• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Features shared by parsing and pre-parsing scanners.
6 
7 #ifndef V8_SCANNER_H_
8 #define V8_SCANNER_H_
9 
10 #include "src/allocation.h"
11 #include "src/base/logging.h"
12 #include "src/char-predicates.h"
13 #include "src/globals.h"
14 #include "src/hashmap.h"
15 #include "src/list.h"
16 #include "src/token.h"
17 #include "src/unicode-inl.h"
18 #include "src/utils.h"
19 
20 namespace v8 {
21 namespace internal {
22 
23 
24 class AstRawString;
25 class AstValueFactory;
26 class ParserRecorder;
27 
28 
29 // Returns the value (0 .. 15) of a hexadecimal character c.
30 // If c is not a legal hexadecimal character, returns a value < 0.
HexValue(uc32 c)31 inline int HexValue(uc32 c) {
32   c -= '0';
33   if (static_cast<unsigned>(c) <= 9) return c;
34   c = (c | 0x20) - ('a' - '0');  // detect 0x11..0x16 and 0x31..0x36.
35   if (static_cast<unsigned>(c) <= 5) return c + 10;
36   return -1;
37 }
38 
39 
40 // ---------------------------------------------------------------------
41 // Buffered stream of UTF-16 code units, using an internal UTF-16 buffer.
42 // A code unit is a 16 bit value representing either a 16 bit code point
43 // or one part of a surrogate pair that make a single 21 bit code point.
44 
45 class Utf16CharacterStream {
46  public:
Utf16CharacterStream()47   Utf16CharacterStream() : pos_(0) { }
~Utf16CharacterStream()48   virtual ~Utf16CharacterStream() { }
49 
50   // Returns and advances past the next UTF-16 code unit in the input
51   // stream. If there are no more code units, it returns a negative
52   // value.
Advance()53   inline uc32 Advance() {
54     if (buffer_cursor_ < buffer_end_ || ReadBlock()) {
55       pos_++;
56       return static_cast<uc32>(*(buffer_cursor_++));
57     }
58     // Note: currently the following increment is necessary to avoid a
59     // parser problem! The scanner treats the final kEndOfInput as
60     // a code unit with a position, and does math relative to that
61     // position.
62     pos_++;
63 
64     return kEndOfInput;
65   }
66 
67   // Return the current position in the code unit stream.
68   // Starts at zero.
pos()69   inline unsigned pos() const { return pos_; }
70 
71   // Skips forward past the next code_unit_count UTF-16 code units
72   // in the input, or until the end of input if that comes sooner.
73   // Returns the number of code units actually skipped. If less
74   // than code_unit_count,
SeekForward(unsigned code_unit_count)75   inline unsigned SeekForward(unsigned code_unit_count) {
76     unsigned buffered_chars =
77         static_cast<unsigned>(buffer_end_ - buffer_cursor_);
78     if (code_unit_count <= buffered_chars) {
79       buffer_cursor_ += code_unit_count;
80       pos_ += code_unit_count;
81       return code_unit_count;
82     }
83     return SlowSeekForward(code_unit_count);
84   }
85 
86   // Pushes back the most recently read UTF-16 code unit (or negative
87   // value if at end of input), i.e., the value returned by the most recent
88   // call to Advance.
89   // Must not be used right after calling SeekForward.
90   virtual void PushBack(int32_t code_unit) = 0;
91 
92  protected:
93   static const uc32 kEndOfInput = -1;
94 
95   // Ensures that the buffer_cursor_ points to the code_unit at
96   // position pos_ of the input, if possible. If the position
97   // is at or after the end of the input, return false. If there
98   // are more code_units available, return true.
99   virtual bool ReadBlock() = 0;
100   virtual unsigned SlowSeekForward(unsigned code_unit_count) = 0;
101 
102   const uint16_t* buffer_cursor_;
103   const uint16_t* buffer_end_;
104   unsigned pos_;
105 };
106 
107 
108 // ---------------------------------------------------------------------
109 // Caching predicates used by scanners.
