1 /*
2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator. The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
6 **
7 ** The author of this program disclaims copyright.
8 */
9 #include <stdio.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <stdlib.h>
14 #include <assert.h>
15
16 #ifndef __WIN32__
17 # if defined(_WIN32) || defined(WIN32)
18 # define __WIN32__
19 # endif
20 #endif
21
22 #ifdef __WIN32__
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26 extern int access(const char *path, int mode);
27 #ifdef __cplusplus
28 }
29 #endif
30 #else
31 #include <unistd.h>
32 #endif
33
34 /* #define PRIVATE static */
35 #define PRIVATE
36
37 #ifdef TEST
38 #define MAXRHS 5 /* Set low to exercise exception code */
39 #else
40 #define MAXRHS 1000
41 #endif
42
43 static int showPrecedenceConflict = 0;
44 static const char **made_files = NULL;
45 static int made_files_count = 0;
46 static int successful_exit = 0;
LemonAtExit(void)47 static void LemonAtExit(void)
48 {
49 /* if we failed, delete (most) files we made, to unconfuse build tools. */
50 int i;
51 for (i = 0; i < made_files_count; i++) {
52 if (!successful_exit) {
53 remove(made_files[i]);
54 }
55 }
56 free(made_files);
57 made_files_count = 0;
58 made_files = NULL;
59 }
60
61 static char *msort(char*,char**,int(*)(const char*,const char*));
62
63 /*
64 ** Compilers are getting increasingly pedantic about type conversions
65 ** as C evolves ever closer to Ada.... To work around the latest problems
66 ** we have to define the following variant of strlen().
67 */
68 #define lemonStrlen(X) ((int)strlen(X))
69
70 /* a few forward declarations... */
71 struct rule;
72 struct lemon;
73 struct action;
74
75 static struct action *Action_new(void);
76 static struct action *Action_sort(struct action *);
77
78 /********** From the file "build.h" ************************************/
79 void FindRulePrecedences();
80 void FindFirstSets();
81 void FindStates();
82 void FindLinks();
83 void FindFollowSets();
84 void FindActions();
85
86 /********* From the file "configlist.h" *********************************/
87 void Configlist_init(void);
88 struct config *Configlist_add(struct rule *, int);
89 struct config *Configlist_addbasis(struct rule *, int);
90 void Configlist_closure(struct lemon *);
91 void Configlist_sort(void);
92 void Configlist_sortbasis(void);
93 struct config *Configlist_return(void);
94 struct config *Configlist_basis(void);
95 void Configlist_eat(struct config *);
96 void Configlist_reset(void);
97
98 /********* From the file "error.h" ***************************************/
99 void ErrorMsg(const char *, int,const char *, ...);
100
101 /****** From the file "option.h" ******************************************/
102 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
103 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
104 struct s_options {
105 enum option_type type;
106 const char *label;
107 char *arg;
108 const char *message;
109 };
110 int OptInit(char**,struct s_options*,FILE*);
111 int OptNArgs(void);
112 char *OptArg(int);
113 void OptErr(int);
114 void OptPrint(void);
115
116 /******** From the file "parse.h" *****************************************/
117 void Parse(struct lemon *lemp);
118
119 /********* From the file "plink.h" ***************************************/
120 struct plink *Plink_new(void);
121 void Plink_add(struct plink **, struct config *);
122 void Plink_copy(struct plink **, struct plink *);
123 void Plink_delete(struct plink *);
124
125 /********** From the file "report.h" *************************************/
126 void Reprint(struct lemon *);
127 void ReportOutput(struct lemon *);
128 void ReportTable(struct lemon *, int);
129 void ReportHeader(struct lemon *);
130 void CompressTables(struct lemon *);
131 void ResortStates(struct lemon *);
132
133 /********** From the file "set.h" ****************************************/
134 void SetSize(int); /* All sets will be of size N */
135 char *SetNew(void); /* A new set for element 0..N */
136 void SetFree(char*); /* Deallocate a set */
137
138 char *SetNew(void); /* A new set for element 0..N */
139 int SetAdd(char*,int); /* Add element to a set */
140 int SetUnion(char *,char *); /* A <- A U B, thru element N */
141 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
142
143 /********** From the file "struct.h" *************************************/
144 /*
145 ** Principal data structures for the LEMON parser generator.
146 */
147
148 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
149
150 /* Symbols (terminals and nonterminals) of the grammar are stored
151 ** in the following: */
152 enum symbol_type {
153 TERMINAL,
154 NONTERMINAL,
155 MULTITERMINAL
156 };
157 enum e_assoc {
158 LEFT,
159 RIGHT,
160 NONE,
161 UNK
162 };
163 struct symbol {
164 const char *name; /* Name of the symbol */
165 int index; /* Index number for this symbol */
166 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
167 struct rule *rule; /* Linked list of rules of this (if an NT) */
168 struct symbol *fallback; /* fallback token in case this token doesn't parse */
169 int prec; /* Precedence if defined (-1 otherwise) */
170 enum e_assoc assoc; /* Associativity if precedence is defined */
171 char *firstset; /* First-set for all rules of this symbol */
172 Boolean lambda; /* True if NT and can generate an empty string */
173 int useCnt; /* Number of times used */
174 char *destructor; /* Code which executes whenever this symbol is
175 ** popped from the stack during error processing */
176 int destLineno; /* Line number for start of destructor */
177 char *datatype; /* The data type of information held by this
178 ** object. Only used if type==NONTERMINAL */
179 int dtnum; /* The data type number. In the parser, the value
180 ** stack is a union. The .yy%d element of this
181 ** union is the correct data type for this object */
182 /* The following fields are used by MULTITERMINALs only */
183 int nsubsym; /* Number of constituent symbols in the MULTI */
184 struct symbol **subsym; /* Array of constituent symbols */
185 };
186
187 /* Each production rule in the grammar is stored in the following
188 ** structure. */
189 struct rule {
190 struct symbol *lhs; /* Left-hand side of the rule */
191 const char *lhsalias; /* Alias for the LHS (NULL if none) */
192 int lhsStart; /* True if left-hand side is the start symbol */
193 int ruleline; /* Line number for the rule */
194 int nrhs; /* Number of RHS symbols */
195 struct symbol **rhs; /* The RHS symbols */
196 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
197 int line; /* Line number at which code begins */
198 const char *code; /* The code executed when this rule is reduced */
199 struct symbol *precsym; /* Precedence symbol for this rule */
200 int index; /* An index number for this rule */
201 Boolean canReduce; /* True if this rule is ever reduced */
202 struct rule *nextlhs; /* Next rule with the same LHS */
203 struct rule *next; /* Next rule in the global list */
204 };
205
206 /* A configuration is a production rule of the grammar together with
207 ** a mark (dot) showing how much of that rule has been processed so far.
208 ** Configurations also contain a follow-set which is a list of terminal
209 ** symbols which are allowed to immediately follow the end of the rule.
210 ** Every configuration is recorded as an instance of the following: */
211 enum cfgstatus {
212 COMPLETE,
213 INCOMPLETE
214 };
215 struct config {
216 struct rule *rp; /* The rule upon which the configuration is based */
217 int dot; /* The parse point */
218 char *fws; /* Follow-set for this configuration only */
219 struct plink *fplp; /* Follow-set forward propagation links */
220 struct plink *bplp; /* Follow-set backwards propagation links */
221 struct state *stp; /* Pointer to state which contains this */
222 enum cfgstatus status; /* used during followset and shift computations */
223 struct config *next; /* Next configuration in the state */
224 struct config *bp; /* The next basis configuration */
225 };
226
227 enum e_action {
228 SHIFT,
229 ACCEPT,
230 REDUCE,
231 ERROR,
232 SSCONFLICT, /* A shift/shift conflict */
233 SRCONFLICT, /* Was a reduce, but part of a conflict */
234 RRCONFLICT, /* Was a reduce, but part of a conflict */
235 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
236 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
237 NOT_USED /* Deleted by compression */
238 };
239
240 /* Every shift or reduce operation is stored as one of the following */
241 struct action {
242 struct symbol *sp; /* The look-ahead symbol */
243 enum e_action type;
244 union {
245 struct state *stp; /* The new state, if a shift */
246 struct rule *rp; /* The rule, if a reduce */
247 } x;
248 struct action *next; /* Next action for this state */
249 struct action *collide; /* Next action with the same hash */
250 };
251
252 /* Each state of the generated parser's finite state machine
253 ** is encoded as an instance of the following structure. */
254 struct state {
255 struct config *bp; /* The basis configurations for this state */
256 struct config *cfp; /* All configurations in this set */
257 int statenum; /* Sequential number for this state */
258 struct action *ap; /* Array of actions for this state */
259 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
260 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
261 int iDflt; /* Default action */
262 };
263 #define NO_OFFSET (-2147483647)
264
265 /* A followset propagation link indicates that the contents of one
266 ** configuration followset should be propagated to another whenever
267 ** the first changes. */
268 struct plink {
269 struct config *cfp; /* The configuration to which linked */
270 struct plink *next; /* The next propagate link */
271 };
272
273 /* The state vector for the entire parser generator is recorded as
274 ** follows. (LEMON uses no global variables and makes little use of
275 ** static variables. Fields in the following structure can be thought
276 ** of as begin global variables in the program.) */
277 struct lemon {
278 struct state **sorted; /* Table of states sorted by state number */
279 struct rule *rule; /* List of all rules */
280 int nstate; /* Number of states */
281 int nrule; /* Number of rules */
282 int nsymbol; /* Number of terminal and nonterminal symbols */
283 int nterminal; /* Number of terminal symbols */
284 struct symbol **symbols; /* Sorted array of pointers to symbols */
285 int errorcnt; /* Number of errors */
286 struct symbol *errsym; /* The error symbol */
287 struct symbol *wildcard; /* Token that matches anything */
288 char *name; /* Name of the generated parser */
289 char *arg; /* Declaration of the 3th argument to parser */
290 char *tokentype; /* Type of terminal symbols in the parser stack */
291 char *vartype; /* The default type of non-terminal symbols */
292 char *start; /* Name of the start symbol for the grammar */
293 char *stacksize; /* Size of the parser stack */
294 char *include; /* Code to put at the start of the C file */
295 char *error; /* Code to execute when an error is seen */
296 char *overflow; /* Code to execute on a stack overflow */
297 char *failure; /* Code to execute on parser failure */
298 char *accept; /* Code to execute when the parser excepts */
299 char *extracode; /* Code appended to the generated file */
300 char *tokendest; /* Code to execute to destroy token data */
301 char *vardest; /* Code for the default non-terminal destructor */
302 char *filename; /* Name of the input file */
303 char *outname; /* Name of the current output file */
304 char *tokenprefix; /* A prefix added to token names in the .h file */
305 int nconflict; /* Number of parsing conflicts */
306 int tablesize; /* Size of the parse tables */
307 int basisflag; /* Print only basis configurations */
308 int has_fallback; /* True if any %fallback is seen in the grammar */
309 int nolinenosflag; /* True if #line statements should not be printed */
310 char *argv0; /* Name of the program */
311 };
312
313 #define MemoryCheck(X) if((X)==0){ \
314 extern void memory_error(); \
315 memory_error(); \
316 }
317
318 /**************** From the file "table.h" *********************************/
319 /*
320 ** All code in this file has been automatically generated
321 ** from a specification in the file
322 ** "table.q"
323 ** by the associative array code building program "aagen".
324 ** Do not edit this file! Instead, edit the specification
325 ** file, then rerun aagen.
326 */
327 /*
328 ** Code for processing tables in the LEMON parser generator.
329 */
330 /* Routines for handling a strings */
331
332 const char *Strsafe(const char *);
333
334 void Strsafe_init(void);
335 int Strsafe_insert(const char *);
336 const char *Strsafe_find(const char *);
337
338 /* Routines for handling symbols of the grammar */
339
340 struct symbol *Symbol_new(const char *);
341 int Symbolcmpp(const void *, const void *);
342 void Symbol_init(void);
343 int Symbol_insert(struct symbol *, const char *);
344 struct symbol *Symbol_find(const char *);
345 struct symbol *Symbol_Nth(int);
346 int Symbol_count(void);
347 struct symbol **Symbol_arrayof(void);
348
349 /* Routines to manage the state table */
350
351 int Configcmp(const char *, const char *);
352 struct state *State_new(void);
353 void State_init(void);
354 int State_insert(struct state *, struct config *);
355 struct state *State_find(struct config *);
356 struct state **State_arrayof(/* */);
357
358 /* Routines used for efficiency in Configlist_add */
359
360 void Configtable_init(void);
361 int Configtable_insert(struct config *);
362 struct config *Configtable_find(struct config *);
363 void Configtable_clear(int(*)(struct config *));
364
365 /****************** From the file "action.c" *******************************/
366 /*
367 ** Routines processing parser actions in the LEMON parser generator.
368 */
369
370 /* Allocate a new parser action */
Action_new(void)371 static struct action *Action_new(void){
372 static struct action *freelist = 0;
373 struct action *newaction;
374
375 if( freelist==0 ){
376 int i;
377 int amt = 100;
378 freelist = (struct action *)calloc(amt, sizeof(struct action));
379 if( freelist==0 ){
380 fprintf(stderr,"Unable to allocate memory for a new parser action.");
381 exit(1);
382 }
383 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
384 freelist[amt-1].next = 0;
385 }
386 newaction = freelist;
387 freelist = freelist->next;
388 return newaction;
389 }
390
391 /* Compare two actions for sorting purposes. Return negative, zero, or
392 ** positive if the first action is less than, equal to, or greater than
393 ** the first
394 */
actioncmp(struct action * ap1,struct action * ap2)395 static int actioncmp(
396 struct action *ap1,
397 struct action *ap2
398 ){
399 int rc;
400 rc = ap1->sp->index - ap2->sp->index;
401 if( rc==0 ){
402 rc = (int)ap1->type - (int)ap2->type;
403 }
404 if( rc==0 && ap1->type==REDUCE ){
405 rc = ap1->x.rp->index - ap2->x.rp->index;
406 }
407 if( rc==0 ){
408 rc = (int) (ap2 - ap1);
409 }
410 return rc;
411 }
412
413 /* Sort parser actions */
Action_sort(struct action * ap)414 static struct action *Action_sort(
415 struct action *ap
416 ){
417 ap = (struct action *)msort((char *)ap,(char **)&ap->next,
418 (int(*)(const char*,const char*))actioncmp);
419 return ap;
420 }
421
Action_add(struct action ** app,enum e_action type,struct symbol * sp,char * arg)422 void Action_add(
423 struct action **app,
424 enum e_action type,
425 struct symbol *sp,
426 char *arg
427 ){
428 struct action *newaction;
429 newaction = Action_new();
430 newaction->next = *app;
431 *app = newaction;
432 newaction->type = type;
433 newaction->sp = sp;
434 if( type==SHIFT ){
435 newaction->x.stp = (struct state *)arg;
436 }else{
437 newaction->x.rp = (struct rule *)arg;
438 }
439 }
440 /********************** New code to implement the "acttab" module ***********/
441 /*
442 ** This module implements routines use to construct the yy_action[] table.
443 */
444
445 /*
446 ** The state of the yy_action table under construction is an instance of
447 ** the following structure.
448 **
449 ** The yy_action table maps the pair (state_number, lookahead) into an
450 ** action_number. The table is an array of integers pairs. The state_number
451 ** determines an initial offset into the yy_action array. The lookahead
452 ** value is then added to this initial offset to get an index X into the
453 ** yy_action array. If the aAction[X].lookahead equals the value of the
454 ** of the lookahead input, then the value of the action_number output is
455 ** aAction[X].action. If the lookaheads do not match then the
456 ** default action for the state_number is returned.
457 **
458 ** All actions associated with a single state_number are first entered
459 ** into aLookahead[] using multiple calls to acttab_action(). Then the
460 ** actions for that single state_number are placed into the aAction[]
461 ** array with a single call to acttab_insert(). The acttab_insert() call
462 ** also resets the aLookahead[] array in preparation for the next
463 ** state number.
464 */
465 struct lookahead_action {
466 int lookahead; /* Value of the lookahead token */
467 int action; /* Action to take on the given lookahead */
468 };
469 typedef struct acttab acttab;
470 struct acttab {
471 int nAction; /* Number of used slots in aAction[] */
472 int nActionAlloc; /* Slots allocated for aAction[] */
473 struct lookahead_action
474 *aAction, /* The yy_action[] table under construction */
475 *aLookahead; /* A single new transaction set */
476 int mnLookahead; /* Minimum aLookahead[].lookahead */
477 int mnAction; /* Action associated with mnLookahead */
478 int mxLookahead; /* Maximum aLookahead[].lookahead */
479 int nLookahead; /* Used slots in aLookahead[] */
480 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
481 };
482
483 /* Return the number of entries in the yy_action table */
484 #define acttab_size(X) ((X)->nAction)
485
486 /* The value for the N-th entry in yy_action */
487 #define acttab_yyaction(X,N) ((X)->aAction[N].action)
488
489 /* The value for the N-th entry in yy_lookahead */
490 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
491
492 /* Free all memory associated with the given acttab */
acttab_free(acttab * p)493 void acttab_free(acttab *p){
494 free( p->aAction );
495 free( p->aLookahead );
496 free( p );
497 }
498
499 /* Allocate a new acttab structure */
acttab_alloc(void)500 acttab *acttab_alloc(void){
501 acttab *p = (acttab *) calloc( 1, sizeof(*p) );
502 if( p==0 ){
503 fprintf(stderr,"Unable to allocate memory for a new acttab.");
504 exit(1);
505 }
506 memset(p, 0, sizeof(*p));
507 return p;
508 }
509
510 /* Add a new action to the current transaction set.
511 **
512 ** This routine is called once for each lookahead for a particular
513 ** state.
514 */
acttab_action(acttab * p,int lookahead,int action)515 void acttab_action(acttab *p, int lookahead, int action){
516 if( p->nLookahead>=p->nLookaheadAlloc ){
517 p->nLookaheadAlloc += 25;
518 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
519 sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
520 if( p->aLookahead==0 ){
521 fprintf(stderr,"malloc failed\n");
522 exit(1);
523 }
524 }
525 if( p->nLookahead==0 ){
526 p->mxLookahead = lookahead;
527 p->mnLookahead = lookahead;
528 p->mnAction = action;
529 }else{
530 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
531 if( p->mnLookahead>lookahead ){
532 p->mnLookahead = lookahead;
533 p->mnAction = action;
534 }
535 }
536 p->aLookahead[p->nLookahead].lookahead = lookahead;
537 p->aLookahead[p->nLookahead].action = action;
538 p->nLookahead++;
539 }
540
541 /*
542 ** Add the transaction set built up with prior calls to acttab_action()
543 ** into the current action table. Then reset the transaction set back
544 ** to an empty set in preparation for a new round of acttab_action() calls.
545 **
546 ** Return the offset into the action table of the new transaction.
547 */
acttab_insert(acttab * p)548 int acttab_insert(acttab *p){
549 int i, j, k, n;
550 assert( p->nLookahead>0 );
551
552 /* Make sure we have enough space to hold the expanded action table
553 ** in the worst case. The worst case occurs if the transaction set
554 ** must be appended to the current action table
555 */
556 n = p->mxLookahead + 1;
557 if( p->nAction + n >= p->nActionAlloc ){
558 int oldAlloc = p->nActionAlloc;
559 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
560 p->aAction = (struct lookahead_action *) realloc( p->aAction,
561 sizeof(p->aAction[0])*p->nActionAlloc);
562 if( p->aAction==0 ){
563 fprintf(stderr,"malloc failed\n");
564 exit(1);
565 }
566 for(i=oldAlloc; i<p->nActionAlloc; i++){
567 p->aAction[i].lookahead = -1;
568 p->aAction[i].action = -1;
569 }
570 }
571
572 /* Scan the existing action table looking for an offset that is a
573 ** duplicate of the current transaction set. Fall out of the loop
574 ** if and when the duplicate is found.
575 **
576 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
577 */
578 for(i=p->nAction-1; i>=0; i--){
579 if( p->aAction[i].lookahead==p->mnLookahead ){
580 /* All lookaheads and actions in the aLookahead[] transaction
581 ** must match against the candidate aAction[i] entry. */
582 if( p->aAction[i].action!=p->mnAction ) continue;
583 for(j=0; j<p->nLookahead; j++){
584 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
585 if( k<0 || k>=p->nAction ) break;
586 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
587 if( p->aLookahead[j].action!=p->aAction[k].action ) break;
588 }
589 if( j<p->nLookahead ) continue;
590
591 /* No possible lookahead value that is not in the aLookahead[]
592 ** transaction is allowed to match aAction[i] */
593 n = 0;
594 for(j=0; j<p->nAction; j++){
595 if( p->aAction[j].lookahead<0 ) continue;
596 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
597 }
598 if( n==p->nLookahead ){
599 break; /* An exact match is found at offset i */
600 }
601 }
602 }
603
604 /* If no existing offsets exactly match the current transaction, find an
605 ** an empty offset in the aAction[] table in which we can add the
606 ** aLookahead[] transaction.
607 */
608 if( i<0 ){
609 /* Look for holes in the aAction[] table that fit the current
610 ** aLookahead[] transaction. Leave i set to the offset of the hole.
