• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 //  * A success/failure flag indicating whether constant folding was successful.
15 //    This is the 'bool' return value used by most of the code in this file. A
16 //    'false' return value indicates that constant folding has failed, and any
17 //    appropriate diagnostic has already been produced.
18 //
19 //  * An evaluated result, valid only if constant folding has not failed.
20 //
21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 //    where it is possible to determine the evaluated result regardless.
24 //
25 //  * A set of notes indicating why the evaluation was not a constant expression
26 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27 //    too, why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/CharUnits.h"
40 #include "clang/AST/Expr.h"
41 #include "clang/AST/RecordLayout.h"
42 #include "clang/AST/StmtVisitor.h"
43 #include "clang/AST/TypeLoc.h"
44 #include "clang/Basic/Builtins.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cstring>
49 #include <functional>
50 
51 using namespace clang;
52 using llvm::APSInt;
53 using llvm::APFloat;
54 
55 static bool IsGlobalLValue(APValue::LValueBase B);
56 
57 namespace {
58   struct LValue;
59   struct CallStackFrame;
60   struct EvalInfo;
61 
getType(APValue::LValueBase B)62   static QualType getType(APValue::LValueBase B) {
63     if (!B) return QualType();
64     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65       return D->getType();
66 
67     const Expr *Base = B.get<const Expr*>();
68 
69     // For a materialized temporary, the type of the temporary we materialized
70     // may not be the type of the expression.
71     if (const MaterializeTemporaryExpr *MTE =
72             dyn_cast<MaterializeTemporaryExpr>(Base)) {
73       SmallVector<const Expr *, 2> CommaLHSs;
74       SmallVector<SubobjectAdjustment, 2> Adjustments;
75       const Expr *Temp = MTE->GetTemporaryExpr();
76       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77                                                                Adjustments);
78       // Keep any cv-qualifiers from the reference if we generated a temporary
79       // for it.
80       if (Inner != Temp)
81         return Inner->getType();
82     }
83 
84     return Base->getType();
85   }
86 
87   /// Get an LValue path entry, which is known to not be an array index, as a
88   /// field or base class.
89   static
getAsBaseOrMember(APValue::LValuePathEntry E)90   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91     APValue::BaseOrMemberType Value;
92     Value.setFromOpaqueValue(E.BaseOrMember);
93     return Value;
94   }
95 
96   /// Get an LValue path entry, which is known to not be an array index, as a
97   /// field declaration.
getAsField(APValue::LValuePathEntry E)98   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100   }
101   /// Get an LValue path entry, which is known to not be an array index, as a
102   /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)103   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105   }
106   /// Determine whether this LValue path entry for a base class names a virtual
107   /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)108   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109     return getAsBaseOrMember(E).getInt();
110   }
111 
112   /// Find the path length and type of the most-derived subobject in the given
113   /// path, and find the size of the containing array, if any.
114   static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type)115   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116                                     ArrayRef<APValue::LValuePathEntry> Path,
117                                     uint64_t &ArraySize, QualType &Type) {
118     unsigned MostDerivedLength = 0;
119     Type = Base;
120     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
121       if (Type->isArrayType()) {
122         const ConstantArrayType *CAT =
123           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
124         Type = CAT->getElementType();
125         ArraySize = CAT->getSize().getZExtValue();
126         MostDerivedLength = I + 1;
127       } else if (Type->isAnyComplexType()) {
128         const ComplexType *CT = Type->castAs<ComplexType>();
129         Type = CT->getElementType();
130         ArraySize = 2;
131         MostDerivedLength = I + 1;
132       } else if (const FieldDecl *FD = getAsField(Path[I])) {
133         Type = FD->getType();
134         ArraySize = 0;
135         MostDerivedLength = I + 1;
136       } else {
137         // Path[I] describes a base class.
138         ArraySize = 0;
139       }
140     }
141     return MostDerivedLength;
142   }
143 
144   // The order of this enum is important for diagnostics.
145   enum CheckSubobjectKind {
146     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
147     CSK_This, CSK_Real, CSK_Imag
148   };
149 
150   /// A path from a glvalue to a subobject of that glvalue.
151   struct SubobjectDesignator {
152     /// True if the subobject was named in a manner not supported by C++11. Such
153     /// lvalues can still be folded, but they are not core constant expressions
154     /// and we cannot perform lvalue-to-rvalue conversions on them.
155     bool Invalid : 1;
156 
157     /// Is this a pointer one past the end of an object?
158     bool IsOnePastTheEnd : 1;
159 
160     /// The length of the path to the most-derived object of which this is a
161     /// subobject.
162     unsigned MostDerivedPathLength : 30;
163 
164     /// The size of the array of which the most-derived object is an element, or
165     /// 0 if the most-derived object is not an array element.
166     uint64_t MostDerivedArraySize;
167 
168     /// The type of the most derived object referred to by this address.
169     QualType MostDerivedType;
170 
171     typedef APValue::LValuePathEntry PathEntry;
172 
173     /// The entries on the path from the glvalue to the designated subobject.
174     SmallVector<PathEntry, 8> Entries;
175 
SubobjectDesignator__anon79c4fed30111::SubobjectDesignator176     SubobjectDesignator() : Invalid(true) {}
177 
SubobjectDesignator__anon79c4fed30111::SubobjectDesignator178     explicit SubobjectDesignator(QualType T)
179       : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
180         MostDerivedArraySize(0), MostDerivedType(T) {}
181 
SubobjectDesignator__anon79c4fed30111::SubobjectDesignator182     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
183       : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
184         MostDerivedPathLength(0), MostDerivedArraySize(0) {
185       if (!Invalid) {
186         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
187         ArrayRef<PathEntry> VEntries = V.getLValuePath();
188         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
189         if (V.getLValueBase())
190           MostDerivedPathLength =
191               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
192                                        V.getLValuePath(), MostDerivedArraySize,
193                                        MostDerivedType);
194       }
195     }
196 
setInvalid__anon79c4fed30111::SubobjectDesignator197     void setInvalid() {
198       Invalid = true;
199       Entries.clear();
200     }
201 
202     /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon79c4fed30111::SubobjectDesignator203     bool isOnePastTheEnd() const {
204       if (IsOnePastTheEnd)
205         return true;
206       if (MostDerivedArraySize &&
207           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
208         return true;
209       return false;
210     }
211 
212     /// Check that this refers to a valid subobject.
isValidSubobject__anon79c4fed30111::SubobjectDesignator213     bool isValidSubobject() const {
214       if (Invalid)
215         return false;
216       return !isOnePastTheEnd();
217     }
218     /// Check that this refers to a valid subobject, and if not, produce a
219     /// relevant diagnostic and set the designator as invalid.
220     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
221 
222     /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon79c4fed30111::SubobjectDesignator223     void addArrayUnchecked(const ConstantArrayType *CAT) {
224       PathEntry Entry;
225       Entry.ArrayIndex = 0;
226       Entries.push_back(Entry);
227 
228       // This is a most-derived object.
229       MostDerivedType = CAT->getElementType();
230       MostDerivedArraySize = CAT->getSize().getZExtValue();
231       MostDerivedPathLength = Entries.size();
232     }
233     /// Update this designator to refer to the given base or member of this
234     /// object.
addDeclUnchecked__anon79c4fed30111::SubobjectDesignator235     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
236       PathEntry Entry;
237       APValue::BaseOrMemberType Value(D, Virtual);
238       Entry.BaseOrMember = Value.getOpaqueValue();
239       Entries.push_back(Entry);
240 
241       // If this isn't a base class, it's a new most-derived object.
242       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
243         MostDerivedType = FD->getType();
244         MostDerivedArraySize = 0;
245         MostDerivedPathLength = Entries.size();
246       }
247     }
248     /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon79c4fed30111::SubobjectDesignator249     void addComplexUnchecked(QualType EltTy, bool Imag) {
250       PathEntry Entry;
251       Entry.ArrayIndex = Imag;
252       Entries.push_back(Entry);
253 
254       // This is technically a most-derived object, though in practice this
255       // is unlikely to matter.
256       MostDerivedType = EltTy;
257       MostDerivedArraySize = 2;
258       MostDerivedPathLength = Entries.size();
259     }
260     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
261     /// Add N to the address of this subobject.
adjustIndex__anon79c4fed30111::SubobjectDesignator262     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
263       if (Invalid) return;
264       if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
265         Entries.back().ArrayIndex += N;
266         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
267           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
268           setInvalid();
269         }
270         return;
271       }
272       // [expr.add]p4: For the purposes of these operators, a pointer to a
273       // nonarray object behaves the same as a pointer to the first element of
274       // an array of length one with the type of the object as its element type.
275       if (IsOnePastTheEnd && N == (uint64_t)-1)
276         IsOnePastTheEnd = false;
277       else if (!IsOnePastTheEnd && N == 1)
278         IsOnePastTheEnd = true;
279       else if (N != 0) {
280         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
281         setInvalid();
282       }
283     }
284   };
285 
286   /// A stack frame in the constexpr call stack.
287   struct CallStackFrame {
288     EvalInfo &Info;
289 
290     /// Parent - The caller of this stack frame.
291     CallStackFrame *Caller;
292 
293     /// CallLoc - The location of the call expression for this call.
294     SourceLocation CallLoc;
295 
296     /// Callee - The function which was called.
297     const FunctionDecl *Callee;
298 
299     /// Index - The call index of this call.
300     unsigned Index;
301 
302     /// This - The binding for the this pointer in this call, if any.
303     const LValue *This;
304 
305     /// Arguments - Parameter bindings for this function call, indexed by
306     /// parameters' function scope indices.
307     APValue *Arguments;
308 
309     // Note that we intentionally use std::map here so that references to
310     // values are stable.
311     typedef std::map<const void*, APValue> MapTy;
312     typedef MapTy::const_iterator temp_iterator;
313     /// Temporaries - Temporary lvalues materialized within this stack frame.
314     MapTy Temporaries;
315 
316     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
317                    const FunctionDecl *Callee, const LValue *This,
318                    APValue *Arguments);
319     ~CallStackFrame();
320 
getTemporary__anon79c4fed30111::CallStackFrame321     APValue *getTemporary(const void *Key) {
322       MapTy::iterator I = Temporaries.find(Key);
323       return I == Temporaries.end() ? nullptr : &I->second;
324     }
325     APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
326   };
327 
328   /// Temporarily override 'this'.
329   class ThisOverrideRAII {
330   public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)331     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
332         : Frame(Frame), OldThis(Frame.This) {
333       if (Enable)
334         Frame.This = NewThis;
335     }
~ThisOverrideRAII()336     ~ThisOverrideRAII() {
337       Frame.This = OldThis;
338     }
339   private:
340     CallStackFrame &Frame;
341     const LValue *OldThis;
342   };
343 
344   /// A partial diagnostic which we might know in advance that we are not going
345   /// to emit.
346   class OptionalDiagnostic {
347     PartialDiagnostic *Diag;
348 
349   public:
OptionalDiagnostic(PartialDiagnostic * Diag=nullptr)350     explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
351       : Diag(Diag) {}
352 
353     template<typename T>
operator <<(const T & v)354     OptionalDiagnostic &operator<<(const T &v) {
355       if (Diag)
356         *Diag << v;
357       return *this;
358     }
359 
operator <<(const APSInt & I)360     OptionalDiagnostic &operator<<(const APSInt &I) {
361       if (Diag) {
362         SmallVector<char, 32> Buffer;
363         I.toString(Buffer);
364         *Diag << StringRef(Buffer.data(), Buffer.size());
365       }
366       return *this;
367     }
368 
operator <<(const APFloat & F)369     OptionalDiagnostic &operator<<(const APFloat &F) {
370       if (Diag) {
371         // FIXME: Force the precision of the source value down so we don't
372         // print digits which are usually useless (we don't really care here if
373         // we truncate a digit by accident in edge cases).  Ideally,
374         // APFloat::toString would automatically print the shortest
375         // representation which rounds to the correct value, but it's a bit
376         // tricky to implement.
377         unsigned precision =
378             llvm::APFloat::semanticsPrecision(F.getSemantics());
379         precision = (precision * 59 + 195) / 196;
380         SmallVector<char, 32> Buffer;
381         F.toString(Buffer, precision);
382         *Diag << StringRef(Buffer.data(), Buffer.size());
383       }
384       return *this;
385     }
386   };
387 
388   /// A cleanup, and a flag indicating whether it is lifetime-extended.
389   class Cleanup {
390     llvm::PointerIntPair<APValue*, 1, bool> Value;
391 
392   public:
Cleanup(APValue * Val,bool IsLifetimeExtended)393     Cleanup(APValue *Val, bool IsLifetimeExtended)
394         : Value(Val, IsLifetimeExtended) {}
395 
isLifetimeExtended() const396     bool isLifetimeExtended() const { return Value.getInt(); }
endLifetime()397     void endLifetime() {
398       *Value.getPointer() = APValue();
399     }
400   };
401 
402   /// EvalInfo - This is a private struct used by the evaluator to capture
403   /// information about a subexpression as it is folded.  It retains information
404   /// about the AST context, but also maintains information about the folded
405   /// expression.
406   ///
407   /// If an expression could be evaluated, it is still possible it is not a C
408   /// "integer constant expression" or constant expression.  If not, this struct
409   /// captures information about how and why not.
410   ///
411   /// One bit of information passed *into* the request for constant folding
412   /// indicates whether the subexpression is "evaluated" or not according to C
413   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
414   /// evaluate the expression regardless of what the RHS is, but C only allows
415   /// certain things in certain situations.
416   struct EvalInfo {
417     ASTContext &Ctx;
418 
419     /// EvalStatus - Contains information about the evaluation.
420     Expr::EvalStatus &EvalStatus;
421 
422     /// CurrentCall - The top of the constexpr call stack.
423     CallStackFrame *CurrentCall;
424 
425     /// CallStackDepth - The number of calls in the call stack right now.
426     unsigned CallStackDepth;
427 
428     /// NextCallIndex - The next call index to assign.
