1 /* ssl/s3_cbc.c */
2 /* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56 #include "../crypto/constant_time_locl.h"
57 #include "ssl_locl.h"
58
59 #include <openssl/md5.h>
60 #include <openssl/sha.h>
61
62 /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
63 * field. (SHA-384/512 have 128-bit length.) */
64 #define MAX_HASH_BIT_COUNT_BYTES 16
65
66 /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
67 * Currently SHA-384/512 has a 128-byte block size and that's the largest
68 * supported by TLS.) */
69 #define MAX_HASH_BLOCK_SIZE 128
70
71 /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
72 * record in |rec| by updating |rec->length| in constant time.
73 *
74 * block_size: the block size of the cipher used to encrypt the record.
75 * returns:
76 * 0: (in non-constant time) if the record is publicly invalid.
77 * 1: if the padding was valid
78 * -1: otherwise. */
ssl3_cbc_remove_padding(const SSL * s,SSL3_RECORD * rec,unsigned block_size,unsigned mac_size)79 int ssl3_cbc_remove_padding(const SSL* s,
80 SSL3_RECORD *rec,
81 unsigned block_size,
82 unsigned mac_size)
83 {
84 unsigned padding_length, good;
85 const unsigned overhead = 1 /* padding length byte */ + mac_size;
86
87 /* These lengths are all public so we can test them in non-constant
88 * time. */
89 if (overhead > rec->length)
90 return 0;
91
92 padding_length = rec->data[rec->length-1];
93 good = constant_time_ge(rec->length, padding_length+overhead);
94 /* SSLv3 requires that the padding is minimal. */
95 good &= constant_time_ge(block_size, padding_length+1);
96 padding_length = good & (padding_length+1);
97 rec->length -= padding_length;
98 rec->type |= padding_length<<8; /* kludge: pass padding length */
99 return constant_time_select_int(good, 1, -1);
100 }
101
102 /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
103 * record in |rec| in constant time and returns 1 if the padding is valid and
104 * -1 otherwise. It also removes any explicit IV from the start of the record
105 * without leaking any timing about whether there was enough space after the
106 * padding was removed.
107 *
108 * block_size: the block size of the cipher used to encrypt the record.
109 * returns:
110 * 0: (in non-constant time) if the record is publicly invalid.
111 * 1: if the padding was valid
112 * -1: otherwise. */
tls1_cbc_remove_padding(const SSL * s,SSL3_RECORD * rec,unsigned block_size,unsigned mac_size)113 int tls1_cbc_remove_padding(const SSL* s,
114 SSL3_RECORD *rec,
115 unsigned block_size,
116 unsigned mac_size)
117 {
118 unsigned padding_length, good, to_check, i;
119 const unsigned overhead = 1 /* padding length byte */ + mac_size;
120 /* Check if version requires explicit IV */
121 if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER)
122 {
123 /* These lengths are all public so we can test them in
124 * non-constant time.
125 */
126 if (overhead + block_size > rec->length)
127 return 0;
128 /* We can now safely skip explicit IV */
129 rec->data += block_size;
130 rec->input += block_size;
131 rec->length -= block_size;
132 }
133 else if (overhead > rec->length)
134 return 0;
135
136 padding_length = rec->data[rec->length-1];
137
138 /* NB: if compression is in operation the first packet may not be of
139 * even length so the padding bug check cannot be performed. This bug
140 * workaround has been around since SSLeay so hopefully it is either
141 * fixed now or no buggy implementation supports compression [steve]
142 */
143 if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
144 {
145 /* First packet is even in size, so check */
146 if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
147 !(padding_length & 1))
148 {
149 s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
150 }
151 if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
152 padding_length > 0)
153 {
154 padding_length--;
155 }
156 }
157
158 if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
159 {
160 /* padding is already verified */
161 rec->length -= padding_length + 1;
162 return 1;
163 }
164
165 good = constant_time_ge(rec->length, overhead+padding_length);
166 /* The padding consists of a length byte at the end of the record and
167 * then that many bytes of padding, all with the same value as the
168 * length byte. Thus, with the length byte included, there are i+1
169 * bytes of padding.