611 ** If no holes are found, i is left at p->nAction, which means the
612 ** transaction will be appended. */
613 for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
614 if( p->aAction[i].lookahead<0 ){
615 for(j=0; j<p->nLookahead; j++){
616 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
617 if( k<0 ) break;
618 if( p->aAction[k].lookahead>=0 ) break;
619 }
620 if( j<p->nLookahead ) continue;
621 for(j=0; j<p->nAction; j++){
622 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
623 }
624 if( j==p->nAction ){
625 break; /* Fits in empty slots */
626 }
627 }
628 }
629 }
630 /* Insert transaction set at index i. */
631 for(j=0; j<p->nLookahead; j++){
632 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
633 p->aAction[k] = p->aLookahead[j];
634 if( k>=p->nAction ) p->nAction = k+1;
635 }
636 p->nLookahead = 0;
637
638 /* Return the offset that is added to the lookahead in order to get the
639 ** index into yy_action of the action */
640 return i - p->mnLookahead;
641 }
642
643 /********************** From the file "build.c" *****************************/
644 /*
645 ** Routines to construction the finite state machine for the LEMON
646 ** parser generator.
647 */
648
649 /* Find a precedence symbol of every rule in the grammar.
650 **
651 ** Those rules which have a precedence symbol coded in the input
652 ** grammar using the "[symbol]" construct will already have the
653 ** rp->precsym field filled. Other rules take as their precedence
654 ** symbol the first RHS symbol with a defined precedence. If there
655 ** are not RHS symbols with a defined precedence, the precedence
656 ** symbol field is left blank.
657 */
FindRulePrecedences(struct lemon * xp)658 void FindRulePrecedences(struct lemon *xp)
659 {
660 struct rule *rp;
661 for(rp=xp->rule; rp; rp=rp->next){
662 if( rp->precsym==0 ){
663 int i, j;
664 for(i=0; i<rp->nrhs && rp->precsym==0; i++){
665 struct symbol *sp = rp->rhs[i];
666 if( sp->type==MULTITERMINAL ){
667 for(j=0; j<sp->nsubsym; j++){
668 if( sp->subsym[j]->prec>=0 ){
669 rp->precsym = sp->subsym[j];
670 break;
671 }
672 }
673 }else if( sp->prec>=0 ){
674 rp->precsym = rp->rhs[i];
675 }
676 }
677 }
678 }
679 return;
680 }
681
682 /* Find all nonterminals which will generate the empty string.
683 ** Then go back and compute the first sets of every nonterminal.
684 ** The first set is the set of all terminal symbols which can begin
685 ** a string generated by that nonterminal.
686 */
FindFirstSets(struct lemon * lemp)687 void FindFirstSets(struct lemon *lemp)
688 {
689 int i, j;
690 struct rule *rp;
691 int progress;
692
693 for(i=0; i<lemp->nsymbol; i++){
694 lemp->symbols[i]->lambda = LEMON_FALSE;
695 }
696 for(i=lemp->nterminal; i<lemp->nsymbol; i++){
697 lemp->symbols[i]->firstset = SetNew();
698 }
699
700 /* First compute all lambdas */
701 do{
702 progress = 0;
703 for(rp=lemp->rule; rp; rp=rp->next){
704 if( rp->lhs->lambda ) continue;
705 for(i=0; i<rp->nrhs; i++){
706 struct symbol *sp = rp->rhs[i];
707 if( sp->type!=TERMINAL || sp->lambda==LEMON_FALSE ) break;
708 }
709 if( i==rp->nrhs ){
710 rp->lhs->lambda = LEMON_TRUE;
711 progress = 1;
712 }
713 }
714 }while( progress );
715
716 /* Now compute all first sets */
717 do{
718 struct symbol *s1, *s2;
719 progress = 0;
720 for(rp=lemp->rule; rp; rp=rp->next){
721 s1 = rp->lhs;
722 for(i=0; i<rp->nrhs; i++){
723 s2 = rp->rhs[i];
724 if( s2->type==TERMINAL ){
725 progress += SetAdd(s1->firstset,s2->index);
726 break;
727 }else if( s2->type==MULTITERMINAL ){
728 for(j=0; j<s2->nsubsym; j++){
729 progress += SetAdd(s1->firstset,s2->subsym[j]->index);
730 }
731 break;
732 }else if( s1==s2 ){
733 if( s1->lambda==LEMON_FALSE ) break;
734 }else{
735 progress += SetUnion(s1->firstset,s2->firstset);
736 if( s2->lambda==LEMON_FALSE ) break;
737 }
738 }
739 }
740 }while( progress );
741 return;
742 }
743
744 /* Compute all LR(0) states for the grammar. Links
745 ** are added to between some states so that the LR(1) follow sets
746 ** can be computed later.
747 */
748 PRIVATE struct state *getstate(struct lemon *); /* forward reference */
FindStates(struct lemon * lemp)749 void FindStates(struct lemon *lemp)
750 {
751 struct symbol *sp;
752 struct rule *rp;
753
754 Configlist_init();
755
756 /* Find the start symbol */
757 if( lemp->start ){
758 sp = Symbol_find(lemp->start);
759 if( sp==0 ){
760 ErrorMsg(lemp->filename,0,
761 "The specified start symbol \"%s\" is not \
762 in a nonterminal of the grammar. \"%s\" will be used as the start \
763 symbol instead.",lemp->start,lemp->rule->lhs->name);
764 lemp->errorcnt++;
765 sp = lemp->rule->lhs;
766 }
767 }else{
768 sp = lemp->rule->lhs;
769 }
770
771 /* Make sure the start symbol doesn't occur on the right-hand side of
772 ** any rule. Report an error if it does. (YACC would generate a new
773 ** start symbol in this case.) */
774 for(rp=lemp->rule; rp; rp=rp->next){
775 int i;
776 for(i=0; i<rp->nrhs; i++){
777 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
778 ErrorMsg(lemp->filename,0,
779 "The start symbol \"%s\" occurs on the \
780 right-hand side of a rule. This will result in a parser which \
781 does not work properly.",sp->name);
782 lemp->errorcnt++;
783 }
784 }
785 }
786
787 /* The basis configuration set for the first state
788 ** is all rules which have the start symbol as their
789 ** left-hand side */
790 for(rp=sp->rule; rp; rp=rp->nextlhs){
791 struct config *newcfp;
792 rp->lhsStart = 1;
793 newcfp = Configlist_addbasis(rp,0);
794 SetAdd(newcfp->fws,0);
795 }
796
797 /* Compute the first state. All other states will be
798 ** computed automatically during the computation of the first one.
799 ** The returned pointer to the first state is not used. */
800 (void)getstate(lemp);
801 return;
802 }
803
804 /* Return a pointer to a state which is described by the configuration
805 ** list which has been built from calls to Configlist_add.
806 */
807 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
getstate(struct lemon * lemp)808 PRIVATE struct state *getstate(struct lemon *lemp)
809 {
810 struct config *cfp, *bp;
811 struct state *stp;
812
813 /* Extract the sorted basis of the new state. The basis was constructed
814 ** by prior calls to "Configlist_addbasis()". */
815 Configlist_sortbasis();
816 bp = Configlist_basis();
817
818 /* Get a state with the same basis */
819 stp = State_find(bp);
820 if( stp ){
821 /* A state with the same basis already exists! Copy all the follow-set
822 ** propagation links from the state under construction into the
823 ** preexisting state, then return a pointer to the preexisting state */
824 struct config *x, *y;
825 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
826 Plink_copy(&y->bplp,x->bplp);
827 Plink_delete(x->fplp);
828 x->fplp = x->bplp = 0;
829 }
830 cfp = Configlist_return();
831 Configlist_eat(cfp);
832 }else{
833 /* This really is a new state. Construct all the details */
834 Configlist_closure(lemp); /* Compute the configuration closure */
835 Configlist_sort(); /* Sort the configuration closure */
836 cfp = Configlist_return(); /* Get a pointer to the config list */
837 stp = State_new(); /* A new state structure */
838 MemoryCheck(stp);
839 stp->bp = bp; /* Remember the configuration basis */
840 stp->cfp = cfp; /* Remember the configuration closure */
841 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
842 stp->ap = 0; /* No actions, yet. */
843 State_insert(stp,stp->bp); /* Add to the state table */
844 buildshifts(lemp,stp); /* Recursively compute successor states */
845 }
846 return stp;
847 }
848
849 /*
850 ** Return true if two symbols are the same.
851 */
same_symbol(struct symbol * a,struct symbol * b)852 int same_symbol(struct symbol *a, struct symbol *b)
853 {
854 int i;
855 if( a==b ) return 1;
856 if( a->type!=MULTITERMINAL ) return 0;
857 if( b->type!=MULTITERMINAL ) return 0;
858 if( a->nsubsym!=b->nsubsym ) return 0;
859 for(i=0; i<a->nsubsym; i++){
860 if( a->subsym[i]!=b->subsym[i] ) return 0;
861 }
862 return 1;
863 }
864
865 /* Construct all successor states to the given state. A "successor"
866 ** state is any state which can be reached by a shift action.
867 */
buildshifts(struct lemon * lemp,struct state * stp)868 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
869 {
870 struct config *cfp; /* For looping thru the config closure of "stp" */
871 struct config *bcfp; /* For the inner loop on config closure of "stp" */
872 struct config *newcfg; /* */
873 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
874 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
875 struct state *newstp; /* A pointer to a successor state */
876
877 /* Each configuration becomes complete after it contibutes to a successor
878 ** state. Initially, all configurations are incomplete */
879 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
880
881 /* Loop through all configurations of the state "stp" */
882 for(cfp=stp->cfp; cfp; cfp=cfp->next){
883 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
884 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
885 Configlist_reset(); /* Reset the new config set */
886 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
887
888 /* For every configuration in the state "stp" which has the symbol "sp"
889 ** following its dot, add the same configuration to the basis set under
890 ** construction but with the dot shifted one symbol to the right. */
891 for(bcfp=cfp; bcfp; bcfp=bcfp->next){
892 if( bcfp->status==COMPLETE ) continue; /* Already used */
893 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
894 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
895 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
896 bcfp->status = COMPLETE; /* Mark this config as used */
897 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
898 Plink_add(&newcfg->bplp,bcfp);
899 }
900
901 /* Get a pointer to the state described by the basis configuration set
902 ** constructed in the preceding loop */
903 newstp = getstate(lemp);
904
905 /* The state "newstp" is reached from the state "stp" by a shift action
906 ** on the symbol "sp" */
907 if( sp->type==MULTITERMINAL ){
908 int i;
909 for(i=0; i<sp->nsubsym; i++){
910 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
911 }
912 }else{
913 Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
914 }
915 }
916 }
917
918 /*
919 ** Construct the propagation links
920 */
FindLinks(struct lemon * lemp)921 void FindLinks(struct lemon *lemp)
922 {
923 int i;
924 struct config *cfp, *other;
925 struct state *stp;
926 struct plink *plp;
927
928 /* Housekeeping detail:
929 ** Add to every propagate link a pointer back to the state to
930 ** which the link is attached. */
931 for(i=0; i<lemp->nstate; i++){
932 stp = lemp->sorted[i];
933 for(cfp=stp->cfp; cfp; cfp=cfp->next){
934 cfp->stp = stp;
935 }
936 }
937
938 /* Convert all backlinks into forward links. Only the forward
939 ** links are used in the follow-set computation. */
940 for(i=0; i<lemp->nstate; i++){
941 stp = lemp->sorted[i];
942 for(cfp=stp->cfp; cfp; cfp=cfp->next){
943 for(plp=cfp->bplp; plp; plp=plp->next){
944 other = plp->cfp;
945 Plink_add(&other->fplp,cfp);
946 }
947 }
948 }
949 }
950
951 /* Compute all followsets.
952 **
953 ** A followset is the set of all symbols which can come immediately
954 ** after a configuration.
955 */
FindFollowSets(struct lemon * lemp)956 void FindFollowSets(struct lemon *lemp)
957 {
958 int i;
959 struct config *cfp;
960 struct plink *plp;
961 int progress;
962 int change;
963
964 for(i=0; i<lemp->nstate; i++){
965 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
966 cfp->status = INCOMPLETE;
967 }
968 }
969
970 do{
971 progress = 0;
972 for(i=0; i<lemp->nstate; i++){
973 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
974 if( cfp->status==COMPLETE ) continue;
975 for(plp=cfp->fplp; plp; plp=plp->next){
976 change = SetUnion(plp->cfp->fws,cfp->fws);
977 if( change ){
978 plp->cfp->status = INCOMPLETE;
979 progress = 1;
980 }
981 }
982 cfp->status = COMPLETE;
983 }
984 }
985 }while( progress );
986 }
987
988 static int resolve_conflict(struct action *,struct action *, struct symbol *);
989
990 /* Compute the reduce actions, and resolve conflicts.
991 */
FindActions(struct lemon * lemp)992 void FindActions(struct lemon *lemp)
993 {
994 int i,j;
995 struct config *cfp;
996 struct state *stp;
997 struct symbol *sp;
998 struct rule *rp;
999
1000 /* Add all of the reduce actions
1001 ** A reduce action is added for each element of the followset of
1002 ** a configuration which has its dot at the extreme right.
1003 */
1004 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
1005 stp = lemp->sorted[i];
1006 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
1007 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
1008 for(j=0; j<lemp->nterminal; j++){
1009 if( SetFind(cfp->fws,j) ){
1010 /* Add a reduce action to the state "stp" which will reduce by the
1011 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1012 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
1013 }
1014 }
1015 }
1016 }
1017 }
1018
1019 /* Add the accepting token */
1020 if( lemp->start ){
1021 sp = Symbol_find(lemp->start);
1022 if( sp==0 ) sp = lemp->rule->lhs;
1023 }else{
1024 sp = lemp->rule->lhs;
1025 }
1026 /* Add to the first state (which is always the starting state of the
1027 ** finite state machine) an action to ACCEPT if the lookahead is the
1028 ** start nonterminal. */
1029 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
1030
1031 /* Resolve conflicts */
1032 for(i=0; i<lemp->nstate; i++){
1033 struct action *ap, *nap;
1034 struct state *stp;
1035 stp = lemp->sorted[i];
1036 /* assert( stp->ap ); */
1037 stp->ap = Action_sort(stp->ap);
1038 for(ap=stp->ap; ap && ap->next; ap=ap->next){
1039 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
1040 /* The two actions "ap" and "nap" have the same lookahead.
1041 ** Figure out which one should be used */
1042 lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
1043 }
1044 }
1045 }
1046
1047 /* Report an error for each rule that can never be reduced. */
1048 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
1049 for(i=0; i<lemp->nstate; i++){
1050 struct action *ap;
1051 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
1052 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
1053 }
1054 }
1055 for(rp=lemp->rule; rp; rp=rp->next){
1056 if( rp->canReduce ) continue;
1057 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
1058 lemp->errorcnt++;
1059 }
1060 }
1061
1062 /* Resolve a conflict between the two given actions. If the
1063 ** conflict can't be resolved, return non-zero.
1064 **
1065 ** NO LONGER TRUE:
1066 ** To resolve a conflict, first look to see if either action
1067 ** is on an error rule. In that case, take the action which
1068 ** is not associated with the error rule. If neither or both
1069 ** actions are associated with an error rule, then try to
1070 ** use precedence to resolve the conflict.
1071 **
1072 ** If either action is a SHIFT, then it must be apx. This
1073 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1074 */
resolve_conflict(struct action * apx,struct action * apy,struct symbol * errsym)1075 static int resolve_conflict(
1076 struct action *apx,
1077 struct action *apy,
1078 struct symbol *errsym /* The error symbol (if defined. NULL otherwise) */
1079 ){
1080 struct symbol *spx, *spy;
1081 int errcnt = 0;
1082 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
1083 if( apx->type==SHIFT && apy->type==SHIFT ){
1084 apy->type = SSCONFLICT;
1085 errcnt++;
1086 }
1087 if( apx->type==SHIFT && apy->type==REDUCE ){
1088 spx = apx->sp;
1089 spy = apy->x.rp->precsym;
1090 if( spy==0 || spx->prec<0 || spy->prec<0 ){
1091 /* Not enough precedence information. */
1092 apy->type = SRCONFLICT;
1093 errcnt++;
1094 }else if( spx->prec>spy->prec ){ /* higher precedence wins */
1095 apy->type = RD_RESOLVED;
1096 }else if( spx->prec<spy->prec ){
1097 apx->type = SH_RESOLVED;
1098 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1099 apy->type = RD_RESOLVED; /* associativity */
1100 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
1101 apx->type = SH_RESOLVED;
1102 }else{
1103 assert( spx->prec==spy->prec && spx->assoc==NONE );
1104 apy->type = SRCONFLICT;
1105 errcnt++;
1106 }
1107 }else if( apx->type==REDUCE && apy->type==REDUCE ){
1108 spx = apx->x.rp->precsym;
1109 spy = apy->x.rp->precsym;
1110 if( spx==0 || spy==0 || spx->prec<0 ||
1111 spy->prec<0 || spx->prec==spy->prec ){
1112 apy->type = RRCONFLICT;
1113 errcnt++;
1114 }else if( spx->prec>spy->prec ){
1115 apy->type = RD_RESOLVED;
1116 }else if( spx->prec<spy->prec ){
1117 apx->type = RD_RESOLVED;
1118 }
1119 }else{
1120 assert(
1121 apx->type==SH_RESOLVED ||
1122 apx->type==RD_RESOLVED ||
1123 apx->type==SSCONFLICT ||
1124 apx->type==SRCONFLICT ||
1125 apx->type==RRCONFLICT ||
1126 apy->type==SH_RESOLVED ||
1127 apy->type==RD_RESOLVED ||
1128 apy->type==SSCONFLICT ||
1129 apy->type==SRCONFLICT ||
1130 apy->type==RRCONFLICT
1131 );
1132 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1133 ** REDUCEs on the list. If we reach this point it must be because
1134 ** the parser conflict had already been resolved. */
1135 }
1136 return errcnt;
1137 }
1138 /********************* From the file "configlist.c" *************************/
1139 /*
1140 ** Routines to processing a configuration list and building a state
1141 ** in the LEMON parser generator.