429     unsigned NextCallIndex;
430 
431     /// StepsLeft - The remaining number of evaluation steps we're permitted
432     /// to perform. This is essentially a limit for the number of statements
433     /// we will evaluate.
434     unsigned StepsLeft;
435 
436     /// BottomFrame - The frame in which evaluation started. This must be
437     /// initialized after CurrentCall and CallStackDepth.
438     CallStackFrame BottomFrame;
439 
440     /// A stack of values whose lifetimes end at the end of some surrounding
441     /// evaluation frame.
442     llvm::SmallVector<Cleanup, 16> CleanupStack;
443 
444     /// EvaluatingDecl - This is the declaration whose initializer is being
445     /// evaluated, if any.
446     APValue::LValueBase EvaluatingDecl;
447 
448     /// EvaluatingDeclValue - This is the value being constructed for the
449     /// declaration whose initializer is being evaluated, if any.
450     APValue *EvaluatingDeclValue;
451 
452     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
453     /// notes attached to it will also be stored, otherwise they will not be.
454     bool HasActiveDiagnostic;
455 
456     enum EvaluationMode {
457       /// Evaluate as a constant expression. Stop if we find that the expression
458       /// is not a constant expression.
459       EM_ConstantExpression,
460 
461       /// Evaluate as a potential constant expression. Keep going if we hit a
462       /// construct that we can't evaluate yet (because we don't yet know the
463       /// value of something) but stop if we hit something that could never be
464       /// a constant expression.
465       EM_PotentialConstantExpression,
466 
467       /// Fold the expression to a constant. Stop if we hit a side-effect that
468       /// we can't model.
469       EM_ConstantFold,
470 
471       /// Evaluate the expression looking for integer overflow and similar
472       /// issues. Don't worry about side-effects, and try to visit all
473       /// subexpressions.
474       EM_EvaluateForOverflow,
475 
476       /// Evaluate in any way we know how. Don't worry about side-effects that
477       /// can't be modeled.
478       EM_IgnoreSideEffects,
479 
480       /// Evaluate as a constant expression. Stop if we find that the expression
481       /// is not a constant expression. Some expressions can be retried in the
482       /// optimizer if we don't constant fold them here, but in an unevaluated
483       /// context we try to fold them immediately since the optimizer never
484       /// gets a chance to look at it.
485       EM_ConstantExpressionUnevaluated,
486 
487       /// Evaluate as a potential constant expression. Keep going if we hit a
488       /// construct that we can't evaluate yet (because we don't yet know the
489       /// value of something) but stop if we hit something that could never be
490       /// a constant expression. Some expressions can be retried in the
491       /// optimizer if we don't constant fold them here, but in an unevaluated
492       /// context we try to fold them immediately since the optimizer never
493       /// gets a chance to look at it.
494       EM_PotentialConstantExpressionUnevaluated
495     } EvalMode;
496 
497     /// Are we checking whether the expression is a potential constant
498     /// expression?
checkingPotentialConstantExpression__anon79c4fed30111::EvalInfo499     bool checkingPotentialConstantExpression() const {
500       return EvalMode == EM_PotentialConstantExpression ||
501              EvalMode == EM_PotentialConstantExpressionUnevaluated;
502     }
503 
504     /// Are we checking an expression for overflow?
505     // FIXME: We should check for any kind of undefined or suspicious behavior
506     // in such constructs, not just overflow.
checkingForOverflow__anon79c4fed30111::EvalInfo507     bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
508 
EvalInfo__anon79c4fed30111::EvalInfo509     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
510       : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
511         CallStackDepth(0), NextCallIndex(1),
512         StepsLeft(getLangOpts().ConstexprStepLimit),
513         BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
514         EvaluatingDecl((const ValueDecl *)nullptr),
515         EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
516         EvalMode(Mode) {}
517 
setEvaluatingDecl__anon79c4fed30111::EvalInfo518     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
519       EvaluatingDecl = Base;
520       EvaluatingDeclValue = &Value;
521     }
522 
getLangOpts__anon79c4fed30111::EvalInfo523     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
524 
CheckCallLimit__anon79c4fed30111::EvalInfo525     bool CheckCallLimit(SourceLocation Loc) {
526       // Don't perform any constexpr calls (other than the call we're checking)
527       // when checking a potential constant expression.
528       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
529         return false;
530       if (NextCallIndex == 0) {
531         // NextCallIndex has wrapped around.
532         Diag(Loc, diag::note_constexpr_call_limit_exceeded);
533         return false;
534       }
535       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
536         return true;
537       Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
538         << getLangOpts().ConstexprCallDepth;
539       return false;
540     }
541 
getCallFrame__anon79c4fed30111::EvalInfo542     CallStackFrame *getCallFrame(unsigned CallIndex) {
543       assert(CallIndex && "no call index in getCallFrame");
544       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
545       // be null in this loop.
546       CallStackFrame *Frame = CurrentCall;
547       while (Frame->Index > CallIndex)
548         Frame = Frame->Caller;
549       return (Frame->Index == CallIndex) ? Frame : nullptr;
550     }
551 
nextStep__anon79c4fed30111::EvalInfo552     bool nextStep(const Stmt *S) {
553       if (!StepsLeft) {
554         Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
555         return false;
556       }
557       --StepsLeft;
558       return true;
559     }
560 
561   private:
562     /// Add a diagnostic to the diagnostics list.
addDiag__anon79c4fed30111::EvalInfo563     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
564       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
565       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
566       return EvalStatus.Diag->back().second;
567     }
568 
569     /// Add notes containing a call stack to the current point of evaluation.
570     void addCallStack(unsigned Limit);
571 
572   public:
573     /// Diagnose that the evaluation cannot be folded.
Diag__anon79c4fed30111::EvalInfo574     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
575                               = diag::note_invalid_subexpr_in_const_expr,
576                             unsigned ExtraNotes = 0) {
577       if (EvalStatus.Diag) {
578         // If we have a prior diagnostic, it will be noting that the expression
579         // isn't a constant expression. This diagnostic is more important,
580         // unless we require this evaluation to produce a constant expression.
581         //
582         // FIXME: We might want to show both diagnostics to the user in
583         // EM_ConstantFold mode.
584         if (!EvalStatus.Diag->empty()) {
585           switch (EvalMode) {
586           case EM_ConstantFold:
587           case EM_IgnoreSideEffects:
588           case EM_EvaluateForOverflow:
589             if (!EvalStatus.HasSideEffects)
590               break;
591             // We've had side-effects; we want the diagnostic from them, not
592             // some later problem.
593           case EM_ConstantExpression:
594           case EM_PotentialConstantExpression:
595           case EM_ConstantExpressionUnevaluated:
596           case EM_PotentialConstantExpressionUnevaluated:
597             HasActiveDiagnostic = false;
598             return OptionalDiagnostic();
599           }
600         }
601 
602         unsigned CallStackNotes = CallStackDepth - 1;
603         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
604         if (Limit)
605           CallStackNotes = std::min(CallStackNotes, Limit + 1);
606         if (checkingPotentialConstantExpression())
607           CallStackNotes = 0;
608 
609         HasActiveDiagnostic = true;
610         EvalStatus.Diag->clear();
611         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
612         addDiag(Loc, DiagId);
613         if (!checkingPotentialConstantExpression())
614           addCallStack(Limit);
615         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
616       }
617       HasActiveDiagnostic = false;
618       return OptionalDiagnostic();
619     }
620 
Diag__anon79c4fed30111::EvalInfo621     OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
622                               = diag::note_invalid_subexpr_in_const_expr,
623                             unsigned ExtraNotes = 0) {
624       if (EvalStatus.Diag)
625         return Diag(E->getExprLoc(), DiagId, ExtraNotes);
626       HasActiveDiagnostic = false;
627       return OptionalDiagnostic();
628     }
629 
630     /// Diagnose that the evaluation does not produce a C++11 core constant
631     /// expression.
632     ///
633     /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
634     /// EM_PotentialConstantExpression mode and we produce one of these.
635     template<typename LocArg>
CCEDiag__anon79c4fed30111::EvalInfo636     OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
637                                  = diag::note_invalid_subexpr_in_const_expr,
638                                unsigned ExtraNotes = 0) {
639       // Don't override a previous diagnostic. Don't bother collecting
640       // diagnostics if we're evaluating for overflow.
641       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
642         HasActiveDiagnostic = false;
643         return OptionalDiagnostic();
644       }
645       return Diag(Loc, DiagId, ExtraNotes);
646     }
647 
648     /// Add a note to a prior diagnostic.
Note__anon79c4fed30111::EvalInfo649     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
650       if (!HasActiveDiagnostic)
651         return OptionalDiagnostic();
652       return OptionalDiagnostic(&addDiag(Loc, DiagId));
653     }
654 
655     /// Add a stack of notes to a prior diagnostic.
addNotes__anon79c4fed30111::EvalInfo656     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
657       if (HasActiveDiagnostic) {
658         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
659                                 Diags.begin(), Diags.end());
660       }
661     }
662 
663     /// Should we continue evaluation after encountering a side-effect that we
664     /// couldn't model?
keepEvaluatingAfterSideEffect__anon79c4fed30111::EvalInfo665     bool keepEvaluatingAfterSideEffect() {
666       switch (EvalMode) {
667       case EM_PotentialConstantExpression:
668       case EM_PotentialConstantExpressionUnevaluated:
669       case EM_EvaluateForOverflow:
670       case EM_IgnoreSideEffects:
671         return true;
672 
673       case EM_ConstantExpression:
674       case EM_ConstantExpressionUnevaluated:
675       case EM_ConstantFold:
676         return false;
677       }
678       llvm_unreachable("Missed EvalMode case");
679     }
680 
681     /// Note that we have had a side-effect, and determine whether we should
682     /// keep evaluating.
noteSideEffect__anon79c4fed30111::EvalInfo683     bool noteSideEffect() {
684       EvalStatus.HasSideEffects = true;
685       return keepEvaluatingAfterSideEffect();
686     }
687 
688     /// Should we continue evaluation as much as possible after encountering a
689     /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure__anon79c4fed30111::EvalInfo690     bool keepEvaluatingAfterFailure() {
691       if (!StepsLeft)
692         return false;
693 
694       switch (EvalMode) {
695       case EM_PotentialConstantExpression:
696       case EM_PotentialConstantExpressionUnevaluated:
697       case EM_EvaluateForOverflow:
698         return true;
699 
700       case EM_ConstantExpression:
701       case EM_ConstantExpressionUnevaluated:
702       case EM_ConstantFold:
703       case EM_IgnoreSideEffects:
704         return false;
705       }
706       llvm_unreachable("Missed EvalMode case");
707     }
708   };
709 
710   /// Object used to treat all foldable expressions as constant expressions.
711   struct FoldConstant {
712     EvalInfo &Info;
713     bool Enabled;
714     bool HadNoPriorDiags;
715     EvalInfo::EvaluationMode OldMode;
716 
FoldConstant__anon79c4fed30111::FoldConstant717     explicit FoldConstant(EvalInfo &Info, bool Enabled)
718       : Info(Info),
719         Enabled(Enabled),
720         HadNoPriorDiags(Info.EvalStatus.Diag &&
721                         Info.EvalStatus.Diag->empty() &&
722                         !Info.EvalStatus.HasSideEffects),
723         OldMode(Info.EvalMode) {
724       if (Enabled &&
725           (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
726            Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
727         Info.EvalMode = EvalInfo::EM_ConstantFold;
728     }
keepDiagnostics__anon79c4fed30111::FoldConstant729     void keepDiagnostics() { Enabled = false; }
~FoldConstant__anon79c4fed30111::FoldConstant730     ~FoldConstant() {
731       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
732           !Info.EvalStatus.HasSideEffects)
733         Info.EvalStatus.Diag->clear();
734       Info.EvalMode = OldMode;
735     }
736   };
737 
738   /// RAII object used to suppress diagnostics and side-effects from a
739   /// speculative evaluation.
740   class SpeculativeEvaluationRAII {
741     EvalInfo &Info;
742     Expr::EvalStatus Old;
743 
744   public:
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)745     SpeculativeEvaluationRAII(EvalInfo &Info,
746                         SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
747       : Info(Info), Old(Info.EvalStatus) {
748       Info.EvalStatus.Diag = NewDiag;
749       // If we're speculatively evaluating, we may have skipped over some
750       // evaluations and missed out a side effect.
751       Info.EvalStatus.HasSideEffects = true;
752     }
~SpeculativeEvaluationRAII()753     ~SpeculativeEvaluationRAII() {
754       Info.EvalStatus = Old;
755     }
756   };
757 
758   /// RAII object wrapping a full-expression or block scope, and handling
759   /// the ending of the lifetime of temporaries created within it.
760   template<bool IsFullExpression>
761   class ScopeRAII {
762     EvalInfo &Info;
763     unsigned OldStackSize;
764   public:
ScopeRAII(EvalInfo & Info)765     ScopeRAII(EvalInfo &Info)
766         : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
~ScopeRAII()767     ~ScopeRAII() {
768       // Body moved to a static method to encourage the compiler to inline away
769       // instances of this class.
770       cleanup(Info, OldStackSize);
771     }
772   private:
cleanup(EvalInfo & Info,unsigned OldStackSize)773     static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
774       unsigned NewEnd = OldStackSize;
775       for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
776            I != N; ++I) {
777         if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
778           // Full-expression cleanup of a lifetime-extended temporary: nothing
779           // to do, just move this cleanup to the right place in the stack.
780           std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
781           ++NewEnd;
782         } else {
783           // End the lifetime of the object.
