• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 using namespace clang;
35 using namespace CodeGen;
36 
37 /***/
38 
ClangCallConvToLLVMCallConv(CallingConv CC)39 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
40   switch (CC) {
41   default: return llvm::CallingConv::C;
42   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
43   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
44   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
45   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
46   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
47   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
48   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
49   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
50   // TODO: add support for CC_X86Pascal to llvm
51   }
52 }
53 
54 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
55 /// qualification.
56 /// FIXME: address space qualification?
GetThisType(ASTContext & Context,const CXXRecordDecl * RD)57 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
58   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
59   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
60 }
61 
62 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)63 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
64   return MD->getType()->getCanonicalTypeUnqualified()
65            .getAs<FunctionProtoType>();
66 }
67 
68 /// Returns the "extra-canonicalized" return type, which discards
69 /// qualifiers on the return type.  Codegen doesn't care about them,
70 /// and it makes ABI code a little easier to be able to assume that
71 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)72 static CanQualType GetReturnType(QualType RetTy) {
73   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
74 }
75 
76 /// Arrange the argument and result information for a value of the given
77 /// unprototyped freestanding function type.
78 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)79 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
80   // When translating an unprototyped function type, always use a
81   // variadic type.
82   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
83                                  false, None, FTNP->getExtInfo(),
84                                  RequiredArgs(0));
85 }
86 
87 /// Arrange the LLVM function layout for a value of the given function
88 /// type, on top of any implicit parameters already stored.  Use the
89 /// given ExtInfo instead of the ExtInfo from the function type.
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,bool IsInstanceMethod,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP,FunctionType::ExtInfo extInfo)90 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
91                                                      bool IsInstanceMethod,
92                                        SmallVectorImpl<CanQualType> &prefix,
93                                              CanQual<FunctionProtoType> FTP,
94                                               FunctionType::ExtInfo extInfo) {
95   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
96   // FIXME: Kill copy.
97   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
98     prefix.push_back(FTP->getParamType(i));
99   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
100   return CGT.arrangeLLVMFunctionInfo(resultType, IsInstanceMethod, prefix,
101                                      extInfo, required);
102 }
103 
104 /// Arrange the argument and result information for a free function (i.e.
105 /// not a C++ or ObjC instance method) of the given type.
arrangeFreeFunctionType(CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)106 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
107                                       SmallVectorImpl<CanQualType> &prefix,
108                                             CanQual<FunctionProtoType> FTP) {
109   return arrangeLLVMFunctionInfo(CGT, false, prefix, FTP, FTP->getExtInfo());
110 }
111 
112 /// Arrange the argument and result information for a free function (i.e.
113 /// not a C++ or ObjC instance method) of the given type.
arrangeCXXMethodType(CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP)114 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
115                                       SmallVectorImpl<CanQualType> &prefix,
116                                             CanQual<FunctionProtoType> FTP) {
117   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
118   return arrangeLLVMFunctionInfo(CGT, true, prefix, FTP, extInfo);
119 }
120 
121 /// Arrange the argument and result information for a value of the
122 /// given freestanding function type.
123 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP)124 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
125   SmallVector<CanQualType, 16> argTypes;
126   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
127 }
128 
getCallingConventionForDecl(const Decl * D,bool IsWindows)129 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
130   // Set the appropriate calling convention for the Function.
131   if (D->hasAttr<StdCallAttr>())
132     return CC_X86StdCall;
133 
134   if (D->hasAttr<FastCallAttr>())
135     return CC_X86FastCall;
136 
137   if (D->hasAttr<ThisCallAttr>())
138     return CC_X86ThisCall;
139 
140   if (D->hasAttr<PascalAttr>())
141     return CC_X86Pascal;
142 
143   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
144     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
145 
146   if (D->hasAttr<PnaclCallAttr>())
147     return CC_PnaclCall;
148 
149   if (D->hasAttr<IntelOclBiccAttr>())
150     return CC_IntelOclBicc;
151 
152   if (D->hasAttr<MSABIAttr>())
153     return IsWindows ? CC_C : CC_X86_64Win64;
154 
155   if (D->hasAttr<SysVABIAttr>())
156     return IsWindows ? CC_X86_64SysV : CC_C;
157 
158   return CC_C;
159 }
160 
isAAPCSVFP(const CGFunctionInfo & FI,const TargetInfo & Target)161 static bool isAAPCSVFP(const CGFunctionInfo &FI, const TargetInfo &Target) {
162   switch (FI.getEffectiveCallingConvention()) {
163   case llvm::CallingConv::C:
164     switch (Target.getTriple().getEnvironment()) {
165     case llvm::Triple::EABIHF:
166     case llvm::Triple::GNUEABIHF:
167       return true;
168     default:
169       return false;
170     }
171   case llvm::CallingConv::ARM_AAPCS_VFP:
172     return true;
173   default:
174     return false;
175   }
176 }
177 
178 /// Arrange the argument and result information for a call to an
179 /// unknown C++ non-static member function of the given abstract type.
180 /// (Zero value of RD means we don't have any meaningful "this" argument type,
181 ///  so fall back to a generic pointer type).
182 /// The member function must be an ordinary function, i.e. not a
183 /// constructor or destructor.
184 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP)185 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
186                                    const FunctionProtoType *FTP) {
187   SmallVector<CanQualType, 16> argTypes;
188 
189   // Add the 'this' pointer.
190   if (RD)
191     argTypes.push_back(GetThisType(Context, RD));
192   else
193     argTypes.push_back(Context.VoidPtrTy);
194 
195   return ::arrangeCXXMethodType(*this, argTypes,
196               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
197 }
198 
199 /// Arrange the argument and result information for a declaration or
200 /// definition of the given C++ non-static member function.  The
201 /// member function must be an ordinary function, i.e. not a
202 /// constructor or destructor.
203 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)204 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
205   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
206   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
207 
208   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
209 
210   if (MD->isInstance()) {
211     // The abstract case is perfectly fine.
212     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
213     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
214   }
215 
216   return arrangeFreeFunctionType(prototype);
217 }
218 
219 /// Arrange the argument and result information for a declaration
220 /// or definition to the given constructor variant.
221 const CGFunctionInfo &
arrangeCXXConstructorDeclaration(const CXXConstructorDecl * D,CXXCtorType ctorKind)222 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
223                                                CXXCtorType ctorKind) {
224   SmallVector<CanQualType, 16> argTypes;
225   argTypes.push_back(GetThisType(Context, D->getParent()));
226 
227   GlobalDecl GD(D, ctorKind);
228   CanQualType resultType =
229     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
230 
231   CanQual<FunctionProtoType> FTP = GetFormalType(D);
232 
233   // Add the formal parameters.
234   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
235     argTypes.push_back(FTP->getParamType(i));
236 
237   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
238 
239   RequiredArgs required =
240       (D->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
241 
242   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
243   return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo, required);
244 }
245 
246 /// Arrange a call to a C++ method, passing the given arguments.
247 const CGFunctionInfo &
arrangeCXXConstructorCall(const CallArgList & args,const CXXConstructorDecl * D,CXXCtorType CtorKind,unsigned ExtraArgs)248 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
249                                         const CXXConstructorDecl *D,
250                                         CXXCtorType CtorKind,
251                                         unsigned ExtraArgs) {
252   // FIXME: Kill copy.
253   SmallVector<CanQualType, 16> ArgTypes;
254   for (CallArgList::const_iterator i = args.begin(), e = args.end(); i != e;
255        ++i)
256     ArgTypes.push_back(Context.getCanonicalParamType(i->Ty));
257 
258   CanQual<FunctionProtoType> FPT = GetFormalType(D);
259   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
260   GlobalDecl GD(D, CtorKind);
261   CanQualType ResultType =
262       TheCXXABI.HasThisReturn(GD) ? ArgTypes.front() : Context.VoidTy;
263 
264   FunctionType::ExtInfo Info = FPT->getExtInfo();
265   return arrangeLLVMFunctionInfo(ResultType, true, ArgTypes, Info, Required);
266 }
267 
268 /// Arrange the argument and result information for a declaration,
269 /// definition, or call to the given destructor variant.  It so
270 /// happens that all three cases produce the same information.
271 const CGFunctionInfo &
arrangeCXXDestructor(const CXXDestructorDecl * D,CXXDtorType dtorKind)272 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
273                                    CXXDtorType dtorKind) {
274   SmallVector<CanQualType, 2> argTypes;
275   argTypes.push_back(GetThisType(Context, D->getParent()));
276 
277   GlobalDecl GD(D, dtorKind);
278   CanQualType resultType =
279     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
280 
281   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
282 
283   CanQual<FunctionProtoType> FTP = GetFormalType(D);
284   assert(FTP->getNumParams() == 0 && "dtor with formal parameters");
285   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
286 
287   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
288   return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo,
289                                  RequiredArgs::All);
290 }
291 
292 /// Arrange the argument and result information for the declaration or
293 /// definition of the given function.
294 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)295 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
296   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
297     if (MD->isInstance())
298       return arrangeCXXMethodDeclaration(MD);
299 
300   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
301 
302   assert(isa<FunctionType>(FTy));
303 
304   // When declaring a function without a prototype, always use a
305   // non-variadic type.
306   if (isa<FunctionNoProtoType>(FTy)) {
307     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
308     return arrangeLLVMFunctionInfo(noProto->getReturnType(), false, None,
309                                    noProto->getExtInfo(), RequiredArgs::All);
310   }
311 
312   assert(isa<FunctionProtoType>(FTy));
313   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
314 }
315 
316 /// Arrange the argument and result information for the declaration or
317 /// definition of an Objective-C method.
318 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)319 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
320   // It happens that this is the same as a call with no optional
321   // arguments, except also using the formal 'self' type.
322   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
323 }
324 
325 /// Arrange the argument and result information for the function type
326 /// through which to perform a send to the given Objective-C method,
327 /// using the given receiver type.  The receiver type is not always
328 /// the 'self' type of the method or even an Objective-C pointer type.
329 /// This is *not* the right method for actually performing such a
330 /// message send, due to the possibility of optional arguments.
331 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)332 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
333                                               QualType receiverType) {
334   SmallVector<CanQualType, 16> argTys;
335   argTys.push_back(Context.getCanonicalParamType(receiverType));
336   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
337   // FIXME: Kill copy?
338   for (const auto *I : MD->params()) {
339     argTys.push_back(Context.getCanonicalParamType(I->getType()));
340   }
341 
342   FunctionType::ExtInfo einfo;
343   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
344   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
345 
346   if (getContext().getLangOpts().ObjCAutoRefCount &&
347       MD->hasAttr<NSReturnsRetainedAttr>())
348     einfo = einfo.withProducesResult(true);
349 
350   RequiredArgs required =
351     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
352 
353   return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), false,
354                                  argTys, einfo, required);
355 }
356 
357 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)358 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
359   // FIXME: Do we need to handle ObjCMethodDecl?
360   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
361 
362   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
363     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
364 
365   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
366     return arrangeCXXDestructor(DD, GD.getDtorType());
367 
368   return arrangeFunctionDeclaration(FD);
369 }
370 
371 /// Arrange a call as unto a free function, except possibly with an
372 /// additional number of formal parameters considered required.
373 static const CGFunctionInfo &
arrangeFreeFunctionLikeCall(CodeGenTypes & CGT,CodeGenModule & CGM,const CallArgList & args,const FunctionType * fnType,unsigned numExtraRequiredArgs)374 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
375                             CodeGenModule &CGM,
376                             const CallArgList &args,
377                             const FunctionType *fnType,
378                             unsigned numExtraRequiredArgs) {
379   assert(args.size() >= numExtraRequiredArgs);
380 
381   // In most cases, there are no optional arguments.
382   RequiredArgs required = RequiredArgs::All;
383 
384   // If we have a variadic prototype, the required arguments are the
385   // extra prefix plus the arguments in the prototype.
386   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
387     if (proto->isVariadic())
388       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
389 
390   // If we don't have a prototype at all, but we're supposed to
391   // explicitly use the variadic convention for unprototyped calls,
392   // treat all of the arguments as required but preserve the nominal
393   // possibility of variadics.
394   } else if (CGM.getTargetCodeGenInfo()
395                 .isNoProtoCallVariadic(args,
396                                        cast<FunctionNoProtoType>(fnType))) {
397     required = RequiredArgs(args.size());
398   }
399 
400   return CGT.arrangeFreeFunctionCall(fnType->getReturnType(), args,
401                                      fnType->getExtInfo(), required);
402 }
403 
404 /// Figure out the rules for calling a function with the given formal
405 /// type using the given arguments.  The arguments are necessary
406 /// because the function might be unprototyped, in which case it's
407 /// target-dependent in crazy ways.
