1 /*
2 ** 2006 June 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used to help implement virtual tables.
13 */
14 #ifndef SQLITE_OMIT_VIRTUALTABLE
15 #include "sqliteInt.h"
16
17 /*
18 ** The actual function that does the work of creating a new module.
19 ** This function implements the sqlite3_create_module() and
20 ** sqlite3_create_module_v2() interfaces.
21 */
createModule(sqlite3 * db,const char * zName,const sqlite3_module * pModule,void * pAux,void (* xDestroy)(void *))22 static int createModule(
23 sqlite3 *db, /* Database in which module is registered */
24 const char *zName, /* Name assigned to this module */
25 const sqlite3_module *pModule, /* The definition of the module */
26 void *pAux, /* Context pointer for xCreate/xConnect */
27 void (*xDestroy)(void *) /* Module destructor function */
28 ){
29 int rc, nName;
30 Module *pMod;
31
32 sqlite3_mutex_enter(db->mutex);
33 nName = sqlite3Strlen30(zName);
34 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
35 if( pMod ){
36 Module *pDel;
37 char *zCopy = (char *)(&pMod[1]);
38 memcpy(zCopy, zName, nName+1);
39 pMod->zName = zCopy;
40 pMod->pModule = pModule;
41 pMod->pAux = pAux;
42 pMod->xDestroy = xDestroy;
43 pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
44 if( pDel && pDel->xDestroy ){
45 pDel->xDestroy(pDel->pAux);
46 }
47 sqlite3DbFree(db, pDel);
48 if( pDel==pMod ){
49 db->mallocFailed = 1;
50 }
51 sqlite3ResetInternalSchema(db, -1);
52 }else if( xDestroy ){
53 xDestroy(pAux);
54 }
55 rc = sqlite3ApiExit(db, SQLITE_OK);
56 sqlite3_mutex_leave(db->mutex);
57 return rc;
58 }
59
60
61 /*
62 ** External API function used to create a new virtual-table module.
63 */
sqlite3_create_module(sqlite3 * db,const char * zName,const sqlite3_module * pModule,void * pAux)64 int sqlite3_create_module(
65 sqlite3 *db, /* Database in which module is registered */
66 const char *zName, /* Name assigned to this module */
67 const sqlite3_module *pModule, /* The definition of the module */
68 void *pAux /* Context pointer for xCreate/xConnect */
69 ){
70 return createModule(db, zName, pModule, pAux, 0);
71 }
72
73 /*
74 ** External API function used to create a new virtual-table module.
75 */
sqlite3_create_module_v2(sqlite3 * db,const char * zName,const sqlite3_module * pModule,void * pAux,void (* xDestroy)(void *))76 int sqlite3_create_module_v2(
77 sqlite3 *db, /* Database in which module is registered */
78 const char *zName, /* Name assigned to this module */
79 const sqlite3_module *pModule, /* The definition of the module */
80 void *pAux, /* Context pointer for xCreate/xConnect */
81 void (*xDestroy)(void *) /* Module destructor function */
82 ){
83 return createModule(db, zName, pModule, pAux, xDestroy);
84 }
85
86 /*
87 ** Lock the virtual table so that it cannot be disconnected.
88 ** Locks nest. Every lock should have a corresponding unlock.
89 ** If an unlock is omitted, resources leaks will occur.
90 **
91 ** If a disconnect is attempted while a virtual table is locked,
92 ** the disconnect is deferred until all locks have been removed.
93 */
sqlite3VtabLock(VTable * pVTab)94 void sqlite3VtabLock(VTable *pVTab){
95 pVTab->nRef++;
96 }
97
98
99 /*
100 ** pTab is a pointer to a Table structure representing a virtual-table.
101 ** Return a pointer to the VTable object used by connection db to access
102 ** this virtual-table, if one has been created, or NULL otherwise.
103 */
sqlite3GetVTable(sqlite3 * db,Table * pTab)104 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
105 VTable *pVtab;
106 assert( IsVirtual(pTab) );
107 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
108 return pVtab;
109 }
110
111 /*
112 ** Decrement the ref-count on a virtual table object. When the ref-count
113 ** reaches zero, call the xDisconnect() method to delete the object.