784           Info.CleanupStack[I].endLifetime();
785         }
786       }
787       Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
788                               Info.CleanupStack.end());
789     }
790   };
791   typedef ScopeRAII<false> BlockScopeRAII;
792   typedef ScopeRAII<true> FullExpressionRAII;
793 }
794 
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)795 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
796                                          CheckSubobjectKind CSK) {
797   if (Invalid)
798     return false;
799   if (isOnePastTheEnd()) {
800     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
801       << CSK;
802     setInvalid();
803     return false;
804   }
805   return true;
806 }
807 
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)808 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
809                                                     const Expr *E, uint64_t N) {
810   if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
811     Info.CCEDiag(E, diag::note_constexpr_array_index)
812       << static_cast<int>(N) << /*array*/ 0
813       << static_cast<unsigned>(MostDerivedArraySize);
814   else
815     Info.CCEDiag(E, diag::note_constexpr_array_index)
816       << static_cast<int>(N) << /*non-array*/ 1;
817   setInvalid();
818 }
819 
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,APValue * Arguments)820 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
821                                const FunctionDecl *Callee, const LValue *This,
822                                APValue *Arguments)
823     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
824       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
825   Info.CurrentCall = this;
826   ++Info.CallStackDepth;
827 }
828 
~CallStackFrame()829 CallStackFrame::~CallStackFrame() {
830   assert(Info.CurrentCall == this && "calls retired out of order");
831   --Info.CallStackDepth;
832   Info.CurrentCall = Caller;
833 }
834 
createTemporary(const void * Key,bool IsLifetimeExtended)835 APValue &CallStackFrame::createTemporary(const void *Key,
836                                          bool IsLifetimeExtended) {
837   APValue &Result = Temporaries[Key];
838   assert(Result.isUninit() && "temporary created multiple times");
839   Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
840   return Result;
841 }
842 
843 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
844 
addCallStack(unsigned Limit)845 void EvalInfo::addCallStack(unsigned Limit) {
846   // Determine which calls to skip, if any.
847   unsigned ActiveCalls = CallStackDepth - 1;
848   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
849   if (Limit && Limit < ActiveCalls) {
850     SkipStart = Limit / 2 + Limit % 2;
851     SkipEnd = ActiveCalls - Limit / 2;
852   }
853 
854   // Walk the call stack and add the diagnostics.
855   unsigned CallIdx = 0;
856   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
857        Frame = Frame->Caller, ++CallIdx) {
858     // Skip this call?
859     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
860       if (CallIdx == SkipStart) {
861         // Note that we're skipping calls.
862         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
863           << unsigned(ActiveCalls - Limit);
864       }
865       continue;
866     }
867 
868     SmallVector<char, 128> Buffer;
869     llvm::raw_svector_ostream Out(Buffer);
870     describeCall(Frame, Out);
871     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
872   }
873 }
874 
875 namespace {
876   struct ComplexValue {
877   private:
878     bool IsInt;
879 
880   public:
881     APSInt IntReal, IntImag;
882     APFloat FloatReal, FloatImag;
883 
ComplexValue__anon79c4fed30211::ComplexValue884     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
885 
makeComplexFloat__anon79c4fed30211::ComplexValue886     void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon79c4fed30211::ComplexValue887     bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon79c4fed30211::ComplexValue888     APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon79c4fed30211::ComplexValue889     APFloat &getComplexFloatImag() { return FloatImag; }
890 
makeComplexInt__anon79c4fed30211::ComplexValue891     void makeComplexInt() { IsInt = true; }
isComplexInt__anon79c4fed30211::ComplexValue892     bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon79c4fed30211::ComplexValue893     APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon79c4fed30211::ComplexValue894     APSInt &getComplexIntImag() { return IntImag; }
895 
moveInto__anon79c4fed30211::ComplexValue896     void moveInto(APValue &v) const {
897       if (isComplexFloat())
898         v = APValue(FloatReal, FloatImag);
899       else
900         v = APValue(IntReal, IntImag);
901     }
setFrom__anon79c4fed30211::ComplexValue902     void setFrom(const APValue &v) {
903       assert(v.isComplexFloat() || v.isComplexInt());
904       if (v.isComplexFloat()) {
905         makeComplexFloat();
906         FloatReal = v.getComplexFloatReal();
907         FloatImag = v.getComplexFloatImag();
908       } else {
909         makeComplexInt();
910         IntReal = v.getComplexIntReal();
911         IntImag = v.getComplexIntImag();
912       }
913     }
914   };
915 
916   struct LValue {
917     APValue::LValueBase Base;
918     CharUnits Offset;
919     unsigned CallIndex;
920     SubobjectDesignator Designator;
921 
getLValueBase__anon79c4fed30211::LValue922     const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon79c4fed30211::LValue923     CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon79c4fed30211::LValue924     const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon79c4fed30211::LValue925     unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon79c4fed30211::LValue926     SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon79c4fed30211::LValue927     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
928 
moveInto__anon79c4fed30211::LValue929     void moveInto(APValue &V) const {
930       if (Designator.Invalid)
931         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
932       else
933         V = APValue(Base, Offset, Designator.Entries,
934                     Designator.IsOnePastTheEnd, CallIndex);
935     }
setFrom__anon79c4fed30211::LValue936     void setFrom(ASTContext &Ctx, const APValue &V) {
937       assert(V.isLValue());
938       Base = V.getLValueBase();
939       Offset = V.getLValueOffset();
940       CallIndex = V.getLValueCallIndex();
941       Designator = SubobjectDesignator(Ctx, V);
942     }
943 
set__anon79c4fed30211::LValue944     void set(APValue::LValueBase B, unsigned I = 0) {
945       Base = B;
946       Offset = CharUnits::Zero();
947       CallIndex = I;
948       Designator = SubobjectDesignator(getType(B));
949     }
950 
951     // Check that this LValue is not based on a null pointer. If it is, produce
952     // a diagnostic and mark the designator as invalid.
checkNullPointer__anon79c4fed30211::LValue953     bool checkNullPointer(EvalInfo &Info, const Expr *E,
954                           CheckSubobjectKind CSK) {
955       if (Designator.Invalid)
956         return false;
957       if (!Base) {
958         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
959           << CSK;
960         Designator.setInvalid();
961         return false;
962       }
963       return true;
964     }
965 
966     // Check this LValue refers to an object. If not, set the designator to be
967     // invalid and emit a diagnostic.
checkSubobject__anon79c4fed30211::LValue968     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
969       // Outside C++11, do not build a designator referring to a subobject of
970       // any object: we won't use such a designator for anything.
971       if (!Info.getLangOpts().CPlusPlus11)
972         Designator.setInvalid();
973       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
974              Designator.checkSubobject(Info, E, CSK);
975     }
976 
addDecl__anon79c4fed30211::LValue977     void addDecl(EvalInfo &Info, const Expr *E,
978                  const Decl *D, bool Virtual = false) {
979       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
980         Designator.addDeclUnchecked(D, Virtual);
981     }
addArray__anon79c4fed30211::LValue982     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
983       if (checkSubobject(Info, E, CSK_ArrayToPointer))
984         Designator.addArrayUnchecked(CAT);
985     }
addComplex__anon79c4fed30211::LValue986     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
987       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
988         Designator.addComplexUnchecked(EltTy, Imag);
989     }
adjustIndex__anon79c4fed30211::LValue990     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
991       if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
992         Designator.adjustIndex(Info, E, N);
993     }
994   };
995 
996   struct MemberPtr {
MemberPtr__anon79c4fed30211::MemberPtr997     MemberPtr() {}
MemberPtr__anon79c4fed30211::MemberPtr998     explicit MemberPtr(const ValueDecl *Decl) :
999       DeclAndIsDerivedMember(Decl, false), Path() {}
1000 
1001     /// The member or (direct or indirect) field referred to by this member
1002     /// pointer, or 0 if this is a null member pointer.
getDecl__anon79c4fed30211::MemberPtr1003     const ValueDecl *getDecl() const {
1004       return DeclAndIsDerivedMember.getPointer();
1005     }
1006     /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon79c4fed30211::MemberPtr1007     bool isDerivedMember() const {
1008       return DeclAndIsDerivedMember.getInt();
1009     }
1010     /// Get the class which the declaration actually lives in.
getContainingRecord__anon79c4fed30211::MemberPtr1011     const CXXRecordDecl *getContainingRecord() const {
1012       return cast<CXXRecordDecl>(
1013           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1014     }
1015 
moveInto__anon79c4fed30211::MemberPtr1016     void moveInto(APValue &V) const {
1017       V = APValue(getDecl(), isDerivedMember(), Path);
1018     }
setFrom__anon79c4fed30211::MemberPtr1019     void setFrom(const APValue &V) {
1020       assert(V.isMemberPointer());
1021       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1022       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1023       Path.clear();
1024       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1025       Path.insert(Path.end(), P.begin(), P.end());
1026     }
1027 
1028     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1029     /// whether the member is a member of some class derived from the class type
1030     /// of the member pointer.
1031     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1032     /// Path - The path of base/derived classes from the member declaration's
1033     /// class (exclusive) to the class type of the member pointer (inclusive).
1034     SmallVector<const CXXRecordDecl*, 4> Path;
1035 
1036     /// Perform a cast towards the class of the Decl (either up or down the
1037     /// hierarchy).
castBack__anon79c4fed30211::MemberPtr1038     bool castBack(const CXXRecordDecl *Class) {
1039       assert(!Path.empty());
1040       const CXXRecordDecl *Expected;
1041       if (Path.size() >= 2)
1042         Expected = Path[Path.size() - 2];
1043       else
1044         Expected = getContainingRecord();
1045       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1046         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1047         // if B does not contain the original member and is not a base or
1048         // derived class of the class containing the original member, the result
1049         // of the cast is undefined.
1050         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1051         // (D::*). We consider that to be a language defect.
1052         return false;
1053       }
1054       Path.pop_back();
1055       return true;
1056     }
1057     /// Perform a base-to-derived member pointer cast.
castToDerived__anon79c4fed30211::MemberPtr1058     bool castToDerived(const CXXRecordDecl *Derived) {
1059       if (!getDecl())
1060         return true;
1061       if (!isDerivedMember()) {
1062         Path.push_back(Derived);
1063         return true;
1064       }
1065       if (!castBack(Derived))
1066         return false;
1067       if (Path.empty())
1068         DeclAndIsDerivedMember.setInt(false);
1069       return true;
1070     }
1071     /// Perform a derived-to-base member pointer cast.
castToBase__anon79c4fed30211::MemberPtr1072     bool castToBase(const CXXRecordDecl *Base) {
1073       if (!getDecl())
1074         return true;
1075       if (Path.empty())
1076         DeclAndIsDerivedMember.setInt(true);
1077       if (isDerivedMember()) {
1078         Path.push_back(Base);
1079         return true;
1080       }
1081       return castBack(Base);
1082     }
1083   };
1084 
1085   /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1086   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1087     if (!LHS.getDecl() || !RHS.getDecl())
1088       return !LHS.getDecl() && !RHS.getDecl();
1089     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1090       return false;
1091     return LHS.Path == RHS.Path;
1092   }
1093 }
1094 
1095 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1096 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1097                             const LValue &This, const Expr *E,
1098                             bool AllowNonLiteralTypes = false);
1099 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
1100 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
1101 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1102                                   EvalInfo &Info);
1103 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1104 static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
1105 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1106                                     EvalInfo &Info);
1107 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1108 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1109 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
1110 
1111 //===----------------------------------------------------------------------===//
1112 // Misc utilities
1113 //===----------------------------------------------------------------------===//
1114 
1115 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)1116 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1117   unsigned ArgIndex = 0;
1118   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1119                       !isa<CXXConstructorDecl>(Frame->Callee) &&
1120                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1121 
1122   if (!IsMemberCall)
1123     Out << *Frame->Callee << '(';
1124 
1125   if (Frame->This && IsMemberCall) {
1126     APValue Val;
1127     Frame->This->moveInto(Val);
1128     Val.printPretty(Out, Frame->Info.Ctx,
1129                     Frame->This->Designator.MostDerivedType);
1130     // FIXME: Add parens around Val if needed.
1131     Out << "->" << *Frame->Callee << '(';
1132     IsMemberCall = false;
1133   }
1134 
1135   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1136        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1137     if (ArgIndex > (unsigned)IsMemberCall)
1138       Out << ", ";
1139 
1140     const ParmVarDecl *Param = *I;
1141     const APValue &Arg = Frame->Arguments[ArgIndex];
1142     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1143 
1144     if (ArgIndex == 0 && IsMemberCall)
1145       Out << "->" << *Frame->Callee << '(';
1146   }
1147 
1148   Out << ')';
1149 }
1150 
1151 /// Evaluate an expression to see if it had side-effects, and discard its
1152 /// result.
1153 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1154 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1155   APValue Scratch;
1156   if (!Evaluate(Scratch, Info, E))
1157     // We don't need the value, but we might have skipped a side effect here.
1158     return Info.noteSideEffect();
1159   return true;
1160 }
1161 
1162 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1163 /// return its existing value.
getExtValue(const APSInt & Value)1164 static int64_t getExtValue(const APSInt &Value) {
1165   return Value.isSigned() ? Value.getSExtValue()
1166                           : static_cast<int64_t>(Value.getZExtValue());
1167 }
1168 
1169 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1170 static bool IsStringLiteralCall(const CallExpr *E) {
1171   unsigned Builtin = E->getBuiltinCallee();
1172   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1173           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1174 }
1175 
IsGlobalLValue(APValue::LValueBase B)1176 static bool IsGlobalLValue(APValue::LValueBase B) {
1177   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1178   // constant expression of pointer type that evaluates to...
1179 
1180   // ... a null pointer value, or a prvalue core constant expression of type
1181   // std::nullptr_t.
1182   if (!B) return true;
1183 
1184   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1185     // ... the address of an object with static storage duration,
1186     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1187       return VD->hasGlobalStorage();
1188     // ... the address of a function,
1189     return isa<FunctionDecl>(D);
1190   }
1191 
1192   const Expr *E = B.get<const Expr*>();
1193   switch (E->getStmtClass()) {
1194   default:
1195     return false;
1196   case Expr::CompoundLiteralExprClass: {
1197     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1198     return CLE->isFileScope() && CLE->isLValue();
1199   }
1200   case Expr::MaterializeTemporaryExprClass:
1201     // A materialized temporary might have been lifetime-extended to static
1202     // storage duration.