1142 */
1143
1144 static struct config *freelist = 0; /* List of free configurations */
1145 static struct config *current = 0; /* Top of list of configurations */
1146 static struct config **currentend = 0; /* Last on list of configs */
1147 static struct config *basis = 0; /* Top of list of basis configs */
1148 static struct config **basisend = 0; /* End of list of basis configs */
1149
1150 /* Return a pointer to a new configuration */
newconfig()1151 PRIVATE struct config *newconfig(){
1152 struct config *newcfg;
1153 if( freelist==0 ){
1154 int i;
1155 int amt = 3;
1156 freelist = (struct config *)calloc( amt, sizeof(struct config) );
1157 if( freelist==0 ){
1158 fprintf(stderr,"Unable to allocate memory for a new configuration.");
1159 exit(1);
1160 }
1161 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
1162 freelist[amt-1].next = 0;
1163 }
1164 newcfg = freelist;
1165 freelist = freelist->next;
1166 return newcfg;
1167 }
1168
1169 /* The configuration "old" is no longer used */
deleteconfig(struct config * old)1170 PRIVATE void deleteconfig(struct config *old)
1171 {
1172 old->next = freelist;
1173 freelist = old;
1174 }
1175
1176 /* Initialized the configuration list builder */
Configlist_init()1177 void Configlist_init(){
1178 current = 0;
1179 currentend = ¤t;
1180 basis = 0;
1181 basisend = &basis;
1182 Configtable_init();
1183 return;
1184 }
1185
1186 /* Initialized the configuration list builder */
Configlist_reset()1187 void Configlist_reset(){
1188 current = 0;
1189 currentend = ¤t;
1190 basis = 0;
1191 basisend = &basis;
1192 Configtable_clear(0);
1193 return;
1194 }
1195
1196 /* Add another configuration to the configuration list */
Configlist_add(struct rule * rp,int dot)1197 struct config *Configlist_add(
1198 struct rule *rp, /* The rule */
1199 int dot /* Index into the RHS of the rule where the dot goes */
1200 ){
1201 struct config *cfp, model;
1202
1203 assert( currentend!=0 );
1204 model.rp = rp;
1205 model.dot = dot;
1206 cfp = Configtable_find(&model);
1207 if( cfp==0 ){
1208 cfp = newconfig();
1209 cfp->rp = rp;
1210 cfp->dot = dot;
1211 cfp->fws = SetNew();
1212 cfp->stp = 0;
1213 cfp->fplp = cfp->bplp = 0;
1214 cfp->next = 0;
1215 cfp->bp = 0;
1216 *currentend = cfp;
1217 currentend = &cfp->next;
1218 Configtable_insert(cfp);
1219 }
1220 return cfp;
1221 }
1222
1223 /* Add a basis configuration to the configuration list */
Configlist_addbasis(struct rule * rp,int dot)1224 struct config *Configlist_addbasis(struct rule *rp, int dot)
1225 {
1226 struct config *cfp, model;
1227
1228 assert( basisend!=0 );
1229 assert( currentend!=0 );
1230 model.rp = rp;
1231 model.dot = dot;
1232 cfp = Configtable_find(&model);
1233 if( cfp==0 ){
1234 cfp = newconfig();
1235 cfp->rp = rp;
1236 cfp->dot = dot;
1237 cfp->fws = SetNew();
1238 cfp->stp = 0;
1239 cfp->fplp = cfp->bplp = 0;
1240 cfp->next = 0;
1241 cfp->bp = 0;
1242 *currentend = cfp;
1243 currentend = &cfp->next;
1244 *basisend = cfp;
1245 basisend = &cfp->bp;
1246 Configtable_insert(cfp);
1247 }
1248 return cfp;
1249 }
1250
1251 /* Compute the closure of the configuration list */
Configlist_closure(struct lemon * lemp)1252 void Configlist_closure(struct lemon *lemp)
1253 {
1254 struct config *cfp, *newcfp;
1255 struct rule *rp, *newrp;
1256 struct symbol *sp, *xsp;
1257 int i, dot;
1258
1259 assert( currentend!=0 );
1260 for(cfp=current; cfp; cfp=cfp->next){
1261 rp = cfp->rp;
1262 dot = cfp->dot;
1263 if( dot>=rp->nrhs ) continue;
1264 sp = rp->rhs[dot];
1265 if( sp->type==NONTERMINAL ){
1266 if( sp->rule==0 && sp!=lemp->errsym ){
1267 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1268 sp->name);
1269 lemp->errorcnt++;
1270 }
1271 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1272 newcfp = Configlist_add(newrp,0);
1273 for(i=dot+1; i<rp->nrhs; i++){
1274 xsp = rp->rhs[i];
1275 if( xsp->type==TERMINAL ){
1276 SetAdd(newcfp->fws,xsp->index);
1277 break;
1278 }else if( xsp->type==MULTITERMINAL ){
1279 int k;
1280 for(k=0; k<xsp->nsubsym; k++){
1281 SetAdd(newcfp->fws, xsp->subsym[k]->index);
1282 }
1283 break;
1284 }else{
1285 SetUnion(newcfp->fws,xsp->firstset);
1286 if( xsp->lambda==LEMON_FALSE ) break;
1287 }
1288 }
1289 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1290 }
1291 }
1292 }
1293 return;
1294 }
1295
1296 /* Sort the configuration list */
Configlist_sort()1297 void Configlist_sort(){
1298 current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
1299 currentend = 0;
1300 return;
1301 }
1302
1303 /* Sort the basis configuration list */
Configlist_sortbasis()1304 void Configlist_sortbasis(){
1305 basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
1306 basisend = 0;
1307 return;
1308 }
1309
1310 /* Return a pointer to the head of the configuration list and
1311 ** reset the list */
Configlist_return()1312 struct config *Configlist_return(){
1313 struct config *old;
1314 old = current;
1315 current = 0;
1316 currentend = 0;
1317 return old;
1318 }
1319
1320 /* Return a pointer to the head of the configuration list and
1321 ** reset the list */
Configlist_basis()1322 struct config *Configlist_basis(){
1323 struct config *old;
1324 old = basis;
1325 basis = 0;
1326 basisend = 0;
1327 return old;
1328 }
1329
1330 /* Free all elements of the given configuration list */
Configlist_eat(struct config * cfp)1331 void Configlist_eat(struct config *cfp)
1332 {
1333 struct config *nextcfp;
1334 for(; cfp; cfp=nextcfp){
1335 nextcfp = cfp->next;
1336 assert( cfp->fplp==0 );
1337 assert( cfp->bplp==0 );
1338 if( cfp->fws ) SetFree(cfp->fws);
1339 deleteconfig(cfp);
1340 }
1341 return;
1342 }
1343 /***************** From the file "error.c" *********************************/
1344 /*
1345 ** Code for printing error message.
1346 */
1347
ErrorMsg(const char * filename,int lineno,const char * format,...)1348 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1349 va_list ap;
1350 fprintf(stderr, "%s:%d: ", filename, lineno);
1351 va_start(ap, format);
1352 vfprintf(stderr,format,ap);
1353 va_end(ap);
1354 fprintf(stderr, "\n");
1355 }
1356 /**************** From the file "main.c" ************************************/
1357 /*
1358 ** Main program file for the LEMON parser generator.
1359 */
1360
1361 /* Report an out-of-memory condition and abort. This function
1362 ** is used mostly by the "MemoryCheck" macro in struct.h
1363 */
memory_error()1364 void memory_error(){
1365 fprintf(stderr,"Out of memory. Aborting...\n");
1366 exit(1);
1367 }
1368
1369 static int nDefine = 0; /* Number of -D options on the command line */
1370 static char **azDefine = 0; /* Name of the -D macros */
1371
1372 /* This routine is called with the argument to each -D command-line option.
1373 ** Add the macro defined to the azDefine array.
1374 */
handle_D_option(char * z)1375 static void handle_D_option(char *z){
1376 char **paz;
1377 nDefine++;
1378 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
1379 if( azDefine==0 ){
1380 fprintf(stderr,"out of memory\n");
1381 exit(1);
1382 }
1383 paz = &azDefine[nDefine-1];
1384 *paz = (char *) malloc( lemonStrlen(z)+1 );
1385 if( *paz==0 ){
1386 fprintf(stderr,"out of memory\n");
1387 exit(1);
1388 }
1389 strcpy(*paz, z);
1390 for(z=*paz; *z && *z!='='; z++){}
1391 *z = 0;
1392 }
1393
1394 static char *user_templatename = NULL;
handle_T_option(char * z)1395 static void handle_T_option(char *z){
1396 user_templatename = (char *) malloc( lemonStrlen(z)+1 );
1397 if( user_templatename==0 ){
1398 memory_error();
1399 }
1400 strcpy(user_templatename, z);
1401 }
1402
1403 /* The main program. Parse the command line and do it... */
main(int argc,char ** argv)1404 int main(int argc, char **argv)
1405 {
1406 static int version = 0;
1407 static int rpflag = 0;
1408 static int basisflag = 0;
1409 static int compress = 0;
1410 static int quiet = 0;
1411 static int statistics = 0;
1412 static int mhflag = 0;
1413 static int nolinenosflag = 0;
1414 static int noResort = 0;
1415 static struct s_options options[] = {
1416 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1417 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1418 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
1419 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
1420 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1421 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
1422 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
1423 {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
1424 "Show conflicts resolved by precedence rules"},
1425 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1426 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
1427 {OPT_FLAG, "s", (char*)&statistics,
1428 "Print parser stats to standard output."},
1429 {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1430 {OPT_FLAG,0,0,0}
1431 };
1432 int i;
1433 int exitcode;
1434 struct lemon lem;
1435
1436 atexit(LemonAtExit);
1437
1438 OptInit(argv,options,stderr);
1439 if( version ){
1440 printf("Lemon version 1.0\n");
1441 exit(0);
1442 }
1443 if( OptNArgs()!=1 ){
1444 fprintf(stderr,"Exactly one filename argument is required.\n");
1445 exit(1);
1446 }
1447 memset(&lem, 0, sizeof(lem));
1448 lem.errorcnt = 0;
1449
1450 /* Initialize the machine */
1451 Strsafe_init();
1452 Symbol_init();
1453 State_init();
1454 lem.argv0 = argv[0];
1455 lem.filename = OptArg(0);
1456 lem.basisflag = basisflag;
1457 lem.nolinenosflag = nolinenosflag;
1458 Symbol_new("$");
1459 lem.errsym = Symbol_new("error");
1460 lem.errsym->useCnt = 0;
1461
1462 /* Parse the input file */
1463 Parse(&lem);
1464 if( lem.errorcnt ) exit(lem.errorcnt);
1465 if( lem.nrule==0 ){
1466 fprintf(stderr,"Empty grammar.\n");
1467 exit(1);
1468 }
1469
1470 /* Count and index the symbols of the grammar */
1471 lem.nsymbol = Symbol_count();
1472 Symbol_new("{default}");
1473 lem.symbols = Symbol_arrayof();
1474 for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1475 qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*), Symbolcmpp);
1476 for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1477 for(i=1; isupper(lem.symbols[i]->name[0]); i++);
1478 lem.nterminal = i;
1479
1480 /* Generate a reprint of the grammar, if requested on the command line */
1481 if( rpflag ){
1482 Reprint(&lem);
1483 }else{
1484 /* Initialize the size for all follow and first sets */
1485 SetSize(lem.nterminal+1);
1486
1487 /* Find the precedence for every production rule (that has one) */
1488 FindRulePrecedences(&lem);
1489
1490 /* Compute the lambda-nonterminals and the first-sets for every
1491 ** nonterminal */
1492 FindFirstSets(&lem);
1493
1494 /* Compute all LR(0) states. Also record follow-set propagation
1495 ** links so that the follow-set can be computed later */
1496 lem.nstate = 0;
1497 FindStates(&lem);
1498 lem.sorted = State_arrayof();
1499
1500 /* Tie up loose ends on the propagation links */
1501 FindLinks(&lem);
1502
1503 /* Compute the follow set of every reducible configuration */
1504 FindFollowSets(&lem);
1505
1506 /* Compute the action tables */
1507 FindActions(&lem);
1508
1509 /* Compress the action tables */
1510 if( compress==0 ) CompressTables(&lem);
1511
1512 /* Reorder and renumber the states so that states with fewer choices
1513 ** occur at the end. This is an optimization that helps make the
1514 ** generated parser tables smaller. */
1515 if( noResort==0 ) ResortStates(&lem);
1516
1517 /* Generate a report of the parser generated. (the "y.output" file) */
1518 if( !quiet ) ReportOutput(&lem);
1519
1520 /* Generate the source code for the parser */
1521 ReportTable(&lem, mhflag);
1522
1523 /* Produce a header file for use by the scanner. (This step is
1524 ** omitted if the "-m" option is used because makeheaders will
1525 ** generate the file for us.) */
1526 if( !mhflag ) ReportHeader(&lem);
1527 }
1528 if( statistics ){
1529 printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
1530 lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
1531 printf(" %d states, %d parser table entries, %d conflicts\n",
1532 lem.nstate, lem.tablesize, lem.nconflict);
1533 }
1534 if( lem.nconflict > 0 ){
1535 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1536 }
1537
1538 /* return 0 on success, 1 on failure. */
1539 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
1540 successful_exit = (exitcode == 0);
1541 exit(exitcode);
1542 return (exitcode);
1543 }
1544 /******************** From the file "msort.c" *******************************/
1545 /*
1546 ** A generic merge-sort program.
1547 **
1548 ** USAGE:
1549 ** Let "ptr" be a pointer to some structure which is at the head of
1550 ** a null-terminated list. Then to sort the list call:
1551 **
1552 ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1553 **
1554 ** In the above, "cmpfnc" is a pointer to a function which compares
1555 ** two instances of the structure and returns an integer, as in
1556 ** strcmp. The second argument is a pointer to the pointer to the
1557 ** second element of the linked list. This address is used to compute
1558 ** the offset to the "next" field within the structure. The offset to
1559 ** the "next" field must be constant for all structures in the list.
1560 **
1561 ** The function returns a new pointer which is the head of the list
1562 ** after sorting.
1563 **
1564 ** ALGORITHM:
1565 ** Merge-sort.
1566 */
1567
1568 /*
1569 ** Return a pointer to the next structure in the linked list.
1570 */
1571 #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
1572
1573 /*
1574 ** Inputs:
1575 ** a: A sorted, null-terminated linked list. (May be null).
1576 ** b: A sorted, null-terminated linked list. (May be null).
1577 ** cmp: A pointer to the comparison function.
1578 ** offset: Offset in the structure to the "next" field.
1579 **
1580 ** Return Value:
1581 ** A pointer to the head of a sorted list containing the elements
1582 ** of both a and b.
1583 **
1584 ** Side effects:
1585 ** The "next" pointers for elements in the lists a and b are
1586 ** changed.
1587 */
merge(char * a,char * b,int (* cmp)(const char *,const char *),int offset)1588 static char *merge(
1589 char *a,
1590 char *b,
1591 int (*cmp)(const char*,const char*),
1592 int offset
1593 ){
1594 char *ptr, *head;
1595
1596 if( a==0 ){
1597 head = b;
1598 }else if( b==0 ){
1599 head = a;
1600 }else{
1601 if( (*cmp)(a,b)<=0 ){
1602 ptr = a;
1603 a = NEXT(a);
1604 }else{
1605 ptr = b;
1606 b = NEXT(b);
1607 }
1608 head = ptr;
1609 while( a && b ){
1610 if( (*cmp)(a,b)<=0 ){
1611 NEXT(ptr) = a;
1612 ptr = a;
1613 a = NEXT(a);
1614 }else{
1615 NEXT(ptr) = b;
1616 ptr = b;
1617 b = NEXT(b);
1618 }
1619 }
1620 if( a ) NEXT(ptr) = a;
1621 else NEXT(ptr) = b;
1622 }
1623 return head;
1624 }
1625
1626 /*
1627 ** Inputs:
1628 ** list: Pointer to a singly-linked list of structures.
1629 ** next: Pointer to pointer to the second element of the list.
1630 ** cmp: A comparison function.
1631 **
1632 ** Return Value:
1633 ** A pointer to the head of a sorted list containing the elements
1634 ** orginally in list.
1635 **
1636 ** Side effects:
1637 ** The "next" pointers for elements in list are changed.
1638 */
1639 #define LISTSIZE 30
msort(char * list,char ** next,int (* cmp)(const char *,const char *))1640 static char *msort(
1641 char *list,
1642 char **next,
1643 int (*cmp)(const char*,const char*)
1644 ){
1645 unsigned long offset;
1646 char *ep;
1647 char *set[LISTSIZE];
1648 int i;
1649 offset = (unsigned long)next - (unsigned long)list;
1650 for(i=0; i<LISTSIZE; i++) set[i] = 0;
1651 while( list ){
1652 ep = list;
1653 list = NEXT(list);
1654 NEXT(ep) = 0;
1655 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1656 ep = merge(ep,set[i],cmp,offset);
1657 set[i] = 0;
1658 }
1659 set[i] = ep;
1660 }
1661 ep = 0;
1662 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
1663 return ep;
1664 }
1665 /************************ From the file "option.c" **************************/
1666 static char **argv;
1667 static struct s_options *op;
1668 static FILE *errstream;
1669
1670 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1671
1672 /*
1673 ** Print the command line with a carrot pointing to the k-th character
1674 ** of the n-th field.
1675 */
errline(int n,int k,FILE * err)1676 static void errline(int n, int k, FILE *err)
1677 {
1678 int spcnt, i;
1679 if( argv[0] ) fprintf(err,"%s",argv[0]);
1680 spcnt = lemonStrlen(argv[0]) + 1;
1681 for(i=1; i<n && argv[i]; i++){
1682 fprintf(err," %s",argv[i]);
1683 spcnt += lemonStrlen(argv[i])+1;
1684 }
1685 spcnt += k;
1686 for(; argv[i]; i++) fprintf(err," %s",argv[i]);
1687 if( spcnt<20 ){
1688 fprintf(err,"\n%*s^-- here\n",spcnt,"");
1689 }else{
1690 fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1691 }
1692 }
1693
1694 /*
1695 ** Return the index of the N-th non-switch argument. Return -1
1696 ** if N is out of range.
1697 */
argindex(int n)1698 static int argindex(int n)
1699 {
1700 int i;
1701 int dashdash = 0;
1702 if( argv!=0 && *argv!=0 ){
1703 for(i=1; argv[i]; i++){
1704 if( dashdash || !ISOPT(argv[i]) ){
1705 if( n==0 ) return i;
1706 n--;
1707 }
1708 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1709 }
1710 }
1711 return -1;
1712 }
1713
1714 static char emsg[] = "Command line syntax error: ";
1715
1716 /*
1717 ** Process a flag command line argument.
1718 */
handleflags(int i,FILE * err)1719 static int handleflags(int i, FILE *err)
1720 {
1721 int v;
1722 int errcnt = 0;
1723 int j;
1724 for(j=0; op[j].label; j++){
1725 if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
1726 }
1727 v = argv[i][0]=='-' ? 1 : 0;
1728 if( op[j].label==0 ){
1729 if( err ){
1730 fprintf(err,"%sundefined option.\n",emsg);
1731 errline(i,1,err);
1732 }
1733 errcnt++;
1734 }else if( op[j].type==OPT_FLAG ){
1735 *((int*)op[j].arg) = v;
1736 }else if( op[j].type==OPT_FFLAG ){
1737 (*(void(*)(int))(op[j].arg))(v);
1738 }else if( op[j].type==OPT_FSTR ){
1739 (*(void(*)(char *))(op[j].arg))(&argv[i][2]);
1740 }else{
1741 if( err ){
1742 fprintf(err,"%smissing argument on switch.\n",emsg);
1743 errline(i,1,err);
1744 }
1745 errcnt++;
1746 }
1747 return errcnt;
1748 }
1749
1750 /*
1751 ** Process a command line switch which has an argument.
1752 */
handleswitch(int i,FILE * err)1753 static int handleswitch(int i, FILE *err)
1754 {
1755 int lv = 0;
1756 double dv = 0.0;
1757 char *sv = 0, *end;
1758 char *cp;
1759 int j;
1760 int errcnt = 0;
1761 cp = strchr(argv[i],'=');
1762 assert( cp!=0 );
1763 *cp = 0;
1764 for(j=0; op[j].label; j++){
1765 if( strcmp(argv[i],op[j].label)==0 ) break;
1766 }
1767 *cp = '=';
1768 if( op[j].label==0 ){
1769 if( err ){
1770 fprintf(err,"%sundefined option.\n",emsg);
1771 errline(i,0,err);
1772 }
1773 errcnt++;
1774 }else{
1775 cp++;
1776 switch( op[j].type ){
1777 case OPT_FLAG:
1778 case OPT_FFLAG:
1779 if( err ){
1780 fprintf(err,"%soption requires an argument.\n",emsg);
1781 errline(i,0,err);
1782 }
1783 errcnt++;
1784 break;
1785 case OPT_DBL:
1786 case OPT_FDBL:
1787 dv = strtod(cp,&end);
1788 if( *end ){
1789 if( err ){
1790 fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
1791 errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1792 }
1793 errcnt++;
1794 }
1795 break;
1796 case OPT_INT:
1797 case OPT_FINT:
1798 lv = strtol(cp,&end,0);
1799 if( *end ){
1800 if( err ){
1801 fprintf(err,"%sillegal character in integer argument.\n",emsg);
1802 errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1803 }
1804 errcnt++;
1805 }
1806 break;
1807 case OPT_STR:
1808 case OPT_FSTR:
1809 sv = cp;
1810 break;
1811 }
1812 switch( op[j].type ){
1813 case OPT_FLAG:
1814 case OPT_FFLAG:
1815 break;
1816 case OPT_DBL:
1817 *(double*)(op[j].arg) = dv;
1818 break;
1819 case OPT_FDBL:
1820 (*(void(*)(double))(op[j].arg))(dv);
1821 break;
1822 case OPT_INT:
1823 *(int*)(op[j].arg) = lv;
1824 break;
1825 case OPT_FINT:
1826 (*(void(*)(int))(op[j].arg))((int)lv);
1827 break;
1828 case OPT_STR:
1829 *(char**)(op[j].arg) = sv;
1830 break;
1831 case OPT_FSTR:
1832 (*(void(*)(char *))(op[j].arg))(sv);
1833 break;
1834 }
1835 }
1836 return errcnt;
1837 }
1838
OptInit(char ** a,struct s_options * o,FILE * err)1839 int OptInit(char **a, struct s_options *o, FILE *err)
1840 {
1841 int errcnt = 0;
1842 argv = a;
1843 op = o;
1844 errstream = err;
1845 if( argv && *argv && op ){
1846 int i;
1847 for(i=1; argv[i]; i++){
1848 if( argv[i][0]=='+' || argv[i][0]=='-' ){
1849 errcnt += handleflags(i,err);
1850 }else if( strchr(argv[i],'=') ){
1851 errcnt += handleswitch(i,err);
1852 }
1853 }
1854 }
1855 if( errcnt>0 ){
1856 fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
1857 OptPrint();
1858 exit(1);
1859 }
1860 return 0;
1861 }
1862
OptNArgs()1863 int OptNArgs(){
1864 int cnt = 0;
1865 int dashdash = 0;
1866 int i;
1867 if( argv!=0 && argv[0]!=0 ){
1868 for(i=1; argv[i]; i++){
1869 if( dashdash || !ISOPT(argv[i]) ) cnt++;
1870 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1871 }
1872 }
1873 return cnt;
1874 }
1875
OptArg(int n)1876 char *OptArg(int n)
1877 {
1878 int i;
1879 i = argindex(n);
1880 return i>=0 ? argv[i] : 0;
1881 }
1882
OptErr(int n)1883 void OptErr(int n)
1884 {
1885 int i;
1886 i = argindex(n);
1887 if( i>=0 ) errline(i,0,errstream);
1888 }
1889
OptPrint()1890 void OptPrint(){
1891 int i;
1892 int max, len;
1893 max = 0;
1894 for(i=0; op[i].label; i++){
1895 len = lemonStrlen(op[i].label) + 1;
1896 switch( op[i].type ){
1897 case OPT_FLAG:
1898 case OPT_FFLAG:
1899 break;
1900 case OPT_INT:
1901 case OPT_FINT:
1902 len += 9; /* length of "<integer>" */
1903 break;
1904 case OPT_DBL:
1905 case OPT_FDBL:
1906 len += 6; /* length of "<real>" */
1907 break;
1908 case OPT_STR:
1909 case OPT_FSTR:
1910 len += 8; /* length of "<string>" */
1911 break;
1912 }
1913 if( len>max ) max = len;
1914 }
1915 for(i=0; op[i].label; i++){
1916 switch( op[i].type ){
1917 case OPT_FLAG:
1918 case OPT_FFLAG:
1919 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
1920 break;
1921 case OPT_INT:
1922 case OPT_FINT:
1923 fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
1924 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
1925 break;
1926 case OPT_DBL:
1927 case OPT_FDBL:
1928 fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
1929 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
1930 break;
1931 case OPT_STR:
1932 case OPT_FSTR:
1933 fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
1934 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
1935 break;
1936 }
1937 }
1938 }
1939 /*********************** From the file "parse.c" ****************************/
1940 /*
1941 ** Input file parser for the LEMON parser generator.