114 */
sqlite3VtabUnlock(VTable * pVTab)115 void sqlite3VtabUnlock(VTable *pVTab){
116 sqlite3 *db = pVTab->db;
117
118 assert( db );
119 assert( pVTab->nRef>0 );
120 assert( sqlite3SafetyCheckOk(db) );
121
122 pVTab->nRef--;
123 if( pVTab->nRef==0 ){
124 sqlite3_vtab *p = pVTab->pVtab;
125 if( p ){
126 p->pModule->xDisconnect(p);
127 }
128 sqlite3DbFree(db, pVTab);
129 }
130 }
131
132 /*
133 ** Table p is a virtual table. This function moves all elements in the
134 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
135 ** database connections to be disconnected at the next opportunity.
136 ** Except, if argument db is not NULL, then the entry associated with
137 ** connection db is left in the p->pVTable list.
138 */
vtabDisconnectAll(sqlite3 * db,Table * p)139 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
140 VTable *pRet = 0;
141 VTable *pVTable = p->pVTable;
142 p->pVTable = 0;
143
144 /* Assert that the mutex (if any) associated with the BtShared database
145 ** that contains table p is held by the caller. See header comments
146 ** above function sqlite3VtabUnlockList() for an explanation of why
147 ** this makes it safe to access the sqlite3.pDisconnect list of any
148 ** database connection that may have an entry in the p->pVTable list.
149 */
150 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
151
152 while( pVTable ){
153 sqlite3 *db2 = pVTable->db;
154 VTable *pNext = pVTable->pNext;
155 assert( db2 );
156 if( db2==db ){
157 pRet = pVTable;
158 p->pVTable = pRet;
159 pRet->pNext = 0;
160 }else{
161 pVTable->pNext = db2->pDisconnect;
162 db2->pDisconnect = pVTable;
163 }
164 pVTable = pNext;
165 }
166
167 assert( !db || pRet );
168 return pRet;
169 }
170
171
172 /*
173 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
174 **
175 ** This function may only be called when the mutexes associated with all
176 ** shared b-tree databases opened using connection db are held by the
177 ** caller. This is done to protect the sqlite3.pDisconnect list. The
178 ** sqlite3.pDisconnect list is accessed only as follows:
179 **
180 ** 1) By this function. In this case, all BtShared mutexes and the mutex
181 ** associated with the database handle itself must be held.
182 **
183 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
184 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex
185 ** associated with the database the virtual table is stored in is held
186 ** or, if the virtual table is stored in a non-sharable database, then
187 ** the database handle mutex is held.
188 **
189 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
190 ** by multiple threads. It is thread-safe.
191 */
sqlite3VtabUnlockList(sqlite3 * db)192 void sqlite3VtabUnlockList(sqlite3 *db){
193 VTable *p = db->pDisconnect;
194 db->pDisconnect = 0;
195
196 assert( sqlite3BtreeHoldsAllMutexes(db) );
197 assert( sqlite3_mutex_held(db->mutex) );
198
199 if( p ){
200 sqlite3ExpirePreparedStatements(db);
201 do {
202 VTable *pNext = p->pNext;
203 sqlite3VtabUnlock(p);
204 p = pNext;
205 }while( p );
206 }
207 }
208
209 /*
210 ** Clear any and all virtual-table information from the Table record.
211 ** This routine is called, for example, just before deleting the Table
212 ** record.
213 **
214 ** Since it is a virtual-table, the Table structure contains a pointer
215 ** to the head of a linked list of VTable structures. Each VTable
216 ** structure is associated with a single sqlite3* user of the schema.
217 ** The reference count of the VTable structure associated with database
218 ** connection db is decremented immediately (which may lead to the
219 ** structure being xDisconnected and free). Any other VTable structures
220 ** in the list are moved to the sqlite3.pDisconnect list of the associated
221 ** database connection.
