRelease(pMem);
742 pMem->zMalloc = pMem->z = (char *)z;
743 pMem->xDel = 0;
744 }else{
745 sqlite3VdbeMemRelease(pMem);
746 pMem->z = (char *)z;
747 pMem->xDel = xDel;
748 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
749 }
750
751 pMem->n = nByte;
752 pMem->flags = flags;
753 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
754 pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
755
756 #ifndef SQLITE_OMIT_UTF16
757 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
758 return SQLITE_NOMEM;
759 }
760 #endif
761
762 if( nByte>iLimit ){
763 return SQLITE_TOOBIG;
764 }
765
766 return SQLITE_OK;
767 }
768
769 /*
770 ** Compare the values contained by the two memory cells, returning
771 ** negative, zero or positive if pMem1 is less than, equal to, or greater
772 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
773 ** and reals) sorted numerically, followed by text ordered by the collating
774 ** sequence pColl and finally blob's ordered by memcmp().
775 **
776 ** Two NULL values are considered equal by this function.
777 */
sqlite3MemCompare(const Mem * pMem1,const Mem * pMem2,const CollSeq * pColl)778 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
779 int rc;
780 int f1, f2;
781 int combined_flags;
782
783 f1 = pMem1->flags;
784 f2 = pMem2->flags;
785 combined_flags = f1|f2;
786 assert( (combined_flags & MEM_RowSet)==0 );
787
788 /* If one value is NULL, it is less than the other. If both values
789 ** are NULL, return 0.
790 */
791 if( combined_flags&MEM_Null ){
792 return (f2&MEM_Null) - (f1&MEM_Null);
793 }
794
795 /* If one value is a number and the other is not, the number is less.
796 ** If both are numbers, compare as reals if one is a real, or as integers
797 ** if both values are integers.
798 */
799 if( combined_flags&(MEM_Int|MEM_Real) ){
800 if( !(f1&(MEM_Int|MEM_Real)) ){
801 return 1;
802 }
803 if( !(f2&(MEM_Int|MEM_Real)) ){
804 return -1;
805 }
806 if( (f1 & f2 & MEM_Int)==0 ){
807 double r1, r2;
808 if( (f1&MEM_Real)==0 ){
809 r1 = (double)pMem1->u.i;
810 }else{
811 r1 = pMem1->r;
812 }
813 if( (f2&MEM_Real)==0 ){
814 r2 = (double)pMem2->u.i;
815 }else{
816 r2 = pMem2->r;
817 }
818 if( r1<r2 ) return -1;
819 if( r1>r2 ) return 1;
820 return 0;
821 }else{
822 assert( f1&MEM_Int );
823 assert( f2&MEM_Int );
824 if( pMem1->u.i < pMem2->u.i ) return -1;
825 if( pMem1->u.i > pMem2->u.i ) return 1;
826 return 0;
827 }
828 }
829
830 /* If one value is a string and the other is a blob, the string is less.
831 ** If both are strings, compare using the collating functions.
832 */
833 if( combined_flags&MEM_Str ){
834 if( (f1 & MEM_Str)==0 ){
835 return 1;
836 }
837 if( (f2 & MEM_Str)==0 ){
838 return -1;
839 }
840
841 assert( pMem1->enc==pMem2->enc );
842 assert( pMem1->enc==SQLITE_UTF8 ||
843 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
844
845 /* The collation sequence must be defined at this point, even if
846 ** the user deletes the collation sequence after the vdbe program is
847 ** compiled (this was not always the case).
848 */
849 assert( !pColl || pColl->xCmp );
850
851 if( pColl ){
852 if( pMem1->enc==pColl->enc ){
853 /* The strings are already in the correct encoding. Call the
854 ** comparison function directly */
855 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
856 }else{
857 const void *v1, *v2;
858 int n1, n2;
859 Mem c1;
860 Mem c2;
861 memset(&c1, 0, sizeof(c1));
862 memset(&c2, 0, sizeof(c2));
863 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
864 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
865 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
866 n1 = v1==0 ? 0 : c1.n;
867 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
868 n2 = v2==0 ? 0 : c2.n;
869 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
870 sqlite3VdbeMemRelease(&c1);
871 sqlite3VdbeMemRelease(&c2);
872 return rc;
873 }
874 }
875 /* If a NULL pointer was passed as the collate function, fall through
876 ** to the blob case and use memcmp(). */
877 }
878
879 /* Both values must be blobs. Compare using memcmp(). */
880 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
881 if( rc==0 ){
882 rc = pMem1->n - pMem2->n;
883 }
884 return rc;
885 }
886
887 /*
888 ** Move data out of a btree key or data field and into a Mem structure.