1203     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1204   // A string literal has static storage duration.
1205   case Expr::StringLiteralClass:
1206   case Expr::PredefinedExprClass:
1207   case Expr::ObjCStringLiteralClass:
1208   case Expr::ObjCEncodeExprClass:
1209   case Expr::CXXTypeidExprClass:
1210   case Expr::CXXUuidofExprClass:
1211     return true;
1212   case Expr::CallExprClass:
1213     return IsStringLiteralCall(cast<CallExpr>(E));
1214   // For GCC compatibility, &&label has static storage duration.
1215   case Expr::AddrLabelExprClass:
1216     return true;
1217   // A Block literal expression may be used as the initialization value for
1218   // Block variables at global or local static scope.
1219   case Expr::BlockExprClass:
1220     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1221   case Expr::ImplicitValueInitExprClass:
1222     // FIXME:
1223     // We can never form an lvalue with an implicit value initialization as its
1224     // base through expression evaluation, so these only appear in one case: the
1225     // implicit variable declaration we invent when checking whether a constexpr
1226     // constructor can produce a constant expression. We must assume that such
1227     // an expression might be a global lvalue.
1228     return true;
1229   }
1230 }
1231 
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)1232 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1233   assert(Base && "no location for a null lvalue");
1234   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1235   if (VD)
1236     Info.Note(VD->getLocation(), diag::note_declared_at);
1237   else
1238     Info.Note(Base.get<const Expr*>()->getExprLoc(),
1239               diag::note_constexpr_temporary_here);
1240 }
1241 
1242 /// Check that this reference or pointer core constant expression is a valid
1243 /// value for an address or reference constant expression. Return true if we
1244 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)1245 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1246                                           QualType Type, const LValue &LVal) {
1247   bool IsReferenceType = Type->isReferenceType();
1248 
1249   APValue::LValueBase Base = LVal.getLValueBase();
1250   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1251 
1252   // Check that the object is a global. Note that the fake 'this' object we
1253   // manufacture when checking potential constant expressions is conservatively
1254   // assumed to be global here.
1255   if (!IsGlobalLValue(Base)) {
1256     if (Info.getLangOpts().CPlusPlus11) {
1257       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1258       Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1259         << IsReferenceType << !Designator.Entries.empty()
1260         << !!VD << VD;
1261       NoteLValueLocation(Info, Base);
1262     } else {
1263       Info.Diag(Loc);
1264     }
1265     // Don't allow references to temporaries to escape.
1266     return false;
1267   }
1268   assert((Info.checkingPotentialConstantExpression() ||
1269           LVal.getLValueCallIndex() == 0) &&
1270          "have call index for global lvalue");
1271 
1272   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1273     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1274       // Check if this is a thread-local variable.
1275       if (Var->getTLSKind())
1276         return false;
1277 
1278       // A dllimport variable never acts like a constant.
1279       if (Var->hasAttr<DLLImportAttr>())
1280         return false;
1281     }
1282     if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1283       // __declspec(dllimport) must be handled very carefully:
1284       // We must never initialize an expression with the thunk in C++.
1285       // Doing otherwise would allow the same id-expression to yield
1286       // different addresses for the same function in different translation
1287       // units.  However, this means that we must dynamically initialize the
1288       // expression with the contents of the import address table at runtime.
1289       //
1290       // The C language has no notion of ODR; furthermore, it has no notion of
1291       // dynamic initialization.  This means that we are permitted to
1292       // perform initialization with the address of the thunk.
1293       if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
1294         return false;
1295     }
1296   }
1297 
1298   // Allow address constant expressions to be past-the-end pointers. This is
1299   // an extension: the standard requires them to point to an object.
1300   if (!IsReferenceType)
1301     return true;
1302 
1303   // A reference constant expression must refer to an object.
1304   if (!Base) {
1305     // FIXME: diagnostic
1306     Info.CCEDiag(Loc);
1307     return true;
1308   }
1309 
1310   // Does this refer one past the end of some object?
1311   if (Designator.isOnePastTheEnd()) {
1312     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1313     Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1314       << !Designator.Entries.empty() << !!VD << VD;
1315     NoteLValueLocation(Info, Base);
1316   }
1317 
1318   return true;
1319 }
1320 
1321 /// Check that this core constant expression is of literal type, and if not,
1322 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)1323 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1324                              const LValue *This = nullptr) {
1325   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1326     return true;
1327 
1328   // C++1y: A constant initializer for an object o [...] may also invoke
1329   // constexpr constructors for o and its subobjects even if those objects
1330   // are of non-literal class types.
1331   if (Info.getLangOpts().CPlusPlus1y && This &&
1332       Info.EvaluatingDecl == This->getLValueBase())
1333     return true;
1334 
1335   // Prvalue constant expressions must be of literal types.
1336   if (Info.getLangOpts().CPlusPlus11)
1337     Info.Diag(E, diag::note_constexpr_nonliteral)
1338       << E->getType();
1339   else
1340     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1341   return false;
1342 }
1343 
1344 /// Check that this core constant expression value is a valid value for a
1345 /// constant expression. If not, report an appropriate diagnostic. Does not
1346 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1347 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1348                                     QualType Type, const APValue &Value) {
1349   if (Value.isUninit()) {
1350     Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
1351       << true << Type;
1352     return false;
1353   }
1354 
1355   // Core issue 1454: For a literal constant expression of array or class type,
1356   // each subobject of its value shall have been initialized by a constant
1357   // expression.
1358   if (Value.isArray()) {
1359     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1360     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1361       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1362                                    Value.getArrayInitializedElt(I)))
1363         return false;
1364     }
1365     if (!Value.hasArrayFiller())
1366       return true;
1367     return CheckConstantExpression(Info, DiagLoc, EltTy,
1368                                    Value.getArrayFiller());
1369   }
1370   if (Value.isUnion() && Value.getUnionField()) {
1371     return CheckConstantExpression(Info, DiagLoc,
1372                                    Value.getUnionField()->getType(),
1373                                    Value.getUnionValue());
1374   }
1375   if (Value.isStruct()) {
1376     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1377     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1378       unsigned BaseIndex = 0;
1379       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1380              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1381         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1382                                      Value.getStructBase(BaseIndex)))
1383           return false;
1384       }
1385     }
1386     for (const auto *I : RD->fields()) {
1387       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1388                                    Value.getStructField(I->getFieldIndex())))
1389         return false;
1390     }
1391   }
1392 
1393   if (Value.isLValue()) {
1394     LValue LVal;
1395     LVal.setFrom(Info.Ctx, Value);
1396     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1397   }
1398 
1399   // Everything else is fine.
1400   return true;
1401 }
1402 
GetLValueBaseDecl(const LValue & LVal)1403 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1404   return LVal.Base.dyn_cast<const ValueDecl*>();
1405 }
1406 
IsLiteralLValue(const LValue & Value)1407 static bool IsLiteralLValue(const LValue &Value) {
1408   if (Value.CallIndex)
1409     return false;
1410   const Expr *E = Value.Base.dyn_cast<const Expr*>();
1411   return E && !isa<MaterializeTemporaryExpr>(E);
1412 }
1413 
IsWeakLValue(const LValue & Value)1414 static bool IsWeakLValue(const LValue &Value) {
1415   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1416   return Decl && Decl->isWeak();
1417 }
1418 
EvalPointerValueAsBool(const APValue & Value,bool & Result)1419 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1420   // A null base expression indicates a null pointer.  These are always
1421   // evaluatable, and they are false unless the offset is zero.
1422   if (!Value.getLValueBase()) {
1423     Result = !Value.getLValueOffset().isZero();
1424     return true;
1425   }
1426 
1427   // We have a non-null base.  These are generally known to be true, but if it's
1428   // a weak declaration it can be null at runtime.
1429   Result = true;
1430   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1431   return !Decl || !Decl->isWeak();
1432 }
1433 
HandleConversionToBool(const APValue & Val,bool & Result)1434 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1435   switch (Val.getKind()) {
1436   case APValue::Uninitialized:
1437     return false;
1438   case APValue::Int:
1439     Result = Val.getInt().getBoolValue();
1440     return true;
1441   case APValue::Float:
1442     Result = !Val.getFloat().isZero();
1443     return true;
1444   case APValue::ComplexInt:
1445     Result = Val.getComplexIntReal().getBoolValue() ||
1446              Val.getComplexIntImag().getBoolValue();
1447     return true;
1448   case APValue::ComplexFloat:
1449     Result = !Val.getComplexFloatReal().isZero() ||
1450              !Val.getComplexFloatImag().isZero();
1451     return true;
1452   case APValue::LValue:
1453     return EvalPointerValueAsBool(Val, Result);
1454   case APValue::MemberPointer:
1455     Result = Val.getMemberPointerDecl();
1456     return true;
1457   case APValue::Vector:
1458   case APValue::Array:
1459   case APValue::Struct:
1460   case APValue::Union:
1461   case APValue::AddrLabelDiff:
1462     return false;
1463   }
1464 
1465   llvm_unreachable("unknown APValue kind");
1466 }
1467 
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1468 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1469                                        EvalInfo &Info) {
1470   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1471   APValue Val;
1472   if (!Evaluate(Val, Info, E))
1473     return false;
1474   return HandleConversionToBool(Val, Result);
1475 }
1476 
1477 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1478 static void HandleOverflow(EvalInfo &Info, const Expr *E,
1479                            const T &SrcValue, QualType DestType) {
1480   Info.CCEDiag(E, diag::note_constexpr_overflow)
1481     << SrcValue << DestType;
1482 }
1483 
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1484 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1485                                  QualType SrcType, const APFloat &Value,
1486                                  QualType DestType, APSInt &Result) {
1487   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1488   // Determine whether we are converting to unsigned or signed.
1489   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1490 
1491   Result = APSInt(DestWidth, !DestSigned);
1492   bool ignored;
1493   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1494       & APFloat::opInvalidOp)
1495     HandleOverflow(Info, E, Value, DestType);
1496   return true;
1497 }
1498 
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1499 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1500                                    QualType SrcType, QualType DestType,
1501                                    APFloat &Result) {
1502   APFloat Value = Result;
1503   bool ignored;
1504   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1505                      APFloat::rmNearestTiesToEven, &ignored)
1506       & APFloat::opOverflow)
1507     HandleOverflow(Info, E, Value, DestType);
1508   return true;
1509 }
1510 
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,APSInt & Value)1511 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1512                                  QualType DestType, QualType SrcType,
1513                                  APSInt &Value) {
1514   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1515   APSInt Result = Value;
1516   // Figure out if this is a truncate, extend or noop cast.
1517   // If the input is signed, do a sign extend, noop, or truncate.
1518   Result = Result.extOrTrunc(DestWidth);
1519   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1520   return Result;
1521 }
1522 
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1523 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1524                                  QualType SrcType, const APSInt &Value,
1525                                  QualType DestType, APFloat &Result) {
1526   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1527   if (Result.convertFromAPInt(Value, Value.isSigned(),
1528                               APFloat::rmNearestTiesToEven)
1529       & APFloat::opOverflow)
1530     HandleOverflow(Info, E, Value, DestType);
1531   return true;
1532 }
1533 
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)1534 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1535                                   APValue &Value, const FieldDecl *FD) {
1536   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1537 
1538   if (!Value.isInt()) {
1539     // Trying to store a pointer-cast-to-integer into a bitfield.
1540     // FIXME: In this case, we should provide the diagnostic for casting
1541     // a pointer to an integer.
1542     assert(Value.isLValue() && "integral value neither int nor lvalue?");
1543     Info.Diag(E);
1544     return false;
1545   }
1546 
1547   APSInt &Int = Value.getInt();
1548   unsigned OldBitWidth = Int.getBitWidth();
1549   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1550   if (NewBitWidth < OldBitWidth)
1551     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1552   return true;
1553 }
1554 
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1555 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1556                                   llvm::APInt &Res) {
1557   APValue SVal;
1558   if (!Evaluate(SVal, Info, E))
1559     return false;
1560   if (SVal.isInt()) {
1561     Res = SVal.getInt();
1562     return true;
1563   }
1564   if (SVal.isFloat()) {
1565     Res = SVal.getFloat().bitcastToAPInt();
1566     return true;
1567   }
1568   if (SVal.isVector()) {
1569     QualType VecTy = E->getType();
1570     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1571     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1572     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1573     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1574     Res = llvm::APInt::getNullValue(VecSize);
1575     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1576       APValue &Elt = SVal.getVectorElt(i);
1577       llvm::APInt EltAsInt;
1578       if (Elt.isInt()) {
1579         EltAsInt = Elt.getInt();
1580       } else if (Elt.isFloat()) {
1581         EltAsInt = Elt.getFloat().bitcastToAPInt();
1582       } else {
1583         // Don't try to handle vectors of anything other than int or float
1584         // (not sure if it's possible to hit this case).
1585         Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1586         return false;
1587       }
1588       unsigned BaseEltSize = EltAsInt.getBitWidth();
1589       if (BigEndian)
1590         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1591       else
1592         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1593     }
1594     return true;
1595   }
1596   // Give up if the input isn't an int, float, or vector.  For example, we
1597   // reject "(v4i16)(intptr_t)&a".
1598   Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1599   return false;
1600 }
1601 
1602 /// Perform the given integer operation, which is known to need at most BitWidth
1603 /// bits, and check for overflow in the original type (if that type was not an
1604 /// unsigned type).
