1 /*
2 * Windows CE backend for libusbx 1.0
3 * Copyright © 2011-2013 RealVNC Ltd.
4 * Large portions taken from Windows backend, which is
5 * Copyright © 2009-2010 Pete Batard <pbatard@gmail.com>
6 * With contributions from Michael Plante, Orin Eman et al.
7 * Parts of this code adapted from libusb-win32-v1 by Stephan Meyer
8 * Major code testing contribution by Xiaofan Chen
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25 #include <libusbi.h>
26
27 #include <stdint.h>
28 #include <errno.h>
29 #include <inttypes.h>
30
31 #include "wince_usb.h"
32
33 // Forward declares
34 static int wince_clock_gettime(int clk_id, struct timespec *tp);
35 unsigned __stdcall wince_clock_gettime_threaded(void* param);
36
37 // Global variables
38 uint64_t hires_frequency, hires_ticks_to_ps;
39 int errno;
40 const uint64_t epoch_time = UINT64_C(116444736000000000); // 1970.01.01 00:00:000 in MS Filetime
41 enum windows_version windows_version = WINDOWS_CE;
42 static int concurrent_usage = -1;
43 // Timer thread
44 // NB: index 0 is for monotonic and 1 is for the thread exit event
45 HANDLE timer_thread = NULL;
46 HANDLE timer_mutex = NULL;
47 struct timespec timer_tp;
48 volatile LONG request_count[2] = {0, 1}; // last one must be > 0
49 HANDLE timer_request[2] = { NULL, NULL };
50 HANDLE timer_response = NULL;
51 HANDLE driver_handle = INVALID_HANDLE_VALUE;
52
53 /*
54 * Converts a windows error to human readable string
55 * uses retval as errorcode, or, if 0, use GetLastError()
56 */
57 #if defined(ENABLE_LOGGING)
windows_error_str(uint32_t retval)58 static char* windows_error_str(uint32_t retval)
59 {
60 static TCHAR wErr_string[ERR_BUFFER_SIZE];
61 static char err_string[ERR_BUFFER_SIZE];
62
63 DWORD size;
64 size_t i;
65 uint32_t error_code, format_error;
66
67 error_code = retval?retval:GetLastError();
68
69 safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("[%d] "), error_code);
70
71 size = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, NULL, error_code,
72 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), &wErr_string[safe_tcslen(wErr_string)],
73 ERR_BUFFER_SIZE - (DWORD)safe_tcslen(wErr_string), NULL);
74 if (size == 0) {
75 format_error = GetLastError();
76 if (format_error)
77 safe_stprintf(wErr_string, ERR_BUFFER_SIZE,
78 _T("Windows error code %u (FormatMessage error code %u)"), error_code, format_error);
79 else
80 safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("Unknown error code %u"), error_code);
81 } else {
82 // Remove CR/LF terminators
83 for (i=safe_tcslen(wErr_string)-1; ((wErr_string[i]==0x0A) || (wErr_string[i]==0x0D)); i--) {
84 wErr_string[i] = 0;
85 }
86 }
87 if (WideCharToMultiByte(CP_ACP, 0, wErr_string, -1, err_string, ERR_BUFFER_SIZE, NULL, NULL) < 0)
88 {
89 strcpy(err_string, "Unable to convert error string");
90 }
91 return err_string;
92 }
93 #endif
94
_device_priv(struct libusb_device * dev)95 static struct wince_device_priv *_device_priv(struct libusb_device *dev)
96 {
97 return (struct wince_device_priv *) dev->os_priv;
98 }
99
100 // ceusbkwrapper to libusb error code mapping
translate_driver_error(int error)101 static int translate_driver_error(int error)
102 {
103 switch (error) {
104 case ERROR_INVALID_PARAMETER:
105 return LIBUSB_ERROR_INVALID_PARAM;
106 case ERROR_CALL_NOT_IMPLEMENTED:
107 case ERROR_NOT_SUPPORTED:
108 return LIBUSB_ERROR_NOT_SUPPORTED;
109 case ERROR_NOT_ENOUGH_MEMORY:
110 return LIBUSB_ERROR_NO_MEM;
111 case ERROR_INVALID_HANDLE:
112 return LIBUSB_ERROR_NO_DEVICE;
113 case ERROR_BUSY:
114 return LIBUSB_ERROR_BUSY;
115
116 // Error codes that are either unexpected, or have
117 // no suitable LIBUSB_ERROR equivilant.