222 */
sqlite3VtabClear(sqlite3 * db,Table * p)223 void sqlite3VtabClear(sqlite3 *db, Table *p){
224 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
225 if( p->azModuleArg ){
226 int i;
227 for(i=0; i<p->nModuleArg; i++){
228 sqlite3DbFree(db, p->azModuleArg[i]);
229 }
230 sqlite3DbFree(db, p->azModuleArg);
231 }
232 }
233
234 /*
235 ** Add a new module argument to pTable->azModuleArg[].
236 ** The string is not copied - the pointer is stored. The
237 ** string will be freed automatically when the table is
238 ** deleted.
239 */
addModuleArgument(sqlite3 * db,Table * pTable,char * zArg)240 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
241 int i = pTable->nModuleArg++;
242 int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
243 char **azModuleArg;
244 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
245 if( azModuleArg==0 ){
246 int j;
247 for(j=0; j<i; j++){
248 sqlite3DbFree(db, pTable->azModuleArg[j]);
249 }
250 sqlite3DbFree(db, zArg);
251 sqlite3DbFree(db, pTable->azModuleArg);
252 pTable->nModuleArg = 0;
253 }else{
254 azModuleArg[i] = zArg;
255 azModuleArg[i+1] = 0;
256 }
257 pTable->azModuleArg = azModuleArg;
258 }
259
260 /*
261 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
262 ** statement. The module name has been parsed, but the optional list
263 ** of parameters that follow the module name are still pending.
264 */
sqlite3VtabBeginParse(Parse * pParse,Token * pName1,Token * pName2,Token * pModuleName)265 void sqlite3VtabBeginParse(
266 Parse *pParse, /* Parsing context */
267 Token *pName1, /* Name of new table, or database name */
268 Token *pName2, /* Name of new table or NULL */
269 Token *pModuleName /* Name of the module for the virtual table */
270 ){
271 int iDb; /* The database the table is being created in */
272 Table *pTable; /* The new virtual table */
273 sqlite3 *db; /* Database connection */
274
275 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
276 pTable = pParse->pNewTable;
277 if( pTable==0 ) return;
278 assert( 0==pTable->pIndex );
279
280 db = pParse->db;
281 iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
282 assert( iDb>=0 );
283
284 pTable->tabFlags |= TF_Virtual;
285 pTable->nModuleArg = 0;
286 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
287 addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
288 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
289 pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
290
291 #ifndef SQLITE_OMIT_AUTHORIZATION
292 /* Creating a virtual table invokes the authorization callback twice.
293 ** The first invocation, to obtain permission to INSERT a row into the
294 ** sqlite_master table, has already been made by sqlite3StartTable().
295 ** The second call, to obtain permission to create the table, is made now.
296 */
297 if( pTable->azModuleArg ){
298 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
299 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
300 }
301 #endif
302 }
303
304 /*
305 ** This routine takes the module argument that has been accumulating
306 ** in pParse->zArg[] and appends it to the list of arguments on the
307 ** virtual table currently under construction in pParse->pTable.
308 */
addArgumentToVtab(Parse * pParse)309 static void addArgumentToVtab(Parse *pParse){
310 if( pParse->sArg.z && ALWAYS(pParse->pNewTable) ){
311 const char *z = (const char*)pParse->sArg.z;
312 int n = pParse->sArg.n;
313 sqlite3 *db = pParse->db;
314 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
315 }
316 }
317
318 /*
319 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
320 ** has been completely parsed.
321 */
sqlite3VtabFinishParse(Parse * pParse,Token * pEnd)322 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
323 Table *pTab = pParse->pNewTable; /* The table being constructed */
324 sqlite3 *db = pParse->db; /* The database connection */
325
326 if( pTab==0 ) return;
327 addArgumentToVtab(pParse);
328 pParse->sArg.z = 0;
329 if( pTab->nModuleArg<1 ) return;
330
331 /* If the CREATE VIRTUAL TABLE statement is being entered for the
332 ** first time (in other words if the virtual table is actually being
333 ** created now instead of just being read out of sqlite_master) then
334 ** do additional initialization work and store the statement text
335 ** in the sqlite_master table.