408 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType)409 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
410                                       const FunctionType *fnType) {
411   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 0);
412 }
413 
414 /// A block function call is essentially a free-function call with an
415 /// extra implicit argument.
416 const CGFunctionInfo &
arrangeBlockFunctionCall(const CallArgList & args,const FunctionType * fnType)417 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
418                                        const FunctionType *fnType) {
419   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1);
420 }
421 
422 const CGFunctionInfo &
arrangeFreeFunctionCall(QualType resultType,const CallArgList & args,FunctionType::ExtInfo info,RequiredArgs required)423 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
424                                       const CallArgList &args,
425                                       FunctionType::ExtInfo info,
426                                       RequiredArgs required) {
427   // FIXME: Kill copy.
428   SmallVector<CanQualType, 16> argTypes;
429   for (CallArgList::const_iterator i = args.begin(), e = args.end();
430        i != e; ++i)
431     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
432   return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes,
433                                  info, required);
434 }
435 
436 /// Arrange a call to a C++ method, passing the given arguments.
437 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * FPT,RequiredArgs required)438 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
439                                    const FunctionProtoType *FPT,
440                                    RequiredArgs required) {
441   // FIXME: Kill copy.
442   SmallVector<CanQualType, 16> argTypes;
443   for (CallArgList::const_iterator i = args.begin(), e = args.end();
444        i != e; ++i)
445     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
446 
447   FunctionType::ExtInfo info = FPT->getExtInfo();
448   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getReturnType()), true,
449                                  argTypes, info, required);
450 }
451 
arrangeFreeFunctionDeclaration(QualType resultType,const FunctionArgList & args,const FunctionType::ExtInfo & info,bool isVariadic)452 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
453     QualType resultType, const FunctionArgList &args,
454     const FunctionType::ExtInfo &info, bool isVariadic) {
455   // FIXME: Kill copy.
456   SmallVector<CanQualType, 16> argTypes;
457   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
458        i != e; ++i)
459     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
460 
461   RequiredArgs required =
462     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
463   return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes, info,
464                                  required);
465 }
466 
arrangeNullaryFunction()467 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
468   return arrangeLLVMFunctionInfo(getContext().VoidTy, false, None,
469                                  FunctionType::ExtInfo(), RequiredArgs::All);
470 }
471 
472 /// Arrange the argument and result information for an abstract value
473 /// of a given function type.  This is the method which all of the
474 /// above functions ultimately defer to.
475 const CGFunctionInfo &
arrangeLLVMFunctionInfo(CanQualType resultType,bool IsInstanceMethod,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,RequiredArgs required)476 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
477                                       bool IsInstanceMethod,
478                                       ArrayRef<CanQualType> argTypes,
479                                       FunctionType::ExtInfo info,
480                                       RequiredArgs required) {
481 #ifndef NDEBUG
482   for (ArrayRef<CanQualType>::const_iterator
483          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
484     assert(I->isCanonicalAsParam());
485 #endif
486 
487   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
488 
489   // Lookup or create unique function info.
490   llvm::FoldingSetNodeID ID;
491   CGFunctionInfo::Profile(ID, IsInstanceMethod, info, required, resultType,
492                           argTypes);
493 
494   void *insertPos = nullptr;
495   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
496   if (FI)
497     return *FI;
498 
499   // Construct the function info.  We co-allocate the ArgInfos.
500   FI = CGFunctionInfo::create(CC, IsInstanceMethod, info, resultType, argTypes,
501                               required);
502   FunctionInfos.InsertNode(FI, insertPos);
503 
504   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
505   assert(inserted && "Recursively being processed?");
506 
507   // Compute ABI information.
508   getABIInfo().computeInfo(*FI);
509 
510   // Loop over all of the computed argument and return value info.  If any of
511   // them are direct or extend without a specified coerce type, specify the
512   // default now.
513   ABIArgInfo &retInfo = FI->getReturnInfo();
514   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
515     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
516 
517   for (auto &I : FI->arguments())
518     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
519       I.info.setCoerceToType(ConvertType(I.type));
520 
521   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
522   assert(erased && "Not in set?");
523 
524   return *FI;
525 }
526 
create(unsigned llvmCC,bool IsInstanceMethod,const FunctionType::ExtInfo & info,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)527 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
528                                        bool IsInstanceMethod,
529                                        const FunctionType::ExtInfo &info,
530                                        CanQualType resultType,
531                                        ArrayRef<CanQualType> argTypes,
532                                        RequiredArgs required) {
533   void *buffer = operator new(sizeof(CGFunctionInfo) +
534                               sizeof(ArgInfo) * (argTypes.size() + 1));
535   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
536   FI->CallingConvention = llvmCC;
537   FI->EffectiveCallingConvention = llvmCC;
538   FI->ASTCallingConvention = info.getCC();
539   FI->InstanceMethod = IsInstanceMethod;
540   FI->NoReturn = info.getNoReturn();
541   FI->ReturnsRetained = info.getProducesResult();
542   FI->Required = required;
543   FI->HasRegParm = info.getHasRegParm();
544   FI->RegParm = info.getRegParm();
545   FI->ArgStruct = nullptr;
546   FI->NumArgs = argTypes.size();
547   FI->getArgsBuffer()[0].type = resultType;
548   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
549     FI->getArgsBuffer()[i + 1].type = argTypes[i];
550   return FI;
551 }
552 
553 /***/
554 
GetExpandedTypes(QualType type,SmallVectorImpl<llvm::Type * > & expandedTypes)555 void CodeGenTypes::GetExpandedTypes(QualType type,
556                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
557   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
558     uint64_t NumElts = AT->getSize().getZExtValue();
559     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
560       GetExpandedTypes(AT->getElementType(), expandedTypes);
561   } else if (const RecordType *RT = type->getAs<RecordType>()) {
562     const RecordDecl *RD = RT->getDecl();
563     assert(!RD->hasFlexibleArrayMember() &&
564            "Cannot expand structure with flexible array.");
565     if (RD->isUnion()) {
566       // Unions can be here only in degenerative cases - all the fields are same
567       // after flattening. Thus we have to use the "largest" field.
568       const FieldDecl *LargestFD = nullptr;
569       CharUnits UnionSize = CharUnits::Zero();
570 
571       for (const auto *FD : RD->fields()) {
572         assert(!FD->isBitField() &&
573                "Cannot expand structure with bit-field members.");
574         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
575         if (UnionSize < FieldSize) {
576           UnionSize = FieldSize;
577           LargestFD = FD;
578         }
579       }
580       if (LargestFD)
581         GetExpandedTypes(LargestFD->getType(), expandedTypes);
582     } else {
583       for (const auto *I : RD->fields()) {
584         assert(!I->isBitField() &&
585                "Cannot expand structure with bit-field members.");
586         GetExpandedTypes(I->getType(), expandedTypes);
587       }
588     }
589   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
590     llvm::Type *EltTy = ConvertType(CT->getElementType());
591     expandedTypes.push_back(EltTy);
592     expandedTypes.push_back(EltTy);
593   } else
594     expandedTypes.push_back(ConvertType(type));
595 }
596 
597 llvm::Function::arg_iterator
ExpandTypeFromArgs(QualType Ty,LValue LV,llvm::Function::arg_iterator AI)598 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
599                                     llvm::Function::arg_iterator AI) {
600   assert(LV.isSimple() &&
601          "Unexpected non-simple lvalue during struct expansion.");
602 
603   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
604     unsigned NumElts = AT->getSize().getZExtValue();
605     QualType EltTy = AT->getElementType();
606     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
607       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
608       LValue LV = MakeAddrLValue(EltAddr, EltTy);
609       AI = ExpandTypeFromArgs(EltTy, LV, AI);
610     }
611   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
612     RecordDecl *RD = RT->getDecl();
613     if (RD->isUnion()) {
614       // Unions can be here only in degenerative cases - all the fields are same
615       // after flattening. Thus we have to use the "largest" field.
616       const FieldDecl *LargestFD = nullptr;
617       CharUnits UnionSize = CharUnits::Zero();
618 
619       for (const auto *FD : RD->fields()) {
620         assert(!FD->isBitField() &&
621                "Cannot expand structure with bit-field members.");
622         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
623         if (UnionSize < FieldSize) {
624           UnionSize = FieldSize;
625           LargestFD = FD;
626         }
627       }
628       if (LargestFD) {
629         // FIXME: What are the right qualifiers here?
630         LValue SubLV = EmitLValueForField(LV, LargestFD);
631         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
632       }
633     } else {
634       for (const auto *FD : RD->fields()) {
635         QualType FT = FD->getType();
636 
637         // FIXME: What are the right qualifiers here?
638         LValue SubLV = EmitLValueForField(LV, FD);
639         AI = ExpandTypeFromArgs(FT, SubLV, AI);
640       }
641     }
642   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
643     QualType EltTy = CT->getElementType();
644     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
645     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
646     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
647     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
648   } else {
649     EmitStoreThroughLValue(RValue::get(AI), LV);
650     ++AI;
651   }
652 
653   return AI;
654 }
655 
656 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
657 /// accessing some number of bytes out of it, try to gep into the struct to get
658 /// at its inner goodness.  Dive as deep as possible without entering an element
659 /// with an in-memory size smaller than DstSize.
660 static llvm::Value *
EnterStructPointerForCoercedAccess(llvm::Value * SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)661 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
662                                    llvm::StructType *SrcSTy,
663                                    uint64_t DstSize, CodeGenFunction &CGF) {
664   // We can't dive into a zero-element struct.
665   if (SrcSTy->getNumElements() == 0) return SrcPtr;
666 
667   llvm::Type *FirstElt = SrcSTy->getElementType(0);
668 
669   // If the first elt is at least as large as what we're looking for, or if the
670   // first element is the same size as the whole struct, we can enter it.
671   uint64_t FirstEltSize =
672     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
673   if (FirstEltSize < DstSize &&
674       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
675     return SrcPtr;
676 
677   // GEP into the first element.
678   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
679 
680   // If the first element is a struct, recurse.
681   llvm::Type *SrcTy =
682     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
683   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
684     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
685 
686   return SrcPtr;
687 }
688 
689 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
690 /// are either integers or pointers.  This does a truncation of the value if it
691 /// is too large or a zero extension if it is too small.
692 ///
693 /// This behaves as if the value were coerced through memory, so on big-endian
694 /// targets the high bits are preserved in a truncation, while little-endian
695 /// targets preserve the low bits.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)696 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
697                                              llvm::Type *Ty,
698                                              CodeGenFunction &CGF) {
699   if (Val->getType() == Ty)
700     return Val;
701 
702   if (isa<llvm::PointerType>(Val->getType())) {
703     // If this is Pointer->Pointer avoid conversion to and from int.
704     if (isa<llvm::PointerType>(Ty))
705       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
706 
707     // Convert the pointer to an integer so we can play with its width.
708     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
709   }
710 
711   llvm::Type *DestIntTy = Ty;
712   if (isa<llvm::PointerType>(DestIntTy))
713     DestIntTy = CGF.IntPtrTy;
714 
715   if (Val->getType() != DestIntTy) {
716     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
717     if (DL.isBigEndian()) {
718       // Preserve the high bits on big-endian targets.
719       // That is what memory coercion does.
720       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
721       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
722 
723       if (SrcSize > DstSize) {
724         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
725         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
726       } else {
727         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
728         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
729       }
730     } else {
731       // Little-endian targets preserve the low bits. No shifts required.
732       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
733     }
734   }
735 
736   if (isa<llvm::PointerType>(Ty))
737     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
738   return Val;
739 }
740 
741 
742 
743 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
744 /// a pointer to an object of type \arg Ty.
745 ///
746 /// This safely handles the case when the src type is smaller than the
747 /// destination type; in this situation the values of bits which not
748 /// present in the src are undefined.
CreateCoercedLoad(llvm::Value * SrcPtr,llvm::Type * Ty,CodeGenFunction & CGF)749 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
750                                       llvm::Type *Ty,
751                                       CodeGenFunction &CGF) {
752   llvm::Type *SrcTy =
753     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
754 
755   // If SrcTy and Ty are the same, just do a load.
756   if (SrcTy == Ty)
757     return CGF.Builder.CreateLoad(SrcPtr);
758 
759   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
760 
761   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
762     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
763     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
764   }
765 
766   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
767 
768   // If the source and destination are integer or pointer types, just do an
769   // extension or truncation to the desired type.
770   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
771       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
772     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
773     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
774   }
775 
776   // If load is legal, just bitcast the src pointer.
777   if (SrcSize >= DstSize) {
778     // Generally SrcSize is never greater than DstSize, since this means we are
779     // losing bits. However, this can happen in cases where the structure has
780     // additional padding, for example due to a user specified alignment.
781     //
782     // FIXME: Assert that we aren't truncating non-padding bits when have access
783     // to that information.