118 case ERROR_CANCELLED:
119 case ERROR_INTERNAL_ERROR:
120 default:
121 return LIBUSB_ERROR_OTHER;
122 }
123 }
124
init_dllimports()125 static int init_dllimports()
126 {
127 DLL_LOAD(ceusbkwrapper.dll, UkwOpenDriver, TRUE);
128 DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceList, TRUE);
129 DLL_LOAD(ceusbkwrapper.dll, UkwReleaseDeviceList, TRUE);
130 DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceAddress, TRUE);
131 DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceDescriptor, TRUE);
132 DLL_LOAD(ceusbkwrapper.dll, UkwGetConfigDescriptor, TRUE);
133 DLL_LOAD(ceusbkwrapper.dll, UkwCloseDriver, TRUE);
134 DLL_LOAD(ceusbkwrapper.dll, UkwCancelTransfer, TRUE);
135 DLL_LOAD(ceusbkwrapper.dll, UkwIssueControlTransfer, TRUE);
136 DLL_LOAD(ceusbkwrapper.dll, UkwClaimInterface, TRUE);
137 DLL_LOAD(ceusbkwrapper.dll, UkwReleaseInterface, TRUE);
138 DLL_LOAD(ceusbkwrapper.dll, UkwSetInterfaceAlternateSetting, TRUE);
139 DLL_LOAD(ceusbkwrapper.dll, UkwClearHaltHost, TRUE);
140 DLL_LOAD(ceusbkwrapper.dll, UkwClearHaltDevice, TRUE);
141 DLL_LOAD(ceusbkwrapper.dll, UkwGetConfig, TRUE);
142 DLL_LOAD(ceusbkwrapper.dll, UkwSetConfig, TRUE);
143 DLL_LOAD(ceusbkwrapper.dll, UkwResetDevice, TRUE);
144 DLL_LOAD(ceusbkwrapper.dll, UkwKernelDriverActive, TRUE);
145 DLL_LOAD(ceusbkwrapper.dll, UkwAttachKernelDriver, TRUE);
146 DLL_LOAD(ceusbkwrapper.dll, UkwDetachKernelDriver, TRUE);
147 DLL_LOAD(ceusbkwrapper.dll, UkwIssueBulkTransfer, TRUE);
148 DLL_LOAD(ceusbkwrapper.dll, UkwIsPipeHalted, TRUE);
149 return LIBUSB_SUCCESS;
150 }
151
init_device(struct libusb_device * dev,UKW_DEVICE drv_dev,unsigned char bus_addr,unsigned char dev_addr)152 static int init_device(struct libusb_device *dev, UKW_DEVICE drv_dev,
153 unsigned char bus_addr, unsigned char dev_addr)
154 {
155 struct wince_device_priv *priv = _device_priv(dev);
156 int r = LIBUSB_SUCCESS;
157
158 dev->bus_number = bus_addr;
159 dev->device_address = dev_addr;
160 priv->dev = drv_dev;
161
162 if (!UkwGetDeviceDescriptor(priv->dev, &(priv->desc))) {
163 r = translate_driver_error(GetLastError());
164 }
165 return r;
166 }
167
168 // Internal API functions
wince_init(struct libusb_context * ctx)169 static int wince_init(struct libusb_context *ctx)
170 {
171 int i, r = LIBUSB_ERROR_OTHER;
172 HANDLE semaphore;
173 TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID)
174
175 _stprintf(sem_name, _T("libusb_init%08X"), (unsigned int)GetCurrentProcessId()&0xFFFFFFFF);
176 semaphore = CreateSemaphore(NULL, 1, 1, sem_name);
177 if (semaphore == NULL) {
178 usbi_err(ctx, "could not create semaphore: %s", windows_error_str(0));
179 return LIBUSB_ERROR_NO_MEM;
180 }
181
182 // A successful wait brings our semaphore count to 0 (unsignaled)
183 // => any concurent wait stalls until the semaphore's release
184 if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) {
185 usbi_err(ctx, "failure to access semaphore: %s", windows_error_str(0));
186 CloseHandle(semaphore);
187 return LIBUSB_ERROR_NO_MEM;
188 }
189
190 // NB: concurrent usage supposes that init calls are equally balanced with
191 // exit calls. If init is called more than exit, we will not exit properly
192 if ( ++concurrent_usage == 0 ) { // First init?
193 // Initialize pollable file descriptors
194 init_polling();
195
196 // Load DLL imports
197 if (init_dllimports() != LIBUSB_SUCCESS) {
198 usbi_err(ctx, "could not resolve DLL functions");
199 r = LIBUSB_ERROR_NOT_SUPPORTED;
200 goto init_exit;
201 }
202
203 // try to open a handle to the driver
204 driver_handle = UkwOpenDriver();
205 if (driver_handle == INVALID_HANDLE_VALUE) {
206 usbi_err(ctx, "could not connect to driver");
207 r = LIBUSB_ERROR_NOT_SUPPORTED;
208 goto init_exit;
209 }
210
211 // Windows CE doesn't have a way of specifying thread affinity, so this code
212 // just has to hope QueryPerformanceCounter doesn't report different values when
213 // running on different cores.
214 r = LIBUSB_ERROR_NO_MEM;
215 for (i = 0; i < 2; i++) {
216 timer_request[i] = CreateEvent(NULL, TRUE, FALSE, NULL);
217 if (timer_request[i] == NULL) {
218 usbi_err(ctx, "could not create timer request event %d - aborting", i);
219 goto init_exit;
220 }
221 }
222 timer_response = CreateSemaphore(NULL, 0, MAX_TIMER_SEMAPHORES, NULL);
223 if (timer_response == NULL) {
224 usbi_err(ctx, "could not create timer response semaphore - aborting");
225 goto init_exit;
226 }
227 timer_mutex = CreateMutex(NULL, FALSE, NULL);
228 if (timer_mutex == NULL) {
229 usbi_err(ctx, "could not create timer mutex - aborting");
230 goto init_exit;
231 }
232 timer_thread = CreateThread(NULL, 0, wince_clock_gettime_threaded, NULL, 0, NULL);
233 if (timer_thread == NULL) {
234 usbi_err(ctx, "Unable to create timer thread - aborting");
235 goto init_exit;
236 }
237
238 // Wait for timer thread to init before continuing.
239 if (WaitForSingleObject(timer_response, INFINITE) != WAIT_OBJECT_0) {
240 usbi_err(ctx, "Failed to wait for timer thread to become ready - aborting");
241 goto init_exit;
242 }
243 }
244 // At this stage, either we went through full init successfully, or didn't need to
245 r = LIBUSB_SUCCESS;
246
247 init_exit: // Holds semaphore here.