889 ** The data or key is taken from the entry that pCur is currently pointing
890 ** to. offset and amt determine what portion of the data or key to retrieve.
891 ** key is true to get the key or false to get data. The result is written
892 ** into the pMem element.
893 **
894 ** The pMem structure is assumed to be uninitialized. Any prior content
895 ** is overwritten without being freed.
896 **
897 ** If this routine fails for any reason (malloc returns NULL or unable
898 ** to read from the disk) then the pMem is left in an inconsistent state.
899 */
sqlite3VdbeMemFromBtree(BtCursor * pCur,int offset,int amt,int key,Mem * pMem)900 int sqlite3VdbeMemFromBtree(
901 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
902 int offset, /* Offset from the start of data to return bytes from. */
903 int amt, /* Number of bytes to return. */
904 int key, /* If true, retrieve from the btree key, not data. */
905 Mem *pMem /* OUT: Return data in this Mem structure. */
906 ){
907 char *zData; /* Data from the btree layer */
908 int available = 0; /* Number of bytes available on the local btree page */
909 int rc = SQLITE_OK; /* Return code */
910
911 assert( sqlite3BtreeCursorIsValid(pCur) );
912
913 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
914 ** that both the BtShared and database handle mutexes are held. */
915 assert( (pMem->flags & MEM_RowSet)==0 );
916 if( key ){
917 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
918 }else{
919 zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
920 }
921 assert( zData!=0 );
922
923 if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){
924 sqlite3VdbeMemRelease(pMem);
925 pMem->z = &zData[offset];
926 pMem->flags = MEM_Blob|MEM_Ephem;
927 }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
928 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
929 pMem->enc = 0;
930 pMem->type = SQLITE_BLOB;
931 if( key ){
932 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
933 }else{
934 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
935 }
936 pMem->z[amt] = 0;
937 pMem->z[amt+1] = 0;
938 if( rc!=SQLITE_OK ){
939 sqlite3VdbeMemRelease(pMem);
940 }
941 }
942 pMem->n = amt;
943
944 return rc;
945 }
946
947 /* This function is only available internally, it is not part of the
948 ** external API. It works in a similar way to sqlite3_value_text(),
949 ** except the data returned is in the encoding specified by the second
950 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
951 ** SQLITE_UTF8.
952 **
953 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
954 ** If that is the case, then the result must be aligned on an even byte
955 ** boundary.
956 */
sqlite3ValueText(sqlite3_value * pVal,u8 enc)957 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
958 if( !pVal ) return 0;
959
960 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
961 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
962 assert( (pVal->flags & MEM_RowSet)==0 );
963
964 if( pVal->flags&MEM_Null ){
965 return 0;
966 }
967 assert( (MEM_Blob>>3) == MEM_Str );
968 pVal->flags |= (pVal->flags & MEM_Blob)>>3;
969 expandBlob(pVal);
970 if( pVal->flags&MEM_Str ){
971 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
972 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
973 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
974 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
975 return 0;
976 }
977 }
978 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-59893-45467 */
979 }else{
980 assert( (pVal->flags&MEM_Blob)==0 );
981 sqlite3VdbeMemStringify(pVal, enc);
982 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
983 }
984 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
985 || pVal->db->mallocFailed );
986 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
987 return pVal->z;
988 }else{
989 return 0;
990 }
991 }
992
993 /*
994 ** Create a new sqlite3_value object.
995 */
sqlite3ValueNew(sqlite3 * db)996 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
997 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
998 if( p ){
999 p->flags = MEM_Null;
1000 p->type = SQLITE_NULL;
1001 p->db = db;
1002 }
1003 return p;
1004 }
1005
1006 /*
1007 ** Create a new sqlite3_value object, containing the value of pExpr.
1008 **
1009 ** This only works for very simple expressions that consist of one constant
1010 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1011 ** be converted directly into a value, then the value is allocated and
1012 ** a pointer written to *ppVal. The caller is responsible for deallocating
1013 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1014 ** cannot be converted to a value, then *ppVal is set to NULL.
1015 */
sqlite3ValueFromExpr(sqlite3 * db,Expr * pExpr,u8 enc,u8 affinity,sqlite3_value ** ppVal)1016 int sqlite3ValueFromExpr(
1017 sqlite3 *db, /* The database connection */
1018 Expr *pExpr, /* The expression to evaluate */
1019 u8 enc, /* Encoding to use */
1020 u8 affinity, /* Affinity to use */
1021 sqlite3_value **ppVal /* Write the new value here */
1022 ){
1023 int op;
1024 char *zVal = 0;
1025 sqlite3_value *pVal = 0;
1026 int negInt = 1;
1027 const char *zNeg = "";
1028
1029 if( !pExpr ){
1030 *ppVal = 0;
1031 return SQLITE_OK;
1032 }
1033 op = pExpr->op;
1034
1035 /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2.