170 *
171 * We can't check just |padding_length+1| bytes because that leaks
172 * decrypted information. Therefore we always have to check the maximum
173 * amount of padding possible. (Again, the length of the record is
174 * public information so we can use it.) */
175 to_check = 255; /* maximum amount of padding. */
176 if (to_check > rec->length-1)
177 to_check = rec->length-1;
178
179 for (i = 0; i < to_check; i++)
180 {
181 unsigned char mask = constant_time_ge_8(padding_length, i);
182 unsigned char b = rec->data[rec->length-1-i];
183 /* The final |padding_length+1| bytes should all have the value
184 * |padding_length|. Therefore the XOR should be zero. */
185 good &= ~(mask&(padding_length ^ b));
186 }
187
188 /* If any of the final |padding_length+1| bytes had the wrong value,
189 * one or more of the lower eight bits of |good| will be cleared.
190 */
191 good = constant_time_eq(0xff, good & 0xff);
192 padding_length = good & (padding_length+1);
193 rec->length -= padding_length;
194 rec->type |= padding_length<<8; /* kludge: pass padding length */
195
196 return constant_time_select_int(good, 1, -1);
197 }
198
199 /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
200 * constant time (independent of the concrete value of rec->length, which may
201 * vary within a 256-byte window).
202 *
203 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
204 * this function.
205 *
206 * On entry:
207 * rec->orig_len >= md_size
208 * md_size <= EVP_MAX_MD_SIZE
209 *
210 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
211 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
212 * a single or pair of cache-lines, then the variable memory accesses don't
213 * actually affect the timing. CPUs with smaller cache-lines [if any] are
214 * not multi-core and are not considered vulnerable to cache-timing attacks.
215 */
216 #define CBC_MAC_ROTATE_IN_PLACE
217
ssl3_cbc_copy_mac(unsigned char * out,const SSL3_RECORD * rec,unsigned md_size,unsigned orig_len)218 void ssl3_cbc_copy_mac(unsigned char* out,
219 const SSL3_RECORD *rec,
220 unsigned md_size,unsigned orig_len)
221 {
222 #if defined(CBC_MAC_ROTATE_IN_PLACE)
223 unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
224 unsigned char *rotated_mac;
225 #else
226 unsigned char rotated_mac[EVP_MAX_MD_SIZE];
227 #endif
228
229 /* mac_end is the index of |rec->data| just after the end of the MAC. */
230 unsigned mac_end = rec->length;
231 unsigned mac_start = mac_end - md_size;
232 /* scan_start contains the number of bytes that we can ignore because
233 * the MAC's position can only vary by 255 bytes. */
234 unsigned scan_start = 0;
235 unsigned i, j;
236 unsigned div_spoiler;
237 unsigned rotate_offset;
238
239 OPENSSL_assert(orig_len >= md_size);
240 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
241
242 #if defined(CBC_MAC_ROTATE_IN_PLACE)
243 rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
244 #endif
245
246 /* This information is public so it's safe to branch based on it. */
247 if (orig_len > md_size + 255 + 1)
248 scan_start = orig_len - (md_size + 255 + 1);
249 /* div_spoiler contains a multiple of md_size that is used to cause the
250 * modulo operation to be constant time. Without this, the time varies
251 * based on the amount of padding when running on Intel chips at least.
252 *
253 * The aim of right-shifting md_size is so that the compiler doesn't
254 * figure out that it can remove div_spoiler as that would require it
255 * to prove that md_size is always even, which I hope is beyond it. */
256 div_spoiler = md_size >> 1;
257 div_spoiler <<= (sizeof(div_spoiler)-1)*8;
258 rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
259
260 memset(rotated_mac, 0, md_size);
261 for (i = scan_start, j = 0; i < orig_len; i++)
262 {
263 unsigned char mac_started = constant_time_ge_8(i, mac_start);
264 unsigned char mac_ended = constant_time_ge_8(i, mac_end);
265 unsigned char b = rec->data[i];
