1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ARM specific subclass of TargetSubtargetInfo.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ARMSubtarget.h"
15 #include "ARMFrameLowering.h"
16 #include "ARMISelLowering.h"
17 #include "ARMInstrInfo.h"
18 #include "ARMJITInfo.h"
19 #include "ARMSelectionDAGInfo.h"
20 #include "ARMSubtarget.h"
21 #include "Thumb1FrameLowering.h"
22 #include "Thumb1InstrInfo.h"
23 #include "Thumb2InstrInfo.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetOptions.h"
30
31 using namespace llvm;
32
33 #define DEBUG_TYPE "arm-subtarget"
34
35 #define GET_SUBTARGETINFO_TARGET_DESC
36 #define GET_SUBTARGETINFO_CTOR
37 #include "ARMGenSubtargetInfo.inc"
38
39 static cl::opt<bool>
40 ReserveR9("arm-reserve-r9", cl::Hidden,
41 cl::desc("Reserve R9, making it unavailable as GPR"));
42
43 static cl::opt<bool>
44 ArmUseMOVT("arm-use-movt", cl::init(true), cl::Hidden);
45
46 static cl::opt<bool>
47 UseFusedMulOps("arm-use-mulops",
48 cl::init(true), cl::Hidden);
49
50 enum AlignMode {
51 DefaultAlign,
52 StrictAlign,
53 NoStrictAlign
54 };
55
56 static cl::opt<AlignMode>
57 Align(cl::desc("Load/store alignment support"),
58 cl::Hidden, cl::init(DefaultAlign),
59 cl::values(
60 clEnumValN(DefaultAlign, "arm-default-align",
61 "Generate unaligned accesses only on hardware/OS "
62 "combinations that are known to support them"),
63 clEnumValN(StrictAlign, "arm-strict-align",
64 "Disallow all unaligned memory accesses"),
65 clEnumValN(NoStrictAlign, "arm-no-strict-align",
66 "Allow unaligned memory accesses"),
67 clEnumValEnd));
68
69 enum ITMode {
70 DefaultIT,
71 RestrictedIT,
72 NoRestrictedIT
73 };
74
75 static cl::opt<ITMode>
76 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
77 cl::ZeroOrMore,
78 cl::values(clEnumValN(DefaultIT, "arm-default-it",
79 "Generate IT block based on arch"),
80 clEnumValN(RestrictedIT, "arm-restrict-it",
81 "Disallow deprecated IT based on ARMv8"),
82 clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
83 "Allow IT blocks based on ARMv7"),
84 clEnumValEnd));
85
computeDataLayout(ARMSubtarget & ST)86 static std::string computeDataLayout(ARMSubtarget &ST) {
87 std::string Ret = "";
88
89 if (ST.isLittle())
90 // Little endian.
91 Ret += "e";
92 else
93 // Big endian.
94 Ret += "E";
95
96 Ret += DataLayout::getManglingComponent(ST.getTargetTriple());
97
98 // Pointers are 32 bits and aligned to 32 bits.
99 Ret += "-p:32:32";
100
101 // On thumb, i16,i18 and i1 have natural aligment requirements, but we try to
102 // align to 32.
103 if (ST.isThumb())
104 Ret += "-i1:8:32-i8:8:32-i16:16:32";
105
106 // ABIs other than APCS have 64 bit integers with natural alignment.
107 if (!ST.isAPCS_ABI())
108 Ret += "-i64:64";
109
110 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
111 // bits, others to 64 bits. We always try to align to 64 bits.
112 if (ST.isAPCS_ABI())
113 Ret += "-f64:32:64";
114
115 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
116 // to 64. We always ty to give them natural alignment.
117 if (ST.isAPCS_ABI())
118 Ret += "-v64:32:64-v128:32:128";
119 else
120 Ret += "-v128:64:128";
121
122 // On thumb and APCS, only try to align aggregates to 32 bits (the default is
123 // 64 bits).
124 if (ST.isThumb() || ST.isAPCS_ABI())
125 Ret += "-a:0:32";
126
127 // Integer registers are 32 bits.
128 Ret += "-n32";
129
130 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
131 // aligned everywhere else.