248 if (!concurrent_usage && r != LIBUSB_SUCCESS) { // First init failed?
249 if (driver_handle != INVALID_HANDLE_VALUE) {
250 UkwCloseDriver(driver_handle);
251 driver_handle = INVALID_HANDLE_VALUE;
252 }
253 if (timer_thread) {
254 SetEvent(timer_request[1]); // actually the signal to quit the thread.
255 if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) {
256 usbi_warn(ctx, "could not wait for timer thread to quit");
257 TerminateThread(timer_thread, 1); // shouldn't happen, but we're destroying
258 // all objects it might have held anyway.
259 }
260 CloseHandle(timer_thread);
261 timer_thread = NULL;
262 }
263 for (i = 0; i < 2; i++) {
264 if (timer_request[i]) {
265 CloseHandle(timer_request[i]);
266 timer_request[i] = NULL;
267 }
268 }
269 if (timer_response) {
270 CloseHandle(timer_response);
271 timer_response = NULL;
272 }
273 if (timer_mutex) {
274 CloseHandle(timer_mutex);
275 timer_mutex = NULL;
276 }
277 }
278
279 if (r != LIBUSB_SUCCESS)
280 --concurrent_usage; // Not expected to call libusb_exit if we failed.
281
282 ReleaseSemaphore(semaphore, 1, NULL); // increase count back to 1
283 CloseHandle(semaphore);
284 return r;
285 }
286
wince_exit(void)287 static void wince_exit(void)
288 {
289 int i;
290 HANDLE semaphore;
291 TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID)
292
293 _stprintf(sem_name, _T("libusb_init%08X"), (unsigned int)GetCurrentProcessId()&0xFFFFFFFF);
294 semaphore = CreateSemaphore(NULL, 1, 1, sem_name);
295 if (semaphore == NULL) {
296 return;
297 }
298
299 // A successful wait brings our semaphore count to 0 (unsignaled)
300 // => any concurent wait stalls until the semaphore release
301 if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) {
302 CloseHandle(semaphore);
303 return;
304 }
305
306 // Only works if exits and inits are balanced exactly
307 if (--concurrent_usage < 0) { // Last exit
308 exit_polling();
309
310 if (timer_thread) {
311 SetEvent(timer_request[1]); // actually the signal to quit the thread.
312 if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) {
313 usbi_dbg("could not wait for timer thread to quit");
314 TerminateThread(timer_thread, 1);
315 }
316 CloseHandle(timer_thread);
317 timer_thread = NULL;
318 }
319 for (i = 0; i < 2; i++) {
320 if (timer_request[i]) {
321 CloseHandle(timer_request[i]);
322 timer_request[i] = NULL;
323 }
324 }
325 if (timer_response) {
326 CloseHandle(timer_response);
327 timer_response = NULL;
328 }
329 if (timer_mutex) {
330 CloseHandle(timer_mutex);
331 timer_mutex = NULL;
332 }
333 if (driver_handle != INVALID_HANDLE_VALUE) {
334 UkwCloseDriver(driver_handle);
335 driver_handle = INVALID_HANDLE_VALUE;
336 }
337 }
338
339 ReleaseSemaphore(semaphore, 1, NULL); // increase count back to 1
340 CloseHandle(semaphore);
341 }
342
wince_get_device_list(struct libusb_context * ctx,struct discovered_devs ** discdevs)343 static int wince_get_device_list(
344 struct libusb_context *ctx,
345 struct discovered_devs **discdevs)
346 {
347 UKW_DEVICE devices[MAX_DEVICE_COUNT];
348 struct discovered_devs * new_devices = *discdevs;
349 DWORD count = 0, i;
350 struct libusb_device *dev = NULL;
351 unsigned char bus_addr, dev_addr;
352 unsigned long session_id;
353 BOOL success;
354 DWORD release_list_offset = 0;
355 int r = LIBUSB_SUCCESS;
356
357 success = UkwGetDeviceList(driver_handle, devices, MAX_DEVICE_COUNT, &count);
358 if (!success) {
359 int libusbErr = translate_driver_error(GetLastError());
360 usbi_err(ctx, "could not get devices: %s", windows_error_str(0));
361 return libusbErr;
362 }
363 for(i = 0; i < count; ++i) {
364 release_list_offset = i;
365 success = UkwGetDeviceAddress(devices[i], &bus_addr, &dev_addr, &session_id);
366 if (!success) {
367 r = translate_driver_error(GetLastError());
368 usbi_err(ctx, "could not get device address for %d: %s", i, windows_error_str(0));
369 goto err_out;
370 }
371 dev = usbi_get_device_by_session_id(ctx, session_id);
372 if (dev) {
373 usbi_dbg("using existing device for %d/%d (session %ld)",
374 bus_addr, dev_addr, session_id);
375 libusb_ref_device(dev);
376 // Release just this element in the device list (as we already hold a
377 // reference to it).
378 UkwReleaseDeviceList(driver_handle, &devices[i], 1);
379 release_list_offset++;
380 } else {
381 usbi_dbg("allocating new device for %d/%d (session %ld)",
382 bus_addr, dev_addr, session_id);
383 dev = usbi_alloc_device(ctx, session_id);
384 if (!dev) {
385 r = LIBUSB_ERROR_NO_MEM;
386 goto err_out;
387 }
388 r = init_device(dev, devices[i], bus_addr, dev_addr);
389 if (r < 0)
390 goto err_out;
391 r = usbi_sanitize_device(dev);
392 if (r < 0)
393 goto err_out;
394 }
395 new_devices = discovered_devs_append(new_devices, dev);
396 if (!discdevs) {
397 r = LIBUSB_ERROR_NO_MEM;
398 goto err_out;
399 }
400 safe_unref_device(dev);
401 }
402 *discdevs = new_devices;
403 return r;
404 err_out:
405 *discdevs = new_devices;
406 safe_unref_device(dev);
407 // Release the remainder of the unprocessed device list.