266 rotated_mac[j++] |= b & mac_started & ~mac_ended;
267 j &= constant_time_lt(j,md_size);
268 }
269
270 /* Now rotate the MAC */
271 #if defined(CBC_MAC_ROTATE_IN_PLACE)
272 j = 0;
273 for (i = 0; i < md_size; i++)
274 {
275 /* in case cache-line is 32 bytes, touch second line */
276 ((volatile unsigned char *)rotated_mac)[rotate_offset^32];
277 out[j++] = rotated_mac[rotate_offset++];
278 rotate_offset &= constant_time_lt(rotate_offset,md_size);
279 }
280 #else
281 memset(out, 0, md_size);
282 rotate_offset = md_size - rotate_offset;
283 rotate_offset &= constant_time_lt(rotate_offset,md_size);
284 for (i = 0; i < md_size; i++)
285 {
286 for (j = 0; j < md_size; j++)
287 out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
288 rotate_offset++;
289 rotate_offset &= constant_time_lt(rotate_offset,md_size);
290 }
291 #endif
292 }
293
294 /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
295 * little-endian order. The value of p is advanced by four. */
296 #define u32toLE(n, p) \
297 (*((p)++)=(unsigned char)(n), \
298 *((p)++)=(unsigned char)(n>>8), \
299 *((p)++)=(unsigned char)(n>>16), \
300 *((p)++)=(unsigned char)(n>>24))
301
302 /* These functions serialize the state of a hash and thus perform the standard
303 * "final" operation without adding the padding and length that such a function
304 * typically does. */
tls1_md5_final_raw(void * ctx,unsigned char * md_out)305 static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
306 {
307 MD5_CTX *md5 = ctx;
308 u32toLE(md5->A, md_out);
309 u32toLE(md5->B, md_out);
310 u32toLE(md5->C, md_out);
311 u32toLE(md5->D, md_out);
312 }
313
tls1_sha1_final_raw(void * ctx,unsigned char * md_out)314 static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
315 {
316 SHA_CTX *sha1 = ctx;
317 l2n(sha1->h0, md_out);
318 l2n(sha1->h1, md_out);
319 l2n(sha1->h2, md_out);
320 l2n(sha1->h3, md_out);
321 l2n(sha1->h4, md_out);
322 }
323 #define LARGEST_DIGEST_CTX SHA_CTX
324
325 #ifndef OPENSSL_NO_SHA256
tls1_sha256_final_raw(void * ctx,unsigned char * md_out)326 static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
327 {
328 SHA256_CTX *sha256 = ctx;
329 unsigned i;
330
331 for (i = 0; i < 8; i++)
332 {
333 l2n(sha256->h[i], md_out);
334 }
335 }
336 #undef LARGEST_DIGEST_CTX
337 #define LARGEST_DIGEST_CTX SHA256_CTX
338 #endif
339
340 #ifndef OPENSSL_NO_SHA512
tls1_sha512_final_raw(void * ctx,unsigned char * md_out)341 static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
342 {
343 SHA512_CTX *sha512 = ctx;
344 unsigned i;
345
346 for (i = 0; i < 8; i++)
347 {
348 l2n8(sha512->h[i], md_out);
349 }
350 }
351 #undef LARGEST_DIGEST_CTX
352 #define LARGEST_DIGEST_CTX SHA512_CTX
353 #endif
354
355 /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
356 * which ssl3_cbc_digest_record supports. */
ssl3_cbc_record_digest_supported(const EVP_MD_CTX * ctx)357 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
358 {
359 #ifdef OPENSSL_FIPS
360 if (FIPS_mode())
361 return 0;
362 #endif
363 switch (EVP_MD_CTX_type(ctx))
364 {
365 case NID_md5:
366 case NID_sha1:
367 #ifndef OPENSSL_NO_SHA256
368 case NID_sha224:
369 case NID_sha256:
370 #endif
371 #ifndef OPENSSL_NO_SHA512
372 case NID_sha384:
373 case NID_sha512:
374 #endif
375 return 1;
376 default:
377 return 0;
378 }
379 }
380
381 /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
382 * record.
383 *
384 * ctx: the EVP_MD_CTX from which we take the hash function.
385 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
386 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
387 * md_out_size: if non-NULL, the number of output bytes is written here.
388 * header: the 13-byte, TLS record header.
389 * data: the record data itself, less any preceeding explicit IV.
390 * data_plus_mac_size: the secret, reported length of the data and MAC
391 * once the padding has been removed.
392 * data_plus_mac_plus_padding_size: the public length of the whole
393 * record, including padding.