784     llvm::Value *Casted =
785       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
786     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
787     // FIXME: Use better alignment / avoid requiring aligned load.
788     Load->setAlignment(1);
789     return Load;
790   }
791 
792   // Otherwise do coercion through memory. This is stupid, but
793   // simple.
794   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
795   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
796   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
797   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
798   // FIXME: Use better alignment.
799   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
800       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
801       1, false);
802   return CGF.Builder.CreateLoad(Tmp);
803 }
804 
805 // Function to store a first-class aggregate into memory.  We prefer to
806 // store the elements rather than the aggregate to be more friendly to
807 // fast-isel.
808 // FIXME: Do we need to recurse here?
BuildAggStore(CodeGenFunction & CGF,llvm::Value * Val,llvm::Value * DestPtr,bool DestIsVolatile,bool LowAlignment)809 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
810                           llvm::Value *DestPtr, bool DestIsVolatile,
811                           bool LowAlignment) {
812   // Prefer scalar stores to first-class aggregate stores.
813   if (llvm::StructType *STy =
814         dyn_cast<llvm::StructType>(Val->getType())) {
815     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
816       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
817       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
818       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
819                                                     DestIsVolatile);
820       if (LowAlignment)
821         SI->setAlignment(1);
822     }
823   } else {
824     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
825     if (LowAlignment)
826       SI->setAlignment(1);
827   }
828 }
829 
830 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
831 /// where the source and destination may have different types.
832 ///
833 /// This safely handles the case when the src type is larger than the
834 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,llvm::Value * DstPtr,bool DstIsVolatile,CodeGenFunction & CGF)835 static void CreateCoercedStore(llvm::Value *Src,
836                                llvm::Value *DstPtr,
837                                bool DstIsVolatile,
838                                CodeGenFunction &CGF) {
839   llvm::Type *SrcTy = Src->getType();
840   llvm::Type *DstTy =
841     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
842   if (SrcTy == DstTy) {
843     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
844     return;
845   }
846 
847   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
848 
849   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
850     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
851     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
852   }
853 
854   // If the source and destination are integer or pointer types, just do an
855   // extension or truncation to the desired type.
856   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
857       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
858     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
859     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
860     return;
861   }
862 
863   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
864 
865   // If store is legal, just bitcast the src pointer.
866   if (SrcSize <= DstSize) {
867     llvm::Value *Casted =
868       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
869     // FIXME: Use better alignment / avoid requiring aligned store.
870     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
871   } else {
872     // Otherwise do coercion through memory. This is stupid, but
873     // simple.
874 
875     // Generally SrcSize is never greater than DstSize, since this means we are
876     // losing bits. However, this can happen in cases where the structure has
877     // additional padding, for example due to a user specified alignment.
878     //
879     // FIXME: Assert that we aren't truncating non-padding bits when have access
880     // to that information.
881     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
882     CGF.Builder.CreateStore(Src, Tmp);
883     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
884     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
885     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
886     // FIXME: Use better alignment.
887     CGF.Builder.CreateMemCpy(DstCasted, Casted,
888         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
889         1, false);
890   }
891 }
892 
893 /***/
894 
ReturnTypeUsesSRet(const CGFunctionInfo & FI)895 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
896   return FI.getReturnInfo().isIndirect();
897 }
898 
ReturnSlotInterferesWithArgs(const CGFunctionInfo & FI)899 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
900   return ReturnTypeUsesSRet(FI) &&
901          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
902 }
903 
ReturnTypeUsesFPRet(QualType ResultType)904 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
905   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
906     switch (BT->getKind()) {
907     default:
908       return false;
909     case BuiltinType::Float:
910       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
911     case BuiltinType::Double:
912       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
913     case BuiltinType::LongDouble:
914       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
915     }
916   }
917 
918   return false;
919 }
920 
ReturnTypeUsesFP2Ret(QualType ResultType)921 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
922   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
923     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
924       if (BT->getKind() == BuiltinType::LongDouble)
925         return getTarget().useObjCFP2RetForComplexLongDouble();
926     }
927   }
928 
929   return false;
930 }
931 
GetFunctionType(GlobalDecl GD)932 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
933   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
934   return GetFunctionType(FI);
935 }
936 
937 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)938 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
939 
940   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
941   assert(Inserted && "Recursively being processed?");
942 
943   bool SwapThisWithSRet = false;
944   SmallVector<llvm::Type*, 8> argTypes;
945   llvm::Type *resultType = nullptr;
946 
947   const ABIArgInfo &retAI = FI.getReturnInfo();
948   switch (retAI.getKind()) {
949   case ABIArgInfo::Expand:
950     llvm_unreachable("Invalid ABI kind for return argument");
951 
952   case ABIArgInfo::Extend:
953   case ABIArgInfo::Direct:
954     resultType = retAI.getCoerceToType();
955     break;
956 
957   case ABIArgInfo::InAlloca:
958     if (retAI.getInAllocaSRet()) {
959       // sret things on win32 aren't void, they return the sret pointer.
960       QualType ret = FI.getReturnType();
961       llvm::Type *ty = ConvertType(ret);
962       unsigned addressSpace = Context.getTargetAddressSpace(ret);
963       resultType = llvm::PointerType::get(ty, addressSpace);
964     } else {
965       resultType = llvm::Type::getVoidTy(getLLVMContext());
966     }
967     break;
968 
969   case ABIArgInfo::Indirect: {
970     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
971     resultType = llvm::Type::getVoidTy(getLLVMContext());
972 
973     QualType ret = FI.getReturnType();
974     llvm::Type *ty = ConvertType(ret);
975     unsigned addressSpace = Context.getTargetAddressSpace(ret);
976     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
977 
978     SwapThisWithSRet = retAI.isSRetAfterThis();
979     break;
980   }
981 
982   case ABIArgInfo::Ignore:
983     resultType = llvm::Type::getVoidTy(getLLVMContext());
984     break;
985   }
986 
987   // Add in all of the required arguments.
988   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
989   if (FI.isVariadic()) {
990     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
991   } else {
992     ie = FI.arg_end();
993   }
994   for (; it != ie; ++it) {
995     const ABIArgInfo &argAI = it->info;
996 
997     // Insert a padding type to ensure proper alignment.
998     if (llvm::Type *PaddingType = argAI.getPaddingType())
999       argTypes.push_back(PaddingType);
1000 
1001     switch (argAI.getKind()) {
1002     case ABIArgInfo::Ignore:
1003     case ABIArgInfo::InAlloca:
1004       break;
1005 
1006     case ABIArgInfo::Indirect: {
1007       // indirect arguments are always on the stack, which is addr space #0.
1008       llvm::Type *LTy = ConvertTypeForMem(it->type);
1009       argTypes.push_back(LTy->getPointerTo());
1010       break;
1011     }
1012 
1013     case ABIArgInfo::Extend:
1014     case ABIArgInfo::Direct: {
1015       // If the coerce-to type is a first class aggregate, flatten it.  Either
1016       // way is semantically identical, but fast-isel and the optimizer
1017       // generally likes scalar values better than FCAs.
1018       // We cannot do this for functions using the AAPCS calling convention,
1019       // as structures are treated differently by that calling convention.
1020       llvm::Type *argType = argAI.getCoerceToType();
1021       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1022       if (st && !isAAPCSVFP(FI, getTarget())) {
1023         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1024           argTypes.push_back(st->getElementType(i));
1025       } else {
1026         argTypes.push_back(argType);
1027       }
1028       break;
1029     }
1030 
1031     case ABIArgInfo::Expand:
1032       GetExpandedTypes(it->type, argTypes);
1033       break;
1034     }
1035   }
1036 
1037   // Add the inalloca struct as the last parameter type.
1038   if (llvm::StructType *ArgStruct = FI.getArgStruct())
1039     argTypes.push_back(ArgStruct->getPointerTo());
1040 
1041   if (SwapThisWithSRet)
1042     std::swap(argTypes[0], argTypes[1]);
1043 
1044   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1045   assert(Erased && "Not in set?");
1046 
1047   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
1048 }
1049 
GetFunctionTypeForVTable(GlobalDecl GD)1050 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1051   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1052   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1053 
1054   if (!isFuncTypeConvertible(FPT))
1055     return llvm::StructType::get(getLLVMContext());
1056 
1057   const CGFunctionInfo *Info;
1058   if (isa<CXXDestructorDecl>(MD))
1059     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
1060   else
1061     Info = &arrangeCXXMethodDeclaration(MD);
1062   return GetFunctionType(*Info);
1063 }
1064 
ConstructAttributeList(const CGFunctionInfo & FI,const Decl * TargetDecl,AttributeListType & PAL,unsigned & CallingConv,bool AttrOnCallSite)1065 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1066                                            const Decl *TargetDecl,
1067                                            AttributeListType &PAL,
1068                                            unsigned &CallingConv,
1069                                            bool AttrOnCallSite) {
1070   llvm::AttrBuilder FuncAttrs;
1071   llvm::AttrBuilder RetAttrs;
1072 
1073   CallingConv = FI.getEffectiveCallingConvention();
1074 
1075   if (FI.isNoReturn())
1076     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1077 
1078   // FIXME: handle sseregparm someday...
1079   if (TargetDecl) {
1080     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1081       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1082     if (TargetDecl->hasAttr<NoThrowAttr>())
1083       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1084     if (TargetDecl->hasAttr<NoReturnAttr>())
1085       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1086     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1087       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1088 
1089     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1090       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1091       if (FPT && FPT->isNothrow(getContext()))
1092         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1093       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1094       // These attributes are not inherited by overloads.
1095       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1096       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1097         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1098     }
1099 
1100     // 'const' and 'pure' attribute functions are also nounwind.
1101     if (TargetDecl->hasAttr<ConstAttr>()) {
1102       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1103       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1104     } else if (TargetDecl->hasAttr<PureAttr>()) {
1105       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1106       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1107     }
1108     if (TargetDecl->hasAttr<MallocAttr>())
1109       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1110   }
1111 
1112   if (CodeGenOpts.OptimizeSize)
1113     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1114   if (CodeGenOpts.OptimizeSize == 2)
1115     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1116   if (CodeGenOpts.DisableRedZone)
1117     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1118   if (CodeGenOpts.NoImplicitFloat)
1119     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1120   if (CodeGenOpts.EnableSegmentedStacks &&
1121       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1122     FuncAttrs.addAttribute("split-stack");
1123 
1124   if (AttrOnCallSite) {
1125     // Attributes that should go on the call site only.
1126     if (!CodeGenOpts.SimplifyLibCalls)
1127       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1128   } else {
1129     // Attributes that should go on the function, but not the call site.
1130     if (!CodeGenOpts.DisableFPElim) {
1131       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1132     } else if (CodeGenOpts.OmitLeafFramePointer) {
1133       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1134       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1135     } else {
1136       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1137       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1138     }
1139 
1140     FuncAttrs.addAttribute("less-precise-fpmad",
1141                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1142     FuncAttrs.addAttribute("no-infs-fp-math",
1143                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1144     FuncAttrs.addAttribute("no-nans-fp-math",
1145                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1146     FuncAttrs.addAttribute("unsafe-fp-math",
1147                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1148     FuncAttrs.addAttribute("use-soft-float",
1149                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1150     FuncAttrs.addAttribute("stack-protector-buffer-size",
1151                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1152 
1153     if (!CodeGenOpts.StackRealignment)
1154       FuncAttrs.addAttribute("no-realign-stack");
1155   }
1156 
1157   QualType RetTy = FI.getReturnType();
1158   unsigned Index = 1;
1159   bool SwapThisWithSRet = false;
1160   const ABIArgInfo &RetAI = FI.getReturnInfo();
1161   switch (RetAI.getKind()) {
1162   case ABIArgInfo::Extend:
1163     if (RetTy->hasSignedIntegerRepresentation())
1164       RetAttrs.addAttribute(llvm::Attribute::SExt);
1165     else if (RetTy->hasUnsignedIntegerRepresentation())
1166       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1167     // FALL THROUGH
1168   case ABIArgInfo::Direct:
1169     if (RetAI.getInReg())
1170       RetAttrs.addAttribute(llvm::Attribute::InReg);
1171     break;
1172   case ABIArgInfo::Ignore:
1173     break;
1174 
1175   case ABIArgInfo::InAlloca: {
1176     // inalloca disables readnone and readonly
1177     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1178       .removeAttribute(llvm::Attribute::ReadNone);
1179     break;
1180   }
1181 
1182   case ABIArgInfo::Indirect: {
1183     llvm::AttrBuilder SRETAttrs;
1184     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1185     if (RetAI.getInReg())
1186       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1187     SwapThisWithSRet = RetAI.isSRetAfterThis();
1188     PAL.push_back(llvm::AttributeSet::get(
1189         getLLVMContext(), SwapThisWithSRet ? 2 : Index, SRETAttrs));
1190 
1191     if (!SwapThisWithSRet)
1192       ++Index;
1193     // sret disables readnone and readonly
1194     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1195       .removeAttribute(llvm::Attribute::ReadNone);
1196     break;
1197   }
1198 
1199   case ABIArgInfo::Expand:
1200     llvm_unreachable("Invalid ABI kind for return argument");
1201   }
1202 
1203   if (RetTy->isReferenceType())
1204     RetAttrs.addAttribute(llvm::Attribute::NonNull);
1205 
1206   if (RetAttrs.hasAttributes())
1207     PAL.push_back(llvm::
1208                   AttributeSet::get(getLLVMContext(),
1209                                     llvm::AttributeSet::ReturnIndex,
1210                                     RetAttrs));
1211 
1212   for (const auto &I : FI.arguments()) {
1213     QualType ParamType = I.type;
1214     const ABIArgInfo &AI = I.info;
1215     llvm::AttrBuilder Attrs;
1216 
1217     // Skip over the sret parameter when it comes second.  We already handled it
1218     // above.