408 // The devices added to new_devices already will still be passed up to libusb,
409 // which can dispose of them at its leisure.
410 UkwReleaseDeviceList(driver_handle, &devices[release_list_offset], count - release_list_offset);
411 return r;
412 }
413
wince_open(struct libusb_device_handle * handle)414 static int wince_open(struct libusb_device_handle *handle)
415 {
416 // Nothing to do to open devices as a handle to it has
417 // been retrieved by wince_get_device_list
418 return LIBUSB_SUCCESS;
419 }
420
wince_close(struct libusb_device_handle * handle)421 static void wince_close(struct libusb_device_handle *handle)
422 {
423 // Nothing to do as wince_open does nothing.
424 }
425
wince_get_device_descriptor(struct libusb_device * device,unsigned char * buffer,int * host_endian)426 static int wince_get_device_descriptor(
427 struct libusb_device *device,
428 unsigned char *buffer, int *host_endian)
429 {
430 struct wince_device_priv *priv = _device_priv(device);
431
432 *host_endian = 1;
433 memcpy(buffer, &priv->desc, DEVICE_DESC_LENGTH);
434 return LIBUSB_SUCCESS;
435 }
436
wince_get_active_config_descriptor(struct libusb_device * device,unsigned char * buffer,size_t len,int * host_endian)437 static int wince_get_active_config_descriptor(
438 struct libusb_device *device,
439 unsigned char *buffer, size_t len, int *host_endian)
440 {
441 struct wince_device_priv *priv = _device_priv(device);
442 DWORD actualSize = len;
443 *host_endian = 0;
444 if (!UkwGetConfigDescriptor(priv->dev, UKW_ACTIVE_CONFIGURATION, buffer, len, &actualSize)) {
445 return translate_driver_error(GetLastError());
446 }
447 return actualSize;
448 }
449
wince_get_config_descriptor(struct libusb_device * device,uint8_t config_index,unsigned char * buffer,size_t len,int * host_endian)450 static int wince_get_config_descriptor(
451 struct libusb_device *device,
452 uint8_t config_index,
453 unsigned char *buffer, size_t len, int *host_endian)
454 {
455 struct wince_device_priv *priv = _device_priv(device);
456 DWORD actualSize = len;
457 *host_endian = 0;
458 if (!UkwGetConfigDescriptor(priv->dev, config_index, buffer, len, &actualSize)) {
459 return translate_driver_error(GetLastError());
460 }
461 return actualSize;
462 }
463
wince_get_configuration(struct libusb_device_handle * handle,int * config)464 static int wince_get_configuration(
465 struct libusb_device_handle *handle,
466 int *config)
467 {
468 struct wince_device_priv *priv = _device_priv(handle->dev);
469 UCHAR cv = 0;
470 if (!UkwGetConfig(priv->dev, &cv)) {
471 return translate_driver_error(GetLastError());
472 }
473 (*config) = cv;
474 return LIBUSB_SUCCESS;
475 }
476
wince_set_configuration(struct libusb_device_handle * handle,int config)477 static int wince_set_configuration(
478 struct libusb_device_handle *handle,
479 int config)
480 {
481 struct wince_device_priv *priv = _device_priv(handle->dev);
482 // Setting configuration 0 places the device in Address state.
483 // This should correspond to the "unconfigured state" required by
484 // libusb when the specified configuration is -1.
485 UCHAR cv = (config < 0) ? 0 : config;
486 if (!UkwSetConfig(priv->dev, cv)) {
487 return translate_driver_error(GetLastError());
488 }
489 return LIBUSB_SUCCESS;
490 }
491
wince_claim_interface(struct libusb_device_handle * handle,int interface_number)492 static int wince_claim_interface(
493 struct libusb_device_handle *handle,
494 int interface_number)
495 {
496 struct wince_device_priv *priv = _device_priv(handle->dev);
497 if (!UkwClaimInterface(priv->dev, interface_number)) {
498 return translate_driver_error(GetLastError());
499 }
500 return LIBUSB_SUCCESS;
501 }
502
wince_release_interface(struct libusb_device_handle * handle,int interface_number)503 static int wince_release_interface(
504 struct libusb_device_handle *handle,
505 int interface_number)
506 {
507 struct wince_device_priv *priv = _device_priv(handle->dev);
508 if (!UkwSetInterfaceAlternateSetting(priv->dev, interface_number, 0)) {
509 return translate_driver_error(GetLastError());
510 }
511 if (!UkwReleaseInterface(priv->dev, interface_number)) {
512 return translate_driver_error(GetLastError());
513 }
514 return LIBUSB_SUCCESS;
515 }
516
wince_set_interface_altsetting(struct libusb_device_handle * handle,int interface_number,int altsetting)517 static int wince_set_interface_altsetting(
518 struct libusb_device_handle *handle,
519 int interface_number, int altsetting)
520 {
521 struct wince_device_priv *priv = _device_priv(handle->dev);
522 if (!UkwSetInterfaceAlternateSetting(priv->dev, interface_number, altsetting)) {
523 return translate_driver_error(GetLastError());
524 }
525 return LIBUSB_SUCCESS;
526 }
527
wince_clear_halt(struct libusb_device_handle * handle,unsigned char endpoint)528 static int wince_clear_halt(
529 struct libusb_device_handle *handle,
530 unsigned char endpoint)
531 {