1942 */
1943
1944 /* The state of the parser */
1945 enum e_state {
1946 INITIALIZE,
1947 WAITING_FOR_DECL_OR_RULE,
1948 WAITING_FOR_DECL_KEYWORD,
1949 WAITING_FOR_DECL_ARG,
1950 WAITING_FOR_PRECEDENCE_SYMBOL,
1951 WAITING_FOR_ARROW,
1952 IN_RHS,
1953 LHS_ALIAS_1,
1954 LHS_ALIAS_2,
1955 LHS_ALIAS_3,
1956 RHS_ALIAS_1,
1957 RHS_ALIAS_2,
1958 PRECEDENCE_MARK_1,
1959 PRECEDENCE_MARK_2,
1960 RESYNC_AFTER_RULE_ERROR,
1961 RESYNC_AFTER_DECL_ERROR,
1962 WAITING_FOR_DESTRUCTOR_SYMBOL,
1963 WAITING_FOR_DATATYPE_SYMBOL,
1964 WAITING_FOR_FALLBACK_ID,
1965 WAITING_FOR_WILDCARD_ID
1966 };
1967 struct pstate {
1968 char *filename; /* Name of the input file */
1969 int tokenlineno; /* Linenumber at which current token starts */
1970 int errorcnt; /* Number of errors so far */
1971 char *tokenstart; /* Text of current token */
1972 struct lemon *gp; /* Global state vector */
1973 enum e_state state; /* The state of the parser */
1974 struct symbol *fallback; /* The fallback token */
1975 struct symbol *lhs; /* Left-hand side of current rule */
1976 const char *lhsalias; /* Alias for the LHS */
1977 int nrhs; /* Number of right-hand side symbols seen */
1978 struct symbol *rhs[MAXRHS]; /* RHS symbols */
1979 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
1980 struct rule *prevrule; /* Previous rule parsed */
1981 const char *declkeyword; /* Keyword of a declaration */
1982 char **declargslot; /* Where the declaration argument should be put */
1983 int insertLineMacro; /* Add #line before declaration insert */
1984 int *decllinenoslot; /* Where to write declaration line number */
1985 enum e_assoc declassoc; /* Assign this association to decl arguments */
1986 int preccounter; /* Assign this precedence to decl arguments */
1987 struct rule *firstrule; /* Pointer to first rule in the grammar */
1988 struct rule *lastrule; /* Pointer to the most recently parsed rule */
1989 };
1990
1991 /* Parse a single token */
parseonetoken(struct pstate * psp)1992 static void parseonetoken(struct pstate *psp)
1993 {
1994 const char *x;
1995 x = Strsafe(psp->tokenstart); /* Save the token permanently */
1996 #if 0
1997 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
1998 x,psp->state);
1999 #endif
2000 switch( psp->state ){
2001 case INITIALIZE:
2002 psp->prevrule = 0;
2003 psp->preccounter = 0;
2004 psp->firstrule = psp->lastrule = 0;
2005 psp->gp->nrule = 0;
2006 /* Fall thru to next case */
2007 case WAITING_FOR_DECL_OR_RULE:
2008 if( x[0]=='%' ){
2009 psp->state = WAITING_FOR_DECL_KEYWORD;
2010 }else if( islower(x[0]) ){
2011 psp->lhs = Symbol_new(x);
2012 psp->nrhs = 0;
2013 psp->lhsalias = 0;
2014 psp->state = WAITING_FOR_ARROW;
2015 }else if( x[0]=='{' ){
2016 if( psp->prevrule==0 ){
2017 ErrorMsg(psp->filename,psp->tokenlineno,
2018 "There is no prior rule opon which to attach the code \
2019 fragment which begins on this line.");
2020 psp->errorcnt++;
2021 }else if( psp->prevrule->code!=0 ){
2022 ErrorMsg(psp->filename,psp->tokenlineno,
2023 "Code fragment beginning on this line is not the first \
2024 to follow the previous rule.");
2025 psp->errorcnt++;
2026 }else{
2027 psp->prevrule->line = psp->tokenlineno;
2028 psp->prevrule->code = &x[1];
2029 }
2030 }else if( x[0]=='[' ){
2031 psp->state = PRECEDENCE_MARK_1;
2032 }else{
2033 ErrorMsg(psp->filename,psp->tokenlineno,
2034 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2035 x);
2036 psp->errorcnt++;
2037 }
2038 break;
2039 case PRECEDENCE_MARK_1:
2040 if( !isupper(x[0]) ){
2041 ErrorMsg(psp->filename,psp->tokenlineno,
2042 "The precedence symbol must be a terminal.");
2043 psp->errorcnt++;
2044 }else if( psp->prevrule==0 ){
2045 ErrorMsg(psp->filename,psp->tokenlineno,
2046 "There is no prior rule to assign precedence \"[%s]\".",x);
2047 psp->errorcnt++;
2048 }else if( psp->prevrule->precsym!=0 ){
2049 ErrorMsg(psp->filename,psp->tokenlineno,
2050 "Precedence mark on this line is not the first \
2051 to follow the previous rule.");
2052 psp->errorcnt++;
2053 }else{
2054 psp->prevrule->precsym = Symbol_new(x);
2055 }
2056 psp->state = PRECEDENCE_MARK_2;
2057 break;
2058 case PRECEDENCE_MARK_2:
2059 if( x[0]!=']' ){
2060 ErrorMsg(psp->filename,psp->tokenlineno,
2061 "Missing \"]\" on precedence mark.");
2062 psp->errorcnt++;
2063 }
2064 psp->state = WAITING_FOR_DECL_OR_RULE;
2065 break;
2066 case WAITING_FOR_ARROW:
2067 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2068 psp->state = IN_RHS;
2069 }else if( x[0]=='(' ){
2070 psp->state = LHS_ALIAS_1;
2071 }else{
2072 ErrorMsg(psp->filename,psp->tokenlineno,
2073 "Expected to see a \":\" following the LHS symbol \"%s\".",
2074 psp->lhs->name);
2075 psp->errorcnt++;
2076 psp->state = RESYNC_AFTER_RULE_ERROR;
2077 }
2078 break;
2079 case LHS_ALIAS_1:
2080 if( isalpha(x[0]) ){
2081 psp->lhsalias = x;
2082 psp->state = LHS_ALIAS_2;
2083 }else{
2084 ErrorMsg(psp->filename,psp->tokenlineno,
2085 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2086 x,psp->lhs->name);
2087 psp->errorcnt++;
2088 psp->state = RESYNC_AFTER_RULE_ERROR;
2089 }
2090 break;
2091 case LHS_ALIAS_2:
2092 if( x[0]==')' ){
2093 psp->state = LHS_ALIAS_3;
2094 }else{
2095 ErrorMsg(psp->filename,psp->tokenlineno,
2096 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2097 psp->errorcnt++;
2098 psp->state = RESYNC_AFTER_RULE_ERROR;
2099 }
2100 break;
2101 case LHS_ALIAS_3:
2102 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2103 psp->state = IN_RHS;
2104 }else{
2105 ErrorMsg(psp->filename,psp->tokenlineno,
2106 "Missing \"->\" following: \"%s(%s)\".",
2107 psp->lhs->name,psp->lhsalias);
2108 psp->errorcnt++;
2109 psp->state = RESYNC_AFTER_RULE_ERROR;
2110 }
2111 break;
2112 case IN_RHS:
2113 if( x[0]=='.' ){
2114 struct rule *rp;
2115 rp = (struct rule *)calloc( sizeof(struct rule) +
2116 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
2117 if( rp==0 ){
2118 ErrorMsg(psp->filename,psp->tokenlineno,
2119 "Can't allocate enough memory for this rule.");
2120 psp->errorcnt++;
2121 psp->prevrule = 0;
2122 }else{
2123 int i;
2124 rp->ruleline = psp->tokenlineno;
2125 rp->rhs = (struct symbol**)&rp[1];
2126 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
2127 for(i=0; i<psp->nrhs; i++){
2128 rp->rhs[i] = psp->rhs[i];
2129 rp->rhsalias[i] = psp->alias[i];
2130 }
2131 rp->lhs = psp->lhs;
2132 rp->lhsalias = psp->lhsalias;
2133 rp->nrhs = psp->nrhs;
2134 rp->code = 0;
2135 rp->precsym = 0;
2136 rp->index = psp->gp->nrule++;
2137 rp->nextlhs = rp->lhs->rule;
2138 rp->lhs->rule = rp;
2139 rp->next = 0;
2140 if( psp->firstrule==0 ){
2141 psp->firstrule = psp->lastrule = rp;
2142 }else{
2143 psp->lastrule->next = rp;
2144 psp->lastrule = rp;
2145 }
2146 psp->prevrule = rp;
2147 }
2148 psp->state = WAITING_FOR_DECL_OR_RULE;
2149 }else if( isalpha(x[0]) ){
2150 if( psp->nrhs>=MAXRHS ){
2151 ErrorMsg(psp->filename,psp->tokenlineno,
2152 "Too many symbols on RHS of rule beginning at \"%s\".",
2153 x);
2154 psp->errorcnt++;
2155 psp->state = RESYNC_AFTER_RULE_ERROR;
2156 }else{
2157 psp->rhs[psp->nrhs] = Symbol_new(x);
2158 psp->alias[psp->nrhs] = 0;
2159 psp->nrhs++;
2160 }
2161 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
2162 struct symbol *msp = psp->rhs[psp->nrhs-1];
2163 if( msp->type!=MULTITERMINAL ){
2164 struct symbol *origsp = msp;
2165 msp = (struct symbol *) calloc(1,sizeof(*msp));
2166 memset(msp, 0, sizeof(*msp));
2167 msp->type = MULTITERMINAL;
2168 msp->nsubsym = 1;
2169 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
2170 msp->subsym[0] = origsp;
2171 msp->name = origsp->name;
2172 psp->rhs[psp->nrhs-1] = msp;
2173 }
2174 msp->nsubsym++;
2175 msp->subsym = (struct symbol **) realloc(msp->subsym,
2176 sizeof(struct symbol*)*msp->nsubsym);
2177 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
2178 if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
2179 ErrorMsg(psp->filename,psp->tokenlineno,
2180 "Cannot form a compound containing a non-terminal");
2181 psp->errorcnt++;
2182 }
2183 }else if( x[0]=='(' && psp->nrhs>0 ){
2184 psp->state = RHS_ALIAS_1;
2185 }else{
2186 ErrorMsg(psp->filename,psp->tokenlineno,
2187 "Illegal character on RHS of rule: \"%s\".",x);
2188 psp->errorcnt++;
2189 psp->state = RESYNC_AFTER_RULE_ERROR;
2190 }
2191 break;
2192 case RHS_ALIAS_1:
2193 if( isalpha(x[0]) ){
2194 psp->alias[psp->nrhs-1] = x;
2195 psp->state = RHS_ALIAS_2;
2196 }else{
2197 ErrorMsg(psp->filename,psp->tokenlineno,
2198 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2199 x,psp->rhs[psp->nrhs-1]->name);
2200 psp->errorcnt++;
2201 psp->state = RESYNC_AFTER_RULE_ERROR;
2202 }
2203 break;
2204 case RHS_ALIAS_2:
2205 if( x[0]==')' ){
2206 psp->state = IN_RHS;
2207 }else{
2208 ErrorMsg(psp->filename,psp->tokenlineno,
2209 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2210 psp->errorcnt++;
2211 psp->state = RESYNC_AFTER_RULE_ERROR;
2212 }
2213 break;
2214 case WAITING_FOR_DECL_KEYWORD:
2215 if( isalpha(x[0]) ){
2216 psp->declkeyword = x;
2217 psp->declargslot = 0;
2218 psp->decllinenoslot = 0;
2219 psp->insertLineMacro = 1;
2220 psp->state = WAITING_FOR_DECL_ARG;
2221 if( strcmp(x,"name")==0 ){
2222 psp->declargslot = &(psp->gp->name);
2223 psp->insertLineMacro = 0;
2224 }else if( strcmp(x,"include")==0 ){
2225 psp->declargslot = &(psp->gp->include);
2226 }else if( strcmp(x,"code")==0 ){
2227 psp->declargslot = &(psp->gp->extracode);
2228 }else if( strcmp(x,"token_destructor")==0 ){
2229 psp->declargslot = &psp->gp->tokendest;
2230 }else if( strcmp(x,"default_destructor")==0 ){
2231 psp->declargslot = &psp->gp->vardest;
2232 }else if( strcmp(x,"token_prefix")==0 ){
2233 psp->declargslot = &psp->gp->tokenprefix;
2234 psp->insertLineMacro = 0;
2235 }else if( strcmp(x,"syntax_error")==0 ){
2236 psp->declargslot = &(psp->gp->error);
2237 }else if( strcmp(x,"parse_accept")==0 ){
2238 psp->declargslot = &(psp->gp->accept);
2239 }else if( strcmp(x,"parse_failure")==0 ){
2240 psp->declargslot = &(psp->gp->failure);
2241 }else if( strcmp(x,"stack_overflow")==0 ){
2242 psp->declargslot = &(psp->gp->overflow);
2243 }else if( strcmp(x,"extra_argument")==0 ){
2244 psp->declargslot = &(psp->gp->arg);
2245 psp->insertLineMacro = 0;
2246 }else if( strcmp(x,"token_type")==0 ){
2247 psp->declargslot = &(psp->gp->tokentype);
2248 psp->insertLineMacro = 0;
2249 }else if( strcmp(x,"default_type")==0 ){
2250 psp->declargslot = &(psp->gp->vartype);
2251 psp->insertLineMacro = 0;
2252 }else if( strcmp(x,"stack_size")==0 ){
2253 psp->declargslot = &(psp->gp->stacksize);
2254 psp->insertLineMacro = 0;
2255 }else if( strcmp(x,"start_symbol")==0 ){
2256 psp->declargslot = &(psp->gp->start);
2257 psp->insertLineMacro = 0;
2258 }else if( strcmp(x,"left")==0 ){
2259 psp->preccounter++;
2260 psp->declassoc = LEFT;
2261 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2262 }else if( strcmp(x,"right")==0 ){
2263 psp->preccounter++;
2264 psp->declassoc = RIGHT;
2265 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2266 }else if( strcmp(x,"nonassoc")==0 ){
2267 psp->preccounter++;
2268 psp->declassoc = NONE;
2269 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2270 }else if( strcmp(x,"destructor")==0 ){
2271 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2272 }else if( strcmp(x,"type")==0 ){
2273 psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2274 }else if( strcmp(x,"fallback")==0 ){
2275 psp->fallback = 0;
2276 psp->state = WAITING_FOR_FALLBACK_ID;
2277 }else if( strcmp(x,"wildcard")==0 ){
2278 psp->state = WAITING_FOR_WILDCARD_ID;
2279 }else{
2280 ErrorMsg(psp->filename,psp->tokenlineno,
2281 "Unknown declaration keyword: \"%%%s\".",x);
2282 psp->errorcnt++;
2283 psp->state = RESYNC_AFTER_DECL_ERROR;
2284 }
2285 }else{
2286 ErrorMsg(psp->filename,psp->tokenlineno,
2287 "Illegal declaration keyword: \"%s\".",x);
2288 psp->errorcnt++;
2289 psp->state = RESYNC_AFTER_DECL_ERROR;
2290 }
2291 break;
2292 case WAITING_FOR_DESTRUCTOR_SYMBOL:
2293 if( !isalpha(x[0]) ){
2294 ErrorMsg(psp->filename,psp->tokenlineno,
2295 "Symbol name missing after %%destructor keyword");
2296 psp->errorcnt++;
2297 psp->state = RESYNC_AFTER_DECL_ERROR;
2298 }else{
2299 struct symbol *sp = Symbol_new(x);
2300 psp->declargslot = &sp->destructor;
2301 psp->decllinenoslot = &sp->destLineno;
2302 psp->insertLineMacro = 1;
2303 psp->state = WAITING_FOR_DECL_ARG;
2304 }
2305 break;
2306 case WAITING_FOR_DATATYPE_SYMBOL:
2307 if( !isalpha(x[0]) ){
2308 ErrorMsg(psp->filename,psp->tokenlineno,
2309 "Symbol name missing after %%type keyword");
2310 psp->errorcnt++;
2311 psp->state = RESYNC_AFTER_DECL_ERROR;
2312 }else{
2313 struct symbol *sp = Symbol_find(x);
2314 if((sp) && (sp->datatype)){
2315 ErrorMsg(psp->filename,psp->tokenlineno,
2316 "Symbol %%type \"%s\" already defined", x);
2317 psp->errorcnt++;
2318 psp->state = RESYNC_AFTER_DECL_ERROR;
2319 }else{
2320 if (!sp){
2321 sp = Symbol_new(x);
2322 }
2323 psp->declargslot = &sp->datatype;
2324 psp->insertLineMacro = 0;
2325 psp->state = WAITING_FOR_DECL_ARG;
2326 }
2327 }
2328 break;
2329 case WAITING_FOR_PRECEDENCE_SYMBOL:
2330 if( x[0]=='.' ){
2331 psp->state = WAITING_FOR_DECL_OR_RULE;
2332 }else if( isupper(x[0]) ){
2333 struct symbol *sp;
2334 sp = Symbol_new(x);
2335 if( sp->prec>=0 ){
2336 ErrorMsg(psp->filename,psp->tokenlineno,
2337 "Symbol \"%s\" has already be given a precedence.",x);
2338 psp->errorcnt++;
2339 }else{
2340 sp->prec = psp->preccounter;
2341 sp->assoc = psp->declassoc;
2342 }
2343 }else{
2344 ErrorMsg(psp->filename,psp->tokenlineno,
2345 "Can't assign a precedence to \"%s\".",x);
2346 psp->errorcnt++;
2347 }
2348 break;
2349 case WAITING_FOR_DECL_ARG:
2350 if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){
2351 const char *zOld, *zNew;
2352 char *zBuf, *z;
2353 int nOld, n, nLine, nNew, nBack;
2354 int addLineMacro;
2355 char zLine[50];
2356 zNew = x;
2357 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
2358 nNew = lemonStrlen(zNew);
2359 if( *psp->declargslot ){
2360 zOld = *psp->declargslot;
2361 }else{
2362 zOld = "";
2363 }
2364 nOld = lemonStrlen(zOld);
2365 n = nOld + nNew + 20;
2366 addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
2367 (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
2368 if( addLineMacro ){
2369 for(z=psp->filename, nBack=0; *z; z++){
2370 if( *z=='\\' ) nBack++;
2371 }
2372 sprintf(zLine, "#line %d ", psp->tokenlineno);
2373 nLine = lemonStrlen(zLine);
2374 n += nLine + lemonStrlen(psp->filename) + nBack;
2375 }
2376 *psp->declargslot = (char *) realloc(*psp->declargslot, n);
2377 zBuf = *psp->declargslot + nOld;
2378 if( addLineMacro ){
2379 if( nOld && zBuf[-1]!='\n' ){
2380 *(zBuf++) = '\n';
2381 }
2382 memcpy(zBuf, zLine, nLine);
2383 zBuf += nLine;
2384 *(zBuf++) = '"';
2385 for(z=psp->filename; *z; z++){
2386 if( *z=='\\' ){
2387 *(zBuf++) = '\\';
2388 }
2389 *(zBuf++) = *z;
2390 }
2391 *(zBuf++) = '"';
2392 *(zBuf++) = '\n';
2393 }
2394 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
2395 psp->decllinenoslot[0] = psp->tokenlineno;
2396 }
2397 memcpy(zBuf, zNew, nNew);
2398 zBuf += nNew;
2399 *zBuf = 0;
2400 psp->state = WAITING_FOR_DECL_OR_RULE;
2401 }else{
2402 ErrorMsg(psp->filename,psp->tokenlineno,
2403 "Illegal argument to %%%s: %s",psp->declkeyword,x);
2404 psp->errorcnt++;
2405 psp->state = RESYNC_AFTER_DECL_ERROR;
2406 }
2407 break;
2408 case WAITING_FOR_FALLBACK_ID:
2409 if( x[0]=='.' ){
2410 psp->state = WAITING_FOR_DECL_OR_RULE;
2411 }else if( !isupper(x[0]) ){
2412 ErrorMsg(psp->filename, psp->tokenlineno,
2413 "%%fallback argument \"%s\" should be a token", x);
2414 psp->errorcnt++;
2415 }else{
2416 struct symbol *sp = Symbol_new(x);
2417 if( psp->fallback==0 ){
2418 psp->fallback = sp;
2419 }else if( sp->fallback ){
2420 ErrorMsg(psp->filename, psp->tokenlineno,
2421 "More than one fallback assigned to token %s", x);
2422 psp->errorcnt++;
2423 }else{
2424 sp->fallback = psp->fallback;
2425 psp->gp->has_fallback = 1;
2426 }
2427 }
2428 break;
2429 case WAITING_FOR_WILDCARD_ID:
2430 if( x[0]=='.' ){
2431 psp->state = WAITING_FOR_DECL_OR_RULE;
2432 }else if( !isupper(x[0]) ){
2433 ErrorMsg(psp->filename, psp->tokenlineno,
2434 "%%wildcard argument \"%s\" should be a token", x);
2435 psp->errorcnt++;
2436 }else{
2437 struct symbol *sp = Symbol_new(x);
2438 if( psp->gp->wildcard==0 ){
2439 psp->gp->wildcard = sp;
2440 }else{
2441 ErrorMsg(psp->filename, psp->tokenlineno,
2442 "Extra wildcard to token: %s", x);
2443 psp->errorcnt++;
2444 }
2445 }
2446 break;
2447 case RESYNC_AFTER_RULE_ERROR:
2448 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2449 ** break; */
2450 case RESYNC_AFTER_DECL_ERROR:
2451 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2452 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2453 break;
2454 }
2455 }
2456
2457 /* Run the preprocessor over the input file text. The global variables
2458 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2459 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2460 ** comments them out. Text in between is also commented out as appropriate.