336 */
337 if( !db->init.busy ){
338 char *zStmt;
339 char *zWhere;
340 int iDb;
341 Vdbe *v;
342
343 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
344 if( pEnd ){
345 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
346 }
347 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
348
349 /* A slot for the record has already been allocated in the
350 ** SQLITE_MASTER table. We just need to update that slot with all
351 ** the information we've collected.
352 **
353 ** The VM register number pParse->regRowid holds the rowid of an
354 ** entry in the sqlite_master table tht was created for this vtab
355 ** by sqlite3StartTable().
356 */
357 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
358 sqlite3NestedParse(pParse,
359 "UPDATE %Q.%s "
360 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
361 "WHERE rowid=#%d",
362 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
363 pTab->zName,
364 pTab->zName,
365 zStmt,
366 pParse->regRowid
367 );
368 sqlite3DbFree(db, zStmt);
369 v = sqlite3GetVdbe(pParse);
370 sqlite3ChangeCookie(pParse, iDb);
371
372 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
373 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
374 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
375 sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
376 pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
377 }
378
379 /* If we are rereading the sqlite_master table create the in-memory
380 ** record of the table. The xConnect() method is not called until
381 ** the first time the virtual table is used in an SQL statement. This
382 ** allows a schema that contains virtual tables to be loaded before
383 ** the required virtual table implementations are registered. */
384 else {
385 Table *pOld;
386 Schema *pSchema = pTab->pSchema;
387 const char *zName = pTab->zName;
388 int nName = sqlite3Strlen30(zName);
389 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
390 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
391 if( pOld ){
392 db->mallocFailed = 1;
393 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
394 return;
395 }
396 pParse->pNewTable = 0;
397 }
398 }
399
400 /*
401 ** The parser calls this routine when it sees the first token
402 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
403 */
sqlite3VtabArgInit(Parse * pParse)404 void sqlite3VtabArgInit(Parse *pParse){
405 addArgumentToVtab(pParse);
406 pParse->sArg.z = 0;
407 pParse->sArg.n = 0;
408 }
409
410 /*
411 ** The parser calls this routine for each token after the first token
412 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
413 */
sqlite3VtabArgExtend(Parse * pParse,Token * p)414 void sqlite3VtabArgExtend(Parse *pParse, Token *p){
415 Token *pArg = &pParse->sArg;
416 if( pArg->z==0 ){
417 pArg->z = p->z;
418 pArg->n = p->n;
419 }else{
420 assert(pArg->z < p->z);
421 pArg->n = (int)(&p->z[p->n] - pArg->z);
422 }
423 }
424
425 /*
426 ** Invoke a virtual table constructor (either xCreate or xConnect). The
427 ** pointer to the function to invoke is passed as the fourth parameter
428 ** to this procedure.
429 */
vtabCallConstructor(sqlite3 * db,Table * pTab,Module * pMod,int (* xConstruct)(sqlite3 *,void *,int,const char * const *,sqlite3_vtab **,char **),char ** pzErr)430 static int vtabCallConstructor(
431 sqlite3 *db,
432 Table *pTab,
433 Module *pMod,
434 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
435 char **pzErr
436 ){
437 VTable *pVTable;
438 int rc;
439 const char *const*azArg = (const char *const*)pTab->azModuleArg;
440 int nArg = pTab->nModuleArg;
441 char *zErr = 0;
442 char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
443
444 if( !zModuleName ){
445 return SQLITE_NOMEM;
446 }
447
448 pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
449 if( !pVTable ){
450 sqlite3DbFree(db, zModuleName);
451 return SQLITE_NOMEM;
452 }
453 pVTable->db = db;
454 pVTable->pMod = pMod;
455
456 assert( !db->pVTab );
457 assert( xConstruct );
458 db->pVTab = pTab;
459
460 /* Invoke the virtual table constructor */
461 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
462 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
463
464 if( SQLITE_OK!=rc ){
465 if( zErr==0 ){
466 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
467 }else {
468 *pzErr = sqlite3MPrintf(db, "%s", zErr);
469 sqlite3_free(zErr);
470 }
471 sqlite3DbFree(db, pVTable);
472 }else if( ALWAYS(pVTable->pVtab) ){
473 /* Justification of ALWAYS(): A correct vtab constructor must allocate
474 ** the sqlite3_vtab object if successful. */
475 pVTable->pVtab->pModule = pMod->pModule;
476 pVTable->nRef = 1;
477 if( db->pVTab ){
478 const char *zFormat = "vtable constructor did not declare schema: %s";
479 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
480 sqlite3VtabUnlock(pVTable);
481 rc = SQLITE_ERROR;
482 }else{
483 int iCol;
484 /* If everything went according to plan, link the new VTable structure
485 ** into the linked list headed by pTab->pVTable. Then loop through the
486 ** columns of the table to see if any of them contain the token "hidden".