1605 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op)1606 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1607                                    const APSInt &LHS, const APSInt &RHS,
1608                                    unsigned BitWidth, Operation Op) {
1609   if (LHS.isUnsigned())
1610     return Op(LHS, RHS);
1611 
1612   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1613   APSInt Result = Value.trunc(LHS.getBitWidth());
1614   if (Result.extend(BitWidth) != Value) {
1615     if (Info.checkingForOverflow())
1616       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1617         diag::warn_integer_constant_overflow)
1618           << Result.toString(10) << E->getType();
1619     else
1620       HandleOverflow(Info, E, Value, E->getType());
1621   }
1622   return Result;
1623 }
1624 
1625 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)1626 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1627                               BinaryOperatorKind Opcode, APSInt RHS,
1628                               APSInt &Result) {
1629   switch (Opcode) {
1630   default:
1631     Info.Diag(E);
1632     return false;
1633   case BO_Mul:
1634     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1635                                   std::multiplies<APSInt>());
1636     return true;
1637   case BO_Add:
1638     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1639                                   std::plus<APSInt>());
1640     return true;
1641   case BO_Sub:
1642     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1643                                   std::minus<APSInt>());
1644     return true;
1645   case BO_And: Result = LHS & RHS; return true;
1646   case BO_Xor: Result = LHS ^ RHS; return true;
1647   case BO_Or:  Result = LHS | RHS; return true;
1648   case BO_Div:
1649   case BO_Rem:
1650     if (RHS == 0) {
1651       Info.Diag(E, diag::note_expr_divide_by_zero);
1652       return false;
1653     }
1654     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
1655     if (RHS.isNegative() && RHS.isAllOnesValue() &&
1656         LHS.isSigned() && LHS.isMinSignedValue())
1657       HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
1658     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1659     return true;
1660   case BO_Shl: {
1661     if (Info.getLangOpts().OpenCL)
1662       // OpenCL 6.3j: shift values are effectively % word size of LHS.
1663       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1664                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1665                     RHS.isUnsigned());
1666     else if (RHS.isSigned() && RHS.isNegative()) {
1667       // During constant-folding, a negative shift is an opposite shift. Such
1668       // a shift is not a constant expression.
1669       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1670       RHS = -RHS;
1671       goto shift_right;
1672     }
1673   shift_left:
1674     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1675     // the shifted type.
1676     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1677     if (SA != RHS) {
1678       Info.CCEDiag(E, diag::note_constexpr_large_shift)
1679         << RHS << E->getType() << LHS.getBitWidth();
1680     } else if (LHS.isSigned()) {
1681       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1682       // operand, and must not overflow the corresponding unsigned type.
1683       if (LHS.isNegative())
1684         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1685       else if (LHS.countLeadingZeros() < SA)
1686         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1687     }
1688     Result = LHS << SA;
1689     return true;
1690   }
1691   case BO_Shr: {
1692     if (Info.getLangOpts().OpenCL)
1693       // OpenCL 6.3j: shift values are effectively % word size of LHS.
1694       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1695                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1696                     RHS.isUnsigned());
1697     else if (RHS.isSigned() && RHS.isNegative()) {
1698       // During constant-folding, a negative shift is an opposite shift. Such a
1699       // shift is not a constant expression.
1700       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1701       RHS = -RHS;
1702       goto shift_left;
1703     }
1704   shift_right:
1705     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1706     // shifted type.
1707     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1708     if (SA != RHS)
1709       Info.CCEDiag(E, diag::note_constexpr_large_shift)
1710         << RHS << E->getType() << LHS.getBitWidth();
1711     Result = LHS >> SA;
1712     return true;
1713   }
1714 
1715   case BO_LT: Result = LHS < RHS; return true;
1716   case BO_GT: Result = LHS > RHS; return true;
1717   case BO_LE: Result = LHS <= RHS; return true;
1718   case BO_GE: Result = LHS >= RHS; return true;
1719   case BO_EQ: Result = LHS == RHS; return true;
1720   case BO_NE: Result = LHS != RHS; return true;
1721   }
1722 }
1723 
1724 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const Expr * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)1725 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1726                                   APFloat &LHS, BinaryOperatorKind Opcode,
1727                                   const APFloat &RHS) {
1728   switch (Opcode) {
1729   default:
1730     Info.Diag(E);
1731     return false;
1732   case BO_Mul:
1733     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1734     break;
1735   case BO_Add:
1736     LHS.add(RHS, APFloat::rmNearestTiesToEven);
1737     break;
1738   case BO_Sub:
1739     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1740     break;
1741   case BO_Div:
1742     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1743     break;
1744   }
1745 
1746   if (LHS.isInfinity() || LHS.isNaN())
1747     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1748   return true;
1749 }
1750 
1751 /// Cast an lvalue referring to a base subobject to a derived class, by
1752 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1753 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1754                                const RecordDecl *TruncatedType,
1755                                unsigned TruncatedElements) {
1756   SubobjectDesignator &D = Result.Designator;
1757 
1758   // Check we actually point to a derived class object.
1759   if (TruncatedElements == D.Entries.size())
1760     return true;
1761   assert(TruncatedElements >= D.MostDerivedPathLength &&
1762          "not casting to a derived class");
1763   if (!Result.checkSubobject(Info, E, CSK_Derived))
1764     return false;
1765 
1766   // Truncate the path to the subobject, and remove any derived-to-base offsets.
1767   const RecordDecl *RD = TruncatedType;
1768   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1769     if (RD->isInvalidDecl()) return false;
1770     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1771     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1772     if (isVirtualBaseClass(D.Entries[I]))
1773       Result.Offset -= Layout.getVBaseClassOffset(Base);
1774     else
1775       Result.Offset -= Layout.getBaseClassOffset(Base);
1776     RD = Base;
1777   }
1778   D.Entries.resize(TruncatedElements);
1779   return true;
1780 }
1781 
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)1782 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1783                                    const CXXRecordDecl *Derived,
1784                                    const CXXRecordDecl *Base,
1785                                    const ASTRecordLayout *RL = nullptr) {
1786   if (!RL) {
1787     if (Derived->isInvalidDecl()) return false;
1788     RL = &Info.Ctx.getASTRecordLayout(Derived);
1789   }
1790 
1791   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1792   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1793   return true;
1794 }
1795 
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1796 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1797                              const CXXRecordDecl *DerivedDecl,
1798                              const CXXBaseSpecifier *Base) {
1799   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1800 
1801   if (!Base->isVirtual())
1802     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1803 
1804   SubobjectDesignator &D = Obj.Designator;
1805   if (D.Invalid)
1806     return false;
1807 
1808   // Extract most-derived object and corresponding type.
1809   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1810   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1811     return false;
1812 
1813   // Find the virtual base class.
1814   if (DerivedDecl->isInvalidDecl()) return false;
1815   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1816   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1817   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1818   return true;
1819 }
1820 
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)1821 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1822                                  QualType Type, LValue &Result) {
1823   for (CastExpr::path_const_iterator PathI = E->path_begin(),
1824                                      PathE = E->path_end();
1825        PathI != PathE; ++PathI) {
1826     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1827                           *PathI))
1828       return false;
1829     Type = (*PathI)->getType();
1830   }
1831   return true;
1832 }
1833 
1834 /// Update LVal to refer to the given field, which must be a member of the type
1835 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)1836 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1837                                const FieldDecl *FD,
1838                                const ASTRecordLayout *RL = nullptr) {
1839   if (!RL) {
1840     if (FD->getParent()->isInvalidDecl()) return false;
1841     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1842   }
1843 
1844   unsigned I = FD->getFieldIndex();
1845   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1846   LVal.addDecl(Info, E, FD);
1847   return true;
1848 }
1849 
1850 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)1851 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1852                                        LValue &LVal,
1853                                        const IndirectFieldDecl *IFD) {
1854   for (const auto *C : IFD->chain())
1855     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
1856       return false;
1857   return true;
1858 }
1859 
1860 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)1861 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1862                          QualType Type, CharUnits &Size) {
1863   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1864   // extension.
1865   if (Type->isVoidType() || Type->isFunctionType()) {
1866     Size = CharUnits::One();
1867     return true;
1868   }
1869 
1870   if (!Type->isConstantSizeType()) {
1871     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1872     // FIXME: Better diagnostic.
1873     Info.Diag(Loc);
1874     return false;
1875   }
1876 
1877   Size = Info.Ctx.getTypeSizeInChars(Type);
1878   return true;
1879 }
1880 
1881 /// Update a pointer value to model pointer arithmetic.
1882 /// \param Info - Information about the ongoing evaluation.
1883 /// \param E - The expression being evaluated, for diagnostic purposes.
1884 /// \param LVal - The pointer value to be updated.
1885 /// \param EltTy - The pointee type represented by LVal.
1886 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)1887 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1888                                         LValue &LVal, QualType EltTy,
1889                                         int64_t Adjustment) {
1890   CharUnits SizeOfPointee;
1891   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1892     return false;
1893 
1894   // Compute the new offset in the appropriate width.
1895   LVal.Offset += Adjustment * SizeOfPointee;
1896   LVal.adjustIndex(Info, E, Adjustment);
1897   return true;
1898 }
1899 
1900 /// Update an lvalue to refer to a component of a complex number.
1901 /// \param Info - Information about the ongoing evaluation.
1902 /// \param LVal - The lvalue to be updated.
1903 /// \param EltTy - The complex number's component type.
1904 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)1905 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1906                                        LValue &LVal, QualType EltTy,
1907                                        bool Imag) {
1908   if (Imag) {
1909     CharUnits SizeOfComponent;
1910     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1911       return false;
1912     LVal.Offset += SizeOfComponent;
1913   }
1914   LVal.addComplex(Info, E, EltTy, Imag);
1915   return true;
1916 }
1917 
1918 /// Try to evaluate the initializer for a variable declaration.
1919 ///
1920 /// \param Info   Information about the ongoing evaluation.
1921 /// \param E      An expression to be used when printing diagnostics.
1922 /// \param VD     The variable whose initializer should be obtained.
1923 /// \param Frame  The frame in which the variable was created. Must be null
1924 ///               if this variable is not local to the evaluation.
1925 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue * & Result)1926 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1927                                 const VarDecl *VD, CallStackFrame *Frame,
1928                                 APValue *&Result) {
1929   // If this is a parameter to an active constexpr function call, perform
1930   // argument substitution.
1931   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1932     // Assume arguments of a potential constant expression are unknown
1933     // constant expressions.
1934     if (Info.checkingPotentialConstantExpression())
1935       return false;
1936     if (!Frame || !Frame->Arguments) {
1937       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1938       return false;
1939     }
1940     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
1941     return true;
1942   }
1943 
1944   // If this is a local variable, dig out its value.
1945   if (Frame) {
1946     Result = Frame->getTemporary(VD);
1947     assert(Result && "missing value for local variable");
1948     return true;
1949   }
1950 
1951   // Dig out the initializer, and use the declaration which it's attached to.
1952   const Expr *Init = VD->getAnyInitializer(VD);
1953   if (!Init || Init->isValueDependent()) {
1954     // If we're checking a potential constant expression, the variable could be
1955     // initialized later.
1956     if (!Info.checkingPotentialConstantExpression())
1957       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1958     return false;
1959   }
1960 
1961   // If we're currently evaluating the initializer of this declaration, use that
1962   // in-flight value.
1963   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
1964     Result = Info.EvaluatingDeclValue;
1965     return true;
1966   }
1967 
1968   // Never evaluate the initializer of a weak variable. We can't be sure that
1969   // this is the definition which will be used.
1970   if (VD->isWeak()) {
1971     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1972     return false;
1973   }
1974 
1975   // Check that we can fold the initializer. In C++, we will have already done
1976   // this in the cases where it matters for conformance.
1977   SmallVector<PartialDiagnosticAt, 8> Notes;
1978   if (!VD->evaluateValue(Notes)) {
1979     Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1980               Notes.size() + 1) << VD;
1981     Info.Note(VD->getLocation(), diag::note_declared_at);
1982     Info.addNotes(Notes);
1983     return false;
1984   } else if (!VD->checkInitIsICE()) {
1985     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1986                  Notes.size() + 1) << VD;
1987     Info.Note(VD->getLocation(), diag::note_declared_at);
1988     Info.addNotes(Notes);
1989   }
1990 
1991   Result = VD->getEvaluatedValue();
1992   return true;
1993 }
1994 
IsConstNonVolatile(QualType T)1995 static bool IsConstNonVolatile(QualType T) {
1996   Qualifiers Quals = T.getQualifiers();
1997   return Quals.hasConst() && !Quals.hasVolatile();
1998 }
1999 
2000 /// Get the base index of the given base class within an APValue representing
2001 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)2002 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2003                              const CXXRecordDecl *Base) {
2004   Base = Base->getCanonicalDecl();
2005   unsigned Index = 0;
2006   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2007          E = Derived->bases_end(); I != E; ++I, ++Index) {
2008     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2009       return Index;
2010   }
2011 
2012   llvm_unreachable("base class missing from derived class's bases list");
2013 }
2014 
2015 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)2016 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2017                                             uint64_t Index) {
2018   // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
2019   const StringLiteral *S = cast<StringLiteral>(Lit);
2020   const ConstantArrayType *CAT =
2021       Info.Ctx.getAsConstantArrayType(S->getType());
2022   assert(CAT && "string literal isn't an array");
2023   QualType CharType = CAT->getElementType();
2024   assert(CharType->isIntegerType() && "unexpected character type");
2025 
2026   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2027                CharType->isUnsignedIntegerType());
2028   if (Index < S->getLength())
2029     Value = S->getCodeUnit(Index);
2030   return Value;
2031 }
2032 
2033 // Expand a string literal into an array of characters.
expandStringLiteral(EvalInfo & Info,const Expr * Lit,APValue & Result)2034 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2035                                 APValue &Result) {
2036   const StringLiteral *S = cast<StringLiteral>(Lit);
2037   const ConstantArrayType *CAT =
2038       Info.Ctx.getAsConstantArrayType(S->getType());
2039   assert(CAT && "string literal isn't an array");
2040   QualType CharType = CAT->getElementType();
2041   assert(CharType->isIntegerType() && "unexpected character type");
2042 
2043   unsigned Elts = CAT->getSize().getZExtValue();
2044   Result = APValue(APValue::UninitArray(),
2045                    std::min(S->getLength(), Elts), Elts);
2046   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2047                CharType->isUnsignedIntegerType());
2048   if (Result.hasArrayFiller())
2049     Result.getArrayFiller() = APValue(Value);
2050   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2051     Value = S->getCodeUnit(I);
2052     Result.getArrayInitializedElt(I) = APValue(Value);
2053   }
2054 }
2055 
2056 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)2057 static void expandArray(APValue &Array, unsigned Index) {
2058   unsigned Size = Array.getArraySize();
2059   assert(Index < Size);
2060 
2061   // Always at least double the number of elements for which we store a value.