2461 */
preprocess_input(char * z)2462 static void preprocess_input(char *z){
2463 int i, j, k, n;
2464 int exclude = 0;
2465 int start = 0;
2466 int lineno = 1;
2467 int start_lineno = 1;
2468 for(i=0; z[i]; i++){
2469 if( z[i]=='\n' ) lineno++;
2470 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
2471 if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
2472 if( exclude ){
2473 exclude--;
2474 if( exclude==0 ){
2475 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2476 }
2477 }
2478 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2479 }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
2480 || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
2481 if( exclude ){
2482 exclude++;
2483 }else{
2484 for(j=i+7; isspace(z[j]); j++){}
2485 for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
2486 exclude = 1;
2487 for(k=0; k<nDefine; k++){
2488 if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
2489 exclude = 0;
2490 break;
2491 }
2492 }
2493 if( z[i+3]=='n' ) exclude = !exclude;
2494 if( exclude ){
2495 start = i;
2496 start_lineno = lineno;
2497 }
2498 }
2499 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2500 }
2501 }
2502 if( exclude ){
2503 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
2504 exit(1);
2505 }
2506 }
2507
2508 /* In spite of its name, this function is really a scanner. It read
2509 ** in the entire input file (all at once) then tokenizes it. Each
2510 ** token is passed to the function "parseonetoken" which builds all
2511 ** the appropriate data structures in the global state vector "gp".
2512 */
Parse(struct lemon * gp)2513 void Parse(struct lemon *gp)
2514 {
2515 struct pstate ps;
2516 FILE *fp;
2517 char *filebuf;
2518 int filesize;
2519 int lineno;
2520 int c;
2521 char *cp, *nextcp;
2522 int startline = 0;
2523
2524 memset(&ps, '\0', sizeof(ps));
2525 ps.gp = gp;
2526 ps.filename = gp->filename;
2527 ps.errorcnt = 0;
2528 ps.state = INITIALIZE;
2529
2530 /* Begin by reading the input file */
2531 fp = fopen(ps.filename,"rb");
2532 if( fp==0 ){
2533 ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2534 gp->errorcnt++;
2535 return;
2536 }
2537 fseek(fp,0,2);
2538 filesize = ftell(fp);
2539 rewind(fp);
2540 filebuf = (char *)malloc( filesize+1 );
2541 if( filebuf==0 ){
2542 ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
2543 filesize+1);
2544 gp->errorcnt++;
2545 return;
2546 }
2547 if( fread(filebuf,1,filesize,fp)!=filesize ){
2548 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2549 filesize);
2550 free(filebuf);
2551 gp->errorcnt++;
2552 return;
2553 }
2554 fclose(fp);
2555 filebuf[filesize] = 0;
2556
2557 /* Make an initial pass through the file to handle %ifdef and %ifndef */
2558 preprocess_input(filebuf);
2559
2560 /* Now scan the text of the input file */
2561 lineno = 1;
2562 for(cp=filebuf; (c= *cp)!=0; ){
2563 if( c=='\n' ) lineno++; /* Keep track of the line number */
2564 if( isspace(c) ){ cp++; continue; } /* Skip all white space */
2565 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
2566 cp+=2;
2567 while( (c= *cp)!=0 && c!='\n' ) cp++;
2568 continue;
2569 }
2570 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
2571 cp+=2;
2572 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
2573 if( c=='\n' ) lineno++;
2574 cp++;
2575 }
2576 if( c ) cp++;
2577 continue;
2578 }
2579 ps.tokenstart = cp; /* Mark the beginning of the token */
2580 ps.tokenlineno = lineno; /* Linenumber on which token begins */
2581 if( c=='\"' ){ /* String literals */
2582 cp++;
2583 while( (c= *cp)!=0 && c!='\"' ){
2584 if( c=='\n' ) lineno++;
2585 cp++;
2586 }
2587 if( c==0 ){
2588 ErrorMsg(ps.filename,startline,
2589 "String starting on this line is not terminated before the end of the file.");
2590 ps.errorcnt++;
2591 nextcp = cp;
2592 }else{
2593 nextcp = cp+1;
2594 }
2595 }else if( c=='{' ){ /* A block of C code */
2596 int level;
2597 cp++;
2598 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
2599 if( c=='\n' ) lineno++;
2600 else if( c=='{' ) level++;
2601 else if( c=='}' ) level--;
2602 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
2603 int prevc;
2604 cp = &cp[2];
2605 prevc = 0;
2606 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
2607 if( c=='\n' ) lineno++;
2608 prevc = c;
2609 cp++;
2610 }
2611 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
2612 cp = &cp[2];
2613 while( (c= *cp)!=0 && c!='\n' ) cp++;
2614 if( c ) lineno++;
2615 }else if( c=='\'' || c=='\"' ){ /* String a character literals */
2616 int startchar, prevc;
2617 startchar = c;
2618 prevc = 0;
2619 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
2620 if( c=='\n' ) lineno++;
2621 if( prevc=='\\' ) prevc = 0;
2622 else prevc = c;
2623 }
2624 }
2625 }
2626 if( c==0 ){
2627 ErrorMsg(ps.filename,ps.tokenlineno,
2628 "C code starting on this line is not terminated before the end of the file.");
2629 ps.errorcnt++;
2630 nextcp = cp;
2631 }else{
2632 nextcp = cp+1;
2633 }
2634 }else if( isalnum(c) ){ /* Identifiers */
2635 while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2636 nextcp = cp;
2637 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
2638 cp += 3;
2639 nextcp = cp;
2640 }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
2641 cp += 2;
2642 while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2643 nextcp = cp;
2644 }else{ /* All other (one character) operators */
2645 cp++;
2646 nextcp = cp;
2647 }
2648 c = *cp;
2649 *cp = 0; /* Null terminate the token */
2650 parseonetoken(&ps); /* Parse the token */
2651 *cp = c; /* Restore the buffer */
2652 cp = nextcp;
2653 }
2654 free(filebuf); /* Release the buffer after parsing */
2655 gp->rule = ps.firstrule;
2656 gp->errorcnt = ps.errorcnt;
2657 }
2658 /*************************** From the file "plink.c" *********************/
2659 /*
2660 ** Routines processing configuration follow-set propagation links
2661 ** in the LEMON parser generator.
2662 */
2663 static struct plink *plink_freelist = 0;
2664
2665 /* Allocate a new plink */
Plink_new()2666 struct plink *Plink_new(){
2667 struct plink *newlink;
2668
2669 if( plink_freelist==0 ){
2670 int i;
2671 int amt = 100;
2672 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
2673 if( plink_freelist==0 ){
2674 fprintf(stderr,
2675 "Unable to allocate memory for a new follow-set propagation link.\n");
2676 exit(1);
2677 }
2678 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
2679 plink_freelist[amt-1].next = 0;
2680 }
2681 newlink = plink_freelist;
2682 plink_freelist = plink_freelist->next;
2683 return newlink;
2684 }
2685
2686 /* Add a plink to a plink list */
Plink_add(struct plink ** plpp,struct config * cfp)2687 void Plink_add(struct plink **plpp, struct config *cfp)
2688 {
2689 struct plink *newlink;
2690 newlink = Plink_new();
2691 newlink->next = *plpp;
2692 *plpp = newlink;
2693 newlink->cfp = cfp;
2694 }
2695
2696 /* Transfer every plink on the list "from" to the list "to" */
Plink_copy(struct plink ** to,struct plink * from)2697 void Plink_copy(struct plink **to, struct plink *from)
2698 {
2699 struct plink *nextpl;
2700 while( from ){
2701 nextpl = from->next;
2702 from->next = *to;
2703 *to = from;
2704 from = nextpl;
2705 }
2706 }
2707
2708 /* Delete every plink on the list */
Plink_delete(struct plink * plp)2709 void Plink_delete(struct plink *plp)
2710 {
2711 struct plink *nextpl;
2712
2713 while( plp ){
2714 nextpl = plp->next;
2715 plp->next = plink_freelist;
2716 plink_freelist = plp;
2717 plp = nextpl;
2718 }
2719 }
2720 /*********************** From the file "report.c" **************************/
2721 /*
2722 ** Procedures for generating reports and tables in the LEMON parser generator.
2723 */
2724
2725 /* Generate a filename with the given suffix. Space to hold the
2726 ** name comes from malloc() and must be freed by the calling
2727 ** function.
2728 */
file_makename(struct lemon * lemp,const char * suffix)2729 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
2730 {
2731 char *name;
2732 char *cp;
2733
2734 name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
2735 if( name==0 ){
2736 fprintf(stderr,"Can't allocate space for a filename.\n");
2737 exit(1);
2738 }
2739 strcpy(name,lemp->filename);
2740 cp = strrchr(name,'.');
2741 if( cp ) *cp = 0;
2742 strcat(name,suffix);
2743 return name;
2744 }
2745
2746 /* Open a file with a name based on the name of the input file,
2747 ** but with a different (specified) suffix, and return a pointer
2748 ** to the stream */
file_open(struct lemon * lemp,const char * suffix,const char * mode)2749 PRIVATE FILE *file_open(
2750 struct lemon *lemp,
2751 const char *suffix,
2752 const char *mode
2753 ){
2754 FILE *fp;
2755
2756 if( lemp->outname ) free(lemp->outname);
2757 lemp->outname = file_makename(lemp, suffix);
2758 fp = fopen(lemp->outname,mode);
2759 if( fp==0 && *mode=='w' ){
2760 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
2761 lemp->errorcnt++;
2762 return 0;
2763 }
2764
2765 /* Add files we create to a list, so we can delete them if we fail. This
2766 ** is to keep makefiles from getting confused. We don't include .out files,
2767 ** though: this is debug information, and you don't want it deleted if there
2768 ** was an error you need to track down.
2769 */
2770 if(( *mode=='w' ) && (strcmp(suffix, ".out") != 0)){
2771 const char **ptr = (const char **)
2772 realloc(made_files, sizeof (const char **) * (made_files_count + 1));
2773 const char *fname = Strsafe(lemp->outname);
2774 if ((ptr == NULL) || (fname == NULL)) {
2775 free(ptr);
2776 memory_error();
2777 }
2778 made_files = ptr;
2779 made_files[made_files_count++] = fname;
2780 }
2781 return fp;
2782 }
2783
2784 /* Duplicate the input file without comments and without actions
2785 ** on rules */
Reprint(struct lemon * lemp)2786 void Reprint(struct lemon *lemp)
2787 {
2788 struct rule *rp;
2789 struct symbol *sp;
2790 int i, j, maxlen, len, ncolumns, skip;
2791 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
2792 maxlen = 10;
2793 for(i=0; i<lemp->nsymbol; i++){
2794 sp = lemp->symbols[i];
2795 len = lemonStrlen(sp->name);
2796 if( len>maxlen ) maxlen = len;
2797 }
2798 ncolumns = 76/(maxlen+5);
2799 if( ncolumns<1 ) ncolumns = 1;
2800 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
2801 for(i=0; i<skip; i++){
2802 printf("//");
2803 for(j=i; j<lemp->nsymbol; j+=skip){
2804 sp = lemp->symbols[j];
2805 assert( sp->index==j );
2806 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
2807 }
2808 printf("\n");
2809 }
2810 for(rp=lemp->rule; rp; rp=rp->next){
2811 printf("%s",rp->lhs->name);
2812 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
2813 printf(" ::=");
2814 for(i=0; i<rp->nrhs; i++){
2815 sp = rp->rhs[i];
2816 printf(" %s", sp->name);
2817 if( sp->type==MULTITERMINAL ){
2818 for(j=1; j<sp->nsubsym; j++){
2819 printf("|%s", sp->subsym[j]->name);
2820 }
2821 }
2822 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
2823 }
2824 printf(".");
2825 if( rp->precsym ) printf(" [%s]",rp->precsym->name);
2826 /* if( rp->code ) printf("\n %s",rp->code); */
2827 printf("\n");
2828 }
2829 }
2830
ConfigPrint(FILE * fp,struct config * cfp)2831 void ConfigPrint(FILE *fp, struct config *cfp)
2832 {
2833 struct rule *rp;
2834 struct symbol *sp;
2835 int i, j;
2836 rp = cfp->rp;
2837 fprintf(fp,"%s ::=",rp->lhs->name);
2838 for(i=0; i<=rp->nrhs; i++){
2839 if( i==cfp->dot ) fprintf(fp," *");
2840 if( i==rp->nrhs ) break;
2841 sp = rp->rhs[i];
2842 fprintf(fp," %s", sp->name);
2843 if( sp->type==MULTITERMINAL ){
2844 for(j=1; j<sp->nsubsym; j++){
2845 fprintf(fp,"|%s",sp->subsym[j]->name);
2846 }
2847 }
2848 }
2849 }
2850
2851 /* #define TEST */
2852 #if 0
2853 /* Print a set */
2854 PRIVATE void SetPrint(out,set,lemp)
2855 FILE *out;
2856 char *set;
2857 struct lemon *lemp;
2858 {
2859 int i;
2860 char *spacer;
2861 spacer = "";
2862 fprintf(out,"%12s[","");
2863 for(i=0; i<lemp->nterminal; i++){
2864 if( SetFind(set,i) ){
2865 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
2866 spacer = " ";
2867 }
2868 }
2869 fprintf(out,"]\n");
2870 }
2871
2872 /* Print a plink chain */
2873 PRIVATE void PlinkPrint(out,plp,tag)
2874 FILE *out;
2875 struct plink *plp;
2876 char *tag;
2877 {
2878 while( plp ){
2879 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
2880 ConfigPrint(out,plp->cfp);
2881 fprintf(out,"\n");
2882 plp = plp->next;
2883 }
2884 }
2885 #endif
2886
2887 /* Print an action to the given file descriptor. Return FALSE if
2888 ** nothing was actually printed.
2889 */
PrintAction(struct action * ap,FILE * fp,int indent)2890 int PrintAction(struct action *ap, FILE *fp, int indent){
2891 int result = 1;
2892 switch( ap->type ){
2893 case SHIFT:
2894 fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum);
2895 break;
2896 case REDUCE:
2897 fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
2898 break;
2899 case ACCEPT:
2900 fprintf(fp,"%*s accept",indent,ap->sp->name);
2901 break;
2902 case ERROR:
2903 fprintf(fp,"%*s error",indent,ap->sp->name);
2904 break;
2905 case SRCONFLICT:
2906 case RRCONFLICT:
2907 fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
2908 indent,ap->sp->name,ap->x.rp->index);
2909 break;
2910 case SSCONFLICT:
2911 fprintf(fp,"%*s shift %-3d ** Parsing conflict **",
2912 indent,ap->sp->name,ap->x.stp->statenum);
2913 break;
2914 case SH_RESOLVED:
2915 if( showPrecedenceConflict ){
2916 fprintf(fp,"%*s shift %-3d -- dropped by precedence",
2917 indent,ap->sp->name,ap->x.stp->statenum);
2918 }else{
2919 result = 0;
2920 }
2921 break;
2922 case RD_RESOLVED:
2923 if( showPrecedenceConflict ){
2924 fprintf(fp,"%*s reduce %-3d -- dropped by precedence",
2925 indent,ap->sp->name,ap->x.rp->index);
2926 }else{
2927 result = 0;
2928 }
2929 break;
2930 case NOT_USED:
2931 result = 0;
2932 break;
2933 }
2934 return result;
2935 }
2936
2937 /* Generate the "y.output" log file */
ReportOutput(struct lemon * lemp)2938 void ReportOutput(struct lemon *lemp)
2939 {
2940 int i;
2941 struct state *stp;
2942 struct config *cfp;
2943 struct action *ap;
2944 FILE *fp;
2945
2946 fp = file_open(lemp,".out","wb");
2947 if( fp==0 ) return;
2948 for(i=0; i<lemp->nstate; i++){
2949 stp = lemp->sorted[i];
2950 fprintf(fp,"State %d:\n",stp->statenum);
2951 if( lemp->basisflag ) cfp=stp->bp;
2952 else cfp=stp->cfp;
2953 while( cfp ){
2954 char buf[20];
2955 if( cfp->dot==cfp->rp->nrhs ){
2956 sprintf(buf,"(%d)",cfp->rp->index);
2957 fprintf(fp," %5s ",buf);
2958 }else{
2959 fprintf(fp," ");
2960 }
2961 ConfigPrint(fp,cfp);
2962 fprintf(fp,"\n");
2963 #if 0
2964 SetPrint(fp,cfp->fws,lemp);
2965 PlinkPrint(fp,cfp->fplp,"To ");
2966 PlinkPrint(fp,cfp->bplp,"From");
2967 #endif
2968 if( lemp->basisflag ) cfp=cfp->bp;
2969 else cfp=cfp->next;
2970 }
2971 fprintf(fp,"\n");
2972 for(ap=stp->ap; ap; ap=ap->next){
2973 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
2974 }
2975 fprintf(fp,"\n");
2976 }
2977 fprintf(fp, "----------------------------------------------------\n");
2978 fprintf(fp, "Symbols:\n");
2979 for(i=0; i<lemp->nsymbol; i++){
2980 int j;
2981 struct symbol *sp;
2982
2983 sp = lemp->symbols[i];
2984 fprintf(fp, " %3d: %s", i, sp->name);
2985 if( sp->type==NONTERMINAL ){
2986 fprintf(fp, ":");
2987 if( sp->lambda ){
2988 fprintf(fp, " <lambda>");
2989 }
2990 for(j=0; j<lemp->nterminal; j++){
2991 if( sp->firstset && SetFind(sp->firstset, j) ){
2992 fprintf(fp, " %s", lemp->symbols[j]->name);
2993 }
2994 }
2995 }
2996 fprintf(fp, "\n");
2997 }
2998 fclose(fp);
2999 return;
3000 }
3001
3002 /* Search for the file "name" which is in the same directory as
3003 ** the exacutable */
pathsearch(char * argv0,char * name,int modemask)3004 PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
3005 {
3006 const char *pathlist;
3007 char *pathbufptr;
3008 char *pathbuf;
3009 char *path,*cp;
3010 char c;
3011
3012 #ifdef __WIN32__
3013 cp = strrchr(argv0,'\\');
3014 #else
3015 cp = strrchr(argv0,'/');
3016 #endif
3017 if( cp ){
3018 c = *cp;
3019 *cp = 0;
3020 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
3021 if( path ) sprintf(path,"%s/%s",argv0,name);
3022 *cp = c;
3023 }else{
3024 pathlist = getenv("PATH");
3025 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
3026 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
3027 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
3028 if( (pathbuf != 0) && (path!=0) ){
3029 pathbufptr = pathbuf;
3030 strcpy(pathbuf, pathlist);
3031 while( *pathbuf ){
3032 cp = strchr(pathbuf,':');
3033 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
3034 c = *cp;
3035 *cp = 0;
3036 sprintf(path,"%s/%s",pathbuf,name);
3037 *cp = c;
3038 if( c==0 ) pathbuf[0] = 0;
3039 else pathbuf = &cp[1];
3040 if( access(path,modemask)==0 ) break;
3041 }
3042 free(pathbufptr);
3043 }
3044 }
3045 return path;
3046 }
3047
3048 /* Given an action, compute the integer value for that action
3049 ** which is to be put in the action table of the generated machine.
3050 ** Return negative if no action should be generated.
3051 */
compute_action(struct lemon * lemp,struct action * ap)3052 PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
3053 {
3054 int act;
3055 switch( ap->type ){
3056 case SHIFT: act = ap->x.stp->statenum; break;
3057 case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
3058 case ERROR: act = lemp->nstate + lemp->nrule; break;
3059 case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
3060 default: act = -1; break;
3061 }
3062 return act;
3063 }
3064
3065 #define LINESIZE 1000
3066 /* The next cluster of routines are for reading the template file
3067 ** and writing the results to the generated parser */
3068 /* The first function transfers data from "in" to "out" until
3069 ** a line is seen which begins with "%%". The line number is
3070 ** tracked.
