1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 using namespace clang;
35 using namespace CodeGen;
36
37 /***/
38
ClangCallConvToLLVMCallConv(CallingConv CC)39 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
40 switch (CC) {
41 default: return llvm::CallingConv::C;
42 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
43 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
44 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
45 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
46 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
47 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
48 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
49 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
50 // TODO: add support for CC_X86Pascal to llvm
51 }
52 }
53
54 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
55 /// qualification.
56 /// FIXME: address space qualification?
GetThisType(ASTContext & Context,const CXXRecordDecl * RD)57 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
58 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
59 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
60 }
61
62 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)63 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
64 return MD->getType()->getCanonicalTypeUnqualified()
65 .getAs<FunctionProtoType>();
66 }
67
68 /// Returns the "extra-canonicalized" return type, which discards
69 /// qualifiers on the return type. Codegen doesn't care about them,
70 /// and it makes ABI code a little easier to be able to assume that
71 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)72 static CanQualType GetReturnType(QualType RetTy) {
73 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
74 }
75
76 /// Arrange the argument and result information for a value of the given
77 /// unprototyped freestanding function type.
78 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)79 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
80 // When translating an unprototyped function type, always use a
81 // variadic type.
82 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
83 false, None, FTNP->getExtInfo(),
84 RequiredArgs(0));
85 }
86
87 /// Arrange the LLVM function layout for a value of the given function
88 /// type, on top of any implicit parameters already stored. Use the
89 /// given ExtInfo instead of the ExtInfo from the function type.
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,bool IsInstanceMethod,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP,FunctionType::ExtInfo extInfo)90 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
91 bool IsInstanceMethod,
92 SmallVectorImpl<CanQualType> &prefix,
93 CanQual<FunctionProtoType> FTP,
94 FunctionType::ExtInfo extInfo) {
95 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
96 // FIXME: Kill copy.
97 for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
98 prefix.push_back(FTP->getParamType(i));
99 CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
100 return CGT.arrangeLLVMFunctionInfo(resultType, IsInstanceMethod, prefix,
101 extInfo, required);
102 }
103
104 /// Arrange the argument and result information for a free function (i.e.
105 /// not a C++ or ObjC instance method) of the given type.
arrangeFreeFunctionType(CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)106 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
107 SmallVectorImpl<CanQualType> &prefix,
108 CanQual<FunctionProtoType> FTP) {
109 return arrangeLLVMFunctionInfo(CGT, false, prefix, FTP, FTP->getExtInfo());
110 }
111
112 /// Arrange the argument and result information for a free function (i.e.
113 /// not a C++ or ObjC instance method) of the given type.
arrangeCXXMethodType(CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)114 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
115 SmallVectorImpl<CanQualType> &prefix,
116 CanQual<FunctionProtoType> FTP) {
117 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
118 return arrangeLLVMFunctionInfo(CGT, true, prefix, FTP, extInfo);
119 }
120
121 /// Arrange the argument and result information for a value of the
122 /// given freestanding function type.
123 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP)124 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
125 SmallVector<CanQualType, 16> argTypes;
126 return ::arrangeFreeFunctionType(*this, argTypes, FTP);
127 }
128
getCallingConventionForDecl(const Decl * D,bool IsWindows)129 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
130 // Set the appropriate calling convention for the Function.
131 if (D->hasAttr<StdCallAttr>())
132 return CC_X86StdCall;
133
134 if (D->hasAttr<FastCallAttr>())
135 return CC_X86FastCall;
136
137 if (D->hasAttr<ThisCallAttr>())
138 return CC_X86ThisCall;
139
140 if (D->hasAttr<PascalAttr>())
141 return CC_X86Pascal;
142
143 if (PcsAttr *PCS = D->getAttr<PcsAttr>())
144 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
145
146 if (D->hasAttr<PnaclCallAttr>())
147 return CC_PnaclCall;
148
149 if (D->hasAttr<IntelOclBiccAttr>())
150 return CC_IntelOclBicc;
151
152 if (D->hasAttr<MSABIAttr>())
153 return IsWindows ? CC_C : CC_X86_64Win64;
154
155 if (D->hasAttr<SysVABIAttr>())
156 return IsWindows ? CC_X86_64SysV : CC_C;
157
158 return CC_C;
159 }
160
isAAPCSVFP(const CGFunctionInfo & FI,const TargetInfo & Target)161 static bool isAAPCSVFP(const CGFunctionInfo &FI, const TargetInfo &Target) {
162 switch (FI.getEffectiveCallingConvention()) {
163 case llvm::CallingConv::C:
164 switch (Target.getTriple().getEnvironment()) {
165 case llvm::Triple::EABIHF:
166 case llvm::Triple::GNUEABIHF:
167 return true;
168 default:
169 return false;
170 }
171 case llvm::CallingConv::ARM_AAPCS_VFP:
172 return true;
173 default:
174 return false;
175 }
176 }
177
178 /// Arrange the argument and result information for a call to an
179 /// unknown C++ non-static member function of the given abstract type.
180 /// (Zero value of RD means we don't have any meaningful "this" argument type,
181 /// so fall back to a generic pointer type).
182 /// The member function must be an ordinary function, i.e. not a
183 /// constructor or destructor.
184 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP)185 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
186 const FunctionProtoType *FTP) {
187 SmallVector<CanQualType, 16> argTypes;
188
189 // Add the 'this' pointer.
190 if (RD)
191 argTypes.push_back(GetThisType(Context, RD));
192 else
193 argTypes.push_back(Context.VoidPtrTy);
194
195 return ::arrangeCXXMethodType(*this, argTypes,
196 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
197 }
198
199 /// Arrange the argument and result information for a declaration or
200 /// definition of the given C++ non-static member function. The
201 /// member function must be an ordinary function, i.e. not a
202 /// constructor or destructor.
203 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)204 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
205 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
206 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
207
208 CanQual<FunctionProtoType> prototype = GetFormalType(MD);
209
210 if (MD->isInstance()) {
211 // The abstract case is perfectly fine.
212 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
213 return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
214 }
215
216 return arrangeFreeFunctionType(prototype);
217 }
218
219 /// Arrange the argument and result information for a declaration
220 /// or definition to the given constructor variant.
221 const CGFunctionInfo &
arrangeCXXConstructorDeclaration(const CXXConstructorDecl * D,CXXCtorType ctorKind)222 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
223 CXXCtorType ctorKind) {
224 SmallVector<CanQualType, 16> argTypes;
225 argTypes.push_back(GetThisType(Context, D->getParent()));
226
227 GlobalDecl GD(D, ctorKind);
228 CanQualType resultType =
229 TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
230
231 CanQual<FunctionProtoType> FTP = GetFormalType(D);
232
233 // Add the formal parameters.
234 for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
235 argTypes.push_back(FTP->getParamType(i));
236
237 TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
238
239 RequiredArgs required =
240 (D->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
241
242 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
243 return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo, required);
244 }
245
246 /// Arrange a call to a C++ method, passing the given arguments.
247 const CGFunctionInfo &
arrangeCXXConstructorCall(const CallArgList & args,const CXXConstructorDecl * D,CXXCtorType CtorKind,unsigned ExtraArgs)248 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
249 const CXXConstructorDecl *D,
250 CXXCtorType CtorKind,
251 unsigned ExtraArgs) {
252 // FIXME: Kill copy.
253 SmallVector<CanQualType, 16> ArgTypes;
254 for (CallArgList::const_iterator i = args.begin(), e = args.end(); i != e;
255 ++i)
256 ArgTypes.push_back(Context.getCanonicalParamType(i->Ty));
257
258 CanQual<FunctionProtoType> FPT = GetFormalType(D);
259 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
260 GlobalDecl GD(D, CtorKind);
261 CanQualType ResultType =
262 TheCXXABI.HasThisReturn(GD) ? ArgTypes.front() : Context.VoidTy;
263
264 FunctionType::ExtInfo Info = FPT->getExtInfo();
265 return arrangeLLVMFunctionInfo(ResultType, true, ArgTypes, Info, Required);
266 }
267
268 /// Arrange the argument and result information for a declaration,
269 /// definition, or call to the given destructor variant. It so
270 /// happens that all three cases produce the same information.
271 const CGFunctionInfo &
arrangeCXXDestructor(const CXXDestructorDecl * D,CXXDtorType dtorKind)272 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
273 CXXDtorType dtorKind) {
274 SmallVector<CanQualType, 2> argTypes;
275 argTypes.push_back(GetThisType(Context, D->getParent()));
276
277 GlobalDecl GD(D, dtorKind);
278 CanQualType resultType =
279 TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
280
281 TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
282
283 CanQual<FunctionProtoType> FTP = GetFormalType(D);
284 assert(FTP->getNumParams() == 0 && "dtor with formal parameters");
285 assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
286
287 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
288 return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo,
289 RequiredArgs::All);
290 }
291
292 /// Arrange the argument and result information for the declaration or
293 /// definition of the given function.
294 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)295 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
296 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
297 if (MD->isInstance())
298 return arrangeCXXMethodDeclaration(MD);
299
300 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
301
302 assert(isa<FunctionType>(FTy));
303
304 // When declaring a function without a prototype, always use a
305 // non-variadic type.
306 if (isa<FunctionNoProtoType>(FTy)) {
307 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
308 return arrangeLLVMFunctionInfo(noProto->getReturnType(), false, None,
309 noProto->getExtInfo(), RequiredArgs::All);
310 }
311
312 assert(isa<FunctionProtoType>(FTy));
313 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
314 }
315
316 /// Arrange the argument and result information for the declaration or
317 /// definition of an Objective-C method.
318 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)319 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
320 // It happens that this is the same as a call with no optional
321 // arguments, except also using the formal 'self' type.
322 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
323 }
324
325 /// Arrange the argument and result information for the function type
326 /// through which to perform a send to the given Objective-C method,
327 /// using the given receiver type. The receiver type is not always
328 /// the 'self' type of the method or even an Objective-C pointer type.
329 /// This is *not* the right method for actually performing such a
330 /// message send, due to the possibility of optional arguments.
331 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)332 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
333 QualType receiverType) {
334 SmallVector<CanQualType, 16> argTys;
335 argTys.push_back(Context.getCanonicalParamType(receiverType));
336 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
337 // FIXME: Kill copy?
338 for (const auto *I : MD->params()) {
339 argTys.push_back(Context.getCanonicalParamType(I->getType()));
340 }
341
342 FunctionType::ExtInfo einfo;
343 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
344 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
345
346 if (getContext().getLangOpts().ObjCAutoRefCount &&
347 MD->hasAttr<NSReturnsRetainedAttr>())
348 einfo = einfo.withProducesResult(true);
349
350 RequiredArgs required =
351 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
352
353 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), false,
354 argTys, einfo, required);
355 }
356
357 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)358 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
359 // FIXME: Do we need to handle ObjCMethodDecl?
360 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
361
362 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
363 return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
364
365 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
366 return arrangeCXXDestructor(DD, GD.getDtorType());
367
368 return arrangeFunctionDeclaration(FD);
369 }
370
371 /// Arrange a call as unto a free function, except possibly with an
372 /// additional number of formal parameters considered required.
373 static const CGFunctionInfo &
arrangeFreeFunctionLikeCall(CodeGenTypes & CGT,CodeGenModule & CGM,const CallArgList & args,const FunctionType * fnType,unsigned numExtraRequiredArgs)374 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
375 CodeGenModule &CGM,
376 const CallArgList &args,
377 const FunctionType *fnType,
378 unsigned numExtraRequiredArgs) {
379 assert(args.size() >= numExtraRequiredArgs);
380
381 // In most cases, there are no optional arguments.
382 RequiredArgs required = RequiredArgs::All;
383
384 // If we have a variadic prototype, the required arguments are the
385 // extra prefix plus the arguments in the prototype.
386 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
387 if (proto->isVariadic())
388 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
389
390 // If we don't have a prototype at all, but we're supposed to
391 // explicitly use the variadic convention for unprototyped calls,
392 // treat all of the arguments as required but preserve the nominal
393 // possibility of variadics.
394 } else if (CGM.getTargetCodeGenInfo()
395 .isNoProtoCallVariadic(args,
396 cast<FunctionNoProtoType>(fnType))) {
397 required = RequiredArgs(args.size());
398 }
399
400 return CGT.arrangeFreeFunctionCall(fnType->getReturnType(), args,
401 fnType->getExtInfo(), required);
402 }
403
404 /// Figure out the rules for calling a function with the given formal
405 /// type using the given arguments. The arguments are necessary
406 /// because the function might be unprototyped, in which case it's
407 /// target-dependent in crazy ways.
408 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType)409 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
410 const FunctionType *fnType) {
411 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 0);
412 }
413
414 /// A block function call is essentially a free-function call with an
415 /// extra implicit argument.