1219     if (Index == 2 && SwapThisWithSRet)
1220       ++Index;
1221 
1222     if (AI.getPaddingType()) {
1223       if (AI.getPaddingInReg())
1224         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1225                                               llvm::Attribute::InReg));
1226       // Increment Index if there is padding.
1227       ++Index;
1228     }
1229 
1230     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1231     // have the corresponding parameter variable.  It doesn't make
1232     // sense to do it here because parameters are so messed up.
1233     switch (AI.getKind()) {
1234     case ABIArgInfo::Extend:
1235       if (ParamType->isSignedIntegerOrEnumerationType())
1236         Attrs.addAttribute(llvm::Attribute::SExt);
1237       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1238         Attrs.addAttribute(llvm::Attribute::ZExt);
1239       // FALL THROUGH
1240     case ABIArgInfo::Direct: {
1241       if (AI.getInReg())
1242         Attrs.addAttribute(llvm::Attribute::InReg);
1243 
1244       // FIXME: handle sseregparm someday...
1245 
1246       llvm::StructType *STy =
1247           dyn_cast<llvm::StructType>(AI.getCoerceToType());
1248       if (!isAAPCSVFP(FI, getTarget()) && STy) {
1249         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1250         if (Attrs.hasAttributes())
1251           for (unsigned I = 0; I < Extra; ++I)
1252             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1253                                                   Attrs));
1254         Index += Extra;
1255       }
1256       break;
1257     }
1258     case ABIArgInfo::Indirect:
1259       if (AI.getInReg())
1260         Attrs.addAttribute(llvm::Attribute::InReg);
1261 
1262       if (AI.getIndirectByVal())
1263         Attrs.addAttribute(llvm::Attribute::ByVal);
1264 
1265       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1266 
1267       // byval disables readnone and readonly.
1268       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1269         .removeAttribute(llvm::Attribute::ReadNone);
1270       break;
1271 
1272     case ABIArgInfo::Ignore:
1273       // Skip increment, no matching LLVM parameter.
1274       continue;
1275 
1276     case ABIArgInfo::InAlloca:
1277       // inalloca disables readnone and readonly.
1278       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1279           .removeAttribute(llvm::Attribute::ReadNone);
1280       // Skip increment, no matching LLVM parameter.
1281       continue;
1282 
1283     case ABIArgInfo::Expand: {
1284       SmallVector<llvm::Type*, 8> types;
1285       // FIXME: This is rather inefficient. Do we ever actually need to do
1286       // anything here? The result should be just reconstructed on the other
1287       // side, so extension should be a non-issue.
1288       getTypes().GetExpandedTypes(ParamType, types);
1289       Index += types.size();
1290       continue;
1291     }
1292     }
1293 
1294     if (ParamType->isReferenceType())
1295       Attrs.addAttribute(llvm::Attribute::NonNull);
1296 
1297     if (Attrs.hasAttributes())
1298       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1299     ++Index;
1300   }
1301 
1302   // Add the inalloca attribute to the trailing inalloca parameter if present.
1303   if (FI.usesInAlloca()) {
1304     llvm::AttrBuilder Attrs;
1305     Attrs.addAttribute(llvm::Attribute::InAlloca);
1306     PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1307   }
1308 
1309   if (FuncAttrs.hasAttributes())
1310     PAL.push_back(llvm::
1311                   AttributeSet::get(getLLVMContext(),
1312                                     llvm::AttributeSet::FunctionIndex,
1313                                     FuncAttrs));
1314 }
1315 
1316 /// An argument came in as a promoted argument; demote it back to its
1317 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)1318 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1319                                          const VarDecl *var,
1320                                          llvm::Value *value) {
1321   llvm::Type *varType = CGF.ConvertType(var->getType());
1322 
1323   // This can happen with promotions that actually don't change the
1324   // underlying type, like the enum promotions.
1325   if (value->getType() == varType) return value;
1326 
1327   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1328          && "unexpected promotion type");
1329 
1330   if (isa<llvm::IntegerType>(varType))
1331     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1332 
1333   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1334 }
1335 
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)1336 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1337                                          llvm::Function *Fn,
1338                                          const FunctionArgList &Args) {
1339   // If this is an implicit-return-zero function, go ahead and
1340   // initialize the return value.  TODO: it might be nice to have
1341   // a more general mechanism for this that didn't require synthesized
1342   // return statements.
1343   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1344     if (FD->hasImplicitReturnZero()) {
1345       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1346       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1347       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1348       Builder.CreateStore(Zero, ReturnValue);
1349     }
1350   }
1351 
1352   // FIXME: We no longer need the types from FunctionArgList; lift up and
1353   // simplify.
1354 
1355   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1356   llvm::Function::arg_iterator AI = Fn->arg_begin();
1357 
1358   // If we're using inalloca, all the memory arguments are GEPs off of the last
1359   // parameter, which is a pointer to the complete memory area.
1360   llvm::Value *ArgStruct = nullptr;
1361   if (FI.usesInAlloca()) {
1362     llvm::Function::arg_iterator EI = Fn->arg_end();
1363     --EI;
1364     ArgStruct = EI;
1365     assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1366   }
1367 
1368   // Name the struct return parameter, which can come first or second.
1369   const ABIArgInfo &RetAI = FI.getReturnInfo();
1370   bool SwapThisWithSRet = false;
1371   if (RetAI.isIndirect()) {
1372     SwapThisWithSRet = RetAI.isSRetAfterThis();
1373     if (SwapThisWithSRet)
1374       ++AI;
1375     AI->setName("agg.result");
1376     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1377                                         llvm::Attribute::NoAlias));
1378     if (SwapThisWithSRet)
1379       --AI;  // Go back to the beginning for 'this'.
1380     else
1381       ++AI;  // Skip the sret parameter.
1382   }
1383 
1384   // Track if we received the parameter as a pointer (indirect, byval, or
1385   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1386   // into a local alloca for us.
1387   enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1388   typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1389   SmallVector<ValueAndIsPtr, 16> ArgVals;
1390   ArgVals.reserve(Args.size());
1391 
1392   // Create a pointer value for every parameter declaration.  This usually
1393   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1394   // any cleanups or do anything that might unwind.  We do that separately, so
1395   // we can push the cleanups in the correct order for the ABI.
1396   assert(FI.arg_size() == Args.size() &&
1397          "Mismatch between function signature & arguments.");
1398   unsigned ArgNo = 1;
1399   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1400   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1401        i != e; ++i, ++info_it, ++ArgNo) {
1402     const VarDecl *Arg = *i;
1403     QualType Ty = info_it->type;
1404     const ABIArgInfo &ArgI = info_it->info;
1405 
1406     bool isPromoted =
1407       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1408 
1409     // Skip the dummy padding argument.
1410     if (ArgI.getPaddingType())
1411       ++AI;
1412 
1413     switch (ArgI.getKind()) {
1414     case ABIArgInfo::InAlloca: {
1415       llvm::Value *V = Builder.CreateStructGEP(
1416           ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName());
1417       ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1418       continue;  // Don't increment AI!
1419     }
1420 
1421     case ABIArgInfo::Indirect: {
1422       llvm::Value *V = AI;
1423 
1424       if (!hasScalarEvaluationKind(Ty)) {
1425         // Aggregates and complex variables are accessed by reference.  All we
1426         // need to do is realign the value, if requested
1427         if (ArgI.getIndirectRealign()) {
1428           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1429 
1430           // Copy from the incoming argument pointer to the temporary with the
1431           // appropriate alignment.
1432           //
1433           // FIXME: We should have a common utility for generating an aggregate
1434           // copy.
1435           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1436           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1437           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1438           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1439           Builder.CreateMemCpy(Dst,
1440                                Src,
1441                                llvm::ConstantInt::get(IntPtrTy,
1442                                                       Size.getQuantity()),
1443                                ArgI.getIndirectAlign(),
1444                                false);
1445           V = AlignedTemp;
1446         }
1447         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1448       } else {
1449         // Load scalar value from indirect argument.
1450         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1451         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1452                              Arg->getLocStart());
1453 
1454         if (isPromoted)
1455           V = emitArgumentDemotion(*this, Arg, V);
1456         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1457       }
1458       break;
1459     }
1460 
1461     case ABIArgInfo::Extend:
1462     case ABIArgInfo::Direct: {
1463 
1464       // If we have the trivial case, handle it with no muss and fuss.
1465       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1466           ArgI.getCoerceToType() == ConvertType(Ty) &&
1467           ArgI.getDirectOffset() == 0) {
1468         assert(AI != Fn->arg_end() && "Argument mismatch!");
1469         llvm::Value *V = AI;
1470 
1471         if (Arg->getType().isRestrictQualified())
1472           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1473                                               AI->getArgNo() + 1,
1474                                               llvm::Attribute::NoAlias));
1475 
1476         // Ensure the argument is the correct type.
1477         if (V->getType() != ArgI.getCoerceToType())
1478           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1479 
1480         if (isPromoted)
1481           V = emitArgumentDemotion(*this, Arg, V);
1482 
1483         if (const CXXMethodDecl *MD =
1484             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1485           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1486             V = CGM.getCXXABI().
1487                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1488         }
1489 
1490         // Because of merging of function types from multiple decls it is
1491         // possible for the type of an argument to not match the corresponding
1492         // type in the function type. Since we are codegening the callee
1493         // in here, add a cast to the argument type.
1494         llvm::Type *LTy = ConvertType(Arg->getType());
1495         if (V->getType() != LTy)
1496           V = Builder.CreateBitCast(V, LTy);
1497 
1498         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1499         break;
1500       }
1501 
1502       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1503 
1504       // The alignment we need to use is the max of the requested alignment for
1505       // the argument plus the alignment required by our access code below.
1506       unsigned AlignmentToUse =
1507         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1508       AlignmentToUse = std::max(AlignmentToUse,
1509                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1510 
1511       Alloca->setAlignment(AlignmentToUse);
1512       llvm::Value *V = Alloca;
1513       llvm::Value *Ptr = V;    // Pointer to store into.
1514 
1515       // If the value is offset in memory, apply the offset now.
1516       if (unsigned Offs = ArgI.getDirectOffset()) {
1517         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1518         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1519         Ptr = Builder.CreateBitCast(Ptr,
1520                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1521       }
1522 
1523       // If the coerce-to type is a first class aggregate, we flatten it and
1524       // pass the elements. Either way is semantically identical, but fast-isel
1525       // and the optimizer generally likes scalar values better than FCAs.
1526       // We cannot do this for functions using the AAPCS calling convention,
1527       // as structures are treated differently by that calling convention.
1528       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1529       if (!isAAPCSVFP(FI, getTarget()) && STy && STy->getNumElements() > 1) {
1530         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1531         llvm::Type *DstTy =
1532           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1533         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1534 
1535         if (SrcSize <= DstSize) {
1536           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1537 
1538           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1539             assert(AI != Fn->arg_end() && "Argument mismatch!");
1540             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1541             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1542             Builder.CreateStore(AI++, EltPtr);
1543           }
1544         } else {
1545           llvm::AllocaInst *TempAlloca =
1546             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1547           TempAlloca->setAlignment(AlignmentToUse);
1548           llvm::Value *TempV = TempAlloca;
1549 
1550           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1551             assert(AI != Fn->arg_end() && "Argument mismatch!");
1552             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1553             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1554             Builder.CreateStore(AI++, EltPtr);
1555           }
1556 
1557           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1558         }
1559       } else {
1560         // Simple case, just do a coerced store of the argument into the alloca.
1561         assert(AI != Fn->arg_end() && "Argument mismatch!");
1562         AI->setName(Arg->getName() + ".coerce");
1563         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1564       }
1565 
1566 
1567       // Match to what EmitParmDecl is expecting for this type.