532 struct wince_device_priv *priv = _device_priv(handle->dev);
533 if (!UkwClearHaltHost(priv->dev, endpoint)) {
534 return translate_driver_error(GetLastError());
535 }
536 if (!UkwClearHaltDevice(priv->dev, endpoint)) {
537 return translate_driver_error(GetLastError());
538 }
539 return LIBUSB_SUCCESS;
540 }
541
wince_reset_device(struct libusb_device_handle * handle)542 static int wince_reset_device(
543 struct libusb_device_handle *handle)
544 {
545 struct wince_device_priv *priv = _device_priv(handle->dev);
546 if (!UkwResetDevice(priv->dev)) {
547 return translate_driver_error(GetLastError());
548 }
549 return LIBUSB_SUCCESS;
550 }
551
wince_kernel_driver_active(struct libusb_device_handle * handle,int interface_number)552 static int wince_kernel_driver_active(
553 struct libusb_device_handle *handle,
554 int interface_number)
555 {
556 struct wince_device_priv *priv = _device_priv(handle->dev);
557 BOOL result = FALSE;
558 if (!UkwKernelDriverActive(priv->dev, interface_number, &result)) {
559 return translate_driver_error(GetLastError());
560 }
561 return result ? 1 : 0;
562 }
563
wince_detach_kernel_driver(struct libusb_device_handle * handle,int interface_number)564 static int wince_detach_kernel_driver(
565 struct libusb_device_handle *handle,
566 int interface_number)
567 {
568 struct wince_device_priv *priv = _device_priv(handle->dev);
569 if (!UkwDetachKernelDriver(priv->dev, interface_number)) {
570 return translate_driver_error(GetLastError());
571 }
572 return LIBUSB_SUCCESS;
573 }
574
wince_attach_kernel_driver(struct libusb_device_handle * handle,int interface_number)575 static int wince_attach_kernel_driver(
576 struct libusb_device_handle *handle,
577 int interface_number)
578 {
579 struct wince_device_priv *priv = _device_priv(handle->dev);
580 if (!UkwAttachKernelDriver(priv->dev, interface_number)) {
581 return translate_driver_error(GetLastError());
582 }
583 return LIBUSB_SUCCESS;
584 }
585
wince_destroy_device(struct libusb_device * dev)586 static void wince_destroy_device(
587 struct libusb_device *dev)
588 {
589 struct wince_device_priv *priv = _device_priv(dev);
590 UkwReleaseDeviceList(driver_handle, &priv->dev, 1);
591 }
592
wince_clear_transfer_priv(struct usbi_transfer * itransfer)593 static void wince_clear_transfer_priv(
594 struct usbi_transfer *itransfer)
595 {
596 struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
597 struct winfd wfd = fd_to_winfd(transfer_priv->pollable_fd.fd);
598 // No need to cancel transfer as it is either complete or abandoned
599 wfd.itransfer = NULL;
600 CloseHandle(wfd.handle);
601 usbi_free_fd(&transfer_priv->pollable_fd);
602 }
603
wince_cancel_transfer(struct usbi_transfer * itransfer)604 static int wince_cancel_transfer(
605 struct usbi_transfer *itransfer)
606 {
607 struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
608 struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
609 struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
610
611 if (!UkwCancelTransfer(priv->dev, transfer_priv->pollable_fd.overlapped, UKW_TF_NO_WAIT)) {
612 return translate_driver_error(GetLastError());
613 }
614 return LIBUSB_SUCCESS;
615 }
616
wince_submit_control_or_bulk_transfer(struct usbi_transfer * itransfer)617 static int wince_submit_control_or_bulk_transfer(struct usbi_transfer *itransfer)
618 {
619 struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
620 struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev);
621 struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
622 struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
623 BOOL direction_in, ret;
624 struct winfd wfd;
625 DWORD flags;
626 HANDLE eventHandle;
627 PUKW_CONTROL_HEADER setup = NULL;
628 const BOOL control_transfer = transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL;
629
630 transfer_priv->pollable_fd = INVALID_WINFD;
631 if (control_transfer) {
632 setup = (PUKW_CONTROL_HEADER) transfer->buffer;
633 direction_in = setup->bmRequestType & LIBUSB_ENDPOINT_IN;
634 } else {
635 direction_in = transfer->endpoint & LIBUSB_ENDPOINT_IN;
636 }
637 flags = direction_in ? UKW_TF_IN_TRANSFER : UKW_TF_OUT_TRANSFER;
638 flags |= UKW_TF_SHORT_TRANSFER_OK;
639
640 eventHandle = CreateEvent(NULL, FALSE, FALSE, NULL);
641 if (eventHandle == NULL) {
642 usbi_err(ctx, "Failed to create event for async transfer");
643 return LIBUSB_ERROR_NO_MEM;
644 }
645
646 wfd = usbi_create_fd(eventHandle, direction_in ? RW_READ : RW_WRITE, itransfer, &wince_cancel_transfer);
647 if (wfd.fd < 0) {
648 CloseHandle(eventHandle);
649 return LIBUSB_ERROR_NO_MEM;
650 }
651
652 transfer_priv->pollable_fd = wfd;
653 if (control_transfer) {
654 // Split out control setup header and data buffer
655 DWORD bufLen = transfer->length - sizeof(UKW_CONTROL_HEADER);
656 PVOID buf = (PVOID) &transfer->buffer[sizeof(UKW_CONTROL_HEADER)];
657
658 ret = UkwIssueControlTransfer(priv->dev, flags, setup, buf, bufLen, &transfer->actual_length, wfd.overlapped);