416 const CGFunctionInfo &
arrangeBlockFunctionCall(const CallArgList & args,const FunctionType * fnType)417 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
418 const FunctionType *fnType) {
419 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1);
420 }
421
422 const CGFunctionInfo &
arrangeFreeFunctionCall(QualType resultType,const CallArgList & args,FunctionType::ExtInfo info,RequiredArgs required)423 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
424 const CallArgList &args,
425 FunctionType::ExtInfo info,
426 RequiredArgs required) {
427 // FIXME: Kill copy.
428 SmallVector<CanQualType, 16> argTypes;
429 for (CallArgList::const_iterator i = args.begin(), e = args.end();
430 i != e; ++i)
431 argTypes.push_back(Context.getCanonicalParamType(i->Ty));
432 return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes,
433 info, required);
434 }
435
436 /// Arrange a call to a C++ method, passing the given arguments.
437 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * FPT,RequiredArgs required)438 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
439 const FunctionProtoType *FPT,
440 RequiredArgs required) {
441 // FIXME: Kill copy.
442 SmallVector<CanQualType, 16> argTypes;
443 for (CallArgList::const_iterator i = args.begin(), e = args.end();
444 i != e; ++i)
445 argTypes.push_back(Context.getCanonicalParamType(i->Ty));
446
447 FunctionType::ExtInfo info = FPT->getExtInfo();
448 return arrangeLLVMFunctionInfo(GetReturnType(FPT->getReturnType()), true,
449 argTypes, info, required);
450 }
451
arrangeFreeFunctionDeclaration(QualType resultType,const FunctionArgList & args,const FunctionType::ExtInfo & info,bool isVariadic)452 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
453 QualType resultType, const FunctionArgList &args,
454 const FunctionType::ExtInfo &info, bool isVariadic) {
455 // FIXME: Kill copy.
456 SmallVector<CanQualType, 16> argTypes;
457 for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
458 i != e; ++i)
459 argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
460
461 RequiredArgs required =
462 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
463 return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes, info,
464 required);
465 }
466
arrangeNullaryFunction()467 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
468 return arrangeLLVMFunctionInfo(getContext().VoidTy, false, None,
469 FunctionType::ExtInfo(), RequiredArgs::All);
470 }
471
472 /// Arrange the argument and result information for an abstract value
473 /// of a given function type. This is the method which all of the
474 /// above functions ultimately defer to.
475 const CGFunctionInfo &
arrangeLLVMFunctionInfo(CanQualType resultType,bool IsInstanceMethod,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,RequiredArgs required)476 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
477 bool IsInstanceMethod,
478 ArrayRef<CanQualType> argTypes,
479 FunctionType::ExtInfo info,
480 RequiredArgs required) {
481 #ifndef NDEBUG
482 for (ArrayRef<CanQualType>::const_iterator
483 I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
484 assert(I->isCanonicalAsParam());
485 #endif
486
487 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
488
489 // Lookup or create unique function info.
490 llvm::FoldingSetNodeID ID;
491 CGFunctionInfo::Profile(ID, IsInstanceMethod, info, required, resultType,
492 argTypes);
493
494 void *insertPos = nullptr;
495 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
496 if (FI)
497 return *FI;
498
499 // Construct the function info. We co-allocate the ArgInfos.
500 FI = CGFunctionInfo::create(CC, IsInstanceMethod, info, resultType, argTypes,
501 required);
502 FunctionInfos.InsertNode(FI, insertPos);
503
504 bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
505 assert(inserted && "Recursively being processed?");
506
507 // Compute ABI information.
508 getABIInfo().computeInfo(*FI);
509
510 // Loop over all of the computed argument and return value info. If any of
511 // them are direct or extend without a specified coerce type, specify the
512 // default now.
513 ABIArgInfo &retInfo = FI->getReturnInfo();
514 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
515 retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
516
517 for (auto &I : FI->arguments())
518 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
519 I.info.setCoerceToType(ConvertType(I.type));
520
521 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
522 assert(erased && "Not in set?");
523
524 return *FI;
525 }
526
create(unsigned llvmCC,bool IsInstanceMethod,const FunctionType::ExtInfo & info,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)527 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
528 bool IsInstanceMethod,
529 const FunctionType::ExtInfo &info,
530 CanQualType resultType,
531 ArrayRef<CanQualType> argTypes,
532 RequiredArgs required) {
533 void *buffer = operator new(sizeof(CGFunctionInfo) +
534 sizeof(ArgInfo) * (argTypes.size() + 1));
535 CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
536 FI->CallingConvention = llvmCC;
537 FI->EffectiveCallingConvention = llvmCC;
538 FI->ASTCallingConvention = info.getCC();
539 FI->InstanceMethod = IsInstanceMethod;
540 FI->NoReturn = info.getNoReturn();
541 FI->ReturnsRetained = info.getProducesResult();
542 FI->Required = required;
543 FI->HasRegParm = info.getHasRegParm();
544 FI->RegParm = info.getRegParm();
545 FI->ArgStruct = nullptr;
546 FI->NumArgs = argTypes.size();
547 FI->getArgsBuffer()[0].type = resultType;
548 for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
549 FI->getArgsBuffer()[i + 1].type = argTypes[i];
550 return FI;
551 }
552
553 /***/
554
GetExpandedTypes(QualType type,SmallVectorImpl<llvm::Type * > & expandedTypes)555 void CodeGenTypes::GetExpandedTypes(QualType type,
556 SmallVectorImpl<llvm::Type*> &expandedTypes) {
557 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
558 uint64_t NumElts = AT->getSize().getZExtValue();
559 for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
560 GetExpandedTypes(AT->getElementType(), expandedTypes);
561 } else if (const RecordType *RT = type->getAs<RecordType>()) {
562 const RecordDecl *RD = RT->getDecl();
563 assert(!RD->hasFlexibleArrayMember() &&
564 "Cannot expand structure with flexible array.");
565 if (RD->isUnion()) {
566 // Unions can be here only in degenerative cases - all the fields are same
567 // after flattening. Thus we have to use the "largest" field.
568 const FieldDecl *LargestFD = nullptr;
569 CharUnits UnionSize = CharUnits::Zero();
570
571 for (const auto *FD : RD->fields()) {
572 assert(!FD->isBitField() &&
573 "Cannot expand structure with bit-field members.");
574 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
575 if (UnionSize < FieldSize) {
576 UnionSize = FieldSize;
577 LargestFD = FD;
578 }
579 }
580 if (LargestFD)
581 GetExpandedTypes(LargestFD->getType(), expandedTypes);
582 } else {
583 for (const auto *I : RD->fields()) {
584 assert(!I->isBitField() &&
585 "Cannot expand structure with bit-field members.");
586 GetExpandedTypes(I->getType(), expandedTypes);
587 }
588 }
589 } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
590 llvm::Type *EltTy = ConvertType(CT->getElementType());
591 expandedTypes.push_back(EltTy);
592 expandedTypes.push_back(EltTy);
593 } else
594 expandedTypes.push_back(ConvertType(type));
595 }
596
597 llvm::Function::arg_iterator
ExpandTypeFromArgs(QualType Ty,LValue LV,llvm::Function::arg_iterator AI)598 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
599 llvm::Function::arg_iterator AI) {
600 assert(LV.isSimple() &&
601 "Unexpected non-simple lvalue during struct expansion.");
602
603 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
604 unsigned NumElts = AT->getSize().getZExtValue();
605 QualType EltTy = AT->getElementType();
606 for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
607 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
608 LValue LV = MakeAddrLValue(EltAddr, EltTy);
609 AI = ExpandTypeFromArgs(EltTy, LV, AI);
610 }
611 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
612 RecordDecl *RD = RT->getDecl();
613 if (RD->isUnion()) {
614 // Unions can be here only in degenerative cases - all the fields are same
615 // after flattening. Thus we have to use the "largest" field.
616 const FieldDecl *LargestFD = nullptr;
617 CharUnits UnionSize = CharUnits::Zero();
618
619 for (const auto *FD : RD->fields()) {
620 assert(!FD->isBitField() &&
621 "Cannot expand structure with bit-field members.");
622 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
623 if (UnionSize < FieldSize) {
624 UnionSize = FieldSize;
625 LargestFD = FD;
626 }
627 }
628 if (LargestFD) {
629 // FIXME: What are the right qualifiers here?
630 LValue SubLV = EmitLValueForField(LV, LargestFD);
631 AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
632 }
633 } else {
634 for (const auto *FD : RD->fields()) {
635 QualType FT = FD->getType();
636
637 // FIXME: What are the right qualifiers here?
638 LValue SubLV = EmitLValueForField(LV, FD);
639 AI = ExpandTypeFromArgs(FT, SubLV, AI);
640 }
641 }
642 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
643 QualType EltTy = CT->getElementType();
644 llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
645 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
646 llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
647 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
648 } else {
649 EmitStoreThroughLValue(RValue::get(AI), LV);
650 ++AI;
651 }
652
653 return AI;
654 }
655
656 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
657 /// accessing some number of bytes out of it, try to gep into the struct to get
658 /// at its inner goodness. Dive as deep as possible without entering an element
659 /// with an in-memory size smaller than DstSize.
660 static llvm::Value *
EnterStructPointerForCoercedAccess(llvm::Value * SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)661 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
662 llvm::StructType *SrcSTy,
663 uint64_t DstSize, CodeGenFunction &CGF) {
664 // We can't dive into a zero-element struct.
665 if (SrcSTy->getNumElements() == 0) return SrcPtr;
666
667 llvm::Type *FirstElt = SrcSTy->getElementType(0);
668
669 // If the first elt is at least as large as what we're looking for, or if the
670 // first element is the same size as the whole struct, we can enter it.
671 uint64_t FirstEltSize =
672 CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
673 if (FirstEltSize < DstSize &&
674 FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
675 return SrcPtr;
676
677 // GEP into the first element.
678 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
679
680 // If the first element is a struct, recurse.
681 llvm::Type *SrcTy =
682 cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
683 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
684 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
685
686 return SrcPtr;
687 }
688
689 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
690 /// are either integers or pointers. This does a truncation of the value if it
691 /// is too large or a zero extension if it is too small.
692 ///
693 /// This behaves as if the value were coerced through memory, so on big-endian
694 /// targets the high bits are preserved in a truncation, while little-endian
695 /// targets preserve the low bits.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)696 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
697 llvm::Type *Ty,
698 CodeGenFunction &CGF) {
699 if (Val->getType() == Ty)
700 return Val;
701
702 if (isa<llvm::PointerType>(Val->getType())) {
703 // If this is Pointer->Pointer avoid conversion to and from int.
704 if (isa<llvm::PointerType>(Ty))
705 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
706
707 // Convert the pointer to an integer so we can play with its width.
708 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
709 }
710
711 llvm::Type *DestIntTy = Ty;
712 if (isa<llvm::PointerType>(DestIntTy))
713 DestIntTy = CGF.IntPtrTy;
714
715 if (Val->getType() != DestIntTy) {
716 const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
717 if (DL.isBigEndian()) {
718 // Preserve the high bits on big-endian targets.
719 // That is what memory coercion does.
720 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
721 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
722
723 if (SrcSize > DstSize) {
724 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
725 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
726 } else {
727 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
728 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
729 }
730 } else {
731 // Little-endian targets preserve the low bits. No shifts required.
732 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
733 }
734 }
735
736 if (isa<llvm::PointerType>(Ty))
737 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
738 return Val;
739 }
740
741
742
743 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
744 /// a pointer to an object of type \arg Ty.
745 ///
746 /// This safely handles the case when the src type is smaller than the
747 /// destination type; in this situation the values of bits which not
748 /// present in the src are undefined.
CreateCoercedLoad(llvm::Value * SrcPtr,llvm::Type * Ty,CodeGenFunction & CGF)749 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
750 llvm::Type *Ty,
751 CodeGenFunction &CGF) {
752 llvm::Type *SrcTy =
753 cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
754
755 // If SrcTy and Ty are the same, just do a load.
756 if (SrcTy == Ty)
757 return CGF.Builder.CreateLoad(SrcPtr);
758
759 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
760
761 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
762 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
763 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
764 }
765
766 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
767
768 // If the source and destination are integer or pointer types, just do an
769 // extension or truncation to the desired type.
770 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
771 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
772 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
773 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
774 }
775
776 // If load is legal, just bitcast the src pointer.
777 if (SrcSize >= DstSize) {
778 // Generally SrcSize is never greater than DstSize, since this means we are
779 // losing bits. However, this can happen in cases where the structure has
780 // additional padding, for example due to a user specified alignment.
781 //
782 // FIXME: Assert that we aren't truncating non-padding bits when have access
783 // to that information.
784 llvm::Value *Casted =
785 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
786 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
787 // FIXME: Use better alignment / avoid requiring aligned load.
788 Load->setAlignment(1);
789 return Load;
790 }
791
792 // Otherwise do coercion through memory. This is stupid, but
793 // simple.
794 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
795 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
796 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
797 llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
798 // FIXME: Use better alignment.