394 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
395 *
396 * On entry: by virtue of having been through one of the remove_padding
397 * functions, above, we know that data_plus_mac_size is large enough to contain
398 * a padding byte and MAC. (If the padding was invalid, it might contain the
399 * padding too. ) */
ssl3_cbc_digest_record(const EVP_MD_CTX * ctx,unsigned char * md_out,size_t * md_out_size,const unsigned char header[13],const unsigned char * data,size_t data_plus_mac_size,size_t data_plus_mac_plus_padding_size,const unsigned char * mac_secret,unsigned mac_secret_length,char is_sslv3)400 void ssl3_cbc_digest_record(
401 const EVP_MD_CTX *ctx,
402 unsigned char* md_out,
403 size_t* md_out_size,
404 const unsigned char header[13],
405 const unsigned char *data,
406 size_t data_plus_mac_size,
407 size_t data_plus_mac_plus_padding_size,
408 const unsigned char *mac_secret,
409 unsigned mac_secret_length,
410 char is_sslv3)
411 {
412 union { double align;
413 unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
414 void (*md_final_raw)(void *ctx, unsigned char *md_out);
415 void (*md_transform)(void *ctx, const unsigned char *block);
416 unsigned md_size, md_block_size = 64;
417 unsigned sslv3_pad_length = 40, header_length, variance_blocks,
418 len, max_mac_bytes, num_blocks,
419 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
420 unsigned int bits; /* at most 18 bits */
421 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
422 /* hmac_pad is the masked HMAC key. */
423 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
424 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
425 unsigned char mac_out[EVP_MAX_MD_SIZE];
426 unsigned i, j, md_out_size_u;
427 EVP_MD_CTX md_ctx;
428 /* mdLengthSize is the number of bytes in the length field that terminates
429 * the hash. */
430 unsigned md_length_size = 8;
431 char length_is_big_endian = 1;
432
433 /* This is a, hopefully redundant, check that allows us to forget about
434 * many possible overflows later in this function. */
435 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
436
437 switch (EVP_MD_CTX_type(ctx))
438 {
439 case NID_md5:
440 MD5_Init((MD5_CTX*)md_state.c);
441 md_final_raw = tls1_md5_final_raw;
442 md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
443 md_size = 16;
444 sslv3_pad_length = 48;
445 length_is_big_endian = 0;
446 break;
447 case NID_sha1:
448 SHA1_Init((SHA_CTX*)md_state.c);
449 md_final_raw = tls1_sha1_final_raw;
450 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
451 md_size = 20;
452 break;
453 #ifndef OPENSSL_NO_SHA256
454 case NID_sha224:
455 SHA224_Init((SHA256_CTX*)md_state.c);
456 md_final_raw = tls1_sha256_final_raw;
457 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
458 md_size = 224/8;
459 break;
460 case NID_sha256:
461 SHA256_Init((SHA256_CTX*)md_state.c);
462 md_final_raw = tls1_sha256_final_raw;
463 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
464 md_size = 32;
465 break;
466 #endif
467 #ifndef OPENSSL_NO_SHA512
468 case NID_sha384:
469 SHA384_Init((SHA512_CTX*)md_state.c);
470 md_final_raw = tls1_sha512_final_raw;
471 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
472 md_size = 384/8;
473 md_block_size = 128;
474 md_length_size = 16;
475 break;
476 case NID_sha512:
477 SHA512_Init((SHA512_CTX*)md_state.c);
478 md_final_raw = tls1_sha512_final_raw;
479 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
480 md_size = 64;
481 md_block_size = 128;
482 md_length_size = 16;
483 break;
484 #endif
485 default:
486 /* ssl3_cbc_record_digest_supported should have been
487 * called first to check that the hash function is
488 * supported. */
489 OPENSSL_assert(0);
490 if (md_out_size)
491 *md_out_size = -1;
492 return;
493 }
494
495 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
496 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
497 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
498
499 header_length = 13;
500 if (is_sslv3)
501 {
502 header_length =
503 mac_secret_length +
504 sslv3_pad_length +
505 8 /* sequence number */ +
506 1 /* record type */ +
507 2 /* record length */;
508 }
509
510 /* variance_blocks is the number of blocks of the hash that we have to
511 * calculate in constant time because they could be altered by the
512 * padding value.
513 *
514 * In SSLv3, the padding must be minimal so the end of the plaintext
515 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
516 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
517 * termination (0x80 + 64-bit length) don't fit in the final block, we
518 * say that the final two blocks can vary based on the padding.
519 *
520 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
521 * required to be minimal. Therefore we say that the final six blocks
522 * can vary based on the padding.