3071 **
3072 ** if name!=0, then any word that begin with "Parse" is changed to
3073 ** begin with *name instead.
3074 */
tplt_xfer(char * name,FILE * in,FILE * out,int * lineno)3075 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
3076 {
3077 int i, iStart;
3078 char line[LINESIZE];
3079 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3080 (*lineno)++;
3081 iStart = 0;
3082 if( name ){
3083 for(i=0; line[i]; i++){
3084 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
3085 && (i==0 || !isalpha(line[i-1]))
3086 ){
3087 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
3088 fprintf(out,"%s",name);
3089 i += 4;
3090 iStart = i+1;
3091 }
3092 }
3093 }
3094 fprintf(out,"%s",&line[iStart]);
3095 }
3096 }
3097
3098 /* The next function finds the template file and opens it, returning
3099 ** a pointer to the opened file. */
tplt_open(struct lemon * lemp)3100 PRIVATE FILE *tplt_open(struct lemon *lemp)
3101 {
3102 static char templatename[] = "lempar.c";
3103 char buf[1000];
3104 FILE *in;
3105 char *tpltname;
3106 char *cp;
3107
3108 /* first, see if user specified a template filename on the command line. */
3109 if (user_templatename != 0) {
3110 if( access(user_templatename,004)==-1 ){
3111 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3112 user_templatename);
3113 lemp->errorcnt++;
3114 return 0;
3115 }
3116 in = fopen(user_templatename,"rb");
3117 if( in==0 ){
3118 fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename);
3119 lemp->errorcnt++;
3120 return 0;
3121 }
3122 return in;
3123 }
3124
3125 cp = strrchr(lemp->filename,'.');
3126 if( cp ){
3127 sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
3128 }else{
3129 sprintf(buf,"%s.lt",lemp->filename);
3130 }
3131 if( access(buf,004)==0 ){
3132 tpltname = buf;
3133 }else if( access(templatename,004)==0 ){
3134 tpltname = templatename;
3135 }else{
3136 tpltname = pathsearch(lemp->argv0,templatename,0);
3137 }
3138 if( tpltname==0 ){
3139 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3140 templatename);
3141 lemp->errorcnt++;
3142 return 0;
3143 }
3144 in = fopen(tpltname,"rb");
3145 if( in==0 ){
3146 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
3147 lemp->errorcnt++;
3148 return 0;
3149 }
3150 return in;
3151 }
3152
3153 /* Print a #line directive line to the output file. */
tplt_linedir(FILE * out,int lineno,char * filename)3154 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
3155 {
3156 fprintf(out,"#line %d \"",lineno);
3157 while( *filename ){
3158 if( *filename == '\\' ) putc('\\',out);
3159 putc(*filename,out);
3160 filename++;
3161 }
3162 fprintf(out,"\"\n");
3163 }
3164
3165 /* Print a string to the file and keep the linenumber up to date */
tplt_print(FILE * out,struct lemon * lemp,char * str,int * lineno)3166 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
3167 {
3168 if( str==0 ) return;
3169 while( *str ){
3170 putc(*str,out);
3171 if( *str=='\n' ) (*lineno)++;
3172 str++;
3173 }
3174 if( str[-1]!='\n' ){
3175 putc('\n',out);
3176 (*lineno)++;
3177 }
3178 if (!lemp->nolinenosflag) {
3179 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3180 }
3181 return;
3182 }
3183
3184 /*
3185 ** The following routine emits code for the destructor for the
3186 ** symbol sp
3187 */
emit_destructor_code(FILE * out,struct symbol * sp,struct lemon * lemp,int * lineno)3188 void emit_destructor_code(
3189 FILE *out,
3190 struct symbol *sp,
3191 struct lemon *lemp,
3192 int *lineno
3193 ){
3194 char *cp = 0;
3195
3196 if( sp->type==TERMINAL ){
3197 cp = lemp->tokendest;
3198 if( cp==0 ) return;
3199 fprintf(out,"{\n"); (*lineno)++;
3200 }else if( sp->destructor ){
3201 cp = sp->destructor;
3202 fprintf(out,"{\n"); (*lineno)++;
3203 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); }
3204 }else if( lemp->vardest ){
3205 cp = lemp->vardest;
3206 if( cp==0 ) return;
3207 fprintf(out,"{\n"); (*lineno)++;
3208 }else{
3209 assert( 0 ); /* Cannot happen */
3210 }
3211 for(; *cp; cp++){
3212 if( *cp=='$' && cp[1]=='$' ){
3213 fprintf(out,"(yypminor->yy%d)",sp->dtnum);
3214 cp++;
3215 continue;
3216 }
3217 if( *cp=='\n' ) (*lineno)++;
3218 fputc(*cp,out);
3219 }
3220 fprintf(out,"\n"); (*lineno)++;
3221 if (!lemp->nolinenosflag) {
3222 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3223 }
3224 fprintf(out,"}\n"); (*lineno)++;
3225 return;
3226 }
3227
3228 /*
3229 ** Return TRUE (non-zero) if the given symbol has a destructor.
3230 */
has_destructor(struct symbol * sp,struct lemon * lemp)3231 int has_destructor(struct symbol *sp, struct lemon *lemp)
3232 {
3233 int ret;
3234 if( sp->type==TERMINAL ){
3235 ret = lemp->tokendest!=0;
3236 }else{
3237 ret = lemp->vardest!=0 || sp->destructor!=0;
3238 }
3239 return ret;
3240 }
3241
3242 /*
3243 ** Append text to a dynamically allocated string. If zText is 0 then
3244 ** reset the string to be empty again. Always return the complete text
3245 ** of the string (which is overwritten with each call).
3246 **
3247 ** n bytes of zText are stored. If n==0 then all of zText up to the first
3248 ** \000 terminator is stored. zText can contain up to two instances of
3249 ** %d. The values of p1 and p2 are written into the first and second
3250 ** %d.
3251 **
3252 ** If n==-1, then the previous character is overwritten.
3253 */
append_str(const char * zText,int n,int p1,int p2)3254 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
3255 static char empty[1] = { 0 };
3256 static char *z = 0;
3257 static int alloced = 0;
3258 static int used = 0;
3259 int c;
3260 char zInt[40];
3261 if( zText==0 ){
3262 used = 0;
3263 return z;
3264 }
3265 if( n<=0 ){
3266 if( n<0 ){
3267 used += n;
3268 assert( used>=0 );
3269 }
3270 n = lemonStrlen(zText);
3271 }
3272 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
3273 alloced = n + sizeof(zInt)*2 + used + 200;
3274 z = (char *) realloc(z, alloced);
3275 }
3276 if( z==0 ) return empty;
3277 while( n-- > 0 ){
3278 c = *(zText++);
3279 if( c=='%' && n>0 && zText[0]=='d' ){
3280 sprintf(zInt, "%d", p1);
3281 p1 = p2;
3282 strcpy(&z[used], zInt);
3283 used += lemonStrlen(&z[used]);
3284 zText++;
3285 n--;
3286 }else{
3287 z[used++] = c;
3288 }
3289 }
3290 z[used] = 0;
3291 return z;
3292 }
3293
3294 /*
3295 ** zCode is a string that is the action associated with a rule. Expand
3296 ** the symbols in this string so that the refer to elements of the parser
3297 ** stack.
3298 */
translate_code(struct lemon * lemp,struct rule * rp)3299 PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
3300 char *cp, *xp;
3301 int i;
3302 char lhsused = 0; /* True if the LHS element has been used */
3303 char used[MAXRHS]; /* True for each RHS element which is used */
3304
3305 for(i=0; i<rp->nrhs; i++) used[i] = 0;
3306 lhsused = 0;
3307
3308 if( rp->code==0 ){
3309 static char newlinestr[2] = { '\n', '\0' };
3310 rp->code = newlinestr;
3311 rp->line = rp->ruleline;
3312 }
3313
3314 append_str(0,0,0,0);
3315
3316 /* This const cast is wrong but harmless, if we're careful. */
3317 for(cp=(char *)rp->code; *cp; cp++){
3318 if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
3319 char saved;
3320 for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
3321 saved = *xp;
3322 *xp = 0;
3323 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
3324 append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
3325 cp = xp;
3326 lhsused = 1;
3327 }else{
3328 for(i=0; i<rp->nrhs; i++){
3329 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
3330 if( cp!=rp->code && cp[-1]=='@' ){
3331 /* If the argument is of the form @X then substituted
3332 ** the token number of X, not the value of X */
3333 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
3334 }else{
3335 struct symbol *sp = rp->rhs[i];
3336 int dtnum;
3337 if( sp->type==MULTITERMINAL ){
3338 dtnum = sp->subsym[0]->dtnum;
3339 }else{
3340 dtnum = sp->dtnum;
3341 }
3342 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
3343 }
3344 cp = xp;
3345 used[i] = 1;
3346 break;
3347 }
3348 }
3349 }
3350 *xp = saved;
3351 }
3352 append_str(cp, 1, 0, 0);
3353 } /* End loop */
3354
3355 /* Check to make sure the LHS has been used */
3356 if( rp->lhsalias && !lhsused ){
3357 ErrorMsg(lemp->filename,rp->ruleline,
3358 "Label \"%s\" for \"%s(%s)\" is never used.",
3359 rp->lhsalias,rp->lhs->name,rp->lhsalias);
3360 lemp->errorcnt++;
3361 }
3362
3363 /* Generate destructor code for RHS symbols which are not used in the
3364 ** reduce code */
3365 for(i=0; i<rp->nrhs; i++){
3366 if( rp->rhsalias[i] && !used[i] ){
3367 ErrorMsg(lemp->filename,rp->ruleline,
3368 "Label %s for \"%s(%s)\" is never used.",
3369 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
3370 lemp->errorcnt++;
3371 }else if( rp->rhsalias[i]==0 ){
3372 if( has_destructor(rp->rhs[i],lemp) ){
3373 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3374 rp->rhs[i]->index,i-rp->nrhs+1);
3375 }else{
3376 /* No destructor defined for this term */
3377 }
3378 }
3379 }
3380 if( rp->code ){
3381 cp = append_str(0,0,0,0);
3382 rp->code = Strsafe(cp?cp:"");
3383 }
3384 }
3385
3386 /*
3387 ** Generate code which executes when the rule "rp" is reduced. Write
3388 ** the code to "out". Make sure lineno stays up-to-date.
3389 */
emit_code(FILE * out,struct rule * rp,struct lemon * lemp,int * lineno)3390 PRIVATE void emit_code(
3391 FILE *out,
3392 struct rule *rp,
3393 struct lemon *lemp,
3394 int *lineno
3395 ){
3396 const char *cp;
3397
3398 /* Generate code to do the reduce action */
3399 if( rp->code ){
3400 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); }
3401 fprintf(out,"{%s",rp->code);
3402 for(cp=rp->code; *cp; cp++){
3403 if( *cp=='\n' ) (*lineno)++;
3404 } /* End loop */
3405 fprintf(out,"}\n"); (*lineno)++;
3406 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); }
3407 } /* End if( rp->code ) */
3408
3409 return;
3410 }
3411
3412 /*
3413 ** Print the definition of the union used for the parser's data stack.
3414 ** This union contains fields for every possible data type for tokens
3415 ** and nonterminals. In the process of computing and printing this
3416 ** union, also set the ".dtnum" field of every terminal and nonterminal
3417 ** symbol.
3418 */
print_stack_union(FILE * out,struct lemon * lemp,int * plineno,int mhflag)3419 void print_stack_union(
3420 FILE *out, /* The output stream */
3421 struct lemon *lemp, /* The main info structure for this parser */
3422 int *plineno, /* Pointer to the line number */
3423 int mhflag /* True if generating makeheaders output */
3424 ){
3425 int lineno = *plineno; /* The line number of the output */
3426 char **types; /* A hash table of datatypes */
3427 int arraysize; /* Size of the "types" array */
3428 int maxdtlength; /* Maximum length of any ".datatype" field. */
3429 char *stddt; /* Standardized name for a datatype */
3430 int i,j; /* Loop counters */
3431 int hash; /* For hashing the name of a type */
3432 const char *name; /* Name of the parser */
3433
3434 /* Allocate and initialize types[] and allocate stddt[] */
3435 arraysize = lemp->nsymbol * 2;
3436 types = (char**)calloc( arraysize, sizeof(char*) );
3437 for(i=0; i<arraysize; i++) types[i] = 0;
3438 maxdtlength = 0;
3439 if( lemp->vartype ){
3440 maxdtlength = lemonStrlen(lemp->vartype);
3441 }
3442 for(i=0; i<lemp->nsymbol; i++){
3443 int len;
3444 struct symbol *sp = lemp->symbols[i];
3445 if( sp->datatype==0 ) continue;
3446 len = lemonStrlen(sp->datatype);
3447 if( len>maxdtlength ) maxdtlength = len;
3448 }
3449 stddt = (char*)malloc( maxdtlength*2 + 1 );
3450 if( types==0 || stddt==0 ){
3451 fprintf(stderr,"Out of memory.\n");
3452 exit(1);
3453 }
3454
3455 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
3456 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
3457 ** used for terminal symbols. If there is no %default_type defined then
3458 ** 0 is also used as the .dtnum value for nonterminals which do not specify
3459 ** a datatype using the %type directive.
3460 */
3461 for(i=0; i<lemp->nsymbol; i++){
3462 struct symbol *sp = lemp->symbols[i];
3463 char *cp;
3464 if( sp==lemp->errsym ){
3465 sp->dtnum = arraysize+1;
3466 continue;
3467 }
3468 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
3469 sp->dtnum = 0;
3470 continue;
3471 }
3472 cp = sp->datatype;
3473 if( cp==0 ) cp = lemp->vartype;
3474 j = 0;
3475 while( isspace(*cp) ) cp++;
3476 while( *cp ) stddt[j++] = *cp++;
3477 while( j>0 && isspace(stddt[j-1]) ) j--;
3478 stddt[j] = 0;
3479 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
3480 sp->dtnum = 0;
3481 continue;
3482 }
3483 hash = 0;
3484 for(j=0; stddt[j]; j++){
3485 hash = hash*53 + stddt[j];
3486 }
3487 hash = (hash & 0x7fffffff)%arraysize;
3488 while( types[hash] ){
3489 if( strcmp(types[hash],stddt)==0 ){
3490 sp->dtnum = hash + 1;
3491 break;
3492 }
3493 hash++;
3494 if( hash>=arraysize ) hash = 0;
3495 }
3496 if( types[hash]==0 ){
3497 sp->dtnum = hash + 1;
3498 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
3499 if( types[hash]==0 ){
3500 fprintf(stderr,"Out of memory.\n");
3501 exit(1);
3502 }
3503 strcpy(types[hash],stddt);
3504 }
3505 }
3506
3507 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
3508 name = lemp->name ? lemp->name : "Parse";
3509 lineno = *plineno;
3510 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
3511 fprintf(out,"#define %sTOKENTYPE %s\n",name,
3512 lemp->tokentype?lemp->tokentype:"void*"); lineno++;
3513 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
3514 fprintf(out,"typedef union {\n"); lineno++;
3515 fprintf(out," int yyinit;\n"); lineno++;
3516 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
3517 for(i=0; i<arraysize; i++){
3518 if( types[i]==0 ) continue;
3519 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
3520 free(types[i]);
3521 }
3522 if( lemp->errsym->useCnt ){
3523 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
3524 }
3525 free(stddt);
3526 free(types);
3527 fprintf(out,"} YYMINORTYPE;\n"); lineno++;
3528 *plineno = lineno;
3529 }
3530
3531 /*
3532 ** Return the name of a C datatype able to represent values between
3533 ** lwr and upr, inclusive.
3534 */
minimum_size_type(int lwr,int upr)3535 static const char *minimum_size_type(int lwr, int upr){
3536 if( lwr>=0 ){
3537 if( upr<=255 ){
3538 return "unsigned char";
3539 }else if( upr<65535 ){
3540 return "unsigned short int";
3541 }else{
3542 return "unsigned int";
3543 }
3544 }else if( lwr>=-127 && upr<=127 ){
3545 return "signed char";
3546 }else if( lwr>=-32767 && upr<32767 ){
3547 return "short";
3548 }else{
3549 return "int";
3550 }
3551 }
3552
3553 /*
3554 ** Each state contains a set of token transaction and a set of
3555 ** nonterminal transactions. Each of these sets makes an instance
3556 ** of the following structure. An array of these structures is used
3557 ** to order the creation of entries in the yy_action[] table.
3558 */
3559 struct axset {
3560 struct state *stp; /* A pointer to a state */
3561 int isTkn; /* True to use tokens. False for non-terminals */
3562 int nAction; /* Number of actions */
3563 int iOrder; /* Original order of action sets */
3564 };
3565
3566 /*
3567 ** Compare to axset structures for sorting purposes
3568 */
axset_compare(const void * a,const void * b)3569 static int axset_compare(const void *a, const void *b){
3570 struct axset *p1 = (struct axset*)a;
3571 struct axset *p2 = (struct axset*)b;
3572 int c;
3573 c = p2->nAction - p1->nAction;
3574 if( c==0 ){
3575 c = p2->iOrder - p1->iOrder;
3576 }
3577 assert( c!=0 || p1==p2 );
3578 return c;
3579 }
3580
3581 /*
3582 ** Write text on "out" that describes the rule "rp".
3583 */
writeRuleText(FILE * out,struct rule * rp)3584 static void writeRuleText(FILE *out, struct rule *rp){
3585 int j;
3586 fprintf(out,"%s ::=", rp->lhs->name);
3587 for(j=0; j<rp->nrhs; j++){
3588 struct symbol *sp = rp->rhs[j];
3589 fprintf(out," %s", sp->name);
3590 if( sp->type==MULTITERMINAL ){
3591 int k;
3592 for(k=1; k<sp->nsubsym; k++){
3593 fprintf(out,"|%s",sp->subsym[k]->name);
3594 }
3595 }
3596 }
3597 }
3598
3599
3600 /* Generate C source code for the parser */
ReportTable(struct lemon * lemp,int mhflag)3601 void ReportTable(
3602 struct lemon *lemp,
3603 int mhflag /* Output in makeheaders format if true */
3604 ){
3605 FILE *out, *in;
3606 char line[LINESIZE];
3607 int lineno;
3608 struct state *stp;
3609 struct action *ap;
3610 struct rule *rp;
3611 struct acttab *pActtab;
3612 int i, j, n;
3613 const char *name;
3614 int mnTknOfst, mxTknOfst;
3615 int mnNtOfst, mxNtOfst;
3616 struct axset *ax;
3617
3618 in = tplt_open(lemp);
3619 if( in==0 ) return;
3620 out = file_open(lemp,".c","wb");
3621 if( out==0 ){
3622 fclose(in);
3623 return;
3624 }
3625 lineno = 1;
3626 tplt_xfer(lemp->name,in,out,&lineno);
3627
3628 /* Generate the include code, if any */
3629 tplt_print(out,lemp,lemp->include,&lineno);
3630 if( mhflag ){
3631 char *name = file_makename(lemp, ".h");
3632 fprintf(out,"#include \"%s\"\n", name); lineno++;
3633 free(name);
3634 }
3635 tplt_xfer(lemp->name,in,out,&lineno);
3636
3637 /* Generate #defines for all tokens */
3638 if( mhflag ){
3639 const char *prefix;
3640 fprintf(out,"#if INTERFACE\n"); lineno++;
3641 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3642 else prefix = "";
3643 for(i=1; i<lemp->nterminal; i++){
3644 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3645 lineno++;
3646 }
3647 fprintf(out,"#endif\n"); lineno++;
3648 }
3649 tplt_xfer(lemp->name,in,out,&lineno);
3650
3651 /* Generate the defines */
3652 fprintf(out,"#define YYCODETYPE %s\n",
3653 minimum_size_type(0, lemp->nsymbol+1)); lineno++;
3654 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
3655 fprintf(out,"#define YYACTIONTYPE %s\n",
3656 minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
3657 if( lemp->wildcard ){
3658 fprintf(out,"#define YYWILDCARD %d\n",
3659 lemp->wildcard->index); lineno++;
3660 }
3661 print_stack_union(out,lemp,&lineno,mhflag);
3662 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
3663 if( lemp->stacksize ){
3664 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
3665 }else{
3666 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
3667 }
3668 fprintf(out, "#endif\n"); lineno++;
3669 if( mhflag ){
3670 fprintf(out,"#if INTERFACE\n"); lineno++;
3671 }
3672 name = lemp->name ? lemp->name : "Parse";
3673 if( lemp->arg && lemp->arg[0] ){
3674 int i;
3675 i = lemonStrlen(lemp->arg);
3676 while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
3677 while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
3678 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
3679 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
3680 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
3681 name,lemp->arg,&lemp->arg[i]); lineno++;
3682 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
3683 name,&lemp->arg[i],&lemp->arg[i]); lineno++;
3684 }else{
3685 fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
3686 fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
3687 fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
3688 fprintf(out,"#define %sARG_STORE\n",name); lineno++;
3689 }
3690 if( mhflag ){
3691 fprintf(out,"#endif\n"); lineno++;
3692 }
3693 fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
3694 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
3695 if( lemp->errsym->useCnt ){
3696 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
3697 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
3698 }
3699 if( lemp->has_fallback ){
3700 fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
3701 }
3702 tplt_xfer(lemp->name,in,out,&lineno);
3703
3704 /* Generate the action table and its associates:
3705 **
3706 ** yy_action[] A single table containing all actions.