799 CGF.Builder.CreateMemCpy(Casted, SrcCasted,
800 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
801 1, false);
802 return CGF.Builder.CreateLoad(Tmp);
803 }
804
805 // Function to store a first-class aggregate into memory. We prefer to
806 // store the elements rather than the aggregate to be more friendly to
807 // fast-isel.
808 // FIXME: Do we need to recurse here?
BuildAggStore(CodeGenFunction & CGF,llvm::Value * Val,llvm::Value * DestPtr,bool DestIsVolatile,bool LowAlignment)809 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
810 llvm::Value *DestPtr, bool DestIsVolatile,
811 bool LowAlignment) {
812 // Prefer scalar stores to first-class aggregate stores.
813 if (llvm::StructType *STy =
814 dyn_cast<llvm::StructType>(Val->getType())) {
815 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
816 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
817 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
818 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
819 DestIsVolatile);
820 if (LowAlignment)
821 SI->setAlignment(1);
822 }
823 } else {
824 llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
825 if (LowAlignment)
826 SI->setAlignment(1);
827 }
828 }
829
830 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
831 /// where the source and destination may have different types.
832 ///
833 /// This safely handles the case when the src type is larger than the
834 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,llvm::Value * DstPtr,bool DstIsVolatile,CodeGenFunction & CGF)835 static void CreateCoercedStore(llvm::Value *Src,
836 llvm::Value *DstPtr,
837 bool DstIsVolatile,
838 CodeGenFunction &CGF) {
839 llvm::Type *SrcTy = Src->getType();
840 llvm::Type *DstTy =
841 cast<llvm::PointerType>(DstPtr->getType())->getElementType();
842 if (SrcTy == DstTy) {
843 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
844 return;
845 }
846
847 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
848
849 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
850 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
851 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
852 }
853
854 // If the source and destination are integer or pointer types, just do an
855 // extension or truncation to the desired type.
856 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
857 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
858 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
859 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
860 return;
861 }
862
863 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
864
865 // If store is legal, just bitcast the src pointer.
866 if (SrcSize <= DstSize) {
867 llvm::Value *Casted =
868 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
869 // FIXME: Use better alignment / avoid requiring aligned store.
870 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
871 } else {
872 // Otherwise do coercion through memory. This is stupid, but
873 // simple.
874
875 // Generally SrcSize is never greater than DstSize, since this means we are
876 // losing bits. However, this can happen in cases where the structure has
877 // additional padding, for example due to a user specified alignment.
878 //
879 // FIXME: Assert that we aren't truncating non-padding bits when have access
880 // to that information.
881 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
882 CGF.Builder.CreateStore(Src, Tmp);
883 llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
884 llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
885 llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
886 // FIXME: Use better alignment.
887 CGF.Builder.CreateMemCpy(DstCasted, Casted,
888 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
889 1, false);
890 }
891 }
892
893 /***/
894
ReturnTypeUsesSRet(const CGFunctionInfo & FI)895 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
896 return FI.getReturnInfo().isIndirect();
897 }
898
ReturnSlotInterferesWithArgs(const CGFunctionInfo & FI)899 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
900 return ReturnTypeUsesSRet(FI) &&
901 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
902 }
903
ReturnTypeUsesFPRet(QualType ResultType)904 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
905 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
906 switch (BT->getKind()) {
907 default:
908 return false;
909 case BuiltinType::Float:
910 return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
911 case BuiltinType::Double:
912 return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
913 case BuiltinType::LongDouble:
914 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
915 }
916 }
917
918 return false;
919 }
920
ReturnTypeUsesFP2Ret(QualType ResultType)921 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
922 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
923 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
924 if (BT->getKind() == BuiltinType::LongDouble)
925 return getTarget().useObjCFP2RetForComplexLongDouble();
926 }
927 }
928
929 return false;
930 }
931
GetFunctionType(GlobalDecl GD)932 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
933 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
934 return GetFunctionType(FI);
935 }
936
937 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)938 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
939
940 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
941 assert(Inserted && "Recursively being processed?");
942
943 bool SwapThisWithSRet = false;
944 SmallVector<llvm::Type*, 8> argTypes;
945 llvm::Type *resultType = nullptr;
946
947 const ABIArgInfo &retAI = FI.getReturnInfo();
948 switch (retAI.getKind()) {
949 case ABIArgInfo::Expand:
950 llvm_unreachable("Invalid ABI kind for return argument");
951
952 case ABIArgInfo::Extend:
953 case ABIArgInfo::Direct:
954 resultType = retAI.getCoerceToType();
955 break;
956
957 case ABIArgInfo::InAlloca:
958 if (retAI.getInAllocaSRet()) {
959 // sret things on win32 aren't void, they return the sret pointer.
960 QualType ret = FI.getReturnType();
961 llvm::Type *ty = ConvertType(ret);
962 unsigned addressSpace = Context.getTargetAddressSpace(ret);
963 resultType = llvm::PointerType::get(ty, addressSpace);
964 } else {
965 resultType = llvm::Type::getVoidTy(getLLVMContext());
966 }
967 break;
968
969 case ABIArgInfo::Indirect: {
970 assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
971 resultType = llvm::Type::getVoidTy(getLLVMContext());
972
973 QualType ret = FI.getReturnType();
974 llvm::Type *ty = ConvertType(ret);
975 unsigned addressSpace = Context.getTargetAddressSpace(ret);
976 argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
977
978 SwapThisWithSRet = retAI.isSRetAfterThis();
979 break;
980 }
981
982 case ABIArgInfo::Ignore:
983 resultType = llvm::Type::getVoidTy(getLLVMContext());
984 break;
985 }
986
987 // Add in all of the required arguments.
988 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
989 if (FI.isVariadic()) {
990 ie = it + FI.getRequiredArgs().getNumRequiredArgs();
991 } else {
992 ie = FI.arg_end();
993 }
994 for (; it != ie; ++it) {
995 const ABIArgInfo &argAI = it->info;
996
997 // Insert a padding type to ensure proper alignment.
998 if (llvm::Type *PaddingType = argAI.getPaddingType())
999 argTypes.push_back(PaddingType);
1000
1001 switch (argAI.getKind()) {
1002 case ABIArgInfo::Ignore:
1003 case ABIArgInfo::InAlloca:
1004 break;
1005
1006 case ABIArgInfo::Indirect: {
1007 // indirect arguments are always on the stack, which is addr space #0.
1008 llvm::Type *LTy = ConvertTypeForMem(it->type);
1009 argTypes.push_back(LTy->getPointerTo());
1010 break;
1011 }
1012
1013 case ABIArgInfo::Extend:
1014 case ABIArgInfo::Direct: {
1015 // If the coerce-to type is a first class aggregate, flatten it. Either
1016 // way is semantically identical, but fast-isel and the optimizer
1017 // generally likes scalar values better than FCAs.
1018 // We cannot do this for functions using the AAPCS calling convention,
1019 // as structures are treated differently by that calling convention.
1020 llvm::Type *argType = argAI.getCoerceToType();
1021 llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1022 if (st && !isAAPCSVFP(FI, getTarget())) {
1023 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1024 argTypes.push_back(st->getElementType(i));
1025 } else {
1026 argTypes.push_back(argType);
1027 }
1028 break;
1029 }
1030
1031 case ABIArgInfo::Expand:
1032 GetExpandedTypes(it->type, argTypes);
1033 break;
1034 }
1035 }
1036
1037 // Add the inalloca struct as the last parameter type.
1038 if (llvm::StructType *ArgStruct = FI.getArgStruct())
1039 argTypes.push_back(ArgStruct->getPointerTo());
1040
1041 if (SwapThisWithSRet)
1042 std::swap(argTypes[0], argTypes[1]);
1043
1044 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1045 assert(Erased && "Not in set?");
1046
1047 return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
1048 }
1049
GetFunctionTypeForVTable(GlobalDecl GD)1050 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1051 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1052 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1053
1054 if (!isFuncTypeConvertible(FPT))
1055 return llvm::StructType::get(getLLVMContext());
1056
1057 const CGFunctionInfo *Info;
1058 if (isa<CXXDestructorDecl>(MD))
1059 Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
1060 else
1061 Info = &arrangeCXXMethodDeclaration(MD);
1062 return GetFunctionType(*Info);
1063 }
1064
ConstructAttributeList(const CGFunctionInfo & FI,const Decl * TargetDecl,AttributeListType & PAL,unsigned & CallingConv,bool AttrOnCallSite)1065 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1066 const Decl *TargetDecl,
1067 AttributeListType &PAL,
1068 unsigned &CallingConv,
1069 bool AttrOnCallSite) {
1070 llvm::AttrBuilder FuncAttrs;
1071 llvm::AttrBuilder RetAttrs;
1072
1073 CallingConv = FI.getEffectiveCallingConvention();
1074
1075 if (FI.isNoReturn())
1076 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1077
1078 // FIXME: handle sseregparm someday...
1079 if (TargetDecl) {
1080 if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1081 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1082 if (TargetDecl->hasAttr<NoThrowAttr>())
1083 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1084 if (TargetDecl->hasAttr<NoReturnAttr>())
1085 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1086 if (TargetDecl->hasAttr<NoDuplicateAttr>())
1087 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1088
1089 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1090 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1091 if (FPT && FPT->isNothrow(getContext()))
1092 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1093 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1094 // These attributes are not inherited by overloads.
1095 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1096 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1097 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1098 }
1099
1100 // 'const' and 'pure' attribute functions are also nounwind.
1101 if (TargetDecl->hasAttr<ConstAttr>()) {
1102 FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1103 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1104 } else if (TargetDecl->hasAttr<PureAttr>()) {
1105 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1106 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1107 }
1108 if (TargetDecl->hasAttr<MallocAttr>())
1109 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1110 }
1111
1112 if (CodeGenOpts.OptimizeSize)
1113 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1114 if (CodeGenOpts.OptimizeSize == 2)
1115 FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1116 if (CodeGenOpts.DisableRedZone)
1117 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1118 if (CodeGenOpts.NoImplicitFloat)
1119 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1120 if (CodeGenOpts.EnableSegmentedStacks &&
1121 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1122 FuncAttrs.addAttribute("split-stack");
1123
1124 if (AttrOnCallSite) {
1125 // Attributes that should go on the call site only.
1126 if (!CodeGenOpts.SimplifyLibCalls)
1127 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1128 } else {
1129 // Attributes that should go on the function, but not the call site.
1130 if (!CodeGenOpts.DisableFPElim) {
1131 FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1132 } else if (CodeGenOpts.OmitLeafFramePointer) {
1133 FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1134 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1135 } else {
1136 FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1137 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1138 }
1139
1140 FuncAttrs.addAttribute("less-precise-fpmad",
1141 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1142 FuncAttrs.addAttribute("no-infs-fp-math",
1143 llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1144 FuncAttrs.addAttribute("no-nans-fp-math",
1145 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1146 FuncAttrs.addAttribute("unsafe-fp-math",
1147 llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1148 FuncAttrs.addAttribute("use-soft-float",
1149 llvm::toStringRef(CodeGenOpts.SoftFloat));
1150 FuncAttrs.addAttribute("stack-protector-buffer-size",
1151 llvm::utostr(CodeGenOpts.SSPBufferSize));
1152
1153 if (!CodeGenOpts.StackRealignment)
1154 FuncAttrs.addAttribute("no-realign-stack");
1155 }
1156
1157 QualType RetTy = FI.getReturnType();
1158 unsigned Index = 1;
1159 bool SwapThisWithSRet = false;
1160 const ABIArgInfo &RetAI = FI.getReturnInfo();
1161 switch (RetAI.getKind()) {
1162 case ABIArgInfo::Extend:
1163 if (RetTy->hasSignedIntegerRepresentation())
1164 RetAttrs.addAttribute(llvm::Attribute::SExt);
1165 else if (RetTy->hasUnsignedIntegerRepresentation())
1166 RetAttrs.addAttribute(llvm::Attribute::ZExt);
1167 // FALL THROUGH
1168 case ABIArgInfo::Direct:
1169 if (RetAI.getInReg())
1170 RetAttrs.addAttribute(llvm::Attribute::InReg);
1171 break;
1172 case ABIArgInfo::Ignore:
1173 break;
1174
1175 case ABIArgInfo::InAlloca: {
1176 // inalloca disables readnone and readonly
1177 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1178 .removeAttribute(llvm::Attribute::ReadNone);
1179 break;
1180 }
1181
1182 case ABIArgInfo::Indirect: {
1183 llvm::AttrBuilder SRETAttrs;
1184 SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1185 if (RetAI.getInReg())
1186 SRETAttrs.addAttribute(llvm::Attribute::InReg);
1187 SwapThisWithSRet = RetAI.isSRetAfterThis();
1188 PAL.push_back(llvm::AttributeSet::get(
1189 getLLVMContext(), SwapThisWithSRet ? 2 : Index, SRETAttrs));
1190
1191 if (!SwapThisWithSRet)
1192 ++Index;
1193 // sret disables readnone and readonly
1194 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1195 .removeAttribute(llvm::Attribute::ReadNone);
1196 break;
1197 }
1198
1199 case ABIArgInfo::Expand:
1200 llvm_unreachable("Invalid ABI kind for return argument");
1201 }
1202
1203 if (RetTy->isReferenceType())
1204 RetAttrs.addAttribute(llvm::Attribute::NonNull);
1205
1206 if (RetAttrs.hasAttributes())
1207 PAL.push_back(llvm::
1208 AttributeSet::get(getLLVMContext(),
1209 llvm::AttributeSet::ReturnIndex,
1210 RetAttrs));
1211
1212 for (const auto &I : FI.arguments()) {
1213 QualType ParamType = I.type;
1214 const ABIArgInfo &AI = I.info;
1215 llvm::AttrBuilder Attrs;
1216
1217 // Skip over the sret parameter when it comes second. We already handled it
1218 // above.