523 *
524 * Later in the function, if the message is short and there obviously
525 * cannot be this many blocks then variance_blocks can be reduced. */
526 variance_blocks = is_sslv3 ? 2 : 6;
527 /* From now on we're dealing with the MAC, which conceptually has 13
528 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
529 * (SSLv3) */
530 len = data_plus_mac_plus_padding_size + header_length;
531 /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
532 * |header|, assuming that there's no padding. */
533 max_mac_bytes = len - md_size - 1;
534 /* num_blocks is the maximum number of hash blocks. */
535 num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
536 /* In order to calculate the MAC in constant time we have to handle
537 * the final blocks specially because the padding value could cause the
538 * end to appear somewhere in the final |variance_blocks| blocks and we
539 * can't leak where. However, |num_starting_blocks| worth of data can
540 * be hashed right away because no padding value can affect whether
541 * they are plaintext. */
542 num_starting_blocks = 0;
543 /* k is the starting byte offset into the conceptual header||data where
544 * we start processing. */
545 k = 0;
546 /* mac_end_offset is the index just past the end of the data to be
547 * MACed. */
548 mac_end_offset = data_plus_mac_size + header_length - md_size;
549 /* c is the index of the 0x80 byte in the final hash block that
550 * contains application data. */
551 c = mac_end_offset % md_block_size;
552 /* index_a is the hash block number that contains the 0x80 terminating
553 * value. */
554 index_a = mac_end_offset / md_block_size;
555 /* index_b is the hash block number that contains the 64-bit hash
556 * length, in bits. */
557 index_b = (mac_end_offset + md_length_size) / md_block_size;
558 /* bits is the hash-length in bits. It includes the additional hash
559 * block for the masked HMAC key, or whole of |header| in the case of
560 * SSLv3. */
561
562 /* For SSLv3, if we're going to have any starting blocks then we need
563 * at least two because the header is larger than a single block. */
564 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
565 {
566 num_starting_blocks = num_blocks - variance_blocks;
567 k = md_block_size*num_starting_blocks;
568 }
569
570 bits = 8*mac_end_offset;
571 if (!is_sslv3)
572 {
573 /* Compute the initial HMAC block. For SSLv3, the padding and
574 * secret bytes are included in |header| because they take more
575 * than a single block. */
576 bits += 8*md_block_size;
577 memset(hmac_pad, 0, md_block_size);
578 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
579 memcpy(hmac_pad, mac_secret, mac_secret_length);
580 for (i = 0; i < md_block_size; i++)
581 hmac_pad[i] ^= 0x36;
582
583 md_transform(md_state.c, hmac_pad);
584 }
585
586 if (length_is_big_endian)
587 {
588 memset(length_bytes,0,md_length_size-4);
589 length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
590 length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
591 length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
592 length_bytes[md_length_size-1] = (unsigned char)bits;
593 }
594 else
595 {
596 memset(length_bytes,0,md_length_size);
597 length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
598 length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
599 length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
600 length_bytes[md_length_size-8] = (unsigned char)bits;
601 }
602
603 if (k > 0)
604 {
605 if (is_sslv3)
606 {
607 /* The SSLv3 header is larger than a single block.
608 * overhang is the number of bytes beyond a single
609 * block that the header consumes: either 7 bytes
610 * (SHA1) or 11 bytes (MD5). */
611 unsigned overhang = header_length-md_block_size;
612 md_transform(md_state.c, header);
613 memcpy(first_block, header + md_block_size, overhang);
614 memcpy(first_block + overhang, data, md_block_size-overhang);
615 md_transform(md_state.c, first_block);
616 for (i = 1; i < k/md_block_size - 1; i++)
617 md_transform(md_state.c, data + md_block_size*i - overhang);
618 }
619 else
620 {
621 /* k is a multiple of md_block_size. */
622 memcpy(first_block, header, 13);
623 memcpy(first_block+13, data, md_block_size-13);
624 md_transform(md_state.c, first_block);
625 for (i = 1; i < k/md_block_size; i++)
626 md_transform(md_state.c, data + md_block_size*i - 13);
627 }
628 }
629
630 memset(mac_out, 0, sizeof(mac_out));
631
632 /* We now process the final hash blocks. For each block, we construct
633 * it in constant time. If the |i==index_a| then we'll include the 0x80
634 * bytes and zero pad etc. For each block we selectively copy it, in