3707 ** yy_lookahead[] A table containing the lookahead for each entry in
3708 ** yy_action. Used to detect hash collisions.
3709 ** yy_shift_ofst[] For each state, the offset into yy_action for
3710 ** shifting terminals.
3711 ** yy_reduce_ofst[] For each state, the offset into yy_action for
3712 ** shifting non-terminals after a reduce.
3713 ** yy_default[] Default action for each state.
3714 */
3715
3716 /* Compute the actions on all states and count them up */
3717 ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0]));
3718 if( ax==0 ){
3719 fprintf(stderr,"malloc failed\n");
3720 exit(1);
3721 }
3722 for(i=0; i<lemp->nstate; i++){
3723 stp = lemp->sorted[i];
3724 ax[i*2].stp = stp;
3725 ax[i*2].isTkn = 1;
3726 ax[i*2].nAction = stp->nTknAct;
3727 ax[i*2+1].stp = stp;
3728 ax[i*2+1].isTkn = 0;
3729 ax[i*2+1].nAction = stp->nNtAct;
3730 }
3731 mxTknOfst = mnTknOfst = 0;
3732 mxNtOfst = mnNtOfst = 0;
3733
3734 /* Compute the action table. In order to try to keep the size of the
3735 ** action table to a minimum, the heuristic of placing the largest action
3736 ** sets first is used.
3737 */
3738 for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i;
3739 qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
3740 pActtab = acttab_alloc();
3741 for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
3742 stp = ax[i].stp;
3743 if( ax[i].isTkn ){
3744 for(ap=stp->ap; ap; ap=ap->next){
3745 int action;
3746 if( ap->sp->index>=lemp->nterminal ) continue;
3747 action = compute_action(lemp, ap);
3748 if( action<0 ) continue;
3749 acttab_action(pActtab, ap->sp->index, action);
3750 }
3751 stp->iTknOfst = acttab_insert(pActtab);
3752 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
3753 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
3754 }else{
3755 for(ap=stp->ap; ap; ap=ap->next){
3756 int action;
3757 if( ap->sp->index<lemp->nterminal ) continue;
3758 if( ap->sp->index==lemp->nsymbol ) continue;
3759 action = compute_action(lemp, ap);
3760 if( action<0 ) continue;
3761 acttab_action(pActtab, ap->sp->index, action);
3762 }
3763 stp->iNtOfst = acttab_insert(pActtab);
3764 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
3765 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
3766 }
3767 }
3768 free(ax);
3769
3770 /* Output the yy_action table */
3771 n = acttab_size(pActtab);
3772 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
3773 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
3774 for(i=j=0; i<n; i++){
3775 int action = acttab_yyaction(pActtab, i);
3776 if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
3777 if( j==0 ) fprintf(out," /* %5d */ ", i);
3778 fprintf(out, " %4d,", action);
3779 if( j==9 || i==n-1 ){
3780 fprintf(out, "\n"); lineno++;
3781 j = 0;
3782 }else{
3783 j++;
3784 }
3785 }
3786 fprintf(out, "};\n"); lineno++;
3787
3788 /* Output the yy_lookahead table */
3789 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
3790 for(i=j=0; i<n; i++){
3791 int la = acttab_yylookahead(pActtab, i);
3792 if( la<0 ) la = lemp->nsymbol;
3793 if( j==0 ) fprintf(out," /* %5d */ ", i);
3794 fprintf(out, " %4d,", la);
3795 if( j==9 || i==n-1 ){
3796 fprintf(out, "\n"); lineno++;
3797 j = 0;
3798 }else{
3799 j++;
3800 }
3801 }
3802 fprintf(out, "};\n"); lineno++;
3803
3804 /* Output the yy_shift_ofst[] table */
3805 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
3806 n = lemp->nstate;
3807 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
3808 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
3809 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++;
3810 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++;
3811 fprintf(out, "static const %s yy_shift_ofst[] = {\n",
3812 minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
3813 for(i=j=0; i<n; i++){
3814 int ofst;
3815 stp = lemp->sorted[i];
3816 ofst = stp->iTknOfst;
3817 if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
3818 if( j==0 ) fprintf(out," /* %5d */ ", i);
3819 fprintf(out, " %4d,", ofst);
3820 if( j==9 || i==n-1 ){
3821 fprintf(out, "\n"); lineno++;
3822 j = 0;
3823 }else{
3824 j++;
3825 }
3826 }
3827 fprintf(out, "};\n"); lineno++;
3828
3829 /* Output the yy_reduce_ofst[] table */
3830 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
3831 n = lemp->nstate;
3832 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
3833 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
3834 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++;
3835 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++;
3836 fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
3837 minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
3838 for(i=j=0; i<n; i++){
3839 int ofst;
3840 stp = lemp->sorted[i];
3841 ofst = stp->iNtOfst;
3842 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
3843 if( j==0 ) fprintf(out," /* %5d */ ", i);
3844 fprintf(out, " %4d,", ofst);
3845 if( j==9 || i==n-1 ){
3846 fprintf(out, "\n"); lineno++;
3847 j = 0;
3848 }else{
3849 j++;
3850 }
3851 }
3852 fprintf(out, "};\n"); lineno++;
3853
3854 /* Output the default action table */
3855 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
3856 n = lemp->nstate;
3857 for(i=j=0; i<n; i++){
3858 stp = lemp->sorted[i];
3859 if( j==0 ) fprintf(out," /* %5d */ ", i);
3860 fprintf(out, " %4d,", stp->iDflt);
3861 if( j==9 || i==n-1 ){
3862 fprintf(out, "\n"); lineno++;
3863 j = 0;
3864 }else{
3865 j++;
3866 }
3867 }
3868 fprintf(out, "};\n"); lineno++;
3869 tplt_xfer(lemp->name,in,out,&lineno);
3870
3871 /* Generate the table of fallback tokens.
3872 */
3873 if( lemp->has_fallback ){
3874 int mx = lemp->nterminal - 1;
3875 while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
3876 for(i=0; i<=mx; i++){
3877 struct symbol *p = lemp->symbols[i];
3878 if( p->fallback==0 ){
3879 fprintf(out, " 0, /* %10s => nothing */\n", p->name);
3880 }else{
3881 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
3882 p->name, p->fallback->name);
3883 }
3884 lineno++;
3885 }
3886 }
3887 tplt_xfer(lemp->name, in, out, &lineno);
3888
3889 /* Generate a table containing the symbolic name of every symbol
3890 */
3891 for(i=0; i<lemp->nsymbol; i++){
3892 sprintf(line,"\"%s\",",lemp->symbols[i]->name);
3893 fprintf(out," %-15s",line);
3894 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
3895 }
3896 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
3897 tplt_xfer(lemp->name,in,out,&lineno);
3898
3899 /* Generate a table containing a text string that describes every
3900 ** rule in the rule set of the grammar. This information is used
3901 ** when tracing REDUCE actions.
3902 */
3903 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
3904 assert( rp->index==i );
3905 fprintf(out," /* %3d */ \"", i);
3906 writeRuleText(out, rp);
3907 fprintf(out,"\",\n"); lineno++;
3908 }
3909 tplt_xfer(lemp->name,in,out,&lineno);
3910
3911 /* Generate code which executes every time a symbol is popped from
3912 ** the stack while processing errors or while destroying the parser.
3913 ** (In other words, generate the %destructor actions)
3914 */
3915 if( lemp->tokendest ){
3916 int once = 1;
3917 for(i=0; i<lemp->nsymbol; i++){
3918 struct symbol *sp = lemp->symbols[i];
3919 if( sp==0 || sp->type!=TERMINAL ) continue;
3920 if( once ){
3921 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
3922 once = 0;
3923 }
3924 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
3925 }
3926 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
3927 if( i<lemp->nsymbol ){
3928 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3929 fprintf(out," break;\n"); lineno++;
3930 }
3931 }
3932 if( lemp->vardest ){
3933 struct symbol *dflt_sp = 0;
3934 int once = 1;
3935 for(i=0; i<lemp->nsymbol; i++){
3936 struct symbol *sp = lemp->symbols[i];
3937 if( sp==0 || sp->type==TERMINAL ||
3938 sp->index<=0 || sp->destructor!=0 ) continue;
3939 if( once ){
3940 fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++;
3941 once = 0;
3942 }
3943 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
3944 dflt_sp = sp;
3945 }
3946 if( dflt_sp!=0 ){
3947 emit_destructor_code(out,dflt_sp,lemp,&lineno);
3948 }
3949 fprintf(out," break;\n"); lineno++;
3950 }
3951 for(i=0; i<lemp->nsymbol; i++){
3952 struct symbol *sp = lemp->symbols[i];
3953 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
3954 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
3955
3956 /* Combine duplicate destructors into a single case */
3957 for(j=i+1; j<lemp->nsymbol; j++){
3958 struct symbol *sp2 = lemp->symbols[j];
3959 if( sp2 && sp2->type!=TERMINAL && sp2->destructor
3960 && sp2->dtnum==sp->dtnum
3961 && strcmp(sp->destructor,sp2->destructor)==0 ){
3962 fprintf(out," case %d: /* %s */\n",
3963 sp2->index, sp2->name); lineno++;
3964 sp2->destructor = 0;
3965 }
3966 }
3967
3968 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3969 fprintf(out," break;\n"); lineno++;
3970 }
3971 tplt_xfer(lemp->name,in,out,&lineno);
3972
3973 /* Generate code which executes whenever the parser stack overflows */
3974 tplt_print(out,lemp,lemp->overflow,&lineno);
3975 tplt_xfer(lemp->name,in,out,&lineno);
3976
3977 /* Generate the table of rule information
3978 **
3979 ** Note: This code depends on the fact that rules are number
3980 ** sequentually beginning with 0.
3981 */
3982 for(rp=lemp->rule; rp; rp=rp->next){
3983 fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
3984 }
3985 tplt_xfer(lemp->name,in,out,&lineno);
3986
3987 /* Generate code which execution during each REDUCE action */
3988 for(rp=lemp->rule; rp; rp=rp->next){
3989 translate_code(lemp, rp);
3990 }
3991 /* First output rules other than the default: rule */
3992 for(rp=lemp->rule; rp; rp=rp->next){
3993 struct rule *rp2; /* Other rules with the same action */
3994 if( rp->code==0 ) continue;
3995 if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */
3996 fprintf(out," case %d: /* ", rp->index);
3997 writeRuleText(out, rp);
3998 fprintf(out, " */\n"); lineno++;
3999 for(rp2=rp->next; rp2; rp2=rp2->next){
4000 if( rp2->code==rp->code ){
4001 fprintf(out," case %d: /* ", rp2->index);
4002 writeRuleText(out, rp2);
4003 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++;
4004 rp2->code = 0;
4005 }
4006 }
4007 emit_code(out,rp,lemp,&lineno);
4008 fprintf(out," break;\n"); lineno++;
4009 rp->code = 0;
4010 }
4011 /* Finally, output the default: rule. We choose as the default: all
4012 ** empty actions. */
4013 fprintf(out," default:\n"); lineno++;
4014 for(rp=lemp->rule; rp; rp=rp->next){
4015 if( rp->code==0 ) continue;
4016 assert( rp->code[0]=='\n' && rp->code[1]==0 );
4017 fprintf(out," /* (%d) ", rp->index);
4018 writeRuleText(out, rp);
4019 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++;
4020 }
4021 fprintf(out," break;\n"); lineno++;
4022 tplt_xfer(lemp->name,in,out,&lineno);
4023
4024 /* Generate code which executes if a parse fails */
4025 tplt_print(out,lemp,lemp->failure,&lineno);
4026 tplt_xfer(lemp->name,in,out,&lineno);
4027
4028 /* Generate code which executes when a syntax error occurs */
4029 tplt_print(out,lemp,lemp->error,&lineno);
4030 tplt_xfer(lemp->name,in,out,&lineno);
4031
4032 /* Generate code which executes when the parser accepts its input */
4033 tplt_print(out,lemp,lemp->accept,&lineno);
4034 tplt_xfer(lemp->name,in,out,&lineno);
4035
4036 /* Append any addition code the user desires */
4037 tplt_print(out,lemp,lemp->extracode,&lineno);
4038
4039 fclose(in);
4040 fclose(out);
4041 return;
4042 }
4043
4044 /* Generate a header file for the parser */
ReportHeader(struct lemon * lemp)4045 void ReportHeader(struct lemon *lemp)
4046 {
4047 FILE *out, *in;
4048 const char *prefix;
4049 char line[LINESIZE];
4050 char pattern[LINESIZE];
4051 int i;
4052
4053 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4054 else prefix = "";
4055 in = file_open(lemp,".h","rb");
4056 if( in ){
4057 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
4058 sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4059 if( strcmp(line,pattern) ) break;
4060 }
4061 fclose(in);
4062 if( i==lemp->nterminal ){
4063 /* No change in the file. Don't rewrite it. */
4064 return;
4065 }
4066 }
4067 out = file_open(lemp,".h","wb");
4068 if( out ){
4069 for(i=1; i<lemp->nterminal; i++){
4070 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4071 }
4072 fclose(out);
4073 }
4074 return;
4075 }
4076
4077 /* Reduce the size of the action tables, if possible, by making use
4078 ** of defaults.
4079 **
4080 ** In this version, we take the most frequent REDUCE action and make
4081 ** it the default. Except, there is no default if the wildcard token
4082 ** is a possible look-ahead.
4083 */
CompressTables(struct lemon * lemp)4084 void CompressTables(struct lemon *lemp)
4085 {
4086 struct state *stp;
4087 struct action *ap, *ap2;
4088 struct rule *rp, *rp2, *rbest;
4089 int nbest, n;
4090 int i;
4091 int usesWildcard;
4092
4093 for(i=0; i<lemp->nstate; i++){
4094 stp = lemp->sorted[i];
4095 nbest = 0;
4096 rbest = 0;
4097 usesWildcard = 0;
4098
4099 for(ap=stp->ap; ap; ap=ap->next){
4100 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
4101 usesWildcard = 1;
4102 }
4103 if( ap->type!=REDUCE ) continue;
4104 rp = ap->x.rp;
4105 if( rp->lhsStart ) continue;
4106 if( rp==rbest ) continue;
4107 n = 1;
4108 for(ap2=ap->next; ap2; ap2=ap2->next){
4109 if( ap2->type!=REDUCE ) continue;
4110 rp2 = ap2->x.rp;
4111 if( rp2==rbest ) continue;
4112 if( rp2==rp ) n++;
4113 }
4114 if( n>nbest ){
4115 nbest = n;
4116 rbest = rp;
4117 }
4118 }
4119
4120 /* Do not make a default if the number of rules to default
4121 ** is not at least 1 or if the wildcard token is a possible
4122 ** lookahead.
4123 */
4124 if( nbest<1 || usesWildcard ) continue;
4125
4126
4127 /* Combine matching REDUCE actions into a single default */
4128 for(ap=stp->ap; ap; ap=ap->next){
4129 if( ap->type==REDUCE && ap->x.rp==rbest ) break;
4130 }
4131 assert( ap );
4132 ap->sp = Symbol_new("{default}");
4133 for(ap=ap->next; ap; ap=ap->next){
4134 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
4135 }
4136 stp->ap = Action_sort(stp->ap);
4137 }
4138 }
4139
4140
4141 /*
4142 ** Compare two states for sorting purposes. The smaller state is the
4143 ** one with the most non-terminal actions. If they have the same number
4144 ** of non-terminal actions, then the smaller is the one with the most
4145 ** token actions.
4146 */
stateResortCompare(const void * a,const void * b)4147 static int stateResortCompare(const void *a, const void *b){
4148 const struct state *pA = *(const struct state**)a;
4149 const struct state *pB = *(const struct state**)b;
4150 int n;
4151
4152 n = pB->nNtAct - pA->nNtAct;
4153 if( n==0 ){
4154 n = pB->nTknAct - pA->nTknAct;
4155 if( n==0 ){
4156 n = pB->statenum - pA->statenum;
4157 }
4158 }
4159 assert( n!=0 );
4160 return n;
4161 }
4162
4163
4164 /*
4165 ** Renumber and resort states so that states with fewer choices
4166 ** occur at the end. Except, keep state 0 as the first state.
4167 */
ResortStates(struct lemon * lemp)4168 void ResortStates(struct lemon *lemp)
4169 {
4170 int i;
4171 struct state *stp;
4172 struct action *ap;
4173
4174 for(i=0; i<lemp->nstate; i++){
4175 stp = lemp->sorted[i];
4176 stp->nTknAct = stp->nNtAct = 0;
4177 stp->iDflt = lemp->nstate + lemp->nrule;
4178 stp->iTknOfst = NO_OFFSET;
4179 stp->iNtOfst = NO_OFFSET;
4180 for(ap=stp->ap; ap; ap=ap->next){
4181 if( compute_action(lemp,ap)>=0 ){
4182 if( ap->sp->index<lemp->nterminal ){
4183 stp->nTknAct++;
4184 }else if( ap->sp->index<lemp->nsymbol ){
4185 stp->nNtAct++;
4186 }else{
4187 stp->iDflt = compute_action(lemp, ap);
4188 }
4189 }
4190 }
4191 }
4192 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
4193 stateResortCompare);
4194 for(i=0; i<lemp->nstate; i++){
4195 lemp->sorted[i]->statenum = i;
4196 }
4197 }
4198
4199
4200 /***************** From the file "set.c" ************************************/
4201 /*
4202 ** Set manipulation routines for the LEMON parser generator.
4203 */
4204
4205 static int size = 0;
4206
4207 /* Set the set size */
SetSize(int n)4208 void SetSize(int n)
4209 {
4210 size = n+1;
4211 }
4212
4213 /* Allocate a new set */
SetNew()4214 char *SetNew(){
4215 char *s;
4216 s = (char*)calloc( size, 1);
4217 if( s==0 ){
4218 extern void memory_error();
4219 memory_error();
4220 }
4221 return s;
4222 }
4223
4224 /* Deallocate a set */
SetFree(char * s)4225 void SetFree(char *s)
4226 {
4227 free(s);
4228 }
4229
4230 /* Add a new element to the set. Return TRUE if the element was added
4231 ** and FALSE if it was already there. */
SetAdd(char * s,int e)4232 int SetAdd(char *s, int e)
4233 {
4234 int rv;
4235 assert( e>=0 && e<size );
4236 rv = s[e];
4237 s[e] = 1;
4238 return !rv;
4239 }
4240
4241 /* Add every element of s2 to s1. Return TRUE if s1 changes. */
SetUnion(char * s1,char * s2)4242 int SetUnion(char *s1, char *s2)
4243 {
4244 int i, progress;
4245 progress = 0;
4246 for(i=0; i<size; i++){
4247 if( s2[i]==0 ) continue;
4248 if( s1[i]==0 ){
4249 progress = 1;
4250 s1[i] = 1;
4251 }
4252 }
4253 return progress;
4254 }
4255 /********************** From the file "table.c" ****************************/
4256 /*
4257 ** All code in this file has been automatically generated
4258 ** from a specification in the file
4259 ** "table.q"
4260 ** by the associative array code building program "aagen".
4261 ** Do not edit this file! Instead, edit the specification
4262 ** file, then rerun aagen.
4263 */
4264 /*
4265 ** Code for processing tables in the LEMON parser generator.
4266 */
4267
strhash(const char * x)4268 PRIVATE int strhash(const char *x)
4269 {
4270 int h = 0;
4271 while( *x) h = h*13 + *(x++);
4272 return h;
4273 }
4274
4275 /* Works like strdup, sort of. Save a string in malloced memory, but
4276 ** keep strings in a table so that the same string is not in more
4277 ** than one place.
4278 */
Strsafe(const char * y)4279 const char *Strsafe(const char *y)
4280 {
4281 const char *z;
4282 char *cpy;
4283
4284 if( y==0 ) return 0;
4285 z = Strsafe_find(y);
4286 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
4287 strcpy(cpy,y);
4288 z = cpy;
4289 Strsafe_insert(z);
4290 }
4291 MemoryCheck(z);
4292 return z;
4293 }
4294
4295 /* There is one instance of the following structure for each
4296 ** associative array of type "x1".
4297 */
4298 struct s_x1 {
4299 int size; /* The number of available slots. */
4300 /* Must be a power of 2 greater than or */
4301 /* equal to 1 */
4302 int count; /* Number of currently slots filled */
4303 struct s_x1node *tbl; /* The data stored here */
4304 struct s_x1node **ht; /* Hash table for lookups */
4305 };
4306
4307 /* There is one instance of this structure for every data element
4308 ** in an associative array of type "x1".