110 
111 class UnicodeCache {
112  public:
UnicodeCache()113   UnicodeCache() {}
114   typedef unibrow::Utf8Decoder<512> Utf8Decoder;
115 
utf8_decoder()116   StaticResource<Utf8Decoder>* utf8_decoder() {
117     return &utf8_decoder_;
118   }
119 
IsIdentifierStart(unibrow::uchar c)120   bool IsIdentifierStart(unibrow::uchar c) { return kIsIdentifierStart.get(c); }
IsIdentifierPart(unibrow::uchar c)121   bool IsIdentifierPart(unibrow::uchar c) { return kIsIdentifierPart.get(c); }
IsLineTerminator(unibrow::uchar c)122   bool IsLineTerminator(unibrow::uchar c) { return kIsLineTerminator.get(c); }
IsWhiteSpace(unibrow::uchar c)123   bool IsWhiteSpace(unibrow::uchar c) { return kIsWhiteSpace.get(c); }
IsWhiteSpaceOrLineTerminator(unibrow::uchar c)124   bool IsWhiteSpaceOrLineTerminator(unibrow::uchar c) {
125     return kIsWhiteSpaceOrLineTerminator.get(c);
126   }
127 
128  private:
129   unibrow::Predicate<IdentifierStart, 128> kIsIdentifierStart;
130   unibrow::Predicate<IdentifierPart, 128> kIsIdentifierPart;
131   unibrow::Predicate<unibrow::LineTerminator, 128> kIsLineTerminator;
132   unibrow::Predicate<WhiteSpace, 128> kIsWhiteSpace;
133   unibrow::Predicate<WhiteSpaceOrLineTerminator, 128>
134       kIsWhiteSpaceOrLineTerminator;
135   StaticResource<Utf8Decoder> utf8_decoder_;
136 
137   DISALLOW_COPY_AND_ASSIGN(UnicodeCache);
138 };
139 
140 
141 // ---------------------------------------------------------------------
142 // DuplicateFinder discovers duplicate symbols.
143 
144 class DuplicateFinder {
145  public:
DuplicateFinder(UnicodeCache * constants)146   explicit DuplicateFinder(UnicodeCache* constants)
147       : unicode_constants_(constants),
148         backing_store_(16),
149         map_(&Match) { }
150 
151   int AddOneByteSymbol(Vector<const uint8_t> key, int value);
152   int AddTwoByteSymbol(Vector<const uint16_t> key, int value);
153   // Add a a number literal by converting it (if necessary)
154   // to the string that ToString(ToNumber(literal)) would generate.
155   // and then adding that string with AddOneByteSymbol.
156   // This string is the actual value used as key in an object literal,
157   // and the one that must be different from the other keys.
158   int AddNumber(Vector<const uint8_t> key, int value);
159 
160  private:
161   int AddSymbol(Vector<const uint8_t> key, bool is_one_byte, int value);
162   // Backs up the key and its length in the backing store.
163   // The backup is stored with a base 127 encoding of the
164   // length (plus a bit saying whether the string is one byte),
165   // followed by the bytes of the key.
166   uint8_t* BackupKey(Vector<const uint8_t> key, bool is_one_byte);
167 
168   // Compare two encoded keys (both pointing into the backing store)
169   // for having the same base-127 encoded lengths and representation.
170   // and then having the same 'length' bytes following.
171   static bool Match(void* first, void* second);
172   // Creates a hash from a sequence of bytes.
173   static uint32_t Hash(Vector<const uint8_t> key, bool is_one_byte);
174   // Checks whether a string containing a JS number is its canonical
175   // form.
176   static bool IsNumberCanonical(Vector<const uint8_t> key);
177 
178   // Size of buffer. Sufficient for using it to call DoubleToCString in
179   // from conversions.h.
180   static const int kBufferSize = 100;
181 
182   UnicodeCache* unicode_constants_;
183   // Backing store used to store strings used as hashmap keys.
184   SequenceCollector<unsigned char> backing_store_;
185   HashMap map_;
186   // Buffer used for string->number->canonical string conversions.
187   char number_buffer_[kBufferSize];
188 };
189 
190 
191 // ----------------------------------------------------------------------------
192 // LiteralBuffer -  Collector of chars of literals.