635 * constant time, to |mac_out|. */
636 for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
637 {
638 unsigned char block[MAX_HASH_BLOCK_SIZE];
639 unsigned char is_block_a = constant_time_eq_8(i, index_a);
640 unsigned char is_block_b = constant_time_eq_8(i, index_b);
641 for (j = 0; j < md_block_size; j++)
642 {
643 unsigned char b = 0, is_past_c, is_past_cp1;
644 if (k < header_length)
645 b = header[k];
646 else if (k < data_plus_mac_plus_padding_size + header_length)
647 b = data[k-header_length];
648 k++;
649
650 is_past_c = is_block_a & constant_time_ge_8(j, c);
651 is_past_cp1 = is_block_a & constant_time_ge_8(j, c+1);
652 /* If this is the block containing the end of the
653 * application data, and we are at the offset for the
654 * 0x80 value, then overwrite b with 0x80. */
655 b = constant_time_select_8(is_past_c, 0x80, b);
656 /* If this the the block containing the end of the
657 * application data and we're past the 0x80 value then
658 * just write zero. */
659 b = b&~is_past_cp1;
660 /* If this is index_b (the final block), but not
661 * index_a (the end of the data), then the 64-bit
662 * length didn't fit into index_a and we're having to
663 * add an extra block of zeros. */
664 b &= ~is_block_b | is_block_a;
665
666 /* The final bytes of one of the blocks contains the
667 * length. */
668 if (j >= md_block_size - md_length_size)
669 {
670 /* If this is index_b, write a length byte. */
671 b = constant_time_select_8(
672 is_block_b, length_bytes[j-(md_block_size-md_length_size)], b);
673 }
674 block[j] = b;
675 }
676
677 md_transform(md_state.c, block);
678 md_final_raw(md_state.c, block);
679 /* If this is index_b, copy the hash value to |mac_out|. */
680 for (j = 0; j < md_size; j++)
681 mac_out[j] |= block[j]&is_block_b;
682 }
683
684 EVP_MD_CTX_init(&md_ctx);
685 EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
686 if (is_sslv3)
687 {
688 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
689 memset(hmac_pad, 0x5c, sslv3_pad_length);
690
691 EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
692 EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
693 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
694 }
695 else
696 {
697 /* Complete the HMAC in the standard manner. */
698 for (i = 0; i < md_block_size; i++)
699 hmac_pad[i] ^= 0x6a;
700
701 EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
702 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
703 }
704 EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
705 if (md_out_size)
706 *md_out_size = md_out_size_u;
707 EVP_MD_CTX_cleanup(&md_ctx);
708 }
709
710 #ifdef OPENSSL_FIPS
711
712 /* Due to the need to use EVP in FIPS mode we can't reimplement digests but
713 * we can ensure the number of blocks processed is equal for all cases
714 * by digesting additional data.
715 */
716
tls_fips_digest_extra(const EVP_CIPHER_CTX * cipher_ctx,EVP_MD_CTX * mac_ctx,const unsigned char * data,size_t data_len,size_t orig_len)717 void tls_fips_digest_extra(
718 const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
719 const unsigned char *data, size_t data_len, size_t orig_len)
720 {
721 size_t block_size, digest_pad, blocks_data, blocks_orig;
722 if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
723 return;
724 block_size = EVP_MD_CTX_block_size(mac_ctx);
725 /* We are in FIPS mode if we get this far so we know we have only SHA*
726 * digests and TLS to deal with.
727 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
728 * otherwise.
729 * Additional header is 13 bytes. To get the number of digest blocks
730 * processed round up the amount of data plus padding to the nearest
731 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
732 * So we have:
733 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
734 * equivalently:
735 * blocks = (payload_len + digest_pad + 12)/block_size + 1
736 * HMAC adds a constant overhead.
737 * We're ultimately only interested in differences so this becomes
738 * blocks = (payload_len + 29)/128
739 * for SHA384/SHA512 and
740 * blocks = (payload_len + 21)/64
741 * otherwise.
742 */
743 digest_pad = block_size == 64 ? 21 : 29;
744 blocks_orig = (orig_len + digest_pad)/block_size;
745 blocks_data = (data_len + digest_pad)/block_size;
746 /* MAC enough blocks to make up the difference between the original
747 * and actual lengths plus one extra block to ensure this is never a
748 * no op. The "data" pointer should always have enough space to
749 * perform this operation as it is large enough for a maximum
750 * length TLS buffer.
751 */
752 EVP_DigestSignUpdate(mac_ctx, data,
753 (blocks_orig - blocks_data + 1) * block_size);
754 }
755 #endif
756