1219 if (Index == 2 && SwapThisWithSRet)
1220 ++Index;
1221
1222 if (AI.getPaddingType()) {
1223 if (AI.getPaddingInReg())
1224 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1225 llvm::Attribute::InReg));
1226 // Increment Index if there is padding.
1227 ++Index;
1228 }
1229
1230 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1231 // have the corresponding parameter variable. It doesn't make
1232 // sense to do it here because parameters are so messed up.
1233 switch (AI.getKind()) {
1234 case ABIArgInfo::Extend:
1235 if (ParamType->isSignedIntegerOrEnumerationType())
1236 Attrs.addAttribute(llvm::Attribute::SExt);
1237 else if (ParamType->isUnsignedIntegerOrEnumerationType())
1238 Attrs.addAttribute(llvm::Attribute::ZExt);
1239 // FALL THROUGH
1240 case ABIArgInfo::Direct: {
1241 if (AI.getInReg())
1242 Attrs.addAttribute(llvm::Attribute::InReg);
1243
1244 // FIXME: handle sseregparm someday...
1245
1246 llvm::StructType *STy =
1247 dyn_cast<llvm::StructType>(AI.getCoerceToType());
1248 if (!isAAPCSVFP(FI, getTarget()) && STy) {
1249 unsigned Extra = STy->getNumElements()-1; // 1 will be added below.
1250 if (Attrs.hasAttributes())
1251 for (unsigned I = 0; I < Extra; ++I)
1252 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1253 Attrs));
1254 Index += Extra;
1255 }
1256 break;
1257 }
1258 case ABIArgInfo::Indirect:
1259 if (AI.getInReg())
1260 Attrs.addAttribute(llvm::Attribute::InReg);
1261
1262 if (AI.getIndirectByVal())
1263 Attrs.addAttribute(llvm::Attribute::ByVal);
1264
1265 Attrs.addAlignmentAttr(AI.getIndirectAlign());
1266
1267 // byval disables readnone and readonly.
1268 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1269 .removeAttribute(llvm::Attribute::ReadNone);
1270 break;
1271
1272 case ABIArgInfo::Ignore:
1273 // Skip increment, no matching LLVM parameter.
1274 continue;
1275
1276 case ABIArgInfo::InAlloca:
1277 // inalloca disables readnone and readonly.
1278 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1279 .removeAttribute(llvm::Attribute::ReadNone);
1280 // Skip increment, no matching LLVM parameter.
1281 continue;
1282
1283 case ABIArgInfo::Expand: {
1284 SmallVector<llvm::Type*, 8> types;
1285 // FIXME: This is rather inefficient. Do we ever actually need to do
1286 // anything here? The result should be just reconstructed on the other
1287 // side, so extension should be a non-issue.
1288 getTypes().GetExpandedTypes(ParamType, types);
1289 Index += types.size();
1290 continue;
1291 }
1292 }
1293
1294 if (ParamType->isReferenceType())
1295 Attrs.addAttribute(llvm::Attribute::NonNull);
1296
1297 if (Attrs.hasAttributes())
1298 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1299 ++Index;
1300 }
1301
1302 // Add the inalloca attribute to the trailing inalloca parameter if present.
1303 if (FI.usesInAlloca()) {
1304 llvm::AttrBuilder Attrs;
1305 Attrs.addAttribute(llvm::Attribute::InAlloca);
1306 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1307 }
1308
1309 if (FuncAttrs.hasAttributes())
1310 PAL.push_back(llvm::
1311 AttributeSet::get(getLLVMContext(),
1312 llvm::AttributeSet::FunctionIndex,
1313 FuncAttrs));
1314 }
1315
1316 /// An argument came in as a promoted argument; demote it back to its
1317 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)1318 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1319 const VarDecl *var,
1320 llvm::Value *value) {
1321 llvm::Type *varType = CGF.ConvertType(var->getType());
1322
1323 // This can happen with promotions that actually don't change the
1324 // underlying type, like the enum promotions.
1325 if (value->getType() == varType) return value;
1326
1327 assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1328 && "unexpected promotion type");
1329
1330 if (isa<llvm::IntegerType>(varType))
1331 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1332
1333 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1334 }
1335
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)1336 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1337 llvm::Function *Fn,
1338 const FunctionArgList &Args) {
1339 // If this is an implicit-return-zero function, go ahead and
1340 // initialize the return value. TODO: it might be nice to have
1341 // a more general mechanism for this that didn't require synthesized
1342 // return statements.
1343 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1344 if (FD->hasImplicitReturnZero()) {
1345 QualType RetTy = FD->getReturnType().getUnqualifiedType();
1346 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1347 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1348 Builder.CreateStore(Zero, ReturnValue);
1349 }
1350 }
1351
1352 // FIXME: We no longer need the types from FunctionArgList; lift up and
1353 // simplify.
1354
1355 // Emit allocs for param decls. Give the LLVM Argument nodes names.
1356 llvm::Function::arg_iterator AI = Fn->arg_begin();
1357
1358 // If we're using inalloca, all the memory arguments are GEPs off of the last
1359 // parameter, which is a pointer to the complete memory area.
1360 llvm::Value *ArgStruct = nullptr;
1361 if (FI.usesInAlloca()) {
1362 llvm::Function::arg_iterator EI = Fn->arg_end();
1363 --EI;
1364 ArgStruct = EI;
1365 assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1366 }
1367
1368 // Name the struct return parameter, which can come first or second.
1369 const ABIArgInfo &RetAI = FI.getReturnInfo();
1370 bool SwapThisWithSRet = false;
1371 if (RetAI.isIndirect()) {
1372 SwapThisWithSRet = RetAI.isSRetAfterThis();
1373 if (SwapThisWithSRet)
1374 ++AI;
1375 AI->setName("agg.result");
1376 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1377 llvm::Attribute::NoAlias));
1378 if (SwapThisWithSRet)
1379 --AI; // Go back to the beginning for 'this'.
1380 else
1381 ++AI; // Skip the sret parameter.
1382 }
1383
1384 // Track if we received the parameter as a pointer (indirect, byval, or
1385 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
1386 // into a local alloca for us.
1387 enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1388 typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1389 SmallVector<ValueAndIsPtr, 16> ArgVals;
1390 ArgVals.reserve(Args.size());
1391
1392 // Create a pointer value for every parameter declaration. This usually
1393 // entails copying one or more LLVM IR arguments into an alloca. Don't push
1394 // any cleanups or do anything that might unwind. We do that separately, so
1395 // we can push the cleanups in the correct order for the ABI.
1396 assert(FI.arg_size() == Args.size() &&
1397 "Mismatch between function signature & arguments.");
1398 unsigned ArgNo = 1;
1399 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1400 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1401 i != e; ++i, ++info_it, ++ArgNo) {
1402 const VarDecl *Arg = *i;
1403 QualType Ty = info_it->type;
1404 const ABIArgInfo &ArgI = info_it->info;
1405
1406 bool isPromoted =
1407 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1408
1409 // Skip the dummy padding argument.
1410 if (ArgI.getPaddingType())
1411 ++AI;
1412
1413 switch (ArgI.getKind()) {
1414 case ABIArgInfo::InAlloca: {
1415 llvm::Value *V = Builder.CreateStructGEP(
1416 ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName());
1417 ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1418 continue; // Don't increment AI!
1419 }
1420
1421 case ABIArgInfo::Indirect: {
1422 llvm::Value *V = AI;
1423
1424 if (!hasScalarEvaluationKind(Ty)) {
1425 // Aggregates and complex variables are accessed by reference. All we
1426 // need to do is realign the value, if requested
1427 if (ArgI.getIndirectRealign()) {
1428 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1429
1430 // Copy from the incoming argument pointer to the temporary with the
1431 // appropriate alignment.
1432 //
1433 // FIXME: We should have a common utility for generating an aggregate
1434 // copy.
1435 llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1436 CharUnits Size = getContext().getTypeSizeInChars(Ty);
1437 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1438 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1439 Builder.CreateMemCpy(Dst,
1440 Src,
1441 llvm::ConstantInt::get(IntPtrTy,
1442 Size.getQuantity()),
1443 ArgI.getIndirectAlign(),
1444 false);
1445 V = AlignedTemp;
1446 }
1447 ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1448 } else {
1449 // Load scalar value from indirect argument.
1450 CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1451 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1452 Arg->getLocStart());
1453
1454 if (isPromoted)
1455 V = emitArgumentDemotion(*this, Arg, V);
1456 ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1457 }
1458 break;
1459 }
1460
1461 case ABIArgInfo::Extend:
1462 case ABIArgInfo::Direct: {
1463
1464 // If we have the trivial case, handle it with no muss and fuss.
1465 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1466 ArgI.getCoerceToType() == ConvertType(Ty) &&
1467 ArgI.getDirectOffset() == 0) {
1468 assert(AI != Fn->arg_end() && "Argument mismatch!");
1469 llvm::Value *V = AI;
1470
1471 if (Arg->getType().isRestrictQualified())
1472 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1473 AI->getArgNo() + 1,
1474 llvm::Attribute::NoAlias));
1475
1476 // Ensure the argument is the correct type.
1477 if (V->getType() != ArgI.getCoerceToType())
1478 V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1479
1480 if (isPromoted)
1481 V = emitArgumentDemotion(*this, Arg, V);
1482
1483 if (const CXXMethodDecl *MD =
1484 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1485 if (MD->isVirtual() && Arg == CXXABIThisDecl)
1486 V = CGM.getCXXABI().
1487 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1488 }
1489
1490 // Because of merging of function types from multiple decls it is
1491 // possible for the type of an argument to not match the corresponding
1492 // type in the function type. Since we are codegening the callee
1493 // in here, add a cast to the argument type.
1494 llvm::Type *LTy = ConvertType(Arg->getType());
1495 if (V->getType() != LTy)
1496 V = Builder.CreateBitCast(V, LTy);
1497
1498 ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1499 break;
1500 }
1501
1502 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1503
1504 // The alignment we need to use is the max of the requested alignment for
1505 // the argument plus the alignment required by our access code below.
1506 unsigned AlignmentToUse =
1507 CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1508 AlignmentToUse = std::max(AlignmentToUse,
1509 (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1510
1511 Alloca->setAlignment(AlignmentToUse);
1512 llvm::Value *V = Alloca;
1513 llvm::Value *Ptr = V; // Pointer to store into.
1514
1515 // If the value is offset in memory, apply the offset now.
1516 if (unsigned Offs = ArgI.getDirectOffset()) {
1517 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1518 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1519 Ptr = Builder.CreateBitCast(Ptr,
1520 llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1521 }
1522
1523 // If the coerce-to type is a first class aggregate, we flatten it and
1524 // pass the elements. Either way is semantically identical, but fast-isel
1525 // and the optimizer generally likes scalar values better than FCAs.
1526 // We cannot do this for functions using the AAPCS calling convention,
1527 // as structures are treated differently by that calling convention.
1528 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1529 if (!isAAPCSVFP(FI, getTarget()) && STy && STy->getNumElements() > 1) {
1530 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1531 llvm::Type *DstTy =
1532 cast<llvm::PointerType>(Ptr->getType())->getElementType();
1533 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1534
1535 if (SrcSize <= DstSize) {
1536 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1537
1538 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1539 assert(AI != Fn->arg_end() && "Argument mismatch!");
1540 AI->setName(Arg->getName() + ".coerce" + Twine(i));
1541 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1542 Builder.CreateStore(AI++, EltPtr);
1543 }
1544 } else {
1545 llvm::AllocaInst *TempAlloca =
1546 CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1547 TempAlloca->setAlignment(AlignmentToUse);
1548 llvm::Value *TempV = TempAlloca;
1549
1550 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1551 assert(AI != Fn->arg_end() && "Argument mismatch!");
1552 AI->setName(Arg->getName() + ".coerce" + Twine(i));
1553 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1554 Builder.CreateStore(AI++, EltPtr);
1555 }
1556
1557 Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1558 }
1559 } else {
1560 // Simple case, just do a coerced store of the argument into the alloca.