132 if (ST.isTargetNaCl())
133 Ret += "-S128";
134 else if (ST.isAAPCS_ABI())
135 Ret += "-S64";
136 else
137 Ret += "-S32";
138
139 return Ret;
140 }
141
142 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
143 /// so that we can use initializer lists for subtarget initialization.
initializeSubtargetDependencies(StringRef CPU,StringRef FS)144 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
145 StringRef FS) {
146 initializeEnvironment();
147 resetSubtargetFeatures(CPU, FS);
148 return *this;
149 }
150
ARMSubtarget(const std::string & TT,const std::string & CPU,const std::string & FS,TargetMachine & TM,bool IsLittle,const TargetOptions & Options)151 ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU,
152 const std::string &FS, TargetMachine &TM,
153 bool IsLittle, const TargetOptions &Options)
154 : ARMGenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
155 ARMProcClass(None), stackAlignment(4), CPUString(CPU), IsLittle(IsLittle),
156 TargetTriple(TT), Options(Options), TargetABI(ARM_ABI_UNKNOWN),
157 DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS))),
158 TSInfo(DL), JITInfo(),
159 InstrInfo(isThumb1Only()
160 ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
161 : !isThumb()
162 ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
163 : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
164 TLInfo(TM),
165 FrameLowering(!isThumb1Only()
166 ? new ARMFrameLowering(*this)
167 : (ARMFrameLowering *)new Thumb1FrameLowering(*this)) {}
168
initializeEnvironment()169 void ARMSubtarget::initializeEnvironment() {
170 HasV4TOps = false;
171 HasV5TOps = false;
172 HasV5TEOps = false;
173 HasV6Ops = false;
174 HasV6MOps = false;
175 HasV6T2Ops = false;
176 HasV7Ops = false;
177 HasV8Ops = false;
178 HasVFPv2 = false;
179 HasVFPv3 = false;
180 HasVFPv4 = false;
181 HasFPARMv8 = false;
182 HasNEON = false;
183 UseNEONForSinglePrecisionFP = false;
184 UseMulOps = UseFusedMulOps;
185 SlowFPVMLx = false;
186 HasVMLxForwarding = false;
187 SlowFPBrcc = false;
188 InThumbMode = false;
189 HasThumb2 = false;
190 NoARM = false;
191 PostRAScheduler = false;
192 IsR9Reserved = ReserveR9;
193 UseMovt = false;
194 SupportsTailCall = false;
195 HasFP16 = false;
196 HasD16 = false;
197 HasHardwareDivide = false;
198 HasHardwareDivideInARM = false;
199 HasT2ExtractPack = false;
200 HasDataBarrier = false;
201 Pref32BitThumb = false;
202 AvoidCPSRPartialUpdate = false;
203 AvoidMOVsShifterOperand = false;
204 HasRAS = false;
205 HasMPExtension = false;
206 HasVirtualization = false;
207 FPOnlySP = false;
208 HasPerfMon = false;
209 HasTrustZone = false;
210 HasCrypto = false;
211 HasCRC = false;
212 HasZeroCycleZeroing = false;
213 AllowsUnalignedMem = false;
214 Thumb2DSP = false;
215 UseNaClTrap = false;
216 UnsafeFPMath = false;
217 UseLong64 = false;
218 }
219
resetSubtargetFeatures(const MachineFunction * MF)220 void ARMSubtarget::resetSubtargetFeatures(const MachineFunction *MF) {
221 AttributeSet FnAttrs = MF->getFunction()->getAttributes();
222 Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
223 "target-cpu");
224 Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
225 "target-features");
226 std::string CPU =
227 !CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : "";
228 std::string FS =
229 !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
230 if (!FS.empty()) {
231 initializeEnvironment();
232 resetSubtargetFeatures(CPU, FS);
233 }
234 }
235
resetSubtargetFeatures(StringRef CPU,StringRef FS)236 void ARMSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
237 if (CPUString.empty()) {
238 if (isTargetIOS() && TargetTriple.getArchName().endswith("v7s"))
239 // Default to the Swift CPU when targeting armv7s/thumbv7s.