2062   unsigned OldElts = Array.getArrayInitializedElts();
2063   unsigned NewElts = std::max(Index+1, OldElts * 2);
2064   NewElts = std::min(Size, std::max(NewElts, 8u));
2065 
2066   // Copy the data across.
2067   APValue NewValue(APValue::UninitArray(), NewElts, Size);
2068   for (unsigned I = 0; I != OldElts; ++I)
2069     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2070   for (unsigned I = OldElts; I != NewElts; ++I)
2071     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2072   if (NewValue.hasArrayFiller())
2073     NewValue.getArrayFiller() = Array.getArrayFiller();
2074   Array.swap(NewValue);
2075 }
2076 
2077 /// Kinds of access we can perform on an object, for diagnostics.
2078 enum AccessKinds {
2079   AK_Read,
2080   AK_Assign,
2081   AK_Increment,
2082   AK_Decrement
2083 };
2084 
2085 /// A handle to a complete object (an object that is not a subobject of
2086 /// another object).
2087 struct CompleteObject {
2088   /// The value of the complete object.
2089   APValue *Value;
2090   /// The type of the complete object.
2091   QualType Type;
2092 
CompleteObjectCompleteObject2093   CompleteObject() : Value(nullptr) {}
CompleteObjectCompleteObject2094   CompleteObject(APValue *Value, QualType Type)
2095       : Value(Value), Type(Type) {
2096     assert(Value && "missing value for complete object");
2097   }
2098 
operator boolCompleteObject2099   LLVM_EXPLICIT operator bool() const { return Value; }
2100 };
2101 
2102 /// Find the designated sub-object of an rvalue.
2103 template<typename SubobjectHandler>
2104 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)2105 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2106               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2107   if (Sub.Invalid)
2108     // A diagnostic will have already been produced.
2109     return handler.failed();
2110   if (Sub.isOnePastTheEnd()) {
2111     if (Info.getLangOpts().CPlusPlus11)
2112       Info.Diag(E, diag::note_constexpr_access_past_end)
2113         << handler.AccessKind;
2114     else
2115       Info.Diag(E);
2116     return handler.failed();
2117   }
2118 
2119   APValue *O = Obj.Value;
2120   QualType ObjType = Obj.Type;
2121   const FieldDecl *LastField = nullptr;
2122 
2123   // Walk the designator's path to find the subobject.
2124   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2125     if (O->isUninit()) {
2126       if (!Info.checkingPotentialConstantExpression())
2127         Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2128       return handler.failed();
2129     }
2130 
2131     if (I == N) {
2132       if (!handler.found(*O, ObjType))
2133         return false;
2134 
2135       // If we modified a bit-field, truncate it to the right width.
2136       if (handler.AccessKind != AK_Read &&
2137           LastField && LastField->isBitField() &&
2138           !truncateBitfieldValue(Info, E, *O, LastField))
2139         return false;
2140 
2141       return true;
2142     }
2143 
2144     LastField = nullptr;
2145     if (ObjType->isArrayType()) {
2146       // Next subobject is an array element.
2147       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2148       assert(CAT && "vla in literal type?");
2149       uint64_t Index = Sub.Entries[I].ArrayIndex;
2150       if (CAT->getSize().ule(Index)) {
2151         // Note, it should not be possible to form a pointer with a valid
2152         // designator which points more than one past the end of the array.
2153         if (Info.getLangOpts().CPlusPlus11)
2154           Info.Diag(E, diag::note_constexpr_access_past_end)
2155             << handler.AccessKind;
2156         else
2157           Info.Diag(E);
2158         return handler.failed();
2159       }
2160 
2161       ObjType = CAT->getElementType();
2162 
2163       // An array object is represented as either an Array APValue or as an
2164       // LValue which refers to a string literal.
2165       if (O->isLValue()) {
2166         assert(I == N - 1 && "extracting subobject of character?");
2167         assert(!O->hasLValuePath() || O->getLValuePath().empty());
2168         if (handler.AccessKind != AK_Read)
2169           expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2170                               *O);
2171         else
2172           return handler.foundString(*O, ObjType, Index);
2173       }
2174 
2175       if (O->getArrayInitializedElts() > Index)
2176         O = &O->getArrayInitializedElt(Index);
2177       else if (handler.AccessKind != AK_Read) {
2178         expandArray(*O, Index);
2179         O = &O->getArrayInitializedElt(Index);
2180       } else
2181         O = &O->getArrayFiller();
2182     } else if (ObjType->isAnyComplexType()) {
2183       // Next subobject is a complex number.
2184       uint64_t Index = Sub.Entries[I].ArrayIndex;
2185       if (Index > 1) {
2186         if (Info.getLangOpts().CPlusPlus11)
2187           Info.Diag(E, diag::note_constexpr_access_past_end)
2188             << handler.AccessKind;
2189         else
2190           Info.Diag(E);
2191         return handler.failed();
2192       }
2193 
2194       bool WasConstQualified = ObjType.isConstQualified();
2195       ObjType = ObjType->castAs<ComplexType>()->getElementType();
2196       if (WasConstQualified)
2197         ObjType.addConst();
2198 
2199       assert(I == N - 1 && "extracting subobject of scalar?");
2200       if (O->isComplexInt()) {
2201         return handler.found(Index ? O->getComplexIntImag()
2202                                    : O->getComplexIntReal(), ObjType);
2203       } else {
2204         assert(O->isComplexFloat());
2205         return handler.found(Index ? O->getComplexFloatImag()
2206                                    : O->getComplexFloatReal(), ObjType);
2207       }
2208     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2209       if (Field->isMutable() && handler.AccessKind == AK_Read) {
2210         Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
2211           << Field;
2212         Info.Note(Field->getLocation(), diag::note_declared_at);
2213         return handler.failed();
2214       }
2215 
2216       // Next subobject is a class, struct or union field.
2217       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2218       if (RD->isUnion()) {
2219         const FieldDecl *UnionField = O->getUnionField();
2220         if (!UnionField ||
2221             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2222           Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
2223             << handler.AccessKind << Field << !UnionField << UnionField;
2224           return handler.failed();
2225         }
2226         O = &O->getUnionValue();
2227       } else
2228         O = &O->getStructField(Field->getFieldIndex());
2229 
2230       bool WasConstQualified = ObjType.isConstQualified();
2231       ObjType = Field->getType();
2232       if (WasConstQualified && !Field->isMutable())
2233         ObjType.addConst();
2234 
2235       if (ObjType.isVolatileQualified()) {
2236         if (Info.getLangOpts().CPlusPlus) {
2237           // FIXME: Include a description of the path to the volatile subobject.
2238           Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2239             << handler.AccessKind << 2 << Field;
2240           Info.Note(Field->getLocation(), diag::note_declared_at);
2241         } else {
2242           Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2243         }
2244         return handler.failed();
2245       }
2246 
2247       LastField = Field;
2248     } else {
2249       // Next subobject is a base class.
2250       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2251       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2252       O = &O->getStructBase(getBaseIndex(Derived, Base));
2253 
2254       bool WasConstQualified = ObjType.isConstQualified();
2255       ObjType = Info.Ctx.getRecordType(Base);
2256       if (WasConstQualified)
2257         ObjType.addConst();
2258     }
2259   }
2260 }
2261 
2262 namespace {
2263 struct ExtractSubobjectHandler {
2264   EvalInfo &Info;
2265   APValue &Result;
2266 
2267   static const AccessKinds AccessKind = AK_Read;
2268 
2269   typedef bool result_type;
failed__anon79c4fed30311::ExtractSubobjectHandler2270   bool failed() { return false; }
found__anon79c4fed30311::ExtractSubobjectHandler2271   bool found(APValue &Subobj, QualType SubobjType) {
2272     Result = Subobj;
2273     return true;
2274   }
found__anon79c4fed30311::ExtractSubobjectHandler2275   bool found(APSInt &Value, QualType SubobjType) {
2276     Result = APValue(Value);
2277     return true;
2278   }
found__anon79c4fed30311::ExtractSubobjectHandler2279   bool found(APFloat &Value, QualType SubobjType) {
2280     Result = APValue(Value);
2281     return true;
2282   }
foundString__anon79c4fed30311::ExtractSubobjectHandler2283   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2284     Result = APValue(extractStringLiteralCharacter(
2285         Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2286     return true;
2287   }
2288 };
2289 } // end anonymous namespace
2290 
2291 const AccessKinds ExtractSubobjectHandler::AccessKind;
2292 
2293 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result)2294 static bool extractSubobject(EvalInfo &Info, const Expr *E,
2295                              const CompleteObject &Obj,
2296                              const SubobjectDesignator &Sub,
2297                              APValue &Result) {
2298   ExtractSubobjectHandler Handler = { Info, Result };
2299   return findSubobject(Info, E, Obj, Sub, Handler);
2300 }
2301 
2302 namespace {
2303 struct ModifySubobjectHandler {
2304   EvalInfo &Info;
2305   APValue &NewVal;
2306   const Expr *E;
2307 
2308   typedef bool result_type;
2309   static const AccessKinds AccessKind = AK_Assign;
2310 
checkConst__anon79c4fed30411::ModifySubobjectHandler2311   bool checkConst(QualType QT) {
2312     // Assigning to a const object has undefined behavior.
2313     if (QT.isConstQualified()) {
2314       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2315       return false;
2316     }
2317     return true;
2318   }
2319 
failed__anon79c4fed30411::ModifySubobjectHandler2320   bool failed() { return false; }
found__anon79c4fed30411::ModifySubobjectHandler2321   bool found(APValue &Subobj, QualType SubobjType) {
2322     if (!checkConst(SubobjType))
2323       return false;
2324     // We've been given ownership of NewVal, so just swap it in.
2325     Subobj.swap(NewVal);
2326     return true;
2327   }
found__anon79c4fed30411::ModifySubobjectHandler2328   bool found(APSInt &Value, QualType SubobjType) {
2329     if (!checkConst(SubobjType))
2330       return false;
2331     if (!NewVal.isInt()) {
2332       // Maybe trying to write a cast pointer value into a complex?
2333       Info.Diag(E);
2334       return false;
2335     }
2336     Value = NewVal.getInt();
2337     return true;
2338   }
found__anon79c4fed30411::ModifySubobjectHandler2339   bool found(APFloat &Value, QualType SubobjType) {
2340     if (!checkConst(SubobjType))
2341       return false;
2342     Value = NewVal.getFloat();
2343     return true;
2344   }
foundString__anon79c4fed30411::ModifySubobjectHandler2345   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2346     llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2347   }
2348 };
2349 } // end anonymous namespace
2350 
2351 const AccessKinds ModifySubobjectHandler::AccessKind;
2352 
2353 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)2354 static bool modifySubobject(EvalInfo &Info, const Expr *E,
2355                             const CompleteObject &Obj,
2356                             const SubobjectDesignator &Sub,
2357                             APValue &NewVal) {
2358   ModifySubobjectHandler Handler = { Info, NewVal, E };
2359   return findSubobject(Info, E, Obj, Sub, Handler);
2360 }
2361 
2362 /// Find the position where two subobject designators diverge, or equivalently
2363 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)2364 static unsigned FindDesignatorMismatch(QualType ObjType,
2365                                        const SubobjectDesignator &A,
2366                                        const SubobjectDesignator &B,
2367                                        bool &WasArrayIndex) {
2368   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2369   for (/**/; I != N; ++I) {
2370     if (!ObjType.isNull() &&
2371         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2372       // Next subobject is an array element.
2373       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2374         WasArrayIndex = true;
2375         return I;
2376       }
2377       if (ObjType->isAnyComplexType())
2378         ObjType = ObjType->castAs<ComplexType>()->getElementType();
2379       else
2380         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2381     } else {
2382       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2383         WasArrayIndex = false;
2384         return I;
2385       }
2386       if (const FieldDecl *FD = getAsField(A.Entries[I]))
2387         // Next subobject is a field.
2388         ObjType = FD->getType();
2389       else
2390         // Next subobject is a base class.
2391         ObjType = QualType();
2392     }
2393   }
2394   WasArrayIndex = false;
2395   return I;
2396 }
2397 
2398 /// Determine whether the given subobject designators refer to elements of the
2399 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)2400 static bool AreElementsOfSameArray(QualType ObjType,
2401                                    const SubobjectDesignator &A,
2402                                    const SubobjectDesignator &B) {
2403   if (A.Entries.size() != B.Entries.size())
2404     return false;
2405 
2406   bool IsArray = A.MostDerivedArraySize != 0;
2407   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2408     // A is a subobject of the array element.
2409     return false;
2410 
2411   // If A (and B) designates an array element, the last entry will be the array
2412   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2413   // of length 1' case, and the entire path must match.
2414   bool WasArrayIndex;
2415   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2416   return CommonLength >= A.Entries.size() - IsArray;
2417 }
2418 
2419 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)2420 CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, AccessKinds AK,
2421                                   const LValue &LVal, QualType LValType) {
2422   if (!LVal.Base) {
2423     Info.Diag(E, diag::note_constexpr_access_null) << AK;
2424     return CompleteObject();
2425   }
2426 
2427   CallStackFrame *Frame = nullptr;
2428   if (LVal.CallIndex) {
2429     Frame = Info.getCallFrame(LVal.CallIndex);
2430     if (!Frame) {
2431       Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2432         << AK << LVal.Base.is<const ValueDecl*>();
2433       NoteLValueLocation(Info, LVal.Base);
2434       return CompleteObject();
2435     }
2436   }
2437 
2438   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2439   // is not a constant expression (even if the object is non-volatile). We also
2440   // apply this rule to C++98, in order to conform to the expected 'volatile'
2441   // semantics.