1561 assert(AI != Fn->arg_end() && "Argument mismatch!");
1562 AI->setName(Arg->getName() + ".coerce");
1563 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1564 }
1565
1566
1567 // Match to what EmitParmDecl is expecting for this type.
1568 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1569 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
1570 if (isPromoted)
1571 V = emitArgumentDemotion(*this, Arg, V);
1572 ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1573 } else {
1574 ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1575 }
1576 continue; // Skip ++AI increment, already done.
1577 }
1578
1579 case ABIArgInfo::Expand: {
1580 // If this structure was expanded into multiple arguments then
1581 // we need to create a temporary and reconstruct it from the
1582 // arguments.
1583 llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1584 CharUnits Align = getContext().getDeclAlign(Arg);
1585 Alloca->setAlignment(Align.getQuantity());
1586 LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1587 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1588 ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
1589
1590 // Name the arguments used in expansion and increment AI.
1591 unsigned Index = 0;
1592 for (; AI != End; ++AI, ++Index)
1593 AI->setName(Arg->getName() + "." + Twine(Index));
1594 continue;
1595 }
1596
1597 case ABIArgInfo::Ignore:
1598 // Initialize the local variable appropriately.
1599 if (!hasScalarEvaluationKind(Ty)) {
1600 ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
1601 } else {
1602 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
1603 ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
1604 }
1605
1606 // Skip increment, no matching LLVM parameter.
1607 continue;
1608 }
1609
1610 ++AI;
1611
1612 if (ArgNo == 1 && SwapThisWithSRet)
1613 ++AI; // Skip the sret parameter.
1614 }
1615
1616 if (FI.usesInAlloca())
1617 ++AI;
1618 assert(AI == Fn->arg_end() && "Argument mismatch!");
1619
1620 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1621 for (int I = Args.size() - 1; I >= 0; --I)
1622 EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1623 I + 1);
1624 } else {
1625 for (unsigned I = 0, E = Args.size(); I != E; ++I)
1626 EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1627 I + 1);
1628 }
1629 }
1630
eraseUnusedBitCasts(llvm::Instruction * insn)1631 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1632 while (insn->use_empty()) {
1633 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1634 if (!bitcast) return;
1635
1636 // This is "safe" because we would have used a ConstantExpr otherwise.
1637 insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1638 bitcast->eraseFromParent();
1639 }
1640 }
1641
1642 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)1643 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1644 llvm::Value *result) {
1645 // We must be immediately followed the cast.
1646 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1647 if (BB->empty()) return nullptr;
1648 if (&BB->back() != result) return nullptr;
1649
1650 llvm::Type *resultType = result->getType();
1651
1652 // result is in a BasicBlock and is therefore an Instruction.
1653 llvm::Instruction *generator = cast<llvm::Instruction>(result);
1654
1655 SmallVector<llvm::Instruction*,4> insnsToKill;
1656
1657 // Look for:
1658 // %generator = bitcast %type1* %generator2 to %type2*
1659 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1660 // We would have emitted this as a constant if the operand weren't
1661 // an Instruction.
1662 generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1663
1664 // Require the generator to be immediately followed by the cast.
1665 if (generator->getNextNode() != bitcast)
1666 return nullptr;
1667
1668 insnsToKill.push_back(bitcast);
1669 }
1670
1671 // Look for:
1672 // %generator = call i8* @objc_retain(i8* %originalResult)
1673 // or
1674 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1675 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1676 if (!call) return nullptr;
1677
1678 bool doRetainAutorelease;
1679
1680 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1681 doRetainAutorelease = true;
1682 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1683 .objc_retainAutoreleasedReturnValue) {
1684 doRetainAutorelease = false;
1685
1686 // If we emitted an assembly marker for this call (and the
1687 // ARCEntrypoints field should have been set if so), go looking
1688 // for that call. If we can't find it, we can't do this
1689 // optimization. But it should always be the immediately previous
1690 // instruction, unless we needed bitcasts around the call.
1691 if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1692 llvm::Instruction *prev = call->getPrevNode();
1693 assert(prev);
1694 if (isa<llvm::BitCastInst>(prev)) {
1695 prev = prev->getPrevNode();
1696 assert(prev);
1697 }
1698 assert(isa<llvm::CallInst>(prev));
1699 assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1700 CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1701 insnsToKill.push_back(prev);
1702 }
1703 } else {
1704 return nullptr;
1705 }
1706
1707 result = call->getArgOperand(0);
1708 insnsToKill.push_back(call);
1709
1710 // Keep killing bitcasts, for sanity. Note that we no longer care
1711 // about precise ordering as long as there's exactly one use.
1712 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1713 if (!bitcast->hasOneUse()) break;
1714 insnsToKill.push_back(bitcast);
1715 result = bitcast->getOperand(0);
1716 }
1717
1718 // Delete all the unnecessary instructions, from latest to earliest.
1719 for (SmallVectorImpl<llvm::Instruction*>::iterator
1720 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1721 (*i)->eraseFromParent();
1722
1723 // Do the fused retain/autorelease if we were asked to.
1724 if (doRetainAutorelease)
1725 result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1726
1727 // Cast back to the result type.
1728 return CGF.Builder.CreateBitCast(result, resultType);
1729 }
1730
1731 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)1732 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1733 llvm::Value *result) {
1734 // This is only applicable to a method with an immutable 'self'.
1735 const ObjCMethodDecl *method =
1736 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1737 if (!method) return nullptr;
1738 const VarDecl *self = method->getSelfDecl();
1739 if (!self->getType().isConstQualified()) return nullptr;
1740
1741 // Look for a retain call.
1742 llvm::CallInst *retainCall =
1743 dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1744 if (!retainCall ||
1745 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1746 return nullptr;
1747
1748 // Look for an ordinary load of 'self'.
1749 llvm::Value *retainedValue = retainCall->getArgOperand(0);
1750 llvm::LoadInst *load =
1751 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1752 if (!load || load->isAtomic() || load->isVolatile() ||
1753 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1754 return nullptr;
1755
1756 // Okay! Burn it all down. This relies for correctness on the
1757 // assumption that the retain is emitted as part of the return and
1758 // that thereafter everything is used "linearly".
1759 llvm::Type *resultType = result->getType();
1760 eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1761 assert(retainCall->use_empty());
1762 retainCall->eraseFromParent();
1763 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1764
1765 return CGF.Builder.CreateBitCast(load, resultType);
1766 }
1767
1768 /// Emit an ARC autorelease of the result of a function.
1769 ///
1770 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)1771 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1772 llvm::Value *result) {
1773 // If we're returning 'self', kill the initial retain. This is a
1774 // heuristic attempt to "encourage correctness" in the really unfortunate
1775 // case where we have a return of self during a dealloc and we desperately
1776 // need to avoid the possible autorelease.
1777 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1778 return self;
1779
1780 // At -O0, try to emit a fused retain/autorelease.
1781 if (CGF.shouldUseFusedARCCalls())
1782 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1783 return fused;
1784
1785 return CGF.EmitARCAutoreleaseReturnValue(result);
1786 }
1787
1788 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)1789 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1790 // If there are multiple uses of the return-value slot, just check
1791 // for something immediately preceding the IP. Sometimes this can
1792 // happen with how we generate implicit-returns; it can also happen
1793 // with noreturn cleanups.
1794 if (!CGF.ReturnValue->hasOneUse()) {
1795 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1796 if (IP->empty()) return nullptr;
1797 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1798 if (!store) return nullptr;
1799 if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
1800 assert(!store->isAtomic() && !store->isVolatile()); // see below
1801 return store;
1802 }
1803
1804 llvm::StoreInst *store =
1805 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
1806 if (!store) return nullptr;
1807
1808 // These aren't actually possible for non-coerced returns, and we
1809 // only care about non-coerced returns on this code path.
1810 assert(!store->isAtomic() && !store->isVolatile());
1811
1812 // Now do a first-and-dirty dominance check: just walk up the
1813 // single-predecessors chain from the current insertion point.
1814 llvm::BasicBlock *StoreBB = store->getParent();
1815 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1816 while (IP != StoreBB) {
1817 if (!(IP = IP->getSinglePredecessor()))
1818 return nullptr;
1819 }
1820
1821 // Okay, the store's basic block dominates the insertion point; we
1822 // can do our thing.
1823 return store;
1824 }
1825
EmitFunctionEpilog(const CGFunctionInfo & FI,bool EmitRetDbgLoc,SourceLocation EndLoc)1826 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1827 bool EmitRetDbgLoc,
1828 SourceLocation EndLoc) {
1829 // Functions with no result always return void.
1830 if (!ReturnValue) {
1831 Builder.CreateRetVoid();
1832 return;
1833 }
1834
1835 llvm::DebugLoc RetDbgLoc;
1836 llvm::Value *RV = nullptr;
1837 QualType RetTy = FI.getReturnType();
1838 const ABIArgInfo &RetAI = FI.getReturnInfo();
1839
1840 switch (RetAI.getKind()) {
1841 case ABIArgInfo::InAlloca:
1842 // Aggregrates get evaluated directly into the destination. Sometimes we
1843 // need to return the sret value in a register, though.
1844 assert(hasAggregateEvaluationKind(RetTy));
1845 if (RetAI.getInAllocaSRet()) {
1846 llvm::Function::arg_iterator EI = CurFn->arg_end();
1847 --EI;
1848 llvm::Value *ArgStruct = EI;
1849 llvm::Value *SRet =
1850 Builder.CreateStructGEP(ArgStruct, RetAI.getInAllocaFieldIndex());
1851 RV = Builder.CreateLoad(SRet, "sret");
1852 }
1853 break;
1854
1855 case ABIArgInfo::Indirect: {
1856 auto AI = CurFn->arg_begin();
1857 if (RetAI.isSRetAfterThis())
1858 ++AI;
1859 switch (getEvaluationKind(RetTy)) {
1860 case TEK_Complex: {
1861 ComplexPairTy RT =
1862 EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
1863 EndLoc);
1864 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
1865 /*isInit*/ true);
1866 break;
1867 }
1868 case TEK_Aggregate:
1869 // Do nothing; aggregrates get evaluated directly into the destination.
1870 break;
1871 case TEK_Scalar:
1872 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1873 MakeNaturalAlignAddrLValue(AI, RetTy),
1874 /*isInit*/ true);
1875 break;
1876 }
1877 break;
1878 }
1879
1880 case ABIArgInfo::Extend:
1881 case ABIArgInfo::Direct:
1882 if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1883 RetAI.getDirectOffset() == 0) {
1884 // The internal return value temp always will have pointer-to-return-type
1885 // type, just do a load.
1886
1887 // If there is a dominating store to ReturnValue, we can elide
1888 // the load, zap the store, and usually zap the alloca.
1889 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1890 // Reuse the debug location from the store unless there is
1891 // cleanup code to be emitted between the store and return
1892 // instruction.
1893 if (EmitRetDbgLoc && !AutoreleaseResult)
1894 RetDbgLoc = SI->getDebugLoc();
1895 // Get the stored value and nuke the now-dead store.
1896 RV = SI->getValueOperand();
1897 SI->eraseFromParent();
1898
1899 // If that was the only use of the return value, nuke it as well now.
1900 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1901 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1902 ReturnValue = nullptr;
1903 }
1904
1905 // Otherwise, we have to do a simple load.
1906 } else {
1907 RV = Builder.CreateLoad(ReturnValue);
1908 }
1909 } else {
1910 llvm::Value *V = ReturnValue;
1911 // If the value is offset in memory, apply the offset now.
1912 if (unsigned Offs = RetAI.getDirectOffset()) {
1913 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1914 V = Builder.CreateConstGEP1_32(V, Offs);
1915 V = Builder.CreateBitCast(V,
1916 llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1917 }
1918
1919 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1920 }
1921
1922 // In ARC, end functions that return a retainable type with a call
1923 // to objc_autoreleaseReturnValue.
1924 if (AutoreleaseResult) {
1925 assert(getLangOpts().ObjCAutoRefCount &&
1926 !FI.isReturnsRetained() &&
1927 RetTy->isObjCRetainableType());
1928 RV = emitAutoreleaseOfResult(*this, RV);
1929 }
1930
1931 break;
1932
1933 case ABIArgInfo::Ignore:
1934 break;
1935
1936 case ABIArgInfo::Expand:
1937 llvm_unreachable("Invalid ABI kind for return argument");
1938 }
1939
1940 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1941 if (!RetDbgLoc.isUnknown())
1942 Ret->setDebugLoc(RetDbgLoc);
1943 }
1944
isInAllocaArgument(CGCXXABI & ABI,QualType type)1945 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
1946 const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
1947 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
1948 }
1949
createPlaceholderSlot(CodeGenFunction & CGF,QualType Ty)1950 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
1951 // FIXME: Generate IR in one pass, rather than going back and fixing up these
1952 // placeholders.