487 ** If so, set the Column.isHidden flag and remove the token from
488 ** the type string. */
489 pVTable->pNext = pTab->pVTable;
490 pTab->pVTable = pVTable;
491
492 for(iCol=0; iCol<pTab->nCol; iCol++){
493 char *zType = pTab->aCol[iCol].zType;
494 int nType;
495 int i = 0;
496 if( !zType ) continue;
497 nType = sqlite3Strlen30(zType);
498 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
499 for(i=0; i<nType; i++){
500 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
501 && (zType[i+7]=='\0' || zType[i+7]==' ')
502 ){
503 i++;
504 break;
505 }
506 }
507 }
508 if( i<nType ){
509 int j;
510 int nDel = 6 + (zType[i+6] ? 1 : 0);
511 for(j=i; (j+nDel)<=nType; j++){
512 zType[j] = zType[j+nDel];
513 }
514 if( zType[i]=='\0' && i>0 ){
515 assert(zType[i-1]==' ');
516 zType[i-1] = '\0';
517 }
518 pTab->aCol[iCol].isHidden = 1;
519 }
520 }
521 }
522 }
523
524 sqlite3DbFree(db, zModuleName);
525 db->pVTab = 0;
526 return rc;
527 }
528
529 /*
530 ** This function is invoked by the parser to call the xConnect() method
531 ** of the virtual table pTab. If an error occurs, an error code is returned
532 ** and an error left in pParse.
533 **
534 ** This call is a no-op if table pTab is not a virtual table.
535 */
sqlite3VtabCallConnect(Parse * pParse,Table * pTab)536 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
537 sqlite3 *db = pParse->db;
538 const char *zMod;
539 Module *pMod;
540 int rc;
541
542 assert( pTab );
543 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
544 return SQLITE_OK;
545 }
546
547 /* Locate the required virtual table module */
548 zMod = pTab->azModuleArg[0];
549 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
550
551 if( !pMod ){
552 const char *zModule = pTab->azModuleArg[0];
553 sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
554 rc = SQLITE_ERROR;
555 }else{
556 char *zErr = 0;
557 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
558 if( rc!=SQLITE_OK ){
559 sqlite3ErrorMsg(pParse, "%s", zErr);
560 }
561 sqlite3DbFree(db, zErr);
562 }
563
564 return rc;
565 }
566
567 /*
568 ** Add the virtual table pVTab to the array sqlite3.aVTrans[].
569 */
addToVTrans(sqlite3 * db,VTable * pVTab)570 static int addToVTrans(sqlite3 *db, VTable *pVTab){
571 const int ARRAY_INCR = 5;
572
573 /* Grow the sqlite3.aVTrans array if required */
574 if( (db->nVTrans%ARRAY_INCR)==0 ){
575 VTable **aVTrans;
576 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
577 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
578 if( !aVTrans ){
579 return SQLITE_NOMEM;
580 }
581 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
582 db->aVTrans = aVTrans;
583 }
584
585 /* Add pVtab to the end of sqlite3.aVTrans */
586 db->aVTrans[db->nVTrans++] = pVTab;
587 sqlite3VtabLock(pVTab);
588 return SQLITE_OK;
589 }
590
591 /*
592 ** This function is invoked by the vdbe to call the xCreate method
593 ** of the virtual table named zTab in database iDb.