2442   if (LValType.isVolatileQualified()) {
2443     if (Info.getLangOpts().CPlusPlus)
2444       Info.Diag(E, diag::note_constexpr_access_volatile_type)
2445         << AK << LValType;
2446     else
2447       Info.Diag(E);
2448     return CompleteObject();
2449   }
2450 
2451   // Compute value storage location and type of base object.
2452   APValue *BaseVal = nullptr;
2453   QualType BaseType = getType(LVal.Base);
2454 
2455   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2456     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2457     // In C++11, constexpr, non-volatile variables initialized with constant
2458     // expressions are constant expressions too. Inside constexpr functions,
2459     // parameters are constant expressions even if they're non-const.
2460     // In C++1y, objects local to a constant expression (those with a Frame) are
2461     // both readable and writable inside constant expressions.
2462     // In C, such things can also be folded, although they are not ICEs.
2463     const VarDecl *VD = dyn_cast<VarDecl>(D);
2464     if (VD) {
2465       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2466         VD = VDef;
2467     }
2468     if (!VD || VD->isInvalidDecl()) {
2469       Info.Diag(E);
2470       return CompleteObject();
2471     }
2472 
2473     // Accesses of volatile-qualified objects are not allowed.
2474     if (BaseType.isVolatileQualified()) {
2475       if (Info.getLangOpts().CPlusPlus) {
2476         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2477           << AK << 1 << VD;
2478         Info.Note(VD->getLocation(), diag::note_declared_at);
2479       } else {
2480         Info.Diag(E);
2481       }
2482       return CompleteObject();
2483     }
2484 
2485     // Unless we're looking at a local variable or argument in a constexpr call,
2486     // the variable we're reading must be const.
2487     if (!Frame) {
2488       if (Info.getLangOpts().CPlusPlus1y &&
2489           VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2490         // OK, we can read and modify an object if we're in the process of
2491         // evaluating its initializer, because its lifetime began in this
2492         // evaluation.
2493       } else if (AK != AK_Read) {
2494         // All the remaining cases only permit reading.
2495         Info.Diag(E, diag::note_constexpr_modify_global);
2496         return CompleteObject();
2497       } else if (VD->isConstexpr()) {
2498         // OK, we can read this variable.
2499       } else if (BaseType->isIntegralOrEnumerationType()) {
2500         if (!BaseType.isConstQualified()) {
2501           if (Info.getLangOpts().CPlusPlus) {
2502             Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2503             Info.Note(VD->getLocation(), diag::note_declared_at);
2504           } else {
2505             Info.Diag(E);
2506           }
2507           return CompleteObject();
2508         }
2509       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2510         // We support folding of const floating-point types, in order to make
2511         // static const data members of such types (supported as an extension)
2512         // more useful.
2513         if (Info.getLangOpts().CPlusPlus11) {
2514           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2515           Info.Note(VD->getLocation(), diag::note_declared_at);
2516         } else {
2517           Info.CCEDiag(E);
2518         }
2519       } else {
2520         // FIXME: Allow folding of values of any literal type in all languages.
2521         if (Info.getLangOpts().CPlusPlus11) {
2522           Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2523           Info.Note(VD->getLocation(), diag::note_declared_at);
2524         } else {
2525           Info.Diag(E);
2526         }
2527         return CompleteObject();
2528       }
2529     }
2530 
2531     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2532       return CompleteObject();
2533   } else {
2534     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2535 
2536     if (!Frame) {
2537       if (const MaterializeTemporaryExpr *MTE =
2538               dyn_cast<MaterializeTemporaryExpr>(Base)) {
2539         assert(MTE->getStorageDuration() == SD_Static &&
2540                "should have a frame for a non-global materialized temporary");
2541 
2542         // Per C++1y [expr.const]p2:
2543         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2544         //   - a [...] glvalue of integral or enumeration type that refers to
2545         //     a non-volatile const object [...]
2546         //   [...]
2547         //   - a [...] glvalue of literal type that refers to a non-volatile
2548         //     object whose lifetime began within the evaluation of e.
2549         //
2550         // C++11 misses the 'began within the evaluation of e' check and
2551         // instead allows all temporaries, including things like:
2552         //   int &&r = 1;
2553         //   int x = ++r;
2554         //   constexpr int k = r;
2555         // Therefore we use the C++1y rules in C++11 too.
2556         const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2557         const ValueDecl *ED = MTE->getExtendingDecl();
2558         if (!(BaseType.isConstQualified() &&
2559               BaseType->isIntegralOrEnumerationType()) &&
2560             !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2561           Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2562           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2563           return CompleteObject();
2564         }
2565 
2566         BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2567         assert(BaseVal && "got reference to unevaluated temporary");
2568       } else {
2569         Info.Diag(E);
2570         return CompleteObject();
2571       }
2572     } else {
2573       BaseVal = Frame->getTemporary(Base);
2574       assert(BaseVal && "missing value for temporary");
2575     }
2576 
2577     // Volatile temporary objects cannot be accessed in constant expressions.
2578     if (BaseType.isVolatileQualified()) {
2579       if (Info.getLangOpts().CPlusPlus) {
2580         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2581           << AK << 0;
2582         Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2583       } else {
2584         Info.Diag(E);
2585       }
2586       return CompleteObject();
2587     }
2588   }
2589 
2590   // During the construction of an object, it is not yet 'const'.
2591   // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2592   // and this doesn't do quite the right thing for const subobjects of the
2593   // object under construction.
2594   if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2595     BaseType = Info.Ctx.getCanonicalType(BaseType);
2596     BaseType.removeLocalConst();
2597   }
2598 
2599   // In C++1y, we can't safely access any mutable state when we might be
2600   // evaluating after an unmodeled side effect or an evaluation failure.
2601   //
2602   // FIXME: Not all local state is mutable. Allow local constant subobjects
2603   // to be read here (but take care with 'mutable' fields).
2604   if (Frame && Info.getLangOpts().CPlusPlus1y &&
2605       (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
2606     return CompleteObject();
2607 
2608   return CompleteObject(BaseVal, BaseType);
2609 }
2610 
2611 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2612 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2613 /// glvalue referred to by an entity of reference type.
2614 ///
2615 /// \param Info - Information about the ongoing evaluation.
2616 /// \param Conv - The expression for which we are performing the conversion.
2617 ///               Used for diagnostics.
2618 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2619 ///               case of a non-class type).
2620 /// \param LVal - The glvalue on which we are attempting to perform this action.
2621 /// \param RVal - The produced value will be placed here.
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)2622 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2623                                            QualType Type,
2624                                            const LValue &LVal, APValue &RVal) {
2625   if (LVal.Designator.Invalid)
2626     return false;
2627 
2628   // Check for special cases where there is no existing APValue to look at.
2629   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2630   if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
2631       !Type.isVolatileQualified()) {
2632     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2633       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2634       // initializer until now for such expressions. Such an expression can't be
2635       // an ICE in C, so this only matters for fold.
2636       assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2637       if (Type.isVolatileQualified()) {
2638         Info.Diag(Conv);
2639         return false;
2640       }
2641       APValue Lit;
2642       if (!Evaluate(Lit, Info, CLE->getInitializer()))
2643         return false;
2644       CompleteObject LitObj(&Lit, Base->getType());
2645       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2646     } else if (isa<StringLiteral>(Base)) {
2647       // We represent a string literal array as an lvalue pointing at the
2648       // corresponding expression, rather than building an array of chars.
2649       // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
2650       APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2651       CompleteObject StrObj(&Str, Base->getType());
2652       return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2653     }
2654   }
2655 
2656   CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2657   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2658 }
2659 
2660 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)2661 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2662                              QualType LValType, APValue &Val) {
2663   if (LVal.Designator.Invalid)
2664     return false;
2665 
2666   if (!Info.getLangOpts().CPlusPlus1y) {
2667     Info.Diag(E);
2668     return false;
2669   }
2670 
2671   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2672   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2673 }
2674 
isOverflowingIntegerType(ASTContext & Ctx,QualType T)2675 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2676   return T->isSignedIntegerType() &&
2677          Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2678 }
2679 
2680 namespace {
2681 struct CompoundAssignSubobjectHandler {
2682   EvalInfo &Info;
2683   const Expr *E;
2684   QualType PromotedLHSType;
2685   BinaryOperatorKind Opcode;
2686   const APValue &RHS;
2687 
2688   static const AccessKinds AccessKind = AK_Assign;
2689 
2690   typedef bool result_type;
2691 
checkConst__anon79c4fed30511::CompoundAssignSubobjectHandler2692   bool checkConst(QualType QT) {
2693     // Assigning to a const object has undefined behavior.
2694     if (QT.isConstQualified()) {
2695       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2696       return false;
2697     }
2698     return true;
2699   }
2700 
failed__anon79c4fed30511::CompoundAssignSubobjectHandler2701   bool failed() { return false; }
found__anon79c4fed30511::CompoundAssignSubobjectHandler2702   bool found(APValue &Subobj, QualType SubobjType) {
2703     switch (Subobj.getKind()) {
2704     case APValue::Int:
2705       return found(Subobj.getInt(), SubobjType);
2706     case APValue::Float:
2707       return found(Subobj.getFloat(), SubobjType);
2708     case APValue::ComplexInt:
2709     case APValue::ComplexFloat:
2710       // FIXME: Implement complex compound assignment.
2711       Info.Diag(E);
2712       return false;
2713     case APValue::LValue:
2714       return foundPointer(Subobj, SubobjType);
2715     default:
2716       // FIXME: can this happen?
2717       Info.Diag(E);
2718       return false;
2719     }
2720   }
found__anon79c4fed30511::CompoundAssignSubobjectHandler2721   bool found(APSInt &Value, QualType SubobjType) {
2722     if (!checkConst(SubobjType))
2723       return false;
2724 
2725     if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2726       // We don't support compound assignment on integer-cast-to-pointer
2727       // values.
2728       Info.Diag(E);
2729       return false;
2730     }
2731 
2732     APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2733                                     SubobjType, Value);
2734     if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2735       return false;
2736     Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2737     return true;
2738   }
found__anon79c4fed30511::CompoundAssignSubobjectHandler2739   bool found(APFloat &Value, QualType SubobjType) {
2740     return checkConst(SubobjType) &&
2741            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2742                                   Value) &&
2743            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2744            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2745   }
foundPointer__anon79c4fed30511::CompoundAssignSubobjectHandler2746   bool foundPointer(APValue &Subobj, QualType SubobjType) {
2747     if (!checkConst(SubobjType))
2748       return false;
2749 
2750     QualType PointeeType;
2751     if (const PointerType *PT = SubobjType->getAs<PointerType>())
2752       PointeeType = PT->getPointeeType();
2753 
2754     if (PointeeType.isNull() || !RHS.isInt() ||
2755         (Opcode != BO_Add && Opcode != BO_Sub)) {
2756       Info.Diag(E);
2757       return false;
2758     }
2759 
2760     int64_t Offset = getExtValue(RHS.getInt());
2761     if (Opcode == BO_Sub)
2762       Offset = -Offset;
2763 
2764     LValue LVal;
2765     LVal.setFrom(Info.Ctx, Subobj);
2766     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2767       return false;
2768     LVal.moveInto(Subobj);
2769     return true;
2770   }
foundString__anon79c4fed30511::CompoundAssignSubobjectHandler2771   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2772     llvm_unreachable("shouldn't encounter string elements here");
2773   }
2774 };
2775 } // end anonymous namespace
2776 
2777 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2778 
2779 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)2780 static bool handleCompoundAssignment(
2781     EvalInfo &Info, const Expr *E,
2782     const LValue &LVal, QualType LValType, QualType PromotedLValType,
2783     BinaryOperatorKind Opcode, const APValue &RVal) {
2784   if (LVal.Designator.Invalid)
2785     return false;
2786 
2787   if (!Info.getLangOpts().CPlusPlus1y) {
2788     Info.Diag(E);
2789     return false;
2790   }
2791 
2792   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2793   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2794                                              RVal };
2795   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2796 }
2797 
2798 namespace {
2799 struct IncDecSubobjectHandler {
2800   EvalInfo &Info;
2801   const Expr *E;
2802   AccessKinds AccessKind;
2803   APValue *Old;
2804 
2805   typedef bool result_type;
2806 
checkConst__anon79c4fed30611::IncDecSubobjectHandler2807   bool checkConst(QualType QT) {
2808     // Assigning to a const object has undefined behavior.
2809     if (QT.isConstQualified()) {
2810       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2811       return false;
2812     }
2813     return true;
2814   }
2815 
failed__anon79c4fed30611::IncDecSubobjectHandler2816   bool failed() { return false; }
found__anon79c4fed30611::IncDecSubobjectHandler2817   bool found(APValue &Subobj, QualType SubobjType) {
2818     // Stash the old value. Also clear Old, so we don't clobber it later
2819     // if we're post-incrementing a complex.
2820     if (Old) {
2821       *Old = Subobj;
2822       Old = nullptr;
2823     }
2824 
2825     switch (Subobj.getKind()) {
2826     case APValue::Int:
2827       return found(Subobj.getInt(), SubobjType);
2828     case APValue::Float:
2829       return found(Subobj.getFloat(), SubobjType);
2830     case APValue::ComplexInt:
2831       return found(Subobj.getComplexIntReal(),
2832                    SubobjType->castAs<ComplexType>()->getElementType()
2833                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2834     case APValue::ComplexFloat:
2835       return found(Subobj.getComplexFloatReal(),
2836                    SubobjType->castAs<ComplexType>()->getElementType()
2837                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2838     case APValue::LValue:
2839       return foundPointer(Subobj, SubobjType);
2840     default:
2841       // FIXME: can this happen?
2842       Info.Diag(E);
2843       return false;
2844     }
2845   }
found__anon79c4fed30611::IncDecSubobjectHandler2846   bool found(APSInt &Value, QualType SubobjType) {
2847     if (!checkConst(SubobjType))
2848       return false;
2849 
2850     if (!SubobjType->isIntegerType()) {
2851       // We don't support increment / decrement on integer-cast-to-pointer
2852       // values.