1953 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
1954 llvm::Value *Placeholder =
1955 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
1956 Placeholder = CGF.Builder.CreateLoad(Placeholder);
1957 return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
1958 Ty.getQualifiers(),
1959 AggValueSlot::IsNotDestructed,
1960 AggValueSlot::DoesNotNeedGCBarriers,
1961 AggValueSlot::IsNotAliased);
1962 }
1963
EmitDelegateCallArg(CallArgList & args,const VarDecl * param,SourceLocation loc)1964 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1965 const VarDecl *param,
1966 SourceLocation loc) {
1967 // StartFunction converted the ABI-lowered parameter(s) into a
1968 // local alloca. We need to turn that into an r-value suitable
1969 // for EmitCall.
1970 llvm::Value *local = GetAddrOfLocalVar(param);
1971
1972 QualType type = param->getType();
1973
1974 // For the most part, we just need to load the alloca, except:
1975 // 1) aggregate r-values are actually pointers to temporaries, and
1976 // 2) references to non-scalars are pointers directly to the aggregate.
1977 // I don't know why references to scalars are different here.
1978 if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1979 if (!hasScalarEvaluationKind(ref->getPointeeType()))
1980 return args.add(RValue::getAggregate(local), type);
1981
1982 // Locals which are references to scalars are represented
1983 // with allocas holding the pointer.
1984 return args.add(RValue::get(Builder.CreateLoad(local)), type);
1985 }
1986
1987 if (isInAllocaArgument(CGM.getCXXABI(), type)) {
1988 AggValueSlot Slot = createPlaceholderSlot(*this, type);
1989 Slot.setExternallyDestructed();
1990
1991 // FIXME: Either emit a copy constructor call, or figure out how to do
1992 // guaranteed tail calls with perfect forwarding in LLVM.
1993 CGM.ErrorUnsupported(param, "non-trivial argument copy for thunk");
1994 EmitNullInitialization(Slot.getAddr(), type);
1995
1996 RValue RV = Slot.asRValue();
1997 args.add(RV, type);
1998 return;
1999 }
2000
2001 args.add(convertTempToRValue(local, type, loc), type);
2002 }
2003
isProvablyNull(llvm::Value * addr)2004 static bool isProvablyNull(llvm::Value *addr) {
2005 return isa<llvm::ConstantPointerNull>(addr);
2006 }
2007
isProvablyNonNull(llvm::Value * addr)2008 static bool isProvablyNonNull(llvm::Value *addr) {
2009 return isa<llvm::AllocaInst>(addr);
2010 }
2011
2012 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)2013 static void emitWriteback(CodeGenFunction &CGF,
2014 const CallArgList::Writeback &writeback) {
2015 const LValue &srcLV = writeback.Source;
2016 llvm::Value *srcAddr = srcLV.getAddress();
2017 assert(!isProvablyNull(srcAddr) &&
2018 "shouldn't have writeback for provably null argument");
2019
2020 llvm::BasicBlock *contBB = nullptr;
2021
2022 // If the argument wasn't provably non-null, we need to null check
2023 // before doing the store.
2024 bool provablyNonNull = isProvablyNonNull(srcAddr);
2025 if (!provablyNonNull) {
2026 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2027 contBB = CGF.createBasicBlock("icr.done");
2028
2029 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2030 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2031 CGF.EmitBlock(writebackBB);
2032 }
2033
2034 // Load the value to writeback.
2035 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2036
2037 // Cast it back, in case we're writing an id to a Foo* or something.
2038 value = CGF.Builder.CreateBitCast(value,
2039 cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2040 "icr.writeback-cast");
2041
2042 // Perform the writeback.
2043
2044 // If we have a "to use" value, it's something we need to emit a use
2045 // of. This has to be carefully threaded in: if it's done after the
2046 // release it's potentially undefined behavior (and the optimizer
2047 // will ignore it), and if it happens before the retain then the
2048 // optimizer could move the release there.
2049 if (writeback.ToUse) {
2050 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2051
2052 // Retain the new value. No need to block-copy here: the block's
2053 // being passed up the stack.
2054 value = CGF.EmitARCRetainNonBlock(value);
2055
2056 // Emit the intrinsic use here.
2057 CGF.EmitARCIntrinsicUse(writeback.ToUse);
2058
2059 // Load the old value (primitively).
2060 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2061
2062 // Put the new value in place (primitively).
2063 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2064
2065 // Release the old value.
2066 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2067
2068 // Otherwise, we can just do a normal lvalue store.
2069 } else {
2070 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2071 }
2072
2073 // Jump to the continuation block.
2074 if (!provablyNonNull)
2075 CGF.EmitBlock(contBB);
2076 }
2077
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)2078 static void emitWritebacks(CodeGenFunction &CGF,
2079 const CallArgList &args) {
2080 for (const auto &I : args.writebacks())
2081 emitWriteback(CGF, I);
2082 }
2083
deactivateArgCleanupsBeforeCall(CodeGenFunction & CGF,const CallArgList & CallArgs)2084 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2085 const CallArgList &CallArgs) {
2086 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2087 ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2088 CallArgs.getCleanupsToDeactivate();
2089 // Iterate in reverse to increase the likelihood of popping the cleanup.
2090 for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2091 I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2092 CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2093 I->IsActiveIP->eraseFromParent();
2094 }
2095 }
2096
maybeGetUnaryAddrOfOperand(const Expr * E)2097 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2098 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2099 if (uop->getOpcode() == UO_AddrOf)
2100 return uop->getSubExpr();
2101 return nullptr;
2102 }
2103
2104 /// Emit an argument that's being passed call-by-writeback. That is,
2105 /// we are passing the address of
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)2106 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2107 const ObjCIndirectCopyRestoreExpr *CRE) {
2108 LValue srcLV;
2109
2110 // Make an optimistic effort to emit the address as an l-value.
2111 // This can fail if the the argument expression is more complicated.
2112 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2113 srcLV = CGF.EmitLValue(lvExpr);
2114
2115 // Otherwise, just emit it as a scalar.
2116 } else {
2117 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2118
2119 QualType srcAddrType =
2120 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2121 srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2122 }
2123 llvm::Value *srcAddr = srcLV.getAddress();
2124
2125 // The dest and src types don't necessarily match in LLVM terms
2126 // because of the crazy ObjC compatibility rules.
2127
2128 llvm::PointerType *destType =
2129 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2130
2131 // If the address is a constant null, just pass the appropriate null.
2132 if (isProvablyNull(srcAddr)) {
2133 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2134 CRE->getType());
2135 return;
2136 }
2137
2138 // Create the temporary.
2139 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2140 "icr.temp");
2141 // Loading an l-value can introduce a cleanup if the l-value is __weak,
2142 // and that cleanup will be conditional if we can't prove that the l-value
2143 // isn't null, so we need to register a dominating point so that the cleanups
2144 // system will make valid IR.
2145 CodeGenFunction::ConditionalEvaluation condEval(CGF);
2146
2147 // Zero-initialize it if we're not doing a copy-initialization.
2148 bool shouldCopy = CRE->shouldCopy();
2149 if (!shouldCopy) {
2150 llvm::Value *null =
2151 llvm::ConstantPointerNull::get(
2152 cast<llvm::PointerType>(destType->getElementType()));
2153 CGF.Builder.CreateStore(null, temp);
2154 }
2155
2156 llvm::BasicBlock *contBB = nullptr;
2157 llvm::BasicBlock *originBB = nullptr;
2158
2159 // If the address is *not* known to be non-null, we need to switch.
2160 llvm::Value *finalArgument;
2161
2162 bool provablyNonNull = isProvablyNonNull(srcAddr);
2163 if (provablyNonNull) {
2164 finalArgument = temp;
2165 } else {
2166 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2167
2168 finalArgument = CGF.Builder.CreateSelect(isNull,
2169 llvm::ConstantPointerNull::get(destType),
2170 temp, "icr.argument");
2171
2172 // If we need to copy, then the load has to be conditional, which
2173 // means we need control flow.
2174 if (shouldCopy) {
2175 originBB = CGF.Builder.GetInsertBlock();
2176 contBB = CGF.createBasicBlock("icr.cont");
2177 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2178 CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2179 CGF.EmitBlock(copyBB);
2180 condEval.begin(CGF);
2181 }
2182 }
2183
2184 llvm::Value *valueToUse = nullptr;
2185
2186 // Perform a copy if necessary.
2187 if (shouldCopy) {
2188 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2189 assert(srcRV.isScalar());
2190
2191 llvm::Value *src = srcRV.getScalarVal();
2192 src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2193 "icr.cast");
2194
2195 // Use an ordinary store, not a store-to-lvalue.
2196 CGF.Builder.CreateStore(src, temp);
2197
2198 // If optimization is enabled, and the value was held in a
2199 // __strong variable, we need to tell the optimizer that this
2200 // value has to stay alive until we're doing the store back.
2201 // This is because the temporary is effectively unretained,
2202 // and so otherwise we can violate the high-level semantics.
2203 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2204 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2205 valueToUse = src;
2206 }
2207 }
2208
2209 // Finish the control flow if we needed it.
2210 if (shouldCopy && !provablyNonNull) {
2211 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2212 CGF.EmitBlock(contBB);
2213
2214 // Make a phi for the value to intrinsically use.
2215 if (valueToUse) {
2216 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2217 "icr.to-use");
2218 phiToUse->addIncoming(valueToUse, copyBB);
2219 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2220 originBB);
2221 valueToUse = phiToUse;
2222 }
2223
2224 condEval.end(CGF);
2225 }
2226
2227 args.addWriteback(srcLV, temp, valueToUse);
2228 args.add(RValue::get(finalArgument), CRE->getType());
2229 }
2230
allocateArgumentMemory(CodeGenFunction & CGF)2231 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2232 assert(!StackBase && !StackCleanup.isValid());
2233
2234 // Save the stack.
2235 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2236 StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2237
2238 // Control gets really tied up in landing pads, so we have to spill the
2239 // stacksave to an alloca to avoid violating SSA form.
2240 // TODO: This is dead if we never emit the cleanup. We should create the
2241 // alloca and store lazily on the first cleanup emission.
2242 StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2243 CGF.Builder.CreateStore(StackBase, StackBaseMem);
2244 CGF.pushStackRestore(EHCleanup, StackBaseMem);
2245 StackCleanup = CGF.EHStack.getInnermostEHScope();
2246 assert(StackCleanup.isValid());
2247 }
2248
freeArgumentMemory(CodeGenFunction & CGF) const2249 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2250 if (StackBase) {
2251 CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2252 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2253 // We could load StackBase from StackBaseMem, but in the non-exceptional
2254 // case we can skip it.
2255 CGF.Builder.CreateCall(F, StackBase);
2256 }
2257 }
2258
EmitCallArgs(CallArgList & Args,ArrayRef<QualType> ArgTypes,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd,bool ForceColumnInfo)2259 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2260 ArrayRef<QualType> ArgTypes,
2261 CallExpr::const_arg_iterator ArgBeg,
2262 CallExpr::const_arg_iterator ArgEnd,
2263 bool ForceColumnInfo) {
2264 CGDebugInfo *DI = getDebugInfo();
2265 SourceLocation CallLoc;
2266 if (DI) CallLoc = DI->getLocation();
2267
2268 // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2269 // because arguments are destroyed left to right in the callee.
2270 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2271 // Insert a stack save if we're going to need any inalloca args.
2272 bool HasInAllocaArgs = false;
2273 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2274 I != E && !HasInAllocaArgs; ++I)
2275 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2276 if (HasInAllocaArgs) {
2277 assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2278 Args.allocateArgumentMemory(*this);
2279 }
2280
2281 // Evaluate each argument.
2282 size_t CallArgsStart = Args.size();
2283 for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2284 CallExpr::const_arg_iterator Arg = ArgBeg + I;
2285 EmitCallArg(Args, *Arg, ArgTypes[I]);
2286 // Restore the debug location.
2287 if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2288 }
2289
2290 // Un-reverse the arguments we just evaluated so they match up with the LLVM
2291 // IR function.
2292 std::reverse(Args.begin() + CallArgsStart, Args.end());
2293 return;
2294 }
2295
2296 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2297 CallExpr::const_arg_iterator Arg = ArgBeg + I;
2298 assert(Arg != ArgEnd);
2299 EmitCallArg(Args, *Arg, ArgTypes[I]);
2300 // Restore the debug location.