594 **
595 ** If an error occurs, *pzErr is set to point an an English language
596 ** description of the error and an SQLITE_XXX error code is returned.
597 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
598 */
sqlite3VtabCallCreate(sqlite3 * db,int iDb,const char * zTab,char ** pzErr)599 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
600 int rc = SQLITE_OK;
601 Table *pTab;
602 Module *pMod;
603 const char *zMod;
604
605 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
606 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
607
608 /* Locate the required virtual table module */
609 zMod = pTab->azModuleArg[0];
610 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
611
612 /* If the module has been registered and includes a Create method,
613 ** invoke it now. If the module has not been registered, return an
614 ** error. Otherwise, do nothing.
615 */
616 if( !pMod ){
617 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
618 rc = SQLITE_ERROR;
619 }else{
620 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
621 }
622
623 /* Justification of ALWAYS(): The xConstructor method is required to
624 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
625 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
626 rc = addToVTrans(db, sqlite3GetVTable(db, pTab));
627 }
628
629 return rc;
630 }
631
632 /*
633 ** This function is used to set the schema of a virtual table. It is only
634 ** valid to call this function from within the xCreate() or xConnect() of a
635 ** virtual table module.
636 */
sqlite3_declare_vtab(sqlite3 * db,const char * zCreateTable)637 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
638 Parse *pParse;
639
640 int rc = SQLITE_OK;
641 Table *pTab;
642 char *zErr = 0;
643
644 sqlite3_mutex_enter(db->mutex);
645 pTab = db->pVTab;
646 if( !pTab ){
647 sqlite3Error(db, SQLITE_MISUSE, 0);
648 sqlite3_mutex_leave(db->mutex);
649 return SQLITE_MISUSE_BKPT;
650 }
651 assert( (pTab->tabFlags & TF_Virtual)!=0 );
652
653 pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
654 if( pParse==0 ){
655 rc = SQLITE_NOMEM;
656 }else{
657 pParse->declareVtab = 1;
658 pParse->db = db;
659 pParse->nQueryLoop = 1;
660
661 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr)
662 && pParse->pNewTable
663 && !db->mallocFailed
664 && !pParse->pNewTable->pSelect
665 && (pParse->pNewTable->tabFlags & TF_Virtual)==0
666 ){
667 if( !pTab->aCol ){
668 pTab->aCol = pParse->pNewTable->aCol;
669 pTab->nCol = pParse->pNewTable->nCol;
670 pParse->pNewTable->nCol = 0;
671 pParse->pNewTable->aCol = 0;
672 }
673 db->pVTab = 0;
674 }else{
675 sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
676 sqlite3DbFree(db, zErr);
677 rc = SQLITE_ERROR;
678 }
679 pParse->declareVtab = 0;
680
681 if( pParse->pVdbe ){
682 sqlite3VdbeFinalize(pParse->pVdbe);
683 }
684 sqlite3DeleteTable(db, pParse->pNewTable);
685 sqlite3StackFree(db, pParse);
686 }
687
688 assert( (rc&0xff)==rc );
689 rc = sqlite3ApiExit(db, rc);
690 sqlite3_mutex_leave(db->mutex);
691 return rc;
692 }
693
694 /*
695 ** This function is invoked by the vdbe to call the xDestroy method
696 ** of the virtual table named zTab in database iDb. This occurs
697 ** when a DROP TABLE is mentioned.
698 **
699 ** This call is a no-op if zTab is not a virtual table.