1568       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1569         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
1570         if (isPromoted)
1571           V = emitArgumentDemotion(*this, Arg, V);
1572         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1573       } else {
1574         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1575       }
1576       continue;  // Skip ++AI increment, already done.
1577     }
1578 
1579     case ABIArgInfo::Expand: {
1580       // If this structure was expanded into multiple arguments then
1581       // we need to create a temporary and reconstruct it from the
1582       // arguments.
1583       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1584       CharUnits Align = getContext().getDeclAlign(Arg);
1585       Alloca->setAlignment(Align.getQuantity());
1586       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1587       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1588       ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
1589 
1590       // Name the arguments used in expansion and increment AI.
1591       unsigned Index = 0;
1592       for (; AI != End; ++AI, ++Index)
1593         AI->setName(Arg->getName() + "." + Twine(Index));
1594       continue;
1595     }
1596 
1597     case ABIArgInfo::Ignore:
1598       // Initialize the local variable appropriately.
1599       if (!hasScalarEvaluationKind(Ty)) {
1600         ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
1601       } else {
1602         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
1603         ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
1604       }
1605 
1606       // Skip increment, no matching LLVM parameter.
1607       continue;
1608     }
1609 
1610     ++AI;
1611 
1612     if (ArgNo == 1 && SwapThisWithSRet)
1613       ++AI;  // Skip the sret parameter.
1614   }
1615 
1616   if (FI.usesInAlloca())
1617     ++AI;
1618   assert(AI == Fn->arg_end() && "Argument mismatch!");
1619 
1620   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1621     for (int I = Args.size() - 1; I >= 0; --I)
1622       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1623                    I + 1);
1624   } else {
1625     for (unsigned I = 0, E = Args.size(); I != E; ++I)
1626       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1627                    I + 1);
1628   }
1629 }
1630 
eraseUnusedBitCasts(llvm::Instruction * insn)1631 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1632   while (insn->use_empty()) {
1633     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1634     if (!bitcast) return;
1635 
1636     // This is "safe" because we would have used a ConstantExpr otherwise.
1637     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1638     bitcast->eraseFromParent();
1639   }
1640 }
1641 
1642 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)1643 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1644                                                     llvm::Value *result) {
1645   // We must be immediately followed the cast.
1646   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1647   if (BB->empty()) return nullptr;
1648   if (&BB->back() != result) return nullptr;
1649 
1650   llvm::Type *resultType = result->getType();
1651 
1652   // result is in a BasicBlock and is therefore an Instruction.
1653   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1654 
1655   SmallVector<llvm::Instruction*,4> insnsToKill;
1656 
1657   // Look for:
1658   //  %generator = bitcast %type1* %generator2 to %type2*
1659   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1660     // We would have emitted this as a constant if the operand weren't
1661     // an Instruction.
1662     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1663 
1664     // Require the generator to be immediately followed by the cast.
1665     if (generator->getNextNode() != bitcast)
1666       return nullptr;
1667 
1668     insnsToKill.push_back(bitcast);
1669   }
1670 
1671   // Look for:
1672   //   %generator = call i8* @objc_retain(i8* %originalResult)
1673   // or
1674   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1675   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1676   if (!call) return nullptr;
1677 
1678   bool doRetainAutorelease;
1679 
1680   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1681     doRetainAutorelease = true;
1682   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1683                                           .objc_retainAutoreleasedReturnValue) {
1684     doRetainAutorelease = false;
1685 
1686     // If we emitted an assembly marker for this call (and the
1687     // ARCEntrypoints field should have been set if so), go looking
1688     // for that call.  If we can't find it, we can't do this
1689     // optimization.  But it should always be the immediately previous
1690     // instruction, unless we needed bitcasts around the call.
1691     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1692       llvm::Instruction *prev = call->getPrevNode();
1693       assert(prev);
1694       if (isa<llvm::BitCastInst>(prev)) {
1695         prev = prev->getPrevNode();
1696         assert(prev);
1697       }
1698       assert(isa<llvm::CallInst>(prev));
1699       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1700                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1701       insnsToKill.push_back(prev);
1702     }
1703   } else {
1704     return nullptr;
1705   }
1706 
1707   result = call->getArgOperand(0);
1708   insnsToKill.push_back(call);
1709 
1710   // Keep killing bitcasts, for sanity.  Note that we no longer care
1711   // about precise ordering as long as there's exactly one use.
1712   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1713     if (!bitcast->hasOneUse()) break;
1714     insnsToKill.push_back(bitcast);
1715     result = bitcast->getOperand(0);
1716   }
1717 
1718   // Delete all the unnecessary instructions, from latest to earliest.
1719   for (SmallVectorImpl<llvm::Instruction*>::iterator
1720          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1721     (*i)->eraseFromParent();
1722 
1723   // Do the fused retain/autorelease if we were asked to.
1724   if (doRetainAutorelease)
1725     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1726 
1727   // Cast back to the result type.
1728   return CGF.Builder.CreateBitCast(result, resultType);
1729 }
1730 
1731 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)1732 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1733                                           llvm::Value *result) {
1734   // This is only applicable to a method with an immutable 'self'.
1735   const ObjCMethodDecl *method =
1736     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1737   if (!method) return nullptr;
1738   const VarDecl *self = method->getSelfDecl();
1739   if (!self->getType().isConstQualified()) return nullptr;
1740 
1741   // Look for a retain call.
1742   llvm::CallInst *retainCall =
1743     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1744   if (!retainCall ||
1745       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1746     return nullptr;
1747 
1748   // Look for an ordinary load of 'self'.
1749   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1750   llvm::LoadInst *load =
1751     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1752   if (!load || load->isAtomic() || load->isVolatile() ||
1753       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1754     return nullptr;
1755 
1756   // Okay!  Burn it all down.  This relies for correctness on the
1757   // assumption that the retain is emitted as part of the return and
1758   // that thereafter everything is used "linearly".
1759   llvm::Type *resultType = result->getType();
1760   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1761   assert(retainCall->use_empty());
1762   retainCall->eraseFromParent();
1763   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1764 
1765   return CGF.Builder.CreateBitCast(load, resultType);
1766 }
1767 
1768 /// Emit an ARC autorelease of the result of a function.
1769 ///
1770 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)1771 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1772                                             llvm::Value *result) {
1773   // If we're returning 'self', kill the initial retain.  This is a
1774   // heuristic attempt to "encourage correctness" in the really unfortunate
1775   // case where we have a return of self during a dealloc and we desperately
1776   // need to avoid the possible autorelease.
1777   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1778     return self;
1779 
1780   // At -O0, try to emit a fused retain/autorelease.
1781   if (CGF.shouldUseFusedARCCalls())
1782     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1783       return fused;
1784 
1785   return CGF.EmitARCAutoreleaseReturnValue(result);
1786 }
1787 
1788 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)1789 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1790   // If there are multiple uses of the return-value slot, just check
1791   // for something immediately preceding the IP.  Sometimes this can
1792   // happen with how we generate implicit-returns; it can also happen
1793   // with noreturn cleanups.
1794   if (!CGF.ReturnValue->hasOneUse()) {
1795     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1796     if (IP->empty()) return nullptr;
1797     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1798     if (!store) return nullptr;
1799     if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
1800     assert(!store->isAtomic() && !store->isVolatile()); // see below
1801     return store;
1802   }
1803 
1804   llvm::StoreInst *store =
1805     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
1806   if (!store) return nullptr;
1807 
1808   // These aren't actually possible for non-coerced returns, and we
1809   // only care about non-coerced returns on this code path.
1810   assert(!store->isAtomic() && !store->isVolatile());
1811 
1812   // Now do a first-and-dirty dominance check: just walk up the
1813   // single-predecessors chain from the current insertion point.
1814   llvm::BasicBlock *StoreBB = store->getParent();
1815   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1816   while (IP != StoreBB) {
1817     if (!(IP = IP->getSinglePredecessor()))
1818       return nullptr;
1819   }
1820 
1821   // Okay, the store's basic block dominates the insertion point; we
1822   // can do our thing.
1823   return store;
1824 }
1825 
EmitFunctionEpilog(const CGFunctionInfo & FI,bool EmitRetDbgLoc,SourceLocation EndLoc)1826 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1827                                          bool EmitRetDbgLoc,
1828                                          SourceLocation EndLoc) {
1829   // Functions with no result always return void.
1830   if (!ReturnValue) {
1831     Builder.CreateRetVoid();
1832     return;
1833   }
1834 
1835   llvm::DebugLoc RetDbgLoc;
1836   llvm::Value *RV = nullptr;
1837   QualType RetTy = FI.getReturnType();
1838   const ABIArgInfo &RetAI = FI.getReturnInfo();
1839 
1840   switch (RetAI.getKind()) {
1841   case ABIArgInfo::InAlloca:
1842     // Aggregrates get evaluated directly into the destination.  Sometimes we
1843     // need to return the sret value in a register, though.
1844     assert(hasAggregateEvaluationKind(RetTy));
1845     if (RetAI.getInAllocaSRet()) {
1846       llvm::Function::arg_iterator EI = CurFn->arg_end();
1847       --EI;
1848       llvm::Value *ArgStruct = EI;
1849       llvm::Value *SRet =
1850           Builder.CreateStructGEP(ArgStruct, RetAI.getInAllocaFieldIndex());
1851       RV = Builder.CreateLoad(SRet, "sret");
1852     }
1853     break;
1854 
1855   case ABIArgInfo::Indirect: {
1856     auto AI = CurFn->arg_begin();
1857     if (RetAI.isSRetAfterThis())
1858       ++AI;
1859     switch (getEvaluationKind(RetTy)) {
1860     case TEK_Complex: {
1861       ComplexPairTy RT =
1862         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
1863                           EndLoc);
1864       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
1865                          /*isInit*/ true);
1866       break;
1867     }
1868     case TEK_Aggregate:
1869       // Do nothing; aggregrates get evaluated directly into the destination.
1870       break;
1871     case TEK_Scalar:
1872       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1873                         MakeNaturalAlignAddrLValue(AI, RetTy),
1874                         /*isInit*/ true);
1875       break;
1876     }
1877     break;
1878   }
1879 
1880   case ABIArgInfo::Extend:
1881   case ABIArgInfo::Direct:
1882     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1883         RetAI.getDirectOffset() == 0) {
1884       // The internal return value temp always will have pointer-to-return-type
1885       // type, just do a load.
1886 
1887       // If there is a dominating store to ReturnValue, we can elide
1888       // the load, zap the store, and usually zap the alloca.
1889       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1890         // Reuse the debug location from the store unless there is
1891         // cleanup code to be emitted between the store and return
1892         // instruction.
1893         if (EmitRetDbgLoc && !AutoreleaseResult)
1894           RetDbgLoc = SI->getDebugLoc();
1895         // Get the stored value and nuke the now-dead store.
1896         RV = SI->getValueOperand();
1897         SI->eraseFromParent();
1898 
1899         // If that was the only use of the return value, nuke it as well now.
1900         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1901           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1902           ReturnValue = nullptr;
1903         }
1904 
1905       // Otherwise, we have to do a simple load.
1906       } else {
1907         RV = Builder.CreateLoad(ReturnValue);
1908       }
1909     } else {
1910       llvm::Value *V = ReturnValue;
1911       // If the value is offset in memory, apply the offset now.
1912       if (unsigned Offs = RetAI.getDirectOffset()) {
1913         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1914         V = Builder.CreateConstGEP1_32(V, Offs);
1915         V = Builder.CreateBitCast(V,
1916                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1917       }
1918 
1919       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1920     }
1921 
1922     // In ARC, end functions that return a retainable type with a call
1923     // to objc_autoreleaseReturnValue.
1924     if (AutoreleaseResult) {
1925       assert(getLangOpts().ObjCAutoRefCount &&
1926              !FI.isReturnsRetained() &&
1927              RetTy->isObjCRetainableType());
1928       RV = emitAutoreleaseOfResult(*this, RV);
1929     }
1930 
1931     break;
1932 
1933   case ABIArgInfo::Ignore:
1934     break;
1935 
1936   case ABIArgInfo::Expand:
1937     llvm_unreachable("Invalid ABI kind for return argument");
1938   }
1939 
1940   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1941   if (!RetDbgLoc.isUnknown())
1942     Ret->setDebugLoc(RetDbgLoc);
1943 }
1944 
isInAllocaArgument(CGCXXABI & ABI,QualType type)1945 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
1946   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
1947   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
1948 }
1949 
createPlaceholderSlot(CodeGenFunction & CGF,QualType Ty)1950 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
1951   // FIXME: Generate IR in one pass, rather than going back and fixing up these
1952   // placeholders.