659 } else {
660 ret = UkwIssueBulkTransfer(priv->dev, flags, transfer->endpoint, transfer->buffer,
661 transfer->length, &transfer->actual_length, wfd.overlapped);
662 }
663 if (!ret) {
664 int libusbErr = translate_driver_error(GetLastError());
665 usbi_err(ctx, "UkwIssue%sTransfer failed: error %d",
666 control_transfer ? "Control" : "Bulk", GetLastError());
667 wince_clear_transfer_priv(itransfer);
668 return libusbErr;
669 }
670 usbi_add_pollfd(ctx, transfer_priv->pollable_fd.fd, direction_in ? POLLIN : POLLOUT);
671 itransfer->flags |= USBI_TRANSFER_UPDATED_FDS;
672
673 return LIBUSB_SUCCESS;
674 }
675
wince_submit_iso_transfer(struct usbi_transfer * itransfer)676 static int wince_submit_iso_transfer(struct usbi_transfer *itransfer)
677 {
678 return LIBUSB_ERROR_NOT_SUPPORTED;
679 }
680
wince_submit_transfer(struct usbi_transfer * itransfer)681 static int wince_submit_transfer(
682 struct usbi_transfer *itransfer)
683 {
684 struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
685
686 switch (transfer->type) {
687 case LIBUSB_TRANSFER_TYPE_CONTROL:
688 case LIBUSB_TRANSFER_TYPE_BULK:
689 case LIBUSB_TRANSFER_TYPE_INTERRUPT:
690 return wince_submit_control_or_bulk_transfer(itransfer);
691 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
692 return wince_submit_iso_transfer(itransfer);
693 default:
694 usbi_err(TRANSFER_CTX(transfer), "unknown endpoint type %d", transfer->type);
695 return LIBUSB_ERROR_INVALID_PARAM;
696 }
697 }
698
wince_transfer_callback(struct usbi_transfer * itransfer,uint32_t io_result,uint32_t io_size)699 static void wince_transfer_callback(struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size)
700 {
701 struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
702 struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer);
703 struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev);
704 int status;
705
706 usbi_dbg("handling I/O completion with errcode %d", io_result);
707
708 if (io_result == ERROR_NOT_SUPPORTED &&
709 transfer->type != LIBUSB_TRANSFER_TYPE_CONTROL) {
710 /* For functional stalls, the WinCE USB layer (and therefore the USB Kernel Wrapper
711 * Driver) will report USB_ERROR_STALL/ERROR_NOT_SUPPORTED in situations where the
712 * endpoint isn't actually stalled.
713 *
714 * One example of this is that some devices will occasionally fail to reply to an IN
715 * token. The WinCE USB layer carries on with the transaction until it is completed
716 * (or cancelled) but then completes it with USB_ERROR_STALL.
717 *
718 * This code therefore needs to confirm that there really is a stall error, by both
719 * checking the pipe status and requesting the endpoint status from the device.
720 */
721 BOOL halted = FALSE;
722 usbi_dbg("checking I/O completion with errcode ERROR_NOT_SUPPORTED is really a stall");
723 if (UkwIsPipeHalted(priv->dev, transfer->endpoint, &halted)) {
724 /* Pipe status retrieved, so now request endpoint status by sending a GET_STATUS
725 * control request to the device. This is done synchronously, which is a bit
726 * naughty, but this is a special corner case.
727 */
728 WORD wStatus = 0;
729 DWORD written = 0;
730 UKW_CONTROL_HEADER ctrlHeader;
731 ctrlHeader.bmRequestType = LIBUSB_REQUEST_TYPE_STANDARD |
732 LIBUSB_ENDPOINT_IN | LIBUSB_RECIPIENT_ENDPOINT;
733 ctrlHeader.bRequest = LIBUSB_REQUEST_GET_STATUS;
734 ctrlHeader.wValue = 0;
735 ctrlHeader.wIndex = transfer->endpoint;
736 ctrlHeader.wLength = sizeof(wStatus);
737 if (UkwIssueControlTransfer(priv->dev,
738 UKW_TF_IN_TRANSFER | UKW_TF_SEND_TO_ENDPOINT,
739 &ctrlHeader, &wStatus, sizeof(wStatus), &written, NULL)) {
740 if (written == sizeof(wStatus) &&
741 (wStatus & STATUS_HALT_FLAG) == 0) {
742 if (!halted || UkwClearHaltHost(priv->dev, transfer->endpoint)) {
743 usbi_dbg("Endpoint doesn't appear to be stalled, overriding error with success");
744 io_result = ERROR_SUCCESS;
745 } else {
746 usbi_dbg("Endpoint doesn't appear to be stalled, but the host is halted, changing error");
747 io_result = ERROR_IO_DEVICE;
748 }
749 }
750 }
751 }
752 }
753
754 switch(io_result) {
755 case ERROR_SUCCESS:
756 itransfer->transferred += io_size;
757 status = LIBUSB_TRANSFER_COMPLETED;
758 break;
759 case ERROR_CANCELLED:
760 usbi_dbg("detected transfer cancel");
761 status = LIBUSB_TRANSFER_CANCELLED;
762 break;
763 case ERROR_NOT_SUPPORTED:
764 case ERROR_GEN_FAILURE:
765 usbi_dbg("detected endpoint stall");
766 status = LIBUSB_TRANSFER_STALL;
767 break;
768 case ERROR_SEM_TIMEOUT:
769 usbi_dbg("detected semaphore timeout");
770 status = LIBUSB_TRANSFER_TIMED_OUT;
771 break;
772 case ERROR_OPERATION_ABORTED:
773 if (itransfer->flags & USBI_TRANSFER_TIMED_OUT) {
774 usbi_dbg("detected timeout");
775 status = LIBUSB_TRANSFER_TIMED_OUT;
776 } else {
777 usbi_dbg("detected operation aborted");
778 status = LIBUSB_TRANSFER_CANCELLED;