240 CPUString = "swift";
241 else
242 CPUString = "generic";
243 }
244
245 // Insert the architecture feature derived from the target triple into the
246 // feature string. This is important for setting features that are implied
247 // based on the architecture version.
248 std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple.getTriple(),
249 CPUString);
250 if (!FS.empty()) {
251 if (!ArchFS.empty())
252 ArchFS = ArchFS + "," + FS.str();
253 else
254 ArchFS = FS;
255 }
256 ParseSubtargetFeatures(CPUString, ArchFS);
257
258 // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
259 // Assert this for now to make the change obvious.
260 assert(hasV6T2Ops() || !hasThumb2());
261
262 // Keep a pointer to static instruction cost data for the specified CPU.
263 SchedModel = getSchedModelForCPU(CPUString);
264
265 // Initialize scheduling itinerary for the specified CPU.
266 InstrItins = getInstrItineraryForCPU(CPUString);
267
268 if (TargetABI == ARM_ABI_UNKNOWN) {
269 switch (TargetTriple.getEnvironment()) {
270 case Triple::Android:
271 case Triple::EABI:
272 case Triple::EABIHF:
273 case Triple::GNUEABI:
274 case Triple::GNUEABIHF:
275 TargetABI = ARM_ABI_AAPCS;
276 break;
277 default:
278 if ((isTargetIOS() && isMClass()) ||
279 (TargetTriple.isOSBinFormatMachO() &&
280 TargetTriple.getOS() == Triple::UnknownOS))
281 TargetABI = ARM_ABI_AAPCS;
282 else
283 TargetABI = ARM_ABI_APCS;
284 break;
285 }
286 }
287
288 // FIXME: this is invalid for WindowsCE
289 if (isTargetWindows()) {
290 TargetABI = ARM_ABI_AAPCS;
291 NoARM = true;
292 }
293
294 if (isAAPCS_ABI())
295 stackAlignment = 8;
296 if (isTargetNaCl())
297 stackAlignment = 16;
298
299 UseMovt = hasV6T2Ops() && ArmUseMOVT;
300
301 if (isTargetMachO()) {
302 IsR9Reserved = ReserveR9 | !HasV6Ops;
303 SupportsTailCall = !isTargetIOS() || !getTargetTriple().isOSVersionLT(5, 0);
304 } else {
305 IsR9Reserved = ReserveR9;
306 SupportsTailCall = !isThumb1Only();
307 }
308
309 if (!isThumb() || hasThumb2())
310 PostRAScheduler = true;
311
312 switch (Align) {
313 case DefaultAlign:
314 // Assume pre-ARMv6 doesn't support unaligned accesses.
315 //
316 // ARMv6 may or may not support unaligned accesses depending on the
317 // SCTLR.U bit, which is architecture-specific. We assume ARMv6
318 // Darwin and NetBSD targets support unaligned accesses, and others don't.
319 //
320 // ARMv7 always has SCTLR.U set to 1, but it has a new SCTLR.A bit
321 // which raises an alignment fault on unaligned accesses. Linux
322 // defaults this bit to 0 and handles it as a system-wide (not
323 // per-process) setting. It is therefore safe to assume that ARMv7+
324 // Linux targets support unaligned accesses. The same goes for NaCl.
325 //
326 // The above behavior is consistent with GCC.
327 AllowsUnalignedMem =
328 (hasV7Ops() && (isTargetLinux() || isTargetNaCl() ||
329 isTargetNetBSD())) ||
330 (hasV6Ops() && (isTargetMachO() || isTargetNetBSD()));
331 // The one exception is cortex-m0, which despite being v6, does not
332 // support unaligned accesses. Rather than make the above boolean
333 // expression even more obtuse, just override the value here.