193 
194 class LiteralBuffer {
195  public:
LiteralBuffer()196   LiteralBuffer() : is_one_byte_(true), position_(0), backing_store_() { }
197 
~LiteralBuffer()198   ~LiteralBuffer() {
199     if (backing_store_.length() > 0) {
200       backing_store_.Dispose();
201     }
202   }
203 
INLINE(void AddChar (uint32_t code_unit))204   INLINE(void AddChar(uint32_t code_unit)) {
205     if (position_ >= backing_store_.length()) ExpandBuffer();
206     if (is_one_byte_) {
207       if (code_unit <= unibrow::Latin1::kMaxChar) {
208         backing_store_[position_] = static_cast<byte>(code_unit);
209         position_ += kOneByteSize;
210         return;
211       }
212       ConvertToTwoByte();
213     }
214     DCHECK(code_unit < 0x10000u);
215     *reinterpret_cast<uint16_t*>(&backing_store_[position_]) = code_unit;
216     position_ += kUC16Size;
217   }
218 
is_one_byte()219   bool is_one_byte() const { return is_one_byte_; }
220 
is_contextual_keyword(Vector<const char> keyword)221   bool is_contextual_keyword(Vector<const char> keyword) const {
222     return is_one_byte() && keyword.length() == position_ &&
223         (memcmp(keyword.start(), backing_store_.start(), position_) == 0);
224   }
225 
two_byte_literal()226   Vector<const uint16_t> two_byte_literal() const {
227     DCHECK(!is_one_byte_);
228     DCHECK((position_ & 0x1) == 0);
229     return Vector<const uint16_t>(
230         reinterpret_cast<const uint16_t*>(backing_store_.start()),
231         position_ >> 1);
232   }
233 
one_byte_literal()234   Vector<const uint8_t> one_byte_literal() const {
235     DCHECK(is_one_byte_);
236     return Vector<const uint8_t>(
237         reinterpret_cast<const uint8_t*>(backing_store_.start()),
238         position_);
239   }
240 
length()241   int length() const {
242     return is_one_byte_ ? position_ : (position_ >> 1);
243   }
244 
Reset()245   void Reset() {
246     position_ = 0;
247     is_one_byte_ = true;
248   }
249 
250   Handle<String> Internalize(Isolate* isolate) const;
251 
252  private:
253   static const int kInitialCapacity = 16;
254   static const int kGrowthFactory = 4;
255   static const int kMinConversionSlack = 256;
256   static const int kMaxGrowth = 1 * MB;
NewCapacity(int min_capacity)257   inline int NewCapacity(int min_capacity) {
258     int capacity = Max(min_capacity, backing_store_.length());
259     int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth);
260     return new_capacity;
261   }
262 
ExpandBuffer()263   void ExpandBuffer() {
264     Vector<byte> new_store = Vector<byte>::New(NewCapacity(kInitialCapacity));
265     MemCopy(new_store.start(), backing_store_.start(), position_);
266     backing_store_.Dispose();
267     backing_store_ = new_store;
268   }
269 
ConvertToTwoByte()270   void ConvertToTwoByte() {
271     DCHECK(is_one_byte_);
272     Vector<byte> new_store;
273     int new_content_size = position_ * kUC16Size;
274     if (new_content_size >= backing_store_.length()) {
275       // Ensure room for all currently read code units as UC16 as well
276       // as the code unit about to be stored.
277       new_store = Vector<byte>::New(NewCapacity(new_content_size));
278     } else {
279       new_store = backing_store_;
280     }
281     uint8_t* src = backing_store_.start();
282     uint16_t* dst = reinterpret_cast<uint16_t*>(new_store.start());
283     for (int i = position_ - 1; i >= 0; i--) {
284       dst[i] = src[i];
285     }
286     if (new_store.start() != backing_store_.start()) {
287       backing_store_.Dispose();
288       backing_store_ = new_store;
289     }
290     position_ = new_content_size;
291     is_one_byte_ = false;
292   }
293 
294   bool is_one_byte_;
295   int position_;
296   Vector<byte> backing_store_;
297 
298   DISALLOW_COPY_AND_ASSIGN(LiteralBuffer);
299 };
300 
301 
302 // ----------------------------------------------------------------------------
303 // JavaScript Scanner.
304 
305 class Scanner {
306  public:
307   // Scoped helper for literal recording. Automatically drops the literal
308   // if aborting the scanning before it's complete.
309   class LiteralScope {
310    public:
LiteralScope(Scanner * self)311     explicit LiteralScope(Scanner* self)
312         : scanner_(self), complete_(false) {
313       scanner_->StartLiteral();
314     }
~LiteralScope()315      ~LiteralScope() {
316        if (!complete_) scanner_->DropLiteral();
317      }
Complete()318     void Complete() {
319       scanner_->TerminateLiteral();
320       complete_ = true;
321     }
322 
323    private:
324     Scanner* scanner_;
325     bool complete_;
326   };
327 
328   // Representation of an interval of source positions.