779 }
780 break;
781 default:
782 usbi_err(ITRANSFER_CTX(itransfer), "detected I/O error: %s", windows_error_str(io_result));
783 status = LIBUSB_TRANSFER_ERROR;
784 break;
785 }
786 wince_clear_transfer_priv(itransfer);
787 if (status == LIBUSB_TRANSFER_CANCELLED) {
788 usbi_handle_transfer_cancellation(itransfer);
789 } else {
790 usbi_handle_transfer_completion(itransfer, (enum libusb_transfer_status)status);
791 }
792 }
793
wince_handle_callback(struct usbi_transfer * itransfer,uint32_t io_result,uint32_t io_size)794 static void wince_handle_callback (struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size)
795 {
796 struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
797
798 switch (transfer->type) {
799 case LIBUSB_TRANSFER_TYPE_CONTROL:
800 case LIBUSB_TRANSFER_TYPE_BULK:
801 case LIBUSB_TRANSFER_TYPE_INTERRUPT:
802 case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS:
803 wince_transfer_callback (itransfer, io_result, io_size);
804 break;
805 default:
806 usbi_err(ITRANSFER_CTX(itransfer), "unknown endpoint type %d", transfer->type);
807 }
808 }
809
wince_handle_events(struct libusb_context * ctx,struct pollfd * fds,POLL_NFDS_TYPE nfds,int num_ready)810 static int wince_handle_events(
811 struct libusb_context *ctx,
812 struct pollfd *fds, POLL_NFDS_TYPE nfds, int num_ready)
813 {
814 struct wince_transfer_priv* transfer_priv = NULL;
815 POLL_NFDS_TYPE i = 0;
816 BOOL found = FALSE;
817 struct usbi_transfer *transfer;
818 DWORD io_size, io_result;
819
820 usbi_mutex_lock(&ctx->open_devs_lock);
821 for (i = 0; i < nfds && num_ready > 0; i++) {
822
823 usbi_dbg("checking fd %d with revents = %04x", fds[i].fd, fds[i].revents);
824
825 if (!fds[i].revents) {
826 continue;
827 }
828
829 num_ready--;
830
831 // Because a Windows OVERLAPPED is used for poll emulation,
832 // a pollable fd is created and stored with each transfer
833 usbi_mutex_lock(&ctx->flying_transfers_lock);
834 list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
835 transfer_priv = usbi_transfer_get_os_priv(transfer);
836 if (transfer_priv->pollable_fd.fd == fds[i].fd) {
837 found = TRUE;
838 break;
839 }
840 }
841 usbi_mutex_unlock(&ctx->flying_transfers_lock);
842
843 if (found && HasOverlappedIoCompleted(transfer_priv->pollable_fd.overlapped)) {
844 io_result = (DWORD)transfer_priv->pollable_fd.overlapped->Internal;
845 io_size = (DWORD)transfer_priv->pollable_fd.overlapped->InternalHigh;
846 usbi_remove_pollfd(ctx, transfer_priv->pollable_fd.fd);
847 // let handle_callback free the event using the transfer wfd
848 // If you don't use the transfer wfd, you run a risk of trying to free a
849 // newly allocated wfd that took the place of the one from the transfer.
850 wince_handle_callback(transfer, io_result, io_size);
851 } else if (found) {
852 usbi_err(ctx, "matching transfer for fd %x has not completed", fds[i]);
853 return LIBUSB_ERROR_OTHER;
854 } else {
855 usbi_err(ctx, "could not find a matching transfer for fd %x", fds[i]);
856 return LIBUSB_ERROR_NOT_FOUND;
857 }
858 }
859
860 usbi_mutex_unlock(&ctx->open_devs_lock);
861 return LIBUSB_SUCCESS;
862 }
863
864 /*
865 * Monotonic and real time functions
866 */
wince_clock_gettime_threaded(void * param)867 unsigned __stdcall wince_clock_gettime_threaded(void* param)
868 {
869 LARGE_INTEGER hires_counter, li_frequency;
870 LONG nb_responses;
871 int timer_index;
872
873 // Init - find out if we have access to a monotonic (hires) timer
874 if (!QueryPerformanceFrequency(&li_frequency)) {
875 usbi_dbg("no hires timer available on this platform");
876 hires_frequency = 0;
877 hires_ticks_to_ps = UINT64_C(0);
878 } else {
879 hires_frequency = li_frequency.QuadPart;
880 // The hires frequency can go as high as 4 GHz, so we'll use a conversion
881 // to picoseconds to compute the tv_nsecs part in clock_gettime
882 hires_ticks_to_ps = UINT64_C(1000000000000) / hires_frequency;
883 usbi_dbg("hires timer available (Frequency: %"PRIu64" Hz)", hires_frequency);
884 }
885
886 // Signal wince_init() that we're ready to service requests
887 if (ReleaseSemaphore(timer_response, 1, NULL) == 0) {
888 usbi_dbg("unable to release timer semaphore: %s", windows_error_str(0));
889 }
890
891 // Main loop - wait for requests
892 while (1) {
893 timer_index = WaitForMultipleObjects(2, timer_request, FALSE, INFINITE) - WAIT_OBJECT_0;
894 if ( (timer_index != 0) && (timer_index != 1) ) {
895 usbi_dbg("failure to wait on requests: %s", windows_error_str(0));
896 continue;
897 }
898 if (request_count[timer_index] == 0) {
899 // Request already handled
900 ResetEvent(timer_request[timer_index]);
901 // There's still a possiblity that a thread sends a request between the
902 // time we test request_count[] == 0 and we reset the event, in which case
903 // the request would be ignored. The simple solution to that is to test
904 // request_count again and process requests if non zero.