2853       Info.Diag(E);
2854       return false;
2855     }
2856 
2857     if (Old) *Old = APValue(Value);
2858 
2859     // bool arithmetic promotes to int, and the conversion back to bool
2860     // doesn't reduce mod 2^n, so special-case it.
2861     if (SubobjType->isBooleanType()) {
2862       if (AccessKind == AK_Increment)
2863         Value = 1;
2864       else
2865         Value = !Value;
2866       return true;
2867     }
2868 
2869     bool WasNegative = Value.isNegative();
2870     if (AccessKind == AK_Increment) {
2871       ++Value;
2872 
2873       if (!WasNegative && Value.isNegative() &&
2874           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2875         APSInt ActualValue(Value, /*IsUnsigned*/true);
2876         HandleOverflow(Info, E, ActualValue, SubobjType);
2877       }
2878     } else {
2879       --Value;
2880 
2881       if (WasNegative && !Value.isNegative() &&
2882           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2883         unsigned BitWidth = Value.getBitWidth();
2884         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
2885         ActualValue.setBit(BitWidth);
2886         HandleOverflow(Info, E, ActualValue, SubobjType);
2887       }
2888     }
2889     return true;
2890   }
found__anon79c4fed30611::IncDecSubobjectHandler2891   bool found(APFloat &Value, QualType SubobjType) {
2892     if (!checkConst(SubobjType))
2893       return false;
2894 
2895     if (Old) *Old = APValue(Value);
2896 
2897     APFloat One(Value.getSemantics(), 1);
2898     if (AccessKind == AK_Increment)
2899       Value.add(One, APFloat::rmNearestTiesToEven);
2900     else
2901       Value.subtract(One, APFloat::rmNearestTiesToEven);
2902     return true;
2903   }
foundPointer__anon79c4fed30611::IncDecSubobjectHandler2904   bool foundPointer(APValue &Subobj, QualType SubobjType) {
2905     if (!checkConst(SubobjType))
2906       return false;
2907 
2908     QualType PointeeType;
2909     if (const PointerType *PT = SubobjType->getAs<PointerType>())
2910       PointeeType = PT->getPointeeType();
2911     else {
2912       Info.Diag(E);
2913       return false;
2914     }
2915 
2916     LValue LVal;
2917     LVal.setFrom(Info.Ctx, Subobj);
2918     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
2919                                      AccessKind == AK_Increment ? 1 : -1))
2920       return false;
2921     LVal.moveInto(Subobj);
2922     return true;
2923   }
foundString__anon79c4fed30611::IncDecSubobjectHandler2924   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2925     llvm_unreachable("shouldn't encounter string elements here");
2926   }
2927 };
2928 } // end anonymous namespace
2929 
2930 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)2931 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
2932                          QualType LValType, bool IsIncrement, APValue *Old) {
2933   if (LVal.Designator.Invalid)
2934     return false;
2935 
2936   if (!Info.getLangOpts().CPlusPlus1y) {
2937     Info.Diag(E);
2938     return false;
2939   }
2940 
2941   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
2942   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
2943   IncDecSubobjectHandler Handler = { Info, E, AK, Old };
2944   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2945 }
2946 
2947 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)2948 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
2949                                    LValue &This) {
2950   if (Object->getType()->isPointerType())
2951     return EvaluatePointer(Object, This, Info);
2952 
2953   if (Object->isGLValue())
2954     return EvaluateLValue(Object, This, Info);
2955 
2956   if (Object->getType()->isLiteralType(Info.Ctx))
2957     return EvaluateTemporary(Object, This, Info);
2958 
2959   Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType();
2960   return false;
2961 }
2962 
2963 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
2964 /// lvalue referring to the result.
2965 ///
2966 /// \param Info - Information about the ongoing evaluation.
2967 /// \param LV - An lvalue referring to the base of the member pointer.
2968 /// \param RHS - The member pointer expression.
2969 /// \param IncludeMember - Specifies whether the member itself is included in
2970 ///        the resulting LValue subobject designator. This is not possible when
2971 ///        creating a bound member function.
2972 /// \return The field or method declaration to which the member pointer refers,
2973 ///         or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)2974 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2975                                                   QualType LVType,
2976                                                   LValue &LV,
2977                                                   const Expr *RHS,
2978                                                   bool IncludeMember = true) {
2979   MemberPtr MemPtr;
2980   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
2981     return nullptr;
2982 
2983   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
2984   // member value, the behavior is undefined.
2985   if (!MemPtr.getDecl()) {
2986     // FIXME: Specific diagnostic.
2987     Info.Diag(RHS);
2988     return nullptr;
2989   }
2990 
2991   if (MemPtr.isDerivedMember()) {
2992     // This is a member of some derived class. Truncate LV appropriately.
2993     // The end of the derived-to-base path for the base object must match the
2994     // derived-to-base path for the member pointer.
2995     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
2996         LV.Designator.Entries.size()) {
2997       Info.Diag(RHS);
2998       return nullptr;
2999     }
3000     unsigned PathLengthToMember =
3001         LV.Designator.Entries.size() - MemPtr.Path.size();
3002     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3003       const CXXRecordDecl *LVDecl = getAsBaseClass(
3004           LV.Designator.Entries[PathLengthToMember + I]);
3005       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3006       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3007         Info.Diag(RHS);
3008         return nullptr;
3009       }
3010     }
3011 
3012     // Truncate the lvalue to the appropriate derived class.
3013     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3014                             PathLengthToMember))
3015       return nullptr;
3016   } else if (!MemPtr.Path.empty()) {
3017     // Extend the LValue path with the member pointer's path.
3018     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3019                                   MemPtr.Path.size() + IncludeMember);
3020 
3021     // Walk down to the appropriate base class.
3022     if (const PointerType *PT = LVType->getAs<PointerType>())
3023       LVType = PT->getPointeeType();
3024     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3025     assert(RD && "member pointer access on non-class-type expression");
3026     // The first class in the path is that of the lvalue.
3027     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3028       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3029       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3030         return nullptr;
3031       RD = Base;
3032     }
3033     // Finally cast to the class containing the member.
3034     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3035                                 MemPtr.getContainingRecord()))
3036       return nullptr;
3037   }
3038 
3039   // Add the member. Note that we cannot build bound member functions here.
3040   if (IncludeMember) {
3041     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3042       if (!HandleLValueMember(Info, RHS, LV, FD))
3043         return nullptr;
3044     } else if (const IndirectFieldDecl *IFD =
3045                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3046       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3047         return nullptr;
3048     } else {
3049       llvm_unreachable("can't construct reference to bound member function");
3050     }
3051   }
3052 
3053   return MemPtr.getDecl();
3054 }
3055 
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)3056 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3057                                                   const BinaryOperator *BO,
3058                                                   LValue &LV,
3059                                                   bool IncludeMember = true) {
3060   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3061 
3062   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3063     if (Info.keepEvaluatingAfterFailure()) {
3064       MemberPtr MemPtr;
3065       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3066     }
3067     return nullptr;
3068   }
3069 
3070   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3071                                    BO->getRHS(), IncludeMember);
3072 }
3073 
3074 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3075 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)3076 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3077                                     LValue &Result) {
3078   SubobjectDesignator &D = Result.Designator;
3079   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3080     return false;
3081 
3082   QualType TargetQT = E->getType();
3083   if (const PointerType *PT = TargetQT->getAs<PointerType>())
3084     TargetQT = PT->getPointeeType();
3085 
3086   // Check this cast lands within the final derived-to-base subobject path.
3087   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3088     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3089       << D.MostDerivedType << TargetQT;
3090     return false;
3091   }
3092 
3093   // Check the type of the final cast. We don't need to check the path,
3094   // since a cast can only be formed if the path is unique.
3095   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3096   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3097   const CXXRecordDecl *FinalType;
3098   if (NewEntriesSize == D.MostDerivedPathLength)
3099     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3100   else
3101     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3102   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3103     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3104       << D.MostDerivedType << TargetQT;
3105     return false;
3106   }
3107 
3108   // Truncate the lvalue to the appropriate derived class.
3109   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3110 }
3111 
3112 namespace {
3113 enum EvalStmtResult {
3114   /// Evaluation failed.
3115   ESR_Failed,
3116   /// Hit a 'return' statement.
3117   ESR_Returned,
3118   /// Evaluation succeeded.
3119   ESR_Succeeded,
3120   /// Hit a 'continue' statement.
3121   ESR_Continue,
3122   /// Hit a 'break' statement.
3123   ESR_Break,
3124   /// Still scanning for 'case' or 'default' statement.
3125   ESR_CaseNotFound
3126 };
3127 }
3128 
EvaluateDecl(EvalInfo & Info,const Decl * D)3129 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3130   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3131     // We don't need to evaluate the initializer for a static local.
3132     if (!VD->hasLocalStorage())
3133       return true;
3134 
3135     LValue Result;
3136     Result.set(VD, Info.CurrentCall->Index);
3137     APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3138 
3139     const Expr *InitE = VD->getInit();
3140     if (!InitE) {
3141       Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
3142         << false << VD->getType();
3143       Val = APValue();
3144       return false;
3145     }
3146 
3147     if (InitE->isValueDependent())
3148       return false;
3149 
3150     if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3151       // Wipe out any partially-computed value, to allow tracking that this
3152       // evaluation failed.
3153       Val = APValue();
3154       return false;
3155     }
3156   }
3157 
3158   return true;
3159 }
3160 
3161 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)3162 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3163                          const Expr *Cond, bool &Result) {
3164   FullExpressionRAII Scope(Info);
3165   if (CondDecl && !EvaluateDecl(Info, CondDecl))
3166     return false;
3167   return EvaluateAsBooleanCondition(Cond, Result, Info);
3168 }
3169 
3170 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3171                                    const Stmt *S,
3172                                    const SwitchCase *SC = nullptr);
3173 
3174 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(APValue & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)3175 static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
3176                                        const Stmt *Body,
3177                                        const SwitchCase *Case = nullptr) {
3178   BlockScopeRAII Scope(Info);
3179   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3180   case ESR_Break:
3181     return ESR_Succeeded;
3182   case ESR_Succeeded:
3183   case ESR_Continue:
3184     return ESR_Continue;
3185   case ESR_Failed:
3186   case ESR_Returned:
3187   case ESR_CaseNotFound:
3188     return ESR;
3189   }
3190   llvm_unreachable("Invalid EvalStmtResult!");
3191 }
3192 
3193 /// Evaluate a switch statement.
EvaluateSwitch(APValue & Result,EvalInfo & Info,const SwitchStmt * SS)3194 static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
3195                                      const SwitchStmt *SS) {
3196   BlockScopeRAII Scope(Info);
3197 
3198   // Evaluate the switch condition.
3199   APSInt Value;
3200   {
3201     FullExpressionRAII Scope(Info);
3202     if (SS->getConditionVariable() &&
3203         !EvaluateDecl(Info, SS->getConditionVariable()))
3204       return ESR_Failed;
3205     if (!EvaluateInteger(SS->getCond(), Value, Info))
3206       return ESR_Failed;
3207   }
3208 
3209   // Find the switch case corresponding to the value of the condition.
3210   // FIXME: Cache this lookup.
3211   const SwitchCase *Found = nullptr;
3212   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3213        SC = SC->getNextSwitchCase()) {
3214     if (isa<DefaultStmt>(SC)) {
3215       Found = SC;
3216       continue;
3217     }
3218 
3219     const CaseStmt *CS = cast<CaseStmt>(SC);
3220     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3221     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3222                               : LHS;
3223     if (LHS <= Value && Value <= RHS) {
3224       Found = SC;
3225       break;
3226     }
3227   }
3228 
3229   if (!Found)
3230     return ESR_Succeeded;
3231 
3232   // Search the switch body for the switch case and evaluate it from there.
3233   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3234   case ESR_Break:
3235     return ESR_Succeeded;
3236   case ESR_Succeeded:
3237   case ESR_Continue:
3238   case ESR_Failed:
3239   case ESR_Returned:
3240     return ESR;
3241   case ESR_CaseNotFound:
3242     // This can only happen if the switch case is nested within a statement
3243     // expression. We have no intention of supporting that.
3244     Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3245     return ESR_Failed;
3246   }
3247   llvm_unreachable("Invalid EvalStmtResult!");
3248 }
3249 
3250 // Evaluate a statement.
EvaluateStmt(APValue & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)3251 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3252                                    const Stmt *S, const SwitchCase *Case) {
3253   if (!Info.nextStep(S))
3254     return ESR_Failed;
3255 
3256   // If we're hunting down a 'case' or 'default' label, recurse through
3257   // substatements until we hit the label.
3258   if (Case) {
3259     // FIXME: We don't start the lifetime of objects whose initialization we
3260     // jump over. However, such objects must be of class type with a trivial
3261     // default constructor that initialize all subobjects, so must be empty,
3262     // so this almost never matters.
3263     switch (S->getStmtClass()) {
3264     case Stmt::CompoundStmtClass:
3265       // FIXME: Precompute which substatement of a compound statement we
3266       // would jump to, and go straight there rather than performing a
3267       // linear scan each time.
3268     case Stmt::LabelStmtClass:
3269     case Stmt::AttributedStmtClass:
3270     case Stmt::DoStmtClass:
3271       break;
3272 
3273     case Stmt::CaseStmtClass:
3274     case Stmt::DefaultStmtClass:
3275       if (Case == S)
3276         Case = nullptr;
3277       break;
3278 
3279     case Stmt::IfStmtClass: {
3280       // FIXME: Precompute which side of an 'if' we would jump to, and go
3281       // straight there rather than scanning both sides.
3282       const IfStmt *IS = cast<IfStmt>(S);
3283 
3284       // Wrap the evaluation in a block scope, in case it's a DeclStmt
3285       // preceded by our switch label.
3286       BlockScopeRAII Scope(