1953   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
1954   llvm::Value *Placeholder =
1955       llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
1956   Placeholder = CGF.Builder.CreateLoad(Placeholder);
1957   return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
1958                                Ty.getQualifiers(),
1959                                AggValueSlot::IsNotDestructed,
1960                                AggValueSlot::DoesNotNeedGCBarriers,
1961                                AggValueSlot::IsNotAliased);
1962 }
1963 
EmitDelegateCallArg(CallArgList & args,const VarDecl * param,SourceLocation loc)1964 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1965                                           const VarDecl *param,
1966                                           SourceLocation loc) {
1967   // StartFunction converted the ABI-lowered parameter(s) into a
1968   // local alloca.  We need to turn that into an r-value suitable
1969   // for EmitCall.
1970   llvm::Value *local = GetAddrOfLocalVar(param);
1971 
1972   QualType type = param->getType();
1973 
1974   // For the most part, we just need to load the alloca, except:
1975   // 1) aggregate r-values are actually pointers to temporaries, and
1976   // 2) references to non-scalars are pointers directly to the aggregate.
1977   // I don't know why references to scalars are different here.
1978   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1979     if (!hasScalarEvaluationKind(ref->getPointeeType()))
1980       return args.add(RValue::getAggregate(local), type);
1981 
1982     // Locals which are references to scalars are represented
1983     // with allocas holding the pointer.
1984     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1985   }
1986 
1987   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
1988     AggValueSlot Slot = createPlaceholderSlot(*this, type);
1989     Slot.setExternallyDestructed();
1990 
1991     // FIXME: Either emit a copy constructor call, or figure out how to do
1992     // guaranteed tail calls with perfect forwarding in LLVM.
1993     CGM.ErrorUnsupported(param, "non-trivial argument copy for thunk");
1994     EmitNullInitialization(Slot.getAddr(), type);
1995 
1996     RValue RV = Slot.asRValue();
1997     args.add(RV, type);
1998     return;
1999   }
2000 
2001   args.add(convertTempToRValue(local, type, loc), type);
2002 }
2003 
isProvablyNull(llvm::Value * addr)2004 static bool isProvablyNull(llvm::Value *addr) {
2005   return isa<llvm::ConstantPointerNull>(addr);
2006 }
2007 
isProvablyNonNull(llvm::Value * addr)2008 static bool isProvablyNonNull(llvm::Value *addr) {
2009   return isa<llvm::AllocaInst>(addr);
2010 }
2011 
2012 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)2013 static void emitWriteback(CodeGenFunction &CGF,
2014                           const CallArgList::Writeback &writeback) {
2015   const LValue &srcLV = writeback.Source;
2016   llvm::Value *srcAddr = srcLV.getAddress();
2017   assert(!isProvablyNull(srcAddr) &&
2018          "shouldn't have writeback for provably null argument");
2019 
2020   llvm::BasicBlock *contBB = nullptr;
2021 
2022   // If the argument wasn't provably non-null, we need to null check
2023   // before doing the store.
2024   bool provablyNonNull = isProvablyNonNull(srcAddr);
2025   if (!provablyNonNull) {
2026     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2027     contBB = CGF.createBasicBlock("icr.done");
2028 
2029     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2030     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2031     CGF.EmitBlock(writebackBB);
2032   }
2033 
2034   // Load the value to writeback.
2035   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2036 
2037   // Cast it back, in case we're writing an id to a Foo* or something.
2038   value = CGF.Builder.CreateBitCast(value,
2039                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2040                             "icr.writeback-cast");
2041 
2042   // Perform the writeback.
2043 
2044   // If we have a "to use" value, it's something we need to emit a use
2045   // of.  This has to be carefully threaded in: if it's done after the
2046   // release it's potentially undefined behavior (and the optimizer
2047   // will ignore it), and if it happens before the retain then the
2048   // optimizer could move the release there.
2049   if (writeback.ToUse) {
2050     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2051 
2052     // Retain the new value.  No need to block-copy here:  the block's
2053     // being passed up the stack.
2054     value = CGF.EmitARCRetainNonBlock(value);
2055 
2056     // Emit the intrinsic use here.
2057     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2058 
2059     // Load the old value (primitively).
2060     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2061 
2062     // Put the new value in place (primitively).
2063     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2064 
2065     // Release the old value.
2066     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2067 
2068   // Otherwise, we can just do a normal lvalue store.
2069   } else {
2070     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2071   }
2072 
2073   // Jump to the continuation block.
2074   if (!provablyNonNull)
2075     CGF.EmitBlock(contBB);
2076 }
2077 
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)2078 static void emitWritebacks(CodeGenFunction &CGF,
2079                            const CallArgList &args) {
2080   for (const auto &I : args.writebacks())
2081     emitWriteback(CGF, I);
2082 }
2083 
deactivateArgCleanupsBeforeCall(CodeGenFunction & CGF,const CallArgList & CallArgs)2084 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2085                                             const CallArgList &CallArgs) {
2086   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2087   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2088     CallArgs.getCleanupsToDeactivate();
2089   // Iterate in reverse to increase the likelihood of popping the cleanup.
2090   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2091          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2092     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2093     I->IsActiveIP->eraseFromParent();
2094   }
2095 }
2096 
maybeGetUnaryAddrOfOperand(const Expr * E)2097 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2098   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2099     if (uop->getOpcode() == UO_AddrOf)
2100       return uop->getSubExpr();
2101   return nullptr;
2102 }
2103 
2104 /// Emit an argument that's being passed call-by-writeback.  That is,
2105 /// we are passing the address of
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)2106 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2107                              const ObjCIndirectCopyRestoreExpr *CRE) {
2108   LValue srcLV;
2109 
2110   // Make an optimistic effort to emit the address as an l-value.
2111   // This can fail if the the argument expression is more complicated.
2112   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2113     srcLV = CGF.EmitLValue(lvExpr);
2114 
2115   // Otherwise, just emit it as a scalar.
2116   } else {
2117     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2118 
2119     QualType srcAddrType =
2120       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2121     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2122   }
2123   llvm::Value *srcAddr = srcLV.getAddress();
2124 
2125   // The dest and src types don't necessarily match in LLVM terms
2126   // because of the crazy ObjC compatibility rules.
2127 
2128   llvm::PointerType *destType =
2129     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2130 
2131   // If the address is a constant null, just pass the appropriate null.
2132   if (isProvablyNull(srcAddr)) {
2133     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2134              CRE->getType());
2135     return;
2136   }
2137 
2138   // Create the temporary.
2139   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2140                                            "icr.temp");
2141   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2142   // and that cleanup will be conditional if we can't prove that the l-value
2143   // isn't null, so we need to register a dominating point so that the cleanups
2144   // system will make valid IR.
2145   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2146 
2147   // Zero-initialize it if we're not doing a copy-initialization.
2148   bool shouldCopy = CRE->shouldCopy();
2149   if (!shouldCopy) {
2150     llvm::Value *null =
2151       llvm::ConstantPointerNull::get(
2152         cast<llvm::PointerType>(destType->getElementType()));
2153     CGF.Builder.CreateStore(null, temp);
2154   }
2155 
2156   llvm::BasicBlock *contBB = nullptr;
2157   llvm::BasicBlock *originBB = nullptr;
2158 
2159   // If the address is *not* known to be non-null, we need to switch.
2160   llvm::Value *finalArgument;
2161 
2162   bool provablyNonNull = isProvablyNonNull(srcAddr);
2163   if (provablyNonNull) {
2164     finalArgument = temp;
2165   } else {
2166     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2167 
2168     finalArgument = CGF.Builder.CreateSelect(isNull,
2169                                    llvm::ConstantPointerNull::get(destType),
2170                                              temp, "icr.argument");
2171 
2172     // If we need to copy, then the load has to be conditional, which
2173     // means we need control flow.
2174     if (shouldCopy) {
2175       originBB = CGF.Builder.GetInsertBlock();
2176       contBB = CGF.createBasicBlock("icr.cont");
2177       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2178       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2179       CGF.EmitBlock(copyBB);
2180       condEval.begin(CGF);
2181     }
2182   }
2183 
2184   llvm::Value *valueToUse = nullptr;
2185 
2186   // Perform a copy if necessary.
2187   if (shouldCopy) {
2188     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2189     assert(srcRV.isScalar());
2190 
2191     llvm::Value *src = srcRV.getScalarVal();
2192     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2193                                     "icr.cast");
2194 
2195     // Use an ordinary store, not a store-to-lvalue.
2196     CGF.Builder.CreateStore(src, temp);
2197 
2198     // If optimization is enabled, and the value was held in a
2199     // __strong variable, we need to tell the optimizer that this
2200     // value has to stay alive until we're doing the store back.
2201     // This is because the temporary is effectively unretained,
2202     // and so otherwise we can violate the high-level semantics.
2203     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2204         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2205       valueToUse = src;
2206     }
2207   }
2208 
2209   // Finish the control flow if we needed it.
2210   if (shouldCopy && !provablyNonNull) {
2211     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2212     CGF.EmitBlock(contBB);
2213 
2214     // Make a phi for the value to intrinsically use.
2215     if (valueToUse) {
2216       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2217                                                       "icr.to-use");
2218       phiToUse->addIncoming(valueToUse, copyBB);
2219       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2220                             originBB);
2221       valueToUse = phiToUse;
2222     }
2223 
2224     condEval.end(CGF);
2225   }
2226 
2227   args.addWriteback(srcLV, temp, valueToUse);
2228   args.add(RValue::get(finalArgument), CRE->getType());
2229 }
2230 
allocateArgumentMemory(CodeGenFunction & CGF)2231 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2232   assert(!StackBase && !StackCleanup.isValid());
2233 
2234   // Save the stack.
2235   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2236   StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2237 
2238   // Control gets really tied up in landing pads, so we have to spill the
2239   // stacksave to an alloca to avoid violating SSA form.
2240   // TODO: This is dead if we never emit the cleanup.  We should create the
2241   // alloca and store lazily on the first cleanup emission.
2242   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2243   CGF.Builder.CreateStore(StackBase, StackBaseMem);
2244   CGF.pushStackRestore(EHCleanup, StackBaseMem);
2245   StackCleanup = CGF.EHStack.getInnermostEHScope();
2246   assert(StackCleanup.isValid());
2247 }
2248 
freeArgumentMemory(CodeGenFunction & CGF) const2249 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2250   if (StackBase) {
2251     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2252     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2253     // We could load StackBase from StackBaseMem, but in the non-exceptional
2254     // case we can skip it.
2255     CGF.Builder.CreateCall(F, StackBase);
2256   }
2257 }
2258 
EmitCallArgs(CallArgList & Args,ArrayRef<QualType> ArgTypes,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd,bool ForceColumnInfo)2259 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2260                                    ArrayRef<QualType> ArgTypes,
2261                                    CallExpr::const_arg_iterator ArgBeg,
2262                                    CallExpr::const_arg_iterator ArgEnd,
2263                                    bool ForceColumnInfo) {
2264   CGDebugInfo *DI = getDebugInfo();
2265   SourceLocation CallLoc;
2266   if (DI) CallLoc = DI->getLocation();
2267 
2268   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2269   // because arguments are destroyed left to right in the callee.
2270   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2271     // Insert a stack save if we're going to need any inalloca args.
2272     bool HasInAllocaArgs = false;
2273     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2274          I != E && !HasInAllocaArgs; ++I)
2275       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2276     if (HasInAllocaArgs) {
2277       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2278       Args.allocateArgumentMemory(*this);
2279     }
2280 
2281     // Evaluate each argument.
2282     size_t CallArgsStart = Args.size();
2283     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2284       CallExpr::const_arg_iterator Arg = ArgBeg + I;
2285       EmitCallArg(Args, *Arg, ArgTypes[I]);
2286       // Restore the debug location.
2287       if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2288     }
2289 
2290     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2291     // IR function.
2292     std::reverse(Args.begin() + CallArgsStart, Args.end());
2293     return;
2294   }
2295 
2296   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2297     CallExpr::const_arg_iterator Arg = ArgBeg + I;
2298     assert(Arg != ArgEnd);
2299     EmitCallArg(Args, *Arg, ArgTypes[I]);
2300     // Restore the debug location.