334 if (isThumb1Only() && isMClass())
335 AllowsUnalignedMem = false;
336 break;
337 case StrictAlign:
338 AllowsUnalignedMem = false;
339 break;
340 case NoStrictAlign:
341 AllowsUnalignedMem = true;
342 break;
343 }
344
345 switch (IT) {
346 case DefaultIT:
347 RestrictIT = hasV8Ops() ? true : false;
348 break;
349 case RestrictedIT:
350 RestrictIT = true;
351 break;
352 case NoRestrictedIT:
353 RestrictIT = false;
354 break;
355 }
356
357 // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
358 uint64_t Bits = getFeatureBits();
359 if ((Bits & ARM::ProcA5 || Bits & ARM::ProcA8) && // Where this matters
360 (Options.UnsafeFPMath || isTargetDarwin()))
361 UseNEONForSinglePrecisionFP = true;
362 }
363
364 /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol.
365 bool
GVIsIndirectSymbol(const GlobalValue * GV,Reloc::Model RelocM) const366 ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV,
367 Reloc::Model RelocM) const {
368 if (RelocM == Reloc::Static)
369 return false;
370
371 // Materializable GVs (in JIT lazy compilation mode) do not require an extra
372 // load from stub.
373 bool isDecl = GV->hasAvailableExternallyLinkage();
374 if (GV->isDeclaration() && !GV->isMaterializable())
375 isDecl = true;
376
377 if (!isTargetMachO()) {
378 // Extra load is needed for all externally visible.
379 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
380 return false;
381 return true;
382 } else {
383 if (RelocM == Reloc::PIC_) {
384 // If this is a strong reference to a definition, it is definitely not
385 // through a stub.
386 if (!isDecl && !GV->isWeakForLinker())
387 return false;
388
389 // Unless we have a symbol with hidden visibility, we have to go through a
390 // normal $non_lazy_ptr stub because this symbol might be resolved late.
391 if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
392 return true;
393
394 // If symbol visibility is hidden, we have a stub for common symbol
395 // references and external declarations.
396 if (isDecl || GV->hasCommonLinkage())
397 // Hidden $non_lazy_ptr reference.
398 return true;
399
400 return false;
401 } else {
402 // If this is a strong reference to a definition, it is definitely not
403 // through a stub.
404 if (!isDecl && !GV->isWeakForLinker())
405 return false;
406
407 // Unless we have a symbol with hidden visibility, we have to go through a
408 // normal $non_lazy_ptr stub because this symbol might be resolved late.
409 if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
410 return true;
411 }
412 }
413
414 return false;
415 }
416
getMispredictionPenalty() const417 unsigned ARMSubtarget::getMispredictionPenalty() const {
418 return SchedModel->MispredictPenalty;
419 }
420
hasSinCos() const421 bool ARMSubtarget::hasSinCos() const {
422 return getTargetTriple().getOS() == Triple::IOS &&
423 !getTargetTriple().isOSVersionLT(7, 0);
424 }
425
426 // Enable the PostMachineScheduler if the target selects it instead of
427 // PostRAScheduler. Currently only available on the command line via
428 // -misched-postra.
enablePostMachineScheduler() const429 bool ARMSubtarget::enablePostMachineScheduler() const {
430 return PostRAScheduler;
431 }
432
enableAtomicExpandLoadLinked() const433 bool ARMSubtarget::enableAtomicExpandLoadLinked() const {
434 return hasAnyDataBarrier() && !isThumb1Only();
435 }
436
enablePostRAScheduler(CodeGenOpt::Level OptLevel,TargetSubtargetInfo::AntiDepBreakMode & Mode,RegClassVector & CriticalPathRCs) const437 bool ARMSubtarget::enablePostRAScheduler(
438 CodeGenOpt::Level OptLevel,
439 TargetSubtargetInfo::AntiDepBreakMode& Mode,
440 RegClassVector& CriticalPathRCs) const {
441 Mode = TargetSubtargetInfo::ANTIDEP_NONE;
442 return PostRAScheduler && OptLevel >= CodeGenOpt::Default;
443 }
444
useMovt(const MachineFunction & MF) const445 bool ARMSubtarget::useMovt(const MachineFunction &MF) const {
446 // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
447 // immediates as it is inherently position independent, and may be out of
448 // range otherwise.
449 return UseMovt && (isTargetWindows() ||
450 !MF.getFunction()->getAttributes().hasAttribute(
451 AttributeSet::FunctionIndex, Attribute::MinSize));
452 }
453