4309 */
4310 typedef struct s_x1node {
4311 const char *data; /* The data */
4312 struct s_x1node *next; /* Next entry with the same hash */
4313 struct s_x1node **from; /* Previous link */
4314 } x1node;
4315
4316 /* There is only one instance of the array, which is the following */
4317 static struct s_x1 *x1a;
4318
4319 /* Allocate a new associative array */
Strsafe_init()4320 void Strsafe_init(){
4321 if( x1a ) return;
4322 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
4323 if( x1a ){
4324 x1a->size = 1024;
4325 x1a->count = 0;
4326 x1a->tbl = (x1node*)malloc(
4327 (sizeof(x1node) + sizeof(x1node*))*1024 );
4328 if( x1a->tbl==0 ){
4329 free(x1a);
4330 x1a = 0;
4331 }else{
4332 int i;
4333 x1a->ht = (x1node**)&(x1a->tbl[1024]);
4334 for(i=0; i<1024; i++) x1a->ht[i] = 0;
4335 }
4336 }
4337 }
4338 /* Insert a new record into the array. Return TRUE if successful.
4339 ** Prior data with the same key is NOT overwritten */
Strsafe_insert(const char * data)4340 int Strsafe_insert(const char *data)
4341 {
4342 x1node *np;
4343 int h;
4344 int ph;
4345
4346 if( x1a==0 ) return 0;
4347 ph = strhash(data);
4348 h = ph & (x1a->size-1);
4349 np = x1a->ht[h];
4350 while( np ){
4351 if( strcmp(np->data,data)==0 ){
4352 /* An existing entry with the same key is found. */
4353 /* Fail because overwrite is not allows. */
4354 return 0;
4355 }
4356 np = np->next;
4357 }
4358 if( x1a->count>=x1a->size ){
4359 /* Need to make the hash table bigger */
4360 int i,size;
4361 struct s_x1 array;
4362 array.size = size = x1a->size*2;
4363 array.count = x1a->count;
4364 array.tbl = (x1node*)malloc(
4365 (sizeof(x1node) + sizeof(x1node*))*size );
4366 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4367 array.ht = (x1node**)&(array.tbl[size]);
4368 for(i=0; i<size; i++) array.ht[i] = 0;
4369 for(i=0; i<x1a->count; i++){
4370 x1node *oldnp, *newnp;
4371 oldnp = &(x1a->tbl[i]);
4372 h = strhash(oldnp->data) & (size-1);
4373 newnp = &(array.tbl[i]);
4374 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4375 newnp->next = array.ht[h];
4376 newnp->data = oldnp->data;
4377 newnp->from = &(array.ht[h]);
4378 array.ht[h] = newnp;
4379 }
4380 free(x1a->tbl);
4381 *x1a = array;
4382 }
4383 /* Insert the new data */
4384 h = ph & (x1a->size-1);
4385 np = &(x1a->tbl[x1a->count++]);
4386 np->data = data;
4387 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
4388 np->next = x1a->ht[h];
4389 x1a->ht[h] = np;
4390 np->from = &(x1a->ht[h]);
4391 return 1;
4392 }
4393
4394 /* Return a pointer to data assigned to the given key. Return NULL
4395 ** if no such key. */
Strsafe_find(const char * key)4396 const char *Strsafe_find(const char *key)
4397 {
4398 int h;
4399 x1node *np;
4400
4401 if( x1a==0 ) return 0;
4402 h = strhash(key) & (x1a->size-1);
4403 np = x1a->ht[h];
4404 while( np ){
4405 if( strcmp(np->data,key)==0 ) break;
4406 np = np->next;
4407 }
4408 return np ? np->data : 0;
4409 }
4410
4411 /* Return a pointer to the (terminal or nonterminal) symbol "x".
4412 ** Create a new symbol if this is the first time "x" has been seen.
4413 */
Symbol_new(const char * x)4414 struct symbol *Symbol_new(const char *x)
4415 {
4416 struct symbol *sp;
4417
4418 sp = Symbol_find(x);
4419 if( sp==0 ){
4420 sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
4421 MemoryCheck(sp);
4422 sp->name = Strsafe(x);
4423 sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
4424 sp->rule = 0;
4425 sp->fallback = 0;
4426 sp->prec = -1;
4427 sp->assoc = UNK;
4428 sp->firstset = 0;
4429 sp->lambda = LEMON_FALSE;
4430 sp->destructor = 0;
4431 sp->destLineno = 0;
4432 sp->datatype = 0;
4433 sp->useCnt = 0;
4434 Symbol_insert(sp,sp->name);
4435 }
4436 sp->useCnt++;
4437 return sp;
4438 }
4439
4440 /* Compare two symbols for working purposes
4441 **
4442 ** Symbols that begin with upper case letters (terminals or tokens)
4443 ** must sort before symbols that begin with lower case letters
4444 ** (non-terminals). Other than that, the order does not matter.
4445 **
4446 ** We find experimentally that leaving the symbols in their original
4447 ** order (the order they appeared in the grammar file) gives the
4448 ** smallest parser tables in SQLite.
4449 */
Symbolcmpp(const void * _a,const void * _b)4450 int Symbolcmpp(const void *_a, const void *_b)
4451 {
4452 const struct symbol **a = (const struct symbol **) _a;
4453 const struct symbol **b = (const struct symbol **) _b;
4454 int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
4455 int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
4456 assert( i1!=i2 || strcmp((**a).name,(**b).name)==0 );
4457 return i1-i2;
4458 }
4459
4460 /* There is one instance of the following structure for each
4461 ** associative array of type "x2".
4462 */
4463 struct s_x2 {
4464 int size; /* The number of available slots. */
4465 /* Must be a power of 2 greater than or */
4466 /* equal to 1 */
4467 int count; /* Number of currently slots filled */
4468 struct s_x2node *tbl; /* The data stored here */
4469 struct s_x2node **ht; /* Hash table for lookups */
4470 };
4471
4472 /* There is one instance of this structure for every data element
4473 ** in an associative array of type "x2".
4474 */
4475 typedef struct s_x2node {
4476 struct symbol *data; /* The data */
4477 const char *key; /* The key */
4478 struct s_x2node *next; /* Next entry with the same hash */
4479 struct s_x2node **from; /* Previous link */
4480 } x2node;
4481
4482 /* There is only one instance of the array, which is the following */
4483 static struct s_x2 *x2a;
4484
4485 /* Allocate a new associative array */
Symbol_init()4486 void Symbol_init(){
4487 if( x2a ) return;
4488 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
4489 if( x2a ){
4490 x2a->size = 128;
4491 x2a->count = 0;
4492 x2a->tbl = (x2node*)malloc(
4493 (sizeof(x2node) + sizeof(x2node*))*128 );
4494 if( x2a->tbl==0 ){
4495 free(x2a);
4496 x2a = 0;
4497 }else{
4498 int i;
4499 x2a->ht = (x2node**)&(x2a->tbl[128]);
4500 for(i=0; i<128; i++) x2a->ht[i] = 0;
4501 }
4502 }
4503 }
4504 /* Insert a new record into the array. Return TRUE if successful.
4505 ** Prior data with the same key is NOT overwritten */
Symbol_insert(struct symbol * data,const char * key)4506 int Symbol_insert(struct symbol *data, const char *key)
4507 {
4508 x2node *np;
4509 int h;
4510 int ph;
4511
4512 if( x2a==0 ) return 0;
4513 ph = strhash(key);
4514 h = ph & (x2a->size-1);
4515 np = x2a->ht[h];
4516 while( np ){
4517 if( strcmp(np->key,key)==0 ){
4518 /* An existing entry with the same key is found. */
4519 /* Fail because overwrite is not allows. */
4520 return 0;
4521 }
4522 np = np->next;
4523 }
4524 if( x2a->count>=x2a->size ){
4525 /* Need to make the hash table bigger */
4526 int i,size;
4527 struct s_x2 array;
4528 array.size = size = x2a->size*2;
4529 array.count = x2a->count;
4530 array.tbl = (x2node*)malloc(
4531 (sizeof(x2node) + sizeof(x2node*))*size );
4532 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4533 array.ht = (x2node**)&(array.tbl[size]);
4534 for(i=0; i<size; i++) array.ht[i] = 0;
4535 for(i=0; i<x2a->count; i++){
4536 x2node *oldnp, *newnp;
4537 oldnp = &(x2a->tbl[i]);
4538 h = strhash(oldnp->key) & (size-1);
4539 newnp = &(array.tbl[i]);
4540 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4541 newnp->next = array.ht[h];
4542 newnp->key = oldnp->key;
4543 newnp->data = oldnp->data;
4544 newnp->from = &(array.ht[h]);
4545 array.ht[h] = newnp;
4546 }
4547 free(x2a->tbl);
4548 *x2a = array;
4549 }
4550 /* Insert the new data */
4551 h = ph & (x2a->size-1);
4552 np = &(x2a->tbl[x2a->count++]);
4553 np->key = key;
4554 np->data = data;
4555 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
4556 np->next = x2a->ht[h];
4557 x2a->ht[h] = np;
4558 np->from = &(x2a->ht[h]);
4559 return 1;
4560 }
4561
4562 /* Return a pointer to data assigned to the given key. Return NULL
4563 ** if no such key. */
Symbol_find(const char * key)4564 struct symbol *Symbol_find(const char *key)
4565 {
4566 int h;
4567 x2node *np;
4568
4569 if( x2a==0 ) return 0;
4570 h = strhash(key) & (x2a->size-1);
4571 np = x2a->ht[h];
4572 while( np ){
4573 if( strcmp(np->key,key)==0 ) break;
4574 np = np->next;
4575 }
4576 return np ? np->data : 0;
4577 }
4578
4579 /* Return the n-th data. Return NULL if n is out of range. */
Symbol_Nth(int n)4580 struct symbol *Symbol_Nth(int n)
4581 {
4582 struct symbol *data;
4583 if( x2a && n>0 && n<=x2a->count ){
4584 data = x2a->tbl[n-1].data;
4585 }else{
4586 data = 0;
4587 }
4588 return data;
4589 }
4590
4591 /* Return the size of the array */
Symbol_count()4592 int Symbol_count()
4593 {
4594 return x2a ? x2a->count : 0;
4595 }
4596
4597 /* Return an array of pointers to all data in the table.
4598 ** The array is obtained from malloc. Return NULL if memory allocation
4599 ** problems, or if the array is empty. */
Symbol_arrayof()4600 struct symbol **Symbol_arrayof()
4601 {
4602 struct symbol **array;
4603 int i,size;
4604 if( x2a==0 ) return 0;
4605 size = x2a->count;
4606 array = (struct symbol **)calloc(size, sizeof(struct symbol *));
4607 if( array ){
4608 for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
4609 }
4610 return array;
4611 }
4612
4613 /* Compare two configurations */
Configcmp(const char * _a,const char * _b)4614 int Configcmp(const char *_a,const char *_b)
4615 {
4616 const struct config *a = (struct config *) _a;
4617 const struct config *b = (struct config *) _b;
4618 int x;
4619 x = a->rp->index - b->rp->index;
4620 if( x==0 ) x = a->dot - b->dot;
4621 return x;
4622 }
4623
4624 /* Compare two states */
statecmp(struct config * a,struct config * b)4625 PRIVATE int statecmp(struct config *a, struct config *b)
4626 {
4627 int rc;
4628 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
4629 rc = a->rp->index - b->rp->index;
4630 if( rc==0 ) rc = a->dot - b->dot;
4631 }
4632 if( rc==0 ){
4633 if( a ) rc = 1;
4634 if( b ) rc = -1;
4635 }
4636 return rc;
4637 }
4638
4639 /* Hash a state */
statehash(struct config * a)4640 PRIVATE int statehash(struct config *a)
4641 {
4642 int h=0;
4643 while( a ){
4644 h = h*571 + a->rp->index*37 + a->dot;
4645 a = a->bp;
4646 }
4647 return h;
4648 }
4649
4650 /* Allocate a new state structure */
State_new()4651 struct state *State_new()
4652 {
4653 struct state *newstate;
4654 newstate = (struct state *)calloc(1, sizeof(struct state) );
4655 MemoryCheck(newstate);
4656 return newstate;
4657 }
4658
4659 /* There is one instance of the following structure for each
4660 ** associative array of type "x3".
4661 */
4662 struct s_x3 {
4663 int size; /* The number of available slots. */
4664 /* Must be a power of 2 greater than or */
4665 /* equal to 1 */
4666 int count; /* Number of currently slots filled */
4667 struct s_x3node *tbl; /* The data stored here */
4668 struct s_x3node **ht; /* Hash table for lookups */
4669 };
4670
4671 /* There is one instance of this structure for every data element
4672 ** in an associative array of type "x3".
4673 */
4674 typedef struct s_x3node {
4675 struct state *data; /* The data */
4676 struct config *key; /* The key */
4677 struct s_x3node *next; /* Next entry with the same hash */
4678 struct s_x3node **from; /* Previous link */
4679 } x3node;
4680
4681 /* There is only one instance of the array, which is the following */
4682 static struct s_x3 *x3a;
4683
4684 /* Allocate a new associative array */
State_init()4685 void State_init(){
4686 if( x3a ) return;
4687 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
4688 if( x3a ){
4689 x3a->size = 128;
4690 x3a->count = 0;
4691 x3a->tbl = (x3node*)malloc(
4692 (sizeof(x3node) + sizeof(x3node*))*128 );
4693 if( x3a->tbl==0 ){
4694 free(x3a);
4695 x3a = 0;
4696 }else{
4697 int i;
4698 x3a->ht = (x3node**)&(x3a->tbl[128]);
4699 for(i=0; i<128; i++) x3a->ht[i] = 0;
4700 }
4701 }
4702 }
4703 /* Insert a new record into the array. Return TRUE if successful.
4704 ** Prior data with the same key is NOT overwritten */
State_insert(struct state * data,struct config * key)4705 int State_insert(struct state *data, struct config *key)
4706 {
4707 x3node *np;
4708 int h;
4709 int ph;
4710
4711 if( x3a==0 ) return 0;
4712 ph = statehash(key);
4713 h = ph & (x3a->size-1);
4714 np = x3a->ht[h];
4715 while( np ){
4716 if( statecmp(np->key,key)==0 ){
4717 /* An existing entry with the same key is found. */
4718 /* Fail because overwrite is not allows. */
4719 return 0;
4720 }
4721 np = np->next;
4722 }
4723 if( x3a->count>=x3a->size ){
4724 /* Need to make the hash table bigger */
4725 int i,size;
4726 struct s_x3 array;
4727 array.size = size = x3a->size*2;
4728 array.count = x3a->count;
4729 array.tbl = (x3node*)malloc(
4730 (sizeof(x3node) + sizeof(x3node*))*size );
4731 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4732 array.ht = (x3node**)&(array.tbl[size]);
4733 for(i=0; i<size; i++) array.ht[i] = 0;
4734 for(i=0; i<x3a->count; i++){
4735 x3node *oldnp, *newnp;
4736 oldnp = &(x3a->tbl[i]);
4737 h = statehash(oldnp->key) & (size-1);
4738 newnp = &(array.tbl[i]);
4739 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4740 newnp->next = array.ht[h];
4741 newnp->key = oldnp->key;
4742 newnp->data = oldnp->data;
4743 newnp->from = &(array.ht[h]);
4744 array.ht[h] = newnp;
4745 }
4746 free(x3a->tbl);
4747 *x3a = array;
4748 }
4749 /* Insert the new data */
4750 h = ph & (x3a->size-1);
4751 np = &(x3a->tbl[x3a->count++]);
4752 np->key = key;
4753 np->data = data;
4754 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
4755 np->next = x3a->ht[h];
4756 x3a->ht[h] = np;
4757 np->from = &(x3a->ht[h]);
4758 return 1;
4759 }
4760
4761 /* Return a pointer to data assigned to the given key. Return NULL
4762 ** if no such key. */
State_find(struct config * key)4763 struct state *State_find(struct config *key)
4764 {
4765 int h;
4766 x3node *np;
4767
4768 if( x3a==0 ) return 0;
4769 h = statehash(key) & (x3a->size-1);
4770 np = x3a->ht[h];
4771 while( np ){
4772 if( statecmp(np->key,key)==0 ) break;
4773 np = np->next;
4774 }
4775 return np ? np->data : 0;
4776 }
4777
4778 /* Return an array of pointers to all data in the table.
4779 ** The array is obtained from malloc. Return NULL if memory allocation
4780 ** problems, or if the array is empty. */
State_arrayof()4781 struct state **State_arrayof()
4782 {
4783 struct state **array;
4784 int i,size;
4785 if( x3a==0 ) return 0;
4786 size = x3a->count;
4787 array = (struct state **)malloc( sizeof(struct state *)*size );
4788 if( array ){
4789 for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
4790 }
4791 return array;
4792 }
4793
4794 /* Hash a configuration */
confighash(struct config * a)4795 PRIVATE int confighash(struct config *a)
4796 {
4797 int h=0;
4798 h = h*571 + a->rp->index*37 + a->dot;
4799 return h;
4800 }
4801
4802 /* There is one instance of the following structure for each
4803 ** associative array of type "x4".
4804 */
4805 struct s_x4 {
4806 int size; /* The number of available slots. */
4807 /* Must be a power of 2 greater than or */
4808 /* equal to 1 */
4809 int count; /* Number of currently slots filled */
4810 struct s_x4node *tbl; /* The data stored here */
4811 struct s_x4node **ht; /* Hash table for lookups */
4812 };
4813
4814 /* There is one instance of this structure for every data element
4815 ** in an associative array of type "x4".
4816 */
4817 typedef struct s_x4node {
4818 struct config *data; /* The data */
4819 struct s_x4node *next; /* Next entry with the same hash */
4820 struct s_x4node **from; /* Previous link */
4821 } x4node;
4822
4823 /* There is only one instance of the array, which is the following */
4824 static struct s_x4 *x4a;
4825
4826 /* Allocate a new associative array */
Configtable_init()4827 void Configtable_init(){
4828 if( x4a ) return;
4829 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
4830 if( x4a ){
4831 x4a->size = 64;
4832 x4a->count = 0;
4833 x4a->tbl = (x4node*)malloc(
4834 (sizeof(x4node) + sizeof(x4node*))*64 );
4835 if( x4a->tbl==0 ){
4836 free(x4a);
4837 x4a = 0;
4838 }else{
4839 int i;
4840 x4a->ht = (x4node**)&(x4a->tbl[64]);
4841 for(i=0; i<64; i++) x4a->ht[i] = 0;
4842 }
4843 }
4844 }
4845 /* Insert a new record into the array. Return TRUE if successful.
4846 ** Prior data with the same key is NOT overwritten */
Configtable_insert(struct config * data)4847 int Configtable_insert(struct config *data)
4848 {
4849 x4node *np;
4850 int h;
4851 int ph;
4852
4853 if( x4a==0 ) return 0;
4854 ph = confighash(data);
4855 h = ph & (x4a->size-1);
4856 np = x4a->ht[h];
4857 while( np ){
4858 if( Configcmp((const char *) np->data,(const char *) data)==0 ){
4859 /* An existing entry with the same key is found. */
4860 /* Fail because overwrite is not allows. */
4861 return 0;
4862 }
4863 np = np->next;
4864 }
4865 if( x4a->count>=x4a->size ){
4866 /* Need to make the hash table bigger */
4867 int i,size;
4868 struct s_x4 array;
4869 array.size = size = x4a->size*2;
4870 array.count = x4a->count;
4871 array.tbl = (x4node*)malloc(
4872 (sizeof(x4node) + sizeof(x4node*))*size );
4873 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4874 array.ht = (x4node**)&(array.tbl[size]);
4875 for(i=0; i<size; i++) array.ht[i] = 0;
4876 for(i=0; i<x4a->count; i++){
4877 x4node *oldnp, *newnp;
4878 oldnp = &(x4a->tbl[i]);
4879 h = confighash(oldnp->data) & (size-1);
4880 newnp = &(array.tbl[i]);
4881 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4882 newnp->next = array.ht[h];
4883 newnp->data = oldnp->data;
4884 newnp->from = &(array.ht[h]);
4885 array.ht[h] = newnp;
4886 }
4887 free(x4a->tbl);
4888 *x4a = array;
4889 }
4890 /* Insert the new data */
4891 h = ph & (x4a->size-1);
4892 np = &(x4a->tbl[x4a->count++]);
4893 np->data = data;
4894 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
4895 np->next = x4a->ht[h];
4896 x4a->ht[h] = np;
4897 np->from = &(x4a->ht[h]);
4898 return 1;
4899 }
4900
4901 /* Return a pointer to data assigned to the given key. Return NULL
4902 ** if no such key. */
Configtable_find(struct config * key)4903 struct config *Configtable_find(struct config *key)
4904 {
4905 int h;
4906 x4node *np;
4907
4908 if( x4a==0 ) return 0;
4909 h = confighash(key) & (x4a->size-1);
4910 np = x4a->ht[h];
4911 while( np ){
4912 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
4913 np = np->next;
4914 }
4915 return np ? np->data : 0;
4916 }
4917
4918 /* Remove all data from the table. Pass each data to the function "f"
4919 ** as it is removed. ("f" may be null to avoid this step.) */
Configtable_clear(int (* f)(struct config *))4920 void Configtable_clear(int(*f)(struct config *))
4921 {
4922 int i;
4923 if( x4a==0 || x4a->count==0 ) return;
4924 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
4925 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
4926 x4a->count = 0;
4927 return;
4928 }
4929