329   struct Location {
LocationLocation330     Location(int b, int e) : beg_pos(b), end_pos(e) { }
LocationLocation331     Location() : beg_pos(0), end_pos(0) { }
332 
IsValidLocation333     bool IsValid() const {
334       return beg_pos >= 0 && end_pos >= beg_pos;
335     }
336 
invalidLocation337     static Location invalid() { return Location(-1, -1); }
338 
339     int beg_pos;
340     int end_pos;
341   };
342 
343   // -1 is outside of the range of any real source code.
344   static const int kNoOctalLocation = -1;
345 
346   explicit Scanner(UnicodeCache* scanner_contants);
347 
348   void Initialize(Utf16CharacterStream* source);
349 
350   // Returns the next token and advances input.
351   Token::Value Next();
352   // Returns the current token again.
current_token()353   Token::Value current_token() { return current_.token; }
354   // Returns the location information for the current token
355   // (the token last returned by Next()).
location()356   Location location() const { return current_.location; }
357 
358   // Similar functions for the upcoming token.
359 
360   // One token look-ahead (past the token returned by Next()).
peek()361   Token::Value peek() const { return next_.token; }
362 
peek_location()363   Location peek_location() const { return next_.location; }
364 
literal_contains_escapes()365   bool literal_contains_escapes() const {
366     Location location = current_.location;
367     int source_length = (location.end_pos - location.beg_pos);
368     if (current_.token == Token::STRING) {
369       // Subtract delimiters.
370       source_length -= 2;
371     }
372     return current_.literal_chars->length() != source_length;
373   }
is_literal_contextual_keyword(Vector<const char> keyword)374   bool is_literal_contextual_keyword(Vector<const char> keyword) {
375     DCHECK_NOT_NULL(current_.literal_chars);
376     return current_.literal_chars->is_contextual_keyword(keyword);
377   }
is_next_contextual_keyword(Vector<const char> keyword)378   bool is_next_contextual_keyword(Vector<const char> keyword) {
379     DCHECK_NOT_NULL(next_.literal_chars);
380     return next_.literal_chars->is_contextual_keyword(keyword);
381   }
382 
383   const AstRawString* CurrentSymbol(AstValueFactory* ast_value_factory);
384   const AstRawString* NextSymbol(AstValueFactory* ast_value_factory);
385 
386   double DoubleValue();
UnescapedLiteralMatches(const char * data,int length)387   bool UnescapedLiteralMatches(const char* data, int length) {
388     if (is_literal_one_byte() &&
389         literal_length() == length &&
390         !literal_contains_escapes()) {
391       const char* token =
392           reinterpret_cast<const char*>(literal_one_byte_string().start());
393       return !strncmp(token, data, length);
394     }
395     return false;
396   }
IsGetOrSet(bool * is_get,bool * is_set)397   void IsGetOrSet(bool* is_get, bool* is_set) {
398     if (is_literal_one_byte() &&
399         literal_length() == 3 &&
400         !literal_contains_escapes()) {
401       const char* token =
402           reinterpret_cast<const char*>(literal_one_byte_string().start());
403       *is_get = strncmp(token, "get", 3) == 0;
404       *is_set = !*is_get && strncmp(token, "set", 3) == 0;
405     }
406   }
407 
408   int FindNumber(DuplicateFinder* finder, int value);
409   int FindSymbol(DuplicateFinder* finder, int value);
410 
unicode_cache()411   UnicodeCache* unicode_cache() { return unicode_cache_; }
412 
413   // Returns the location of the last seen octal literal.
octal_position()414   Location octal_position() const { return octal_pos_; }
clear_octal_position()415   void clear_octal_position() { octal_pos_ = Location::invalid(); }
416 
417   // Seek forward to the given position.  This operation does not
418   // work in general, for instance when there are pushed back
419   // characters, but works for seeking forward until simple delimiter
420   // tokens, which is what it is used for.
421   void SeekForward(int pos);
422 
HarmonyScoping()423   bool HarmonyScoping() const {
424     return harmony_scoping_;
425   }
SetHarmonyScoping(bool scoping)426   void SetHarmonyScoping(bool scoping) {
427     harmony_scoping_ = scoping;
428   }
HarmonyModules()429   bool HarmonyModules() const {
430     return harmony_modules_;
431   }
SetHarmonyModules(bool modules)432   void SetHarmonyModules(bool modules) {
433     harmony_modules_ = modules;
434   }
HarmonyNumericLiterals()435   bool HarmonyNumericLiterals() const {
436     return harmony_numeric_literals_;
437   }
SetHarmonyNumericLiterals(bool numeric_literals)438   void SetHarmonyNumericLiterals(bool numeric_literals) {
439     harmony_numeric_literals_ = numeric_literals;
440   }
HarmonyClasses()441   bool HarmonyClasses() const {
442     return harmony_classes_;
443   }
SetHarmonyClasses(bool classes)444   void SetHarmonyClasses(bool classes) {
445     harmony_classes_ = classes;
446   }
447 
448   // Returns true if there was a line terminator before the peek'ed token,
449   // possibly inside a multi-line comment.