905 if (request_count[timer_index] == 0)
906 continue;
907 }
908 switch (timer_index) {
909 case 0:
910 WaitForSingleObject(timer_mutex, INFINITE);
911 // Requests to this thread are for hires always
912 if (QueryPerformanceCounter(&hires_counter) != 0) {
913 timer_tp.tv_sec = (long)(hires_counter.QuadPart / hires_frequency);
914 timer_tp.tv_nsec = (long)(((hires_counter.QuadPart % hires_frequency)/1000) * hires_ticks_to_ps);
915 } else {
916 // Fallback to real-time if we can't get monotonic value
917 // Note that real-time clock does not wait on the mutex or this thread.
918 wince_clock_gettime(USBI_CLOCK_REALTIME, &timer_tp);
919 }
920 ReleaseMutex(timer_mutex);
921
922 nb_responses = InterlockedExchange((LONG*)&request_count[0], 0);
923 if ( (nb_responses)
924 && (ReleaseSemaphore(timer_response, nb_responses, NULL) == 0) ) {
925 usbi_dbg("unable to release timer semaphore: %s", windows_error_str(0));
926 }
927 continue;
928 case 1: // time to quit
929 usbi_dbg("timer thread quitting");
930 return 0;
931 }
932 }
933 usbi_dbg("ERROR: broken timer thread");
934 return 1;
935 }
936
wince_clock_gettime(int clk_id,struct timespec * tp)937 static int wince_clock_gettime(int clk_id, struct timespec *tp)
938 {
939 FILETIME filetime;
940 ULARGE_INTEGER rtime;
941 DWORD r;
942 SYSTEMTIME st;
943 switch(clk_id) {
944 case USBI_CLOCK_MONOTONIC:
945 if (hires_frequency != 0) {
946 while (1) {
947 InterlockedIncrement((LONG*)&request_count[0]);
948 SetEvent(timer_request[0]);
949 r = WaitForSingleObject(timer_response, TIMER_REQUEST_RETRY_MS);
950 switch(r) {
951 case WAIT_OBJECT_0:
952 WaitForSingleObject(timer_mutex, INFINITE);
953 *tp = timer_tp;
954 ReleaseMutex(timer_mutex);
955 return LIBUSB_SUCCESS;
956 case WAIT_TIMEOUT:
957 usbi_dbg("could not obtain a timer value within reasonable timeframe - too much load?");
958 break; // Retry until successful
959 default:
960 usbi_dbg("WaitForSingleObject failed: %s", windows_error_str(0));
961 return LIBUSB_ERROR_OTHER;
962 }
963 }
964 }
965 // Fall through and return real-time if monotonic was not detected @ timer init
966 case USBI_CLOCK_REALTIME:
967 // We follow http://msdn.microsoft.com/en-us/library/ms724928%28VS.85%29.aspx
968 // with a predef epoch_time to have an epoch that starts at 1970.01.01 00:00
969 // Note however that our resolution is bounded by the Windows system time
970 // functions and is at best of the order of 1 ms (or, usually, worse)
971 GetSystemTime(&st);
972 SystemTimeToFileTime(&st, &filetime);
973 rtime.LowPart = filetime.dwLowDateTime;
974 rtime.HighPart = filetime.dwHighDateTime;
975 rtime.QuadPart -= epoch_time;
976 tp->tv_sec = (long)(rtime.QuadPart / 10000000);
977 tp->tv_nsec = (long)((rtime.QuadPart % 10000000)*100);
978 return LIBUSB_SUCCESS;
979 default:
980 return LIBUSB_ERROR_INVALID_PARAM;
981 }
982 }
983
984 const struct usbi_os_backend wince_backend = {
985 "Windows CE",
986 0,
987 wince_init,
988 wince_exit,
989
990 wince_get_device_list,
991 NULL, /* hotplug_poll */
992 wince_open,
993 wince_close,
994
995 wince_get_device_descriptor,
996 wince_get_active_config_descriptor,
997 wince_get_config_descriptor,
998 NULL, /* get_config_descriptor_by_value() */
999
1000 wince_get_configuration,
1001 wince_set_configuration,
1002 wince_claim_interface,
1003 wince_release_interface,
1004
1005 wince_set_interface_altsetting,
1006 wince_clear_halt,
1007 wince_reset_device,
1008
1009 wince_kernel_driver_active,
1010 wince_detach_kernel_driver,
1011 wince_attach_kernel_driver,
1012
1013 wince_destroy_device,
1014
1015 wince_submit_transfer,
1016 wince_cancel_transfer,
1017 wince_clear_transfer_priv,
1018
1019 wince_handle_events,
1020
1021 wince_clock_gettime,
1022 sizeof(struct wince_device_priv),
1023 sizeof(struct wince_device_handle_priv),
1024 sizeof(struct wince_transfer_priv),
1025 0,
1026 };
1027