700 */
sqlite3VtabCallDestroy(sqlite3 * db,int iDb,const char * zTab)701 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
702 int rc = SQLITE_OK;
703 Table *pTab;
704
705 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
706 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
707 VTable *p = vtabDisconnectAll(db, pTab);
708
709 assert( rc==SQLITE_OK );
710 rc = p->pMod->pModule->xDestroy(p->pVtab);
711
712 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
713 if( rc==SQLITE_OK ){
714 assert( pTab->pVTable==p && p->pNext==0 );
715 p->pVtab = 0;
716 pTab->pVTable = 0;
717 sqlite3VtabUnlock(p);
718 }
719 }
720
721 return rc;
722 }
723
724 /*
725 ** This function invokes either the xRollback or xCommit method
726 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
727 ** called is identified by the second argument, "offset", which is
728 ** the offset of the method to call in the sqlite3_module structure.
729 **
730 ** The array is cleared after invoking the callbacks.
731 */
callFinaliser(sqlite3 * db,int offset)732 static void callFinaliser(sqlite3 *db, int offset){
733 int i;
734 if( db->aVTrans ){
735 for(i=0; i<db->nVTrans; i++){
736 VTable *pVTab = db->aVTrans[i];
737 sqlite3_vtab *p = pVTab->pVtab;
738 if( p ){
739 int (*x)(sqlite3_vtab *);
740 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
741 if( x ) x(p);
742 }
743 sqlite3VtabUnlock(pVTab);
744 }
745 sqlite3DbFree(db, db->aVTrans);
746 db->nVTrans = 0;
747 db->aVTrans = 0;
748 }
749 }
750
751 /*
752 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
753 ** array. Return the error code for the first error that occurs, or
754 ** SQLITE_OK if all xSync operations are successful.
755 **
756 ** Set *pzErrmsg to point to a buffer that should be released using
757 ** sqlite3DbFree() containing an error message, if one is available.
758 */
sqlite3VtabSync(sqlite3 * db,char ** pzErrmsg)759 int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
760 int i;
761 int rc = SQLITE_OK;
762 VTable **aVTrans = db->aVTrans;
763
764 db->aVTrans = 0;
765 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
766 int (*x)(sqlite3_vtab *);
767 sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
768 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
769 rc = x(pVtab);
770 sqlite3DbFree(db, *pzErrmsg);
771 *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
772 sqlite3_free(pVtab->zErrMsg);
773 }
774 }
775 db->aVTrans = aVTrans;
776 return rc;
777 }
778
779 /*
780 ** Invoke the xRollback method of all virtual tables in the
781 ** sqlite3.aVTrans array. Then clear the array itself.
782 */
sqlite3VtabRollback(sqlite3 * db)783 int sqlite3VtabRollback(sqlite3 *db){
784 callFinaliser(db, offsetof(sqlite3_module,xRollback));
785 return SQLITE_OK;
786 }
787
788 /*
789 ** Invoke the xCommit method of all virtual tables in the
790 ** sqlite3.aVTrans array. Then clear the array itself.
791 */
sqlite3VtabCommit(sqlite3 * db)792 int sqlite3VtabCommit(sqlite3 *db){
793 callFinaliser(db, offsetof(sqlite3_module,xCommit));
794 return SQLITE_OK;
795 }
796
797 /*
798 ** If the virtual table pVtab supports the transaction interface
799 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
800 ** not currently open, invoke the xBegin method now.
801 **
802 ** If the xBegin call is successful, place the sqlite3_vtab pointer
803 ** in the sqlite3.aVTrans array.
804 */
sqlite3VtabBegin(sqlite3 * db,VTable * pVTab)805 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
806 int rc = SQLITE_OK;
807 const sqlite3_module *pModule;
808
809 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
810 ** than zero, then this function is being called from within a
811 ** virtual module xSync() callback. It is illegal to write to
812 ** virtual module tables in this case, so return SQLITE_LOCKED.
813 */
814 if( sqlite3VtabInSync(db) ){
815 return SQLITE_LOCKED;
816 }
817 if( !pVTab ){
818 return SQLITE_OK;
819 }
820 pModule = pVTab->pVtab->pModule;
821
822 if( pModule->xBegin ){
823 int i;
824
825
826 /* If pVtab is already in the aVTrans array, return early */
827 for(i=0; i<db->nVTrans; i++){
828 if( db->aVTrans[i]==pVTab ){
829 return SQLITE_OK;
830 }
831 }
832
833 /* Invoke the xBegin method */
834 rc = pModule->xBegin(pVTab->pVtab);
835 if( rc==SQLITE_OK ){
836 rc = addToVTrans(db, pVTab);
837 }
838 }
839 return rc;
840 }
841
842 /*
843 ** The first parameter (pDef) is a function implementation. The
844 ** second parameter (pExpr) is the first argument to this function.