HasAnyLineTerminatorBeforeNext()450   bool HasAnyLineTerminatorBeforeNext() const {
451     return has_line_terminator_before_next_ ||
452            has_multiline_comment_before_next_;
453   }
454 
455   // Scans the input as a regular expression pattern, previous
456   // character(s) must be /(=). Returns true if a pattern is scanned.
457   bool ScanRegExpPattern(bool seen_equal);
458   // Returns true if regexp flags are scanned (always since flags can
459   // be empty).
460   bool ScanRegExpFlags();
461 
source_url()462   const LiteralBuffer* source_url() const { return &source_url_; }
source_mapping_url()463   const LiteralBuffer* source_mapping_url() const {
464     return &source_mapping_url_;
465   }
466 
467   bool IdentifierIsFutureStrictReserved(const AstRawString* string) const;
468 
469  private:
470   // The current and look-ahead token.
471   struct TokenDesc {
472     Token::Value token;
473     Location location;
474     LiteralBuffer* literal_chars;
475   };
476 
477   static const int kCharacterLookaheadBufferSize = 1;
478 
479   // Scans octal escape sequence. Also accepts "\0" decimal escape sequence.
480   uc32 ScanOctalEscape(uc32 c, int length);
481 
482   // Call this after setting source_ to the input.
Init()483   void Init() {
484     // Set c0_ (one character ahead)
485     STATIC_ASSERT(kCharacterLookaheadBufferSize == 1);
486     Advance();
487     // Initialize current_ to not refer to a literal.
488     current_.literal_chars = NULL;
489   }
490 
491   // Literal buffer support
StartLiteral()492   inline void StartLiteral() {
493     LiteralBuffer* free_buffer = (current_.literal_chars == &literal_buffer1_) ?
494             &literal_buffer2_ : &literal_buffer1_;
495     free_buffer->Reset();
496     next_.literal_chars = free_buffer;
497   }
498 
INLINE(void AddLiteralChar (uc32 c))499   INLINE(void AddLiteralChar(uc32 c)) {
500     DCHECK_NOT_NULL(next_.literal_chars);
501     next_.literal_chars->AddChar(c);
502   }
503 
504   // Complete scanning of a literal.
TerminateLiteral()505   inline void TerminateLiteral() {
506     // Does nothing in the current implementation.
507   }
508 
509   // Stops scanning of a literal and drop the collected characters,
510   // e.g., due to an encountered error.
DropLiteral()511   inline void DropLiteral() {
512     next_.literal_chars = NULL;
513   }
514 
AddLiteralCharAdvance()515   inline void AddLiteralCharAdvance() {
516     AddLiteralChar(c0_);
517     Advance();
518   }
519 
520   // Low-level scanning support.
Advance()521   void Advance() { c0_ = source_->Advance(); }
PushBack(uc32 ch)522   void PushBack(uc32 ch) {
523     source_->PushBack(c0_);
524     c0_ = ch;
525   }
526 
Select(Token::Value tok)527   inline Token::Value Select(Token::Value tok) {
528     Advance();
529     return tok;
530   }
531 
Select(uc32 next,Token::Value then,Token::Value else_)532   inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) {
533     Advance();
534     if (c0_ == next) {
535       Advance();
536       return then;
537     } else {
538       return else_;
539     }
540   }
541 
542   // Returns the literal string, if any, for the current token (the
543   // token last returned by Next()). The string is 0-terminated.
544   // Literal strings are collected for identifiers, strings, and
545   // numbers.