1036 ** The ifdef here is to enable us to achieve 100% branch test coverage even
1037 ** when SQLITE_ENABLE_STAT2 is omitted.
1038 */
1039 #ifdef SQLITE_ENABLE_STAT2
1040 if( op==TK_REGISTER ) op = pExpr->op2;
1041 #else
1042 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1043 #endif
1044
1045 /* Handle negative integers in a single step. This is needed in the
1046 ** case when the value is -9223372036854775808.
1047 */
1048 if( op==TK_UMINUS
1049 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1050 pExpr = pExpr->pLeft;
1051 op = pExpr->op;
1052 negInt = -1;
1053 zNeg = "-";
1054 }
1055
1056 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1057 pVal = sqlite3ValueNew(db);
1058 if( pVal==0 ) goto no_mem;
1059 if( ExprHasProperty(pExpr, EP_IntValue) ){
1060 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1061 }else{
1062 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1063 if( zVal==0 ) goto no_mem;
1064 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1065 if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
1066 }
1067 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
1068 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1069 }else{
1070 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1071 }
1072 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1073 if( enc!=SQLITE_UTF8 ){
1074 sqlite3VdbeChangeEncoding(pVal, enc);
1075 }
1076 }else if( op==TK_UMINUS ) {
1077 /* This branch happens for multiple negative signs. Ex: -(-5) */
1078 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
1079 sqlite3VdbeMemNumerify(pVal);
1080 if( pVal->u.i==SMALLEST_INT64 ){
1081 pVal->flags &= MEM_Int;
1082 pVal->flags |= MEM_Real;
1083 pVal->r = (double)LARGEST_INT64;
1084 }else{
1085 pVal->u.i = -pVal->u.i;
1086 }
1087 pVal->r = -pVal->r;
1088 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1089 }
1090 }else if( op==TK_NULL ){
1091 pVal = sqlite3ValueNew(db);
1092 if( pVal==0 ) goto no_mem;
1093 }
1094 #ifndef SQLITE_OMIT_BLOB_LITERAL
1095 else if( op==TK_BLOB ){
1096 int nVal;
1097 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1098 assert( pExpr->u.zToken[1]=='\'' );
1099 pVal = sqlite3ValueNew(db);
1100 if( !pVal ) goto no_mem;
1101 zVal = &pExpr->u.zToken[2];
1102 nVal = sqlite3Strlen30(zVal)-1;
1103 assert( zVal[nVal]=='\'' );
1104 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1105 0, SQLITE_DYNAMIC);
1106 }
1107 #endif
1108
1109 if( pVal ){
1110 sqlite3VdbeMemStoreType(pVal);
1111 }
1112 *ppVal = pVal;
1113 return SQLITE_OK;
1114
1115 no_mem:
1116 db->mallocFailed = 1;
1117 sqlite3DbFree(db, zVal);
1118 sqlite3ValueFree(pVal);
1119 *ppVal = 0;
1120 return SQLITE_NOMEM;
1121 }
1122
1123 /*
1124 ** Change the string value of an sqlite3_value object
1125 */
sqlite3ValueSetStr(sqlite3_value * v,int n,const void * z,u8 enc,void (* xDel)(void *))1126 void sqlite3ValueSetStr(
1127 sqlite3_value *v, /* Value to be set */
1128 int n, /* Length of string z */
1129 const void *z, /* Text of the new string */
1130 u8 enc, /* Encoding to use */
1131 void (*xDel)(void*) /* Destructor for the string */
1132 ){
1133 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1134 }
1135
1136 /*
1137 ** Free an sqlite3_value object
1138 */
sqlite3ValueFree(sqlite3_value * v)1139 void sqlite3ValueFree(sqlite3_value *v){
1140 if( !v ) return;
1141 sqlite3VdbeMemRelease((Mem *)v);
1142 sqlite3DbFree(((Mem*)v)->db, v);
1143 }
1144
1145 /*
1146 ** Return the number of bytes in the sqlite3_value object assuming
1147 ** that it uses the encoding "enc"
1148 */
sqlite3ValueBytes(sqlite3_value * pVal,u8 enc)1149 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1150 Mem *p = (Mem*)pVal;
1151 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
1152 if( p->flags & MEM_Zero ){
1153 return p->n + p->u.nZero;
1154 }else{
1155 return p->n;
1156 }
1157 }
1158 return 0;
1159 }
1160