2301     if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2302   }
2303 }
2304 
2305 namespace {
2306 
2307 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
DestroyUnpassedArg__anon47612d3d0111::DestroyUnpassedArg2308   DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2309       : Addr(Addr), Ty(Ty) {}
2310 
2311   llvm::Value *Addr;
2312   QualType Ty;
2313 
Emit__anon47612d3d0111::DestroyUnpassedArg2314   void Emit(CodeGenFunction &CGF, Flags flags) override {
2315     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2316     assert(!Dtor->isTrivial());
2317     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2318                               /*Delegating=*/false, Addr);
2319   }
2320 };
2321 
2322 }
2323 
EmitCallArg(CallArgList & args,const Expr * E,QualType type)2324 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2325                                   QualType type) {
2326   if (const ObjCIndirectCopyRestoreExpr *CRE
2327         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2328     assert(getLangOpts().ObjCAutoRefCount);
2329     assert(getContext().hasSameType(E->getType(), type));
2330     return emitWritebackArg(*this, args, CRE);
2331   }
2332 
2333   assert(type->isReferenceType() == E->isGLValue() &&
2334          "reference binding to unmaterialized r-value!");
2335 
2336   if (E->isGLValue()) {
2337     assert(E->getObjectKind() == OK_Ordinary);
2338     return args.add(EmitReferenceBindingToExpr(E), type);
2339   }
2340 
2341   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2342 
2343   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2344   // However, we still have to push an EH-only cleanup in case we unwind before
2345   // we make it to the call.
2346   if (HasAggregateEvalKind &&
2347       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2348     // If we're using inalloca, use the argument memory.  Otherwise, use a
2349     // temporary.
2350     AggValueSlot Slot;
2351     if (args.isUsingInAlloca())
2352       Slot = createPlaceholderSlot(*this, type);
2353     else
2354       Slot = CreateAggTemp(type, "agg.tmp");
2355 
2356     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2357     bool DestroyedInCallee =
2358         RD && RD->hasNonTrivialDestructor() &&
2359         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2360     if (DestroyedInCallee)
2361       Slot.setExternallyDestructed();
2362 
2363     EmitAggExpr(E, Slot);
2364     RValue RV = Slot.asRValue();
2365     args.add(RV, type);
2366 
2367     if (DestroyedInCallee) {
2368       // Create a no-op GEP between the placeholder and the cleanup so we can
2369       // RAUW it successfully.  It also serves as a marker of the first
2370       // instruction where the cleanup is active.
2371       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2372       // This unreachable is a temporary marker which will be removed later.
2373       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2374       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2375     }
2376     return;
2377   }
2378 
2379   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2380       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2381     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2382     assert(L.isSimple());
2383     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2384       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2385     } else {
2386       // We can't represent a misaligned lvalue in the CallArgList, so copy
2387       // to an aligned temporary now.
2388       llvm::Value *tmp = CreateMemTemp(type);
2389       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2390                         L.getAlignment());
2391       args.add(RValue::getAggregate(tmp), type);
2392     }
2393     return;
2394   }
2395 
2396   args.add(EmitAnyExprToTemp(E), type);
2397 }
2398 
2399 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2400 // optimizer it can aggressively ignore unwind edges.
2401 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)2402 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2403   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2404       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2405     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2406                       CGM.getNoObjCARCExceptionsMetadata());
2407 }
2408 
2409 /// Emits a call to the given no-arguments nounwind runtime function.
2410 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,const llvm::Twine & name)2411 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2412                                          const llvm::Twine &name) {
2413   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2414 }
2415 
2416 /// Emits a call to the given nounwind runtime function.
2417 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)2418 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2419                                          ArrayRef<llvm::Value*> args,
2420                                          const llvm::Twine &name) {
2421   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2422   call->setDoesNotThrow();
2423   return call;
2424 }
2425 
2426 /// Emits a simple call (never an invoke) to the given no-arguments
2427 /// runtime function.
2428 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,const llvm::Twine & name)2429 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2430                                  const llvm::Twine &name) {
2431   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2432 }
2433 
2434 /// Emits a simple call (never an invoke) to the given runtime
2435 /// function.
2436 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)2437 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2438                                  ArrayRef<llvm::Value*> args,
2439                                  const llvm::Twine &name) {
2440   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2441   call->setCallingConv(getRuntimeCC());
2442   return call;
2443 }
2444 
2445 /// Emits a call or invoke to the given noreturn runtime function.
EmitNoreturnRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args)2446 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2447                                                ArrayRef<llvm::Value*> args) {
2448   if (getInvokeDest()) {
2449     llvm::InvokeInst *invoke =
2450       Builder.CreateInvoke(callee,
2451                            getUnreachableBlock(),
2452                            getInvokeDest(),
2453                            args);
2454     invoke->setDoesNotReturn();
2455     invoke->setCallingConv(getRuntimeCC());
2456   } else {
2457     llvm::CallInst *call = Builder.CreateCall(callee, args);
2458     call->setDoesNotReturn();
2459     call->setCallingConv(getRuntimeCC());
2460     Builder.CreateUnreachable();
2461   }
2462   PGO.setCurrentRegionUnreachable();
2463 }
2464 
2465 /// Emits a call or invoke instruction to the given nullary runtime
2466 /// function.
2467 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,const Twine & name)2468 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2469                                          const Twine &name) {
2470   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2471 }
2472 
2473 /// Emits a call or invoke instruction to the given runtime function.
2474 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args,const Twine & name)2475 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2476                                          ArrayRef<llvm::Value*> args,
2477                                          const Twine &name) {
2478   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2479   callSite.setCallingConv(getRuntimeCC());
2480   return callSite;
2481 }
2482 
2483 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,const Twine & Name)2484 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2485                                   const Twine &Name) {
2486   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2487 }
2488 
2489 /// Emits a call or invoke instruction to the given function, depending
2490 /// on the current state of the EH stack.
2491 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)2492 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2493                                   ArrayRef<llvm::Value *> Args,
2494                                   const Twine &Name) {
2495   llvm::BasicBlock *InvokeDest = getInvokeDest();
2496 
2497   llvm::Instruction *Inst;
2498   if (!InvokeDest)
2499     Inst = Builder.CreateCall(Callee, Args, Name);
2500   else {
2501     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2502     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2503     EmitBlock(ContBB);
2504   }
2505 
2506   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2507   // optimizer it can aggressively ignore unwind edges.
2508   if (CGM.getLangOpts().ObjCAutoRefCount)
2509     AddObjCARCExceptionMetadata(Inst);
2510 
2511   return Inst;
2512 }
2513 
checkArgMatches(llvm::Value * Elt,unsigned & ArgNo,llvm::FunctionType * FTy)2514 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2515                             llvm::FunctionType *FTy) {
2516   if (ArgNo < FTy->getNumParams())
2517     assert(Elt->getType() == FTy->getParamType(ArgNo));
2518   else
2519     assert(FTy->isVarArg());
2520   ++ArgNo;
2521 }
2522 
ExpandTypeToArgs(QualType Ty,RValue RV,SmallVectorImpl<llvm::Value * > & Args,llvm::FunctionType * IRFuncTy)2523 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2524                                        SmallVectorImpl<llvm::Value *> &Args,
2525                                        llvm::FunctionType *IRFuncTy) {
2526   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2527     unsigned NumElts = AT->getSize().getZExtValue();
2528     QualType EltTy = AT->getElementType();
2529     llvm::Value *Addr = RV.getAggregateAddr();
2530     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2531       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2532       RValue EltRV = convertTempToRValue(EltAddr, EltTy, SourceLocation());
2533       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2534     }
2535   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2536     RecordDecl *RD = RT->getDecl();
2537     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2538     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2539 
2540     if (RD->isUnion()) {
2541       const FieldDecl *LargestFD = nullptr;
2542       CharUnits UnionSize = CharUnits::Zero();
2543 
2544       for (const auto *FD : RD->fields()) {
2545         assert(!FD->isBitField() &&
2546                "Cannot expand structure with bit-field members.");
2547         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2548         if (UnionSize < FieldSize) {
2549           UnionSize = FieldSize;
2550           LargestFD = FD;
2551         }
2552       }
2553       if (LargestFD) {
2554         RValue FldRV = EmitRValueForField(LV, LargestFD, SourceLocation());
2555         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2556       }
2557     } else {
2558       for (const auto *FD : RD->fields()) {
2559         RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
2560         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2561       }
2562     }
2563   } else if (Ty->isAnyComplexType()) {
2564     ComplexPairTy CV = RV.getComplexVal();
2565     Args.push_back(CV.first);
2566     Args.push_back(CV.second);
2567   } else {
2568     assert(RV.isScalar() &&
2569            "Unexpected non-scalar rvalue during struct expansion.");
2570 
2571     // Insert a bitcast as needed.
2572     llvm::Value *V = RV.getScalarVal();
2573     if (Args.size() < IRFuncTy->getNumParams() &&
2574         V->getType() != IRFuncTy->getParamType(Args.size()))
2575       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2576 
2577     Args.push_back(V);
2578   }
2579 }
2580 
2581 /// \brief Store a non-aggregate value to an address to initialize it.  For
2582 /// initialization, a non-atomic store will be used.
EmitInitStoreOfNonAggregate(CodeGenFunction & CGF,RValue Src,LValue Dst)2583 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
2584                                         LValue Dst) {
2585   if (Src.isScalar())
2586     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
2587   else
2588     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
2589 }
2590 
deferPlaceholderReplacement(llvm::Instruction * Old,llvm::Value * New)2591 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
2592                                                   llvm::Value *New) {
2593   DeferredReplacements.push_back(std::make_pair(Old, New));
2594 }
2595 
EmitCall(const CGFunctionInfo & CallInfo,llvm::Value * Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,const Decl * TargetDecl,llvm::Instruction ** callOrInvoke)2596 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2597                                  llvm::Value *Callee,
2598                                  ReturnValueSlot ReturnValue,
2599                                  const CallArgList &CallArgs,
2600                                  const Decl *TargetDecl,
2601                                  llvm::Instruction **callOrInvoke) {
2602   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2603   SmallVector<llvm::Value*, 16> Args;
2604 
2605   // Handle struct-return functions by passing a pointer to the
2606   // location that we would like to return into.
2607   QualType RetTy = CallInfo.getReturnType();
2608   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2609 
2610   // IRArgNo - Keep track of the argument number in the callee we're looking at.
2611   unsigned IRArgNo = 0;
2612   llvm::FunctionType *IRFuncTy =
2613     cast<llvm::FunctionType>(
2614                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2615 
2616   // If we're using inalloca, insert the allocation after the stack save.
2617   // FIXME: Do this earlier rather than hacking it in here!
2618   llvm::Value *ArgMemory = nullptr;
2619   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
2620     llvm::Instruction *IP = CallArgs.getStackBase();
2621     llvm::AllocaInst *AI;
2622     if (IP) {
2623       IP = IP->getNextNode();
2624       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
2625     } else {
2626       AI = CreateTempAlloca(ArgStruct, "argmem");
2627     }
2628     AI->setUsedWithInAlloca(true);
2629     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
2630     ArgMemory = AI;
2631   }
2632 
2633   // If the call returns a temporary with struct return, create a temporary
2634   // alloca to hold the result, unless one is given to us.
2635   llvm::Value *SRetPtr = nullptr;
2636   bool SwapThisWithSRet = false;
2637   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
2638     SRetPtr = ReturnValue.getValue();
2639     if (!SRetPtr)
2640       SRetPtr = CreateMemTemp(RetTy);
2641     if (RetAI.isIndirect()) {
2642       Args.push_back(SRetPtr);
2643       SwapThisWithSRet = RetAI.isSRetAfterThis();
2644       if (SwapThisWithSRet)
2645         IRArgNo = 1;
2646       checkArgMatches(SRetPtr, IRArgNo, IRFuncTy);
2647       if (SwapThisWithSRet)
2648         IRArgNo = 0;
2649     } else {
2650       llvm::Value *Addr =
2651           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
2652       Builder.CreateStore(SRetPtr, Addr);
2653     }
2654   }
2655 
2656   assert(CallInfo.arg_size() == CallArgs.size() &&
2657          "Mismatch between function signature & arguments.");
2658   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2659   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2660        I != E; ++I, ++info_it) {
2661     const ABIArgInfo &ArgInfo = info_it->info;
2662     RValue RV = I->RV;
2663 
2664     // Skip 'sret' if it came second.
2665     if (IRArgNo == 1 && SwapThisWithSRet)
2666       ++IRArgNo;
2667 
2668     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2669 
2670     // Insert a padding argument to ensure proper alignment.
2671     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2672       Args.push_back(llvm::UndefValue::get(PaddingType));
2673       ++IRArgNo;
2674     }
2675 
2676     switch (ArgInfo.getKind()) {
2677     case ABIArgInfo::InAlloca: {
2678       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2679       if (RV.isAggregate()) {
2680         // Replace the placeholder with the appropriate argument slot GEP.
2681         llvm::Instruction *Placeholder =
2682             cast<llvm::Instruction>(RV.getAggregateAddr());
2683         CGBuilderTy::InsertPoint IP = Builder.saveIP();
2684         Builder.SetInsertPoint(Placeholder);
2685         llvm::Value *Addr = Builder.CreateStructGEP(
2686             ArgMemory, ArgInfo.getInAllocaFieldIndex());
2687         Builder.restoreIP(IP);
2688         deferPlaceholderReplacement(Placeholder, Addr);
2689       } else {
2690         // Store the RValue into the argument struct.