546   // These functions only give the correct result if the literal
547   // was scanned between calls to StartLiteral() and TerminateLiteral().
literal_one_byte_string()548   Vector<const uint8_t> literal_one_byte_string() {
549     DCHECK_NOT_NULL(current_.literal_chars);
550     return current_.literal_chars->one_byte_literal();
551   }
literal_two_byte_string()552   Vector<const uint16_t> literal_two_byte_string() {
553     DCHECK_NOT_NULL(current_.literal_chars);
554     return current_.literal_chars->two_byte_literal();
555   }
is_literal_one_byte()556   bool is_literal_one_byte() {
557     DCHECK_NOT_NULL(current_.literal_chars);
558     return current_.literal_chars->is_one_byte();
559   }
literal_length()560   int literal_length() const {
561     DCHECK_NOT_NULL(current_.literal_chars);
562     return current_.literal_chars->length();
563   }
564   // Returns the literal string for the next token (the token that
565   // would be returned if Next() were called).
next_literal_one_byte_string()566   Vector<const uint8_t> next_literal_one_byte_string() {
567     DCHECK_NOT_NULL(next_.literal_chars);
568     return next_.literal_chars->one_byte_literal();
569   }
next_literal_two_byte_string()570   Vector<const uint16_t> next_literal_two_byte_string() {
571     DCHECK_NOT_NULL(next_.literal_chars);
572     return next_.literal_chars->two_byte_literal();
573   }
is_next_literal_one_byte()574   bool is_next_literal_one_byte() {
575     DCHECK_NOT_NULL(next_.literal_chars);
576     return next_.literal_chars->is_one_byte();
577   }
next_literal_length()578   int next_literal_length() const {
579     DCHECK_NOT_NULL(next_.literal_chars);
580     return next_.literal_chars->length();
581   }
582 
583   uc32 ScanHexNumber(int expected_length);
584 
585   // Scans a single JavaScript token.
586   void Scan();
587 
588   bool SkipWhiteSpace();
589   Token::Value SkipSingleLineComment();
590   Token::Value SkipSourceURLComment();
591   void TryToParseSourceURLComment();
592   Token::Value SkipMultiLineComment();
593   // Scans a possible HTML comment -- begins with '<!'.
594   Token::Value ScanHtmlComment();
595 
596   void ScanDecimalDigits();
597   Token::Value ScanNumber(bool seen_period);
598   Token::Value ScanIdentifierOrKeyword();
599   Token::Value ScanIdentifierSuffix(LiteralScope* literal);
600 
601   Token::Value ScanString();
602 
603   // Scans an escape-sequence which is part of a string and adds the
604   // decoded character to the current literal. Returns true if a pattern
605   // is scanned.
606   bool ScanEscape();
607   // Decodes a Unicode escape-sequence which is part of an identifier.
608   // If the escape sequence cannot be decoded the result is kBadChar.
609   uc32 ScanIdentifierUnicodeEscape();
610   // Scans a Unicode escape-sequence and adds its characters,
611   // uninterpreted, to the current literal. Used for parsing RegExp
612   // flags.
613   bool ScanLiteralUnicodeEscape();
614 
615   // Return the current source position.
source_pos()616   int source_pos() {
617     return source_->pos() - kCharacterLookaheadBufferSize;
618   }
619 
620   UnicodeCache* unicode_cache_;
621 
622   // Buffers collecting literal strings, numbers, etc.
623   LiteralBuffer literal_buffer1_;
624   LiteralBuffer literal_buffer2_;
625 
626   // Values parsed from magic comments.
627   LiteralBuffer source_url_;
628   LiteralBuffer source_mapping_url_;
629 
630   TokenDesc current_;  // desc for current token (as returned by Next())
631   TokenDesc next_;     // desc for next token (one token look-ahead)
632 
633   // Input stream. Must be initialized to an Utf16CharacterStream.
634   Utf16CharacterStream* source_;
635 
636 
637   // Start position of the octal literal last scanned.
638   Location octal_pos_;
639 
640   // One Unicode character look-ahead; c0_ < 0 at the end of the input.
641   uc32 c0_;
642 
643   // Whether there is a line terminator whitespace character after
644   // the current token, and  before the next. Does not count newlines
645   // inside multiline comments.
646   bool has_line_terminator_before_next_;
647   // Whether there is a multi-line comment that contains a
648   // line-terminator after the current token, and before the next.
649   bool has_multiline_comment_before_next_;
650   // Whether we scan 'let' as a keyword for harmony block-scoped let bindings.
651   bool harmony_scoping_;
652   // Whether we scan 'module', 'import', 'export' as keywords.
653   bool harmony_modules_;
654   // Whether we scan 0o777 and 0b111 as numbers.
655   bool harmony_numeric_literals_;
656   // Whether we scan 'class', 'extends', 'static' and 'super' as keywords.
657   bool harmony_classes_;
658 };
659 
660 } }  // namespace v8::internal
661 
662 #endif  // V8_SCANNER_H_
663