2301 if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2302 }
2303 }
2304
2305 namespace {
2306
2307 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
DestroyUnpassedArg__anon47612d3d0111::DestroyUnpassedArg2308 DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2309 : Addr(Addr), Ty(Ty) {}
2310
2311 llvm::Value *Addr;
2312 QualType Ty;
2313
Emit__anon47612d3d0111::DestroyUnpassedArg2314 void Emit(CodeGenFunction &CGF, Flags flags) override {
2315 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2316 assert(!Dtor->isTrivial());
2317 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2318 /*Delegating=*/false, Addr);
2319 }
2320 };
2321
2322 }
2323
EmitCallArg(CallArgList & args,const Expr * E,QualType type)2324 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2325 QualType type) {
2326 if (const ObjCIndirectCopyRestoreExpr *CRE
2327 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2328 assert(getLangOpts().ObjCAutoRefCount);
2329 assert(getContext().hasSameType(E->getType(), type));
2330 return emitWritebackArg(*this, args, CRE);
2331 }
2332
2333 assert(type->isReferenceType() == E->isGLValue() &&
2334 "reference binding to unmaterialized r-value!");
2335
2336 if (E->isGLValue()) {
2337 assert(E->getObjectKind() == OK_Ordinary);
2338 return args.add(EmitReferenceBindingToExpr(E), type);
2339 }
2340
2341 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2342
2343 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2344 // However, we still have to push an EH-only cleanup in case we unwind before
2345 // we make it to the call.
2346 if (HasAggregateEvalKind &&
2347 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2348 // If we're using inalloca, use the argument memory. Otherwise, use a
2349 // temporary.
2350 AggValueSlot Slot;
2351 if (args.isUsingInAlloca())
2352 Slot = createPlaceholderSlot(*this, type);
2353 else
2354 Slot = CreateAggTemp(type, "agg.tmp");
2355
2356 const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2357 bool DestroyedInCallee =
2358 RD && RD->hasNonTrivialDestructor() &&
2359 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2360 if (DestroyedInCallee)
2361 Slot.setExternallyDestructed();
2362
2363 EmitAggExpr(E, Slot);
2364 RValue RV = Slot.asRValue();
2365 args.add(RV, type);
2366
2367 if (DestroyedInCallee) {
2368 // Create a no-op GEP between the placeholder and the cleanup so we can
2369 // RAUW it successfully. It also serves as a marker of the first
2370 // instruction where the cleanup is active.
2371 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2372 // This unreachable is a temporary marker which will be removed later.
2373 llvm::Instruction *IsActive = Builder.CreateUnreachable();
2374 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2375 }
2376 return;
2377 }
2378
2379 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2380 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2381 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2382 assert(L.isSimple());
2383 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2384 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2385 } else {
2386 // We can't represent a misaligned lvalue in the CallArgList, so copy
2387 // to an aligned temporary now.
2388 llvm::Value *tmp = CreateMemTemp(type);
2389 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2390 L.getAlignment());
2391 args.add(RValue::getAggregate(tmp), type);
2392 }
2393 return;
2394 }
2395
2396 args.add(EmitAnyExprToTemp(E), type);
2397 }
2398
2399 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2400 // optimizer it can aggressively ignore unwind edges.
2401 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)2402 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2403 if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2404 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2405 Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2406 CGM.getNoObjCARCExceptionsMetadata());
2407 }
2408
2409 /// Emits a call to the given no-arguments nounwind runtime function.
2410 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,const llvm::Twine & name)2411 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2412 const llvm::Twine &name) {
2413 return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2414 }
2415
2416 /// Emits a call to the given nounwind runtime function.
2417 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)2418 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2419 ArrayRef<llvm::Value*> args,
2420 const llvm::Twine &name) {
2421 llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2422 call->setDoesNotThrow();
2423 return call;
2424 }
2425
2426 /// Emits a simple call (never an invoke) to the given no-arguments
2427 /// runtime function.
2428 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,const llvm::Twine & name)2429 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2430 const llvm::Twine &name) {
2431 return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2432 }
2433
2434 /// Emits a simple call (never an invoke) to the given runtime
2435 /// function.
2436 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)2437 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2438 ArrayRef<llvm::Value*> args,
2439 const llvm::Twine &name) {
2440 llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2441 call->setCallingConv(getRuntimeCC());
2442 return call;
2443 }
2444
2445 /// Emits a call or invoke to the given noreturn runtime function.
EmitNoreturnRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args)2446 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2447 ArrayRef<llvm::Value*> args) {
2448 if (getInvokeDest()) {
2449 llvm::InvokeInst *invoke =
2450 Builder.CreateInvoke(callee,
2451 getUnreachableBlock(),
2452 getInvokeDest(),
2453 args);
2454 invoke->setDoesNotReturn();
2455 invoke->setCallingConv(getRuntimeCC());
2456 } else {
2457 llvm::CallInst *call = Builder.CreateCall(callee, args);
2458 call->setDoesNotReturn();
2459 call->setCallingConv(getRuntimeCC());
2460 Builder.CreateUnreachable();
2461 }
2462 PGO.setCurrentRegionUnreachable();
2463 }
2464
2465 /// Emits a call or invoke instruction to the given nullary runtime
2466 /// function.
2467 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,const Twine & name)2468 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2469 const Twine &name) {
2470 return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2471 }
2472
2473 /// Emits a call or invoke instruction to the given runtime function.
2474 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args,const Twine & name)2475 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2476 ArrayRef<llvm::Value*> args,
2477 const Twine &name) {
2478 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2479 callSite.setCallingConv(getRuntimeCC());
2480 return callSite;
2481 }
2482
2483 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,const Twine & Name)2484 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2485 const Twine &Name) {
2486 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2487 }
2488
2489 /// Emits a call or invoke instruction to the given function, depending
2490 /// on the current state of the EH stack.
2491 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)2492 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2493 ArrayRef<llvm::Value *> Args,
2494 const Twine &Name) {
2495 llvm::BasicBlock *InvokeDest = getInvokeDest();
2496
2497 llvm::Instruction *Inst;
2498 if (!InvokeDest)
2499 Inst = Builder.CreateCall(Callee, Args, Name);
2500 else {
2501 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2502 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2503 EmitBlock(ContBB);
2504 }
2505
2506 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2507 // optimizer it can aggressively ignore unwind edges.
2508 if (CGM.getLangOpts().ObjCAutoRefCount)
2509 AddObjCARCExceptionMetadata(Inst);
2510
2511 return Inst;
2512 }
2513
checkArgMatches(llvm::Value * Elt,unsigned & ArgNo,llvm::FunctionType * FTy)2514 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2515 llvm::FunctionType *FTy) {
2516 if (ArgNo < FTy->getNumParams())
2517 assert(Elt->getType() == FTy->getParamType(ArgNo));
2518 else
2519 assert(FTy->isVarArg());
2520 ++ArgNo;
2521 }
2522
ExpandTypeToArgs(QualType Ty,RValue RV,SmallVectorImpl<llvm::Value * > & Args,llvm::FunctionType * IRFuncTy)2523 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2524 SmallVectorImpl<llvm::Value *> &Args,
2525 llvm::FunctionType *IRFuncTy) {
2526 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2527 unsigned NumElts = AT->getSize().getZExtValue();
2528 QualType EltTy = AT->getElementType();
2529 llvm::Value *Addr = RV.getAggregateAddr();
2530 for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2531 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2532 RValue EltRV = convertTempToRValue(EltAddr, EltTy, SourceLocation());
2533 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2534 }
2535 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2536 RecordDecl *RD = RT->getDecl();
2537 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2538 LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2539
2540 if (RD->isUnion()) {
2541 const FieldDecl *LargestFD = nullptr;
2542 CharUnits UnionSize = CharUnits::Zero();
2543
2544 for (const auto *FD : RD->fields()) {
2545 assert(!FD->isBitField() &&
2546 "Cannot expand structure with bit-field members.");
2547 CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2548 if (UnionSize < FieldSize) {
2549 UnionSize = FieldSize;
2550 LargestFD = FD;
2551 }
2552 }
2553 if (LargestFD) {
2554 RValue FldRV = EmitRValueForField(LV, LargestFD, SourceLocation());
2555 ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2556 }
2557 } else {
2558 for (const auto *FD : RD->fields()) {
2559 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
2560 ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2561 }
2562 }
2563 } else if (Ty->isAnyComplexType()) {
2564 ComplexPairTy CV = RV.getComplexVal();
2565 Args.push_back(CV.first);
2566 Args.push_back(CV.second);
2567 } else {
2568 assert(RV.isScalar() &&
2569 "Unexpected non-scalar rvalue during struct expansion.");
2570
2571 // Insert a bitcast as needed.
2572 llvm::Value *V = RV.getScalarVal();
2573 if (Args.size() < IRFuncTy->getNumParams() &&
2574 V->getType() != IRFuncTy->getParamType(Args.size()))
2575 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2576
2577 Args.push_back(V);
2578 }
2579 }
2580
2581 /// \brief Store a non-aggregate value to an address to initialize it. For
2582 /// initialization, a non-atomic store will be used.
EmitInitStoreOfNonAggregate(CodeGenFunction & CGF,RValue Src,LValue Dst)2583 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
2584 LValue Dst) {
2585 if (Src.isScalar())
2586 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
2587 else
2588 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
2589 }
2590
deferPlaceholderReplacement(llvm::Instruction * Old,llvm::Value * New)2591 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
2592 llvm::Value *New) {
2593 DeferredReplacements.push_back(std::make_pair(Old, New));
2594 }
2595
EmitCall(const CGFunctionInfo & CallInfo,llvm::Value * Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,const Decl * TargetDecl,llvm::Instruction ** callOrInvoke)2596 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2597 llvm::Value *Callee,
2598 ReturnValueSlot ReturnValue,
2599 const CallArgList &CallArgs,
2600 const Decl *TargetDecl,
2601 llvm::Instruction **callOrInvoke) {
2602 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2603 SmallVector<llvm::Value*, 16> Args;
2604
2605 // Handle struct-return functions by passing a pointer to the
2606 // location that we would like to return into.
2607 QualType RetTy = CallInfo.getReturnType();
2608 const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2609
2610 // IRArgNo - Keep track of the argument number in the callee we're looking at.
2611 unsigned IRArgNo = 0;
2612 llvm::FunctionType *IRFuncTy =
2613 cast<llvm::FunctionType>(
2614 cast<llvm::PointerType>(Callee->getType())->getElementType());
2615
2616 // If we're using inalloca, insert the allocation after the stack save.
2617 // FIXME: Do this earlier rather than hacking it in here!
2618 llvm::Value *ArgMemory = nullptr;
2619 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
2620 llvm::Instruction *IP = CallArgs.getStackBase();
2621 llvm::AllocaInst *AI;
2622 if (IP) {
2623 IP = IP->getNextNode();
2624 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
2625 } else {
2626 AI = CreateTempAlloca(ArgStruct, "argmem");
2627 }
2628 AI->setUsedWithInAlloca(true);
2629 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
2630 ArgMemory = AI;
2631 }
2632
2633 // If the call returns a temporary with struct return, create a temporary
2634 // alloca to hold the result, unless one is given to us.
2635 llvm::Value *SRetPtr = nullptr;
2636 bool SwapThisWithSRet = false;
2637 if (RetAI.isIndirect() || RetAI.isInAlloca()) {
2638 SRetPtr = ReturnValue.getValue();
2639 if (!SRetPtr)
2640 SRetPtr = CreateMemTemp(RetTy);
2641 if (RetAI.isIndirect()) {
2642 Args.push_back(SRetPtr);
2643 SwapThisWithSRet = RetAI.isSRetAfterThis();
2644 if (SwapThisWithSRet)
2645 IRArgNo = 1;
2646 checkArgMatches(SRetPtr, IRArgNo, IRFuncTy);
2647 if (SwapThisWithSRet)
2648 IRArgNo = 0;
2649 } else {
2650 llvm::Value *Addr =
2651 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
2652 Builder.CreateStore(SRetPtr, Addr);
2653 }
2654 }
2655
2656 assert(CallInfo.arg_size() == CallArgs.size() &&
2657 "Mismatch between function signature & arguments.");
2658 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2659 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2660 I != E; ++I, ++info_it) {
2661 const ABIArgInfo &ArgInfo = info_it->info;
2662 RValue RV = I->RV;
2663
2664 // Skip 'sret' if it came second.
2665 if (IRArgNo == 1 && SwapThisWithSRet)
2666 ++IRArgNo;
2667
2668 CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2669
2670 // Insert a padding argument to ensure proper alignment.
2671 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2672 Args.push_back(llvm::UndefValue::get(PaddingType));
2673 ++IRArgNo;
2674 }
2675
2676 switch (ArgInfo.getKind()) {
2677 case ABIArgInfo::InAlloca: {
2678 assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2679 if (RV.isAggregate()) {
2680 // Replace the placeholder with the appropriate argument slot GEP.
2681 llvm::Instruction *Placeholder =
2682 cast<llvm::Instruction>(RV.getAggregateAddr());
2683 CGBuilderTy::InsertPoint IP = Builder.saveIP();
2684 Builder.SetInsertPoint(Placeholder);
2685 llvm::Value *Addr = Builder.CreateStructGEP(
2686 ArgMemory, ArgInfo.getInAllocaFieldIndex());
2687 Builder.restoreIP(IP);
2688 deferPlaceholderReplacement(Placeholder, Addr);
2689 } else {
2690 // Store the RValue into the argument struct.