845 ** If pExpr is a column in a virtual table, then let the virtual
846 ** table implementation have an opportunity to overload the function.
847 **
848 ** This routine is used to allow virtual table implementations to
849 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
850 **
851 ** Return either the pDef argument (indicating no change) or a
852 ** new FuncDef structure that is marked as ephemeral using the
853 ** SQLITE_FUNC_EPHEM flag.
854 */
sqlite3VtabOverloadFunction(sqlite3 * db,FuncDef * pDef,int nArg,Expr * pExpr)855 FuncDef *sqlite3VtabOverloadFunction(
856 sqlite3 *db, /* Database connection for reporting malloc problems */
857 FuncDef *pDef, /* Function to possibly overload */
858 int nArg, /* Number of arguments to the function */
859 Expr *pExpr /* First argument to the function */
860 ){
861 Table *pTab;
862 sqlite3_vtab *pVtab;
863 sqlite3_module *pMod;
864 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
865 void *pArg = 0;
866 FuncDef *pNew;
867 int rc = 0;
868 char *zLowerName;
869 unsigned char *z;
870
871
872 /* Check to see the left operand is a column in a virtual table */
873 if( NEVER(pExpr==0) ) return pDef;
874 if( pExpr->op!=TK_COLUMN ) return pDef;
875 pTab = pExpr->pTab;
876 if( NEVER(pTab==0) ) return pDef;
877 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
878 pVtab = sqlite3GetVTable(db, pTab)->pVtab;
879 assert( pVtab!=0 );
880 assert( pVtab->pModule!=0 );
881 pMod = (sqlite3_module *)pVtab->pModule;
882 if( pMod->xFindFunction==0 ) return pDef;
883
884 /* Call the xFindFunction method on the virtual table implementation
885 ** to see if the implementation wants to overload this function
886 */
887 zLowerName = sqlite3DbStrDup(db, pDef->zName);
888 if( zLowerName ){
889 for(z=(unsigned char*)zLowerName; *z; z++){
890 *z = sqlite3UpperToLower[*z];
891 }
892 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
893 sqlite3DbFree(db, zLowerName);
894 }
895 if( rc==0 ){
896 return pDef;
897 }
898
899 /* Create a new ephemeral function definition for the overloaded
900 ** function */
901 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
902 + sqlite3Strlen30(pDef->zName) + 1);
903 if( pNew==0 ){
904 return pDef;
905 }
906 *pNew = *pDef;
907 pNew->zName = (char *)&pNew[1];
908 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
909 pNew->xFunc = xFunc;
910 pNew->pUserData = pArg;
911 pNew->flags |= SQLITE_FUNC_EPHEM;
912 return pNew;
913 }
914
915 /*
916 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
917 ** array so that an OP_VBegin will get generated for it. Add pTab to the
918 ** array if it is missing. If pTab is already in the array, this routine
919 ** is a no-op.
920 */
sqlite3VtabMakeWritable(Parse * pParse,Table * pTab)921 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
922 Parse *pToplevel = sqlite3ParseToplevel(pParse);
923 int i, n;
924 Table **apVtabLock;
925
926 assert( IsVirtual(pTab) );
927 for(i=0; i<pToplevel->nVtabLock; i++){
928 if( pTab==pToplevel->apVtabLock[i] ) return;
929 }
930 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
931 apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n);
932 if( apVtabLock ){
933 pToplevel->apVtabLock = apVtabLock;
934 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
935 }else{
936 pToplevel->db->mallocFailed = 1;
937 }
938 }
939
940 #endif /* SQLITE_OMIT_VIRTUALTABLE */
941