2691         llvm::Value *Addr =
2692             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
2693         unsigned AS = Addr->getType()->getPointerAddressSpace();
2694         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
2695         // There are some cases where a trivial bitcast is not avoidable.  The
2696         // definition of a type later in a translation unit may change it's type
2697         // from {}* to (%struct.foo*)*.
2698         if (Addr->getType() != MemType)
2699           Addr = Builder.CreateBitCast(Addr, MemType);
2700         LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
2701         EmitInitStoreOfNonAggregate(*this, RV, argLV);
2702       }
2703       break; // Don't increment IRArgNo!
2704     }
2705 
2706     case ABIArgInfo::Indirect: {
2707       if (RV.isScalar() || RV.isComplex()) {
2708         // Make a temporary alloca to pass the argument.
2709         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2710         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2711           AI->setAlignment(ArgInfo.getIndirectAlign());
2712         Args.push_back(AI);
2713 
2714         LValue argLV = MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2715         EmitInitStoreOfNonAggregate(*this, RV, argLV);
2716 
2717         // Validate argument match.
2718         checkArgMatches(AI, IRArgNo, IRFuncTy);
2719       } else {
2720         // We want to avoid creating an unnecessary temporary+copy here;
2721         // however, we need one in three cases:
2722         // 1. If the argument is not byval, and we are required to copy the
2723         //    source.  (This case doesn't occur on any common architecture.)
2724         // 2. If the argument is byval, RV is not sufficiently aligned, and
2725         //    we cannot force it to be sufficiently aligned.
2726         // 3. If the argument is byval, but RV is located in an address space
2727         //    different than that of the argument (0).
2728         llvm::Value *Addr = RV.getAggregateAddr();
2729         unsigned Align = ArgInfo.getIndirectAlign();
2730         const llvm::DataLayout *TD = &CGM.getDataLayout();
2731         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2732         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2733           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2734         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2735             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2736              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2737              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2738           // Create an aligned temporary, and copy to it.
2739           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2740           if (Align > AI->getAlignment())
2741             AI->setAlignment(Align);
2742           Args.push_back(AI);
2743           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2744 
2745           // Validate argument match.
2746           checkArgMatches(AI, IRArgNo, IRFuncTy);
2747         } else {
2748           // Skip the extra memcpy call.
2749           Args.push_back(Addr);
2750 
2751           // Validate argument match.
2752           checkArgMatches(Addr, IRArgNo, IRFuncTy);
2753         }
2754       }
2755       break;
2756     }
2757 
2758     case ABIArgInfo::Ignore:
2759       break;
2760 
2761     case ABIArgInfo::Extend:
2762     case ABIArgInfo::Direct: {
2763       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2764           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2765           ArgInfo.getDirectOffset() == 0) {
2766         llvm::Value *V;
2767         if (RV.isScalar())
2768           V = RV.getScalarVal();
2769         else
2770           V = Builder.CreateLoad(RV.getAggregateAddr());
2771 
2772         // If the argument doesn't match, perform a bitcast to coerce it.  This
2773         // can happen due to trivial type mismatches.
2774         if (IRArgNo < IRFuncTy->getNumParams() &&
2775             V->getType() != IRFuncTy->getParamType(IRArgNo))
2776           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2777         Args.push_back(V);
2778 
2779         checkArgMatches(V, IRArgNo, IRFuncTy);
2780         break;
2781       }
2782 
2783       // FIXME: Avoid the conversion through memory if possible.
2784       llvm::Value *SrcPtr;
2785       if (RV.isScalar() || RV.isComplex()) {
2786         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2787         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2788         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
2789       } else
2790         SrcPtr = RV.getAggregateAddr();
2791 
2792       // If the value is offset in memory, apply the offset now.
2793       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2794         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2795         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2796         SrcPtr = Builder.CreateBitCast(SrcPtr,
2797                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2798 
2799       }
2800 
2801       // If the coerce-to type is a first class aggregate, we flatten it and
2802       // pass the elements. Either way is semantically identical, but fast-isel
2803       // and the optimizer generally likes scalar values better than FCAs.
2804       // We cannot do this for functions using the AAPCS calling convention,
2805       // as structures are treated differently by that calling convention.
2806       llvm::StructType *STy =
2807             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
2808       if (STy && !isAAPCSVFP(CallInfo, getTarget())) {
2809         llvm::Type *SrcTy =
2810           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2811         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2812         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2813 
2814         // If the source type is smaller than the destination type of the
2815         // coerce-to logic, copy the source value into a temp alloca the size
2816         // of the destination type to allow loading all of it. The bits past
2817         // the source value are left undef.
2818         if (SrcSize < DstSize) {
2819           llvm::AllocaInst *TempAlloca
2820             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2821           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2822           SrcPtr = TempAlloca;
2823         } else {
2824           SrcPtr = Builder.CreateBitCast(SrcPtr,
2825                                          llvm::PointerType::getUnqual(STy));
2826         }
2827 
2828         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2829           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2830           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2831           // We don't know what we're loading from.
2832           LI->setAlignment(1);
2833           Args.push_back(LI);
2834 
2835           // Validate argument match.
2836           checkArgMatches(LI, IRArgNo, IRFuncTy);
2837         }
2838       } else {
2839         // In the simple case, just pass the coerced loaded value.
2840         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2841                                          *this));
2842 
2843         // Validate argument match.
2844         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2845       }
2846 
2847       break;
2848     }
2849 
2850     case ABIArgInfo::Expand:
2851       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2852       IRArgNo = Args.size();
2853       break;
2854     }
2855   }
2856 
2857   if (SwapThisWithSRet)
2858     std::swap(Args[0], Args[1]);
2859 
2860   if (ArgMemory) {
2861     llvm::Value *Arg = ArgMemory;
2862     if (CallInfo.isVariadic()) {
2863       // When passing non-POD arguments by value to variadic functions, we will
2864       // end up with a variadic prototype and an inalloca call site.  In such
2865       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
2866       // the callee.
2867       unsigned CalleeAS =
2868           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
2869       Callee = Builder.CreateBitCast(
2870           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
2871     } else {
2872       llvm::Type *LastParamTy =
2873           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
2874       if (Arg->getType() != LastParamTy) {
2875 #ifndef NDEBUG
2876         // Assert that these structs have equivalent element types.
2877         llvm::StructType *FullTy = CallInfo.getArgStruct();
2878         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
2879             cast<llvm::PointerType>(LastParamTy)->getElementType());
2880         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
2881         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
2882                                                 DE = DeclaredTy->element_end(),
2883                                                 FI = FullTy->element_begin();
2884              DI != DE; ++DI, ++FI)
2885           assert(*DI == *FI);
2886 #endif
2887         Arg = Builder.CreateBitCast(Arg, LastParamTy);
2888       }
2889     }
2890     Args.push_back(Arg);
2891   }
2892 
2893   if (!CallArgs.getCleanupsToDeactivate().empty())
2894     deactivateArgCleanupsBeforeCall(*this, CallArgs);
2895 
2896   // If the callee is a bitcast of a function to a varargs pointer to function
2897   // type, check to see if we can remove the bitcast.  This handles some cases
2898   // with unprototyped functions.
2899   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2900     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2901       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2902       llvm::FunctionType *CurFT =
2903         cast<llvm::FunctionType>(CurPT->getElementType());
2904       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2905 
2906       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2907           ActualFT->getReturnType() == CurFT->getReturnType() &&
2908           ActualFT->getNumParams() == CurFT->getNumParams() &&
2909           ActualFT->getNumParams() == Args.size() &&
2910           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2911         bool ArgsMatch = true;
2912         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2913           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2914             ArgsMatch = false;
2915             break;
2916           }
2917 
2918         // Strip the cast if we can get away with it.  This is a nice cleanup,
2919         // but also allows us to inline the function at -O0 if it is marked
2920         // always_inline.
2921         if (ArgsMatch)
2922           Callee = CalleeF;
2923       }
2924     }
2925 
2926   unsigned CallingConv;
2927   CodeGen::AttributeListType AttributeList;
2928   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2929                              CallingConv, true);
2930   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2931                                                      AttributeList);
2932 
2933   llvm::BasicBlock *InvokeDest = nullptr;
2934   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2935                           llvm::Attribute::NoUnwind))
2936     InvokeDest = getInvokeDest();
2937 
2938   llvm::CallSite CS;
2939   if (!InvokeDest) {
2940     CS = Builder.CreateCall(Callee, Args);
2941   } else {
2942     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2943     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2944     EmitBlock(Cont);
2945   }
2946   if (callOrInvoke)
2947     *callOrInvoke = CS.getInstruction();
2948 
2949   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
2950       !CS.hasFnAttr(llvm::Attribute::NoInline))
2951     Attrs =
2952         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
2953                            llvm::Attribute::AlwaysInline);
2954 
2955   CS.setAttributes(Attrs);
2956   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2957 
2958   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2959   // optimizer it can aggressively ignore unwind edges.
2960   if (CGM.getLangOpts().ObjCAutoRefCount)
2961     AddObjCARCExceptionMetadata(CS.getInstruction());
2962 
2963   // If the call doesn't return, finish the basic block and clear the
2964   // insertion point; this allows the rest of IRgen to discard
2965   // unreachable code.
2966   if (CS.doesNotReturn()) {
2967     Builder.CreateUnreachable();
2968     Builder.ClearInsertionPoint();
2969 
2970     // FIXME: For now, emit a dummy basic block because expr emitters in
2971     // generally are not ready to handle emitting expressions at unreachable
2972     // points.
2973     EnsureInsertPoint();
2974 
2975     // Return a reasonable RValue.
2976     return GetUndefRValue(RetTy);
2977   }
2978 
2979   llvm::Instruction *CI = CS.getInstruction();
2980   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2981     CI->setName("call");
2982 
2983   // Emit any writebacks immediately.  Arguably this should happen
2984   // after any return-value munging.
2985   if (CallArgs.hasWritebacks())
2986     emitWritebacks(*this, CallArgs);
2987 
2988   // The stack cleanup for inalloca arguments has to run out of the normal
2989   // lexical order, so deactivate it and run it manually here.
2990   CallArgs.freeArgumentMemory(*this);
2991 
2992   switch (RetAI.getKind()) {
2993   case ABIArgInfo::InAlloca:
2994   case ABIArgInfo::Indirect:
2995     return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
2996 
2997   case ABIArgInfo::Ignore:
2998     // If we are ignoring an argument that had a result, make sure to
2999     // construct the appropriate return value for our caller.
3000     return GetUndefRValue(RetTy);
3001 
3002   case ABIArgInfo::Extend:
3003   case ABIArgInfo::Direct: {
3004     llvm::Type *RetIRTy = ConvertType(RetTy);
3005     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3006       switch (getEvaluationKind(RetTy)) {
3007       case TEK_Complex: {
3008         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3009         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3010         return RValue::getComplex(std::make_pair(Real, Imag));
3011       }
3012       case TEK_Aggregate: {
3013         llvm::Value *DestPtr = ReturnValue.getValue();
3014         bool DestIsVolatile = ReturnValue.isVolatile();
3015 
3016         if (!DestPtr) {
3017           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3018           DestIsVolatile = false;
3019         }
3020         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
3021         return RValue::getAggregate(DestPtr);
3022       }
3023       case TEK_Scalar: {
3024         // If the argument doesn't match, perform a bitcast to coerce it.  This
3025         // can happen due to trivial type mismatches.
3026         llvm::Value *V = CI;
3027         if (V->getType() != RetIRTy)
3028           V = Builder.CreateBitCast(V, RetIRTy);
3029         return RValue::get(V);
3030       }
3031       }
3032       llvm_unreachable("bad evaluation kind");
3033     }
3034 
3035     llvm::Value *DestPtr = ReturnValue.getValue();
3036     bool DestIsVolatile = ReturnValue.isVolatile();
3037 
3038     if (!DestPtr) {
3039       DestPtr = CreateMemTemp(RetTy, "coerce");
3040       DestIsVolatile = false;
3041     }
3042 
3043     // If the value is offset in memory, apply the offset now.
3044     llvm::Value *StorePtr = DestPtr;
3045     if (unsigned Offs = RetAI.getDirectOffset()) {
3046       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3047       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
3048       StorePtr = Builder.CreateBitCast(StorePtr,
3049                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3050     }
3051     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3052 
3053     return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3054   }
3055 
3056   case ABIArgInfo::Expand:
3057     llvm_unreachable("Invalid ABI kind for return argument");
3058   }
3059 
3060   llvm_unreachable("Unhandled ABIArgInfo::Kind");
3061 }
3062 
3063 /* VarArg handling */
3064 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty)3065 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3066   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3067 }
3068