2691 llvm::Value *Addr =
2692 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
2693 unsigned AS = Addr->getType()->getPointerAddressSpace();
2694 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
2695 // There are some cases where a trivial bitcast is not avoidable. The
2696 // definition of a type later in a translation unit may change it's type
2697 // from {}* to (%struct.foo*)*.
2698 if (Addr->getType() != MemType)
2699 Addr = Builder.CreateBitCast(Addr, MemType);
2700 LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
2701 EmitInitStoreOfNonAggregate(*this, RV, argLV);
2702 }
2703 break; // Don't increment IRArgNo!
2704 }
2705
2706 case ABIArgInfo::Indirect: {
2707 if (RV.isScalar() || RV.isComplex()) {
2708 // Make a temporary alloca to pass the argument.
2709 llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2710 if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2711 AI->setAlignment(ArgInfo.getIndirectAlign());
2712 Args.push_back(AI);
2713
2714 LValue argLV = MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2715 EmitInitStoreOfNonAggregate(*this, RV, argLV);
2716
2717 // Validate argument match.
2718 checkArgMatches(AI, IRArgNo, IRFuncTy);
2719 } else {
2720 // We want to avoid creating an unnecessary temporary+copy here;
2721 // however, we need one in three cases:
2722 // 1. If the argument is not byval, and we are required to copy the
2723 // source. (This case doesn't occur on any common architecture.)
2724 // 2. If the argument is byval, RV is not sufficiently aligned, and
2725 // we cannot force it to be sufficiently aligned.
2726 // 3. If the argument is byval, but RV is located in an address space
2727 // different than that of the argument (0).
2728 llvm::Value *Addr = RV.getAggregateAddr();
2729 unsigned Align = ArgInfo.getIndirectAlign();
2730 const llvm::DataLayout *TD = &CGM.getDataLayout();
2731 const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2732 const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2733 IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2734 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2735 (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2736 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2737 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2738 // Create an aligned temporary, and copy to it.
2739 llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2740 if (Align > AI->getAlignment())
2741 AI->setAlignment(Align);
2742 Args.push_back(AI);
2743 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2744
2745 // Validate argument match.
2746 checkArgMatches(AI, IRArgNo, IRFuncTy);
2747 } else {
2748 // Skip the extra memcpy call.
2749 Args.push_back(Addr);
2750
2751 // Validate argument match.
2752 checkArgMatches(Addr, IRArgNo, IRFuncTy);
2753 }
2754 }
2755 break;
2756 }
2757
2758 case ABIArgInfo::Ignore:
2759 break;
2760
2761 case ABIArgInfo::Extend:
2762 case ABIArgInfo::Direct: {
2763 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2764 ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2765 ArgInfo.getDirectOffset() == 0) {
2766 llvm::Value *V;
2767 if (RV.isScalar())
2768 V = RV.getScalarVal();
2769 else
2770 V = Builder.CreateLoad(RV.getAggregateAddr());
2771
2772 // If the argument doesn't match, perform a bitcast to coerce it. This
2773 // can happen due to trivial type mismatches.
2774 if (IRArgNo < IRFuncTy->getNumParams() &&
2775 V->getType() != IRFuncTy->getParamType(IRArgNo))
2776 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2777 Args.push_back(V);
2778
2779 checkArgMatches(V, IRArgNo, IRFuncTy);
2780 break;
2781 }
2782
2783 // FIXME: Avoid the conversion through memory if possible.
2784 llvm::Value *SrcPtr;
2785 if (RV.isScalar() || RV.isComplex()) {
2786 SrcPtr = CreateMemTemp(I->Ty, "coerce");
2787 LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2788 EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
2789 } else
2790 SrcPtr = RV.getAggregateAddr();
2791
2792 // If the value is offset in memory, apply the offset now.
2793 if (unsigned Offs = ArgInfo.getDirectOffset()) {
2794 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2795 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2796 SrcPtr = Builder.CreateBitCast(SrcPtr,
2797 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2798
2799 }
2800
2801 // If the coerce-to type is a first class aggregate, we flatten it and
2802 // pass the elements. Either way is semantically identical, but fast-isel
2803 // and the optimizer generally likes scalar values better than FCAs.
2804 // We cannot do this for functions using the AAPCS calling convention,
2805 // as structures are treated differently by that calling convention.
2806 llvm::StructType *STy =
2807 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
2808 if (STy && !isAAPCSVFP(CallInfo, getTarget())) {
2809 llvm::Type *SrcTy =
2810 cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2811 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2812 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2813
2814 // If the source type is smaller than the destination type of the
2815 // coerce-to logic, copy the source value into a temp alloca the size
2816 // of the destination type to allow loading all of it. The bits past
2817 // the source value are left undef.
2818 if (SrcSize < DstSize) {
2819 llvm::AllocaInst *TempAlloca
2820 = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2821 Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2822 SrcPtr = TempAlloca;
2823 } else {
2824 SrcPtr = Builder.CreateBitCast(SrcPtr,
2825 llvm::PointerType::getUnqual(STy));
2826 }
2827
2828 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2829 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2830 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2831 // We don't know what we're loading from.
2832 LI->setAlignment(1);
2833 Args.push_back(LI);
2834
2835 // Validate argument match.
2836 checkArgMatches(LI, IRArgNo, IRFuncTy);
2837 }
2838 } else {
2839 // In the simple case, just pass the coerced loaded value.
2840 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2841 *this));
2842
2843 // Validate argument match.
2844 checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2845 }
2846
2847 break;
2848 }
2849
2850 case ABIArgInfo::Expand:
2851 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2852 IRArgNo = Args.size();
2853 break;
2854 }
2855 }
2856
2857 if (SwapThisWithSRet)
2858 std::swap(Args[0], Args[1]);
2859
2860 if (ArgMemory) {
2861 llvm::Value *Arg = ArgMemory;
2862 if (CallInfo.isVariadic()) {
2863 // When passing non-POD arguments by value to variadic functions, we will
2864 // end up with a variadic prototype and an inalloca call site. In such
2865 // cases, we can't do any parameter mismatch checks. Give up and bitcast
2866 // the callee.
2867 unsigned CalleeAS =
2868 cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
2869 Callee = Builder.CreateBitCast(
2870 Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
2871 } else {
2872 llvm::Type *LastParamTy =
2873 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
2874 if (Arg->getType() != LastParamTy) {
2875 #ifndef NDEBUG
2876 // Assert that these structs have equivalent element types.
2877 llvm::StructType *FullTy = CallInfo.getArgStruct();
2878 llvm::StructType *DeclaredTy = cast<llvm::StructType>(
2879 cast<llvm::PointerType>(LastParamTy)->getElementType());
2880 assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
2881 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
2882 DE = DeclaredTy->element_end(),
2883 FI = FullTy->element_begin();
2884 DI != DE; ++DI, ++FI)
2885 assert(*DI == *FI);
2886 #endif
2887 Arg = Builder.CreateBitCast(Arg, LastParamTy);
2888 }
2889 }
2890 Args.push_back(Arg);
2891 }
2892
2893 if (!CallArgs.getCleanupsToDeactivate().empty())
2894 deactivateArgCleanupsBeforeCall(*this, CallArgs);
2895
2896 // If the callee is a bitcast of a function to a varargs pointer to function
2897 // type, check to see if we can remove the bitcast. This handles some cases
2898 // with unprototyped functions.
2899 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2900 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2901 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2902 llvm::FunctionType *CurFT =
2903 cast<llvm::FunctionType>(CurPT->getElementType());
2904 llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2905
2906 if (CE->getOpcode() == llvm::Instruction::BitCast &&
2907 ActualFT->getReturnType() == CurFT->getReturnType() &&
2908 ActualFT->getNumParams() == CurFT->getNumParams() &&
2909 ActualFT->getNumParams() == Args.size() &&
2910 (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2911 bool ArgsMatch = true;
2912 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2913 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2914 ArgsMatch = false;
2915 break;
2916 }
2917
2918 // Strip the cast if we can get away with it. This is a nice cleanup,
2919 // but also allows us to inline the function at -O0 if it is marked
2920 // always_inline.
2921 if (ArgsMatch)
2922 Callee = CalleeF;
2923 }
2924 }
2925
2926 unsigned CallingConv;
2927 CodeGen::AttributeListType AttributeList;
2928 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2929 CallingConv, true);
2930 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2931 AttributeList);
2932
2933 llvm::BasicBlock *InvokeDest = nullptr;
2934 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2935 llvm::Attribute::NoUnwind))
2936 InvokeDest = getInvokeDest();
2937
2938 llvm::CallSite CS;
2939 if (!InvokeDest) {
2940 CS = Builder.CreateCall(Callee, Args);
2941 } else {
2942 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2943 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2944 EmitBlock(Cont);
2945 }
2946 if (callOrInvoke)
2947 *callOrInvoke = CS.getInstruction();
2948
2949 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
2950 !CS.hasFnAttr(llvm::Attribute::NoInline))
2951 Attrs =
2952 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
2953 llvm::Attribute::AlwaysInline);
2954
2955 CS.setAttributes(Attrs);
2956 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2957
2958 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2959 // optimizer it can aggressively ignore unwind edges.
2960 if (CGM.getLangOpts().ObjCAutoRefCount)
2961 AddObjCARCExceptionMetadata(CS.getInstruction());
2962
2963 // If the call doesn't return, finish the basic block and clear the
2964 // insertion point; this allows the rest of IRgen to discard
2965 // unreachable code.
2966 if (CS.doesNotReturn()) {
2967 Builder.CreateUnreachable();
2968 Builder.ClearInsertionPoint();
2969
2970 // FIXME: For now, emit a dummy basic block because expr emitters in
2971 // generally are not ready to handle emitting expressions at unreachable
2972 // points.
2973 EnsureInsertPoint();
2974
2975 // Return a reasonable RValue.
2976 return GetUndefRValue(RetTy);
2977 }
2978
2979 llvm::Instruction *CI = CS.getInstruction();
2980 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2981 CI->setName("call");
2982
2983 // Emit any writebacks immediately. Arguably this should happen
2984 // after any return-value munging.
2985 if (CallArgs.hasWritebacks())
2986 emitWritebacks(*this, CallArgs);
2987
2988 // The stack cleanup for inalloca arguments has to run out of the normal
2989 // lexical order, so deactivate it and run it manually here.
2990 CallArgs.freeArgumentMemory(*this);
2991
2992 switch (RetAI.getKind()) {
2993 case ABIArgInfo::InAlloca:
2994 case ABIArgInfo::Indirect:
2995 return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
2996
2997 case ABIArgInfo::Ignore:
2998 // If we are ignoring an argument that had a result, make sure to
2999 // construct the appropriate return value for our caller.
3000 return GetUndefRValue(RetTy);
3001
3002 case ABIArgInfo::Extend:
3003 case ABIArgInfo::Direct: {
3004 llvm::Type *RetIRTy = ConvertType(RetTy);
3005 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3006 switch (getEvaluationKind(RetTy)) {
3007 case TEK_Complex: {
3008 llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3009 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3010 return RValue::getComplex(std::make_pair(Real, Imag));
3011 }
3012 case TEK_Aggregate: {
3013 llvm::Value *DestPtr = ReturnValue.getValue();
3014 bool DestIsVolatile = ReturnValue.isVolatile();
3015
3016 if (!DestPtr) {
3017 DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3018 DestIsVolatile = false;
3019 }
3020 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
3021 return RValue::getAggregate(DestPtr);
3022 }
3023 case TEK_Scalar: {
3024 // If the argument doesn't match, perform a bitcast to coerce it. This
3025 // can happen due to trivial type mismatches.
3026 llvm::Value *V = CI;
3027 if (V->getType() != RetIRTy)
3028 V = Builder.CreateBitCast(V, RetIRTy);
3029 return RValue::get(V);
3030 }
3031 }
3032 llvm_unreachable("bad evaluation kind");
3033 }
3034
3035 llvm::Value *DestPtr = ReturnValue.getValue();
3036 bool DestIsVolatile = ReturnValue.isVolatile();
3037
3038 if (!DestPtr) {
3039 DestPtr = CreateMemTemp(RetTy, "coerce");
3040 DestIsVolatile = false;
3041 }
3042
3043 // If the value is offset in memory, apply the offset now.
3044 llvm::Value *StorePtr = DestPtr;
3045 if (unsigned Offs = RetAI.getDirectOffset()) {
3046 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3047 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
3048 StorePtr = Builder.CreateBitCast(StorePtr,
3049 llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3050 }
3051 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3052
3053 return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3054 }
3055
3056 case ABIArgInfo::Expand:
3057 llvm_unreachable("Invalid ABI kind for return argument");
3058 }
3059
3060 llvm_unreachable("Unhandled ABIArgInfo::Kind");
3061 }
3062
3063 /* VarArg handling */
3064
EmitVAArg(llvm::Value * VAListAddr,QualType Ty)3065 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3066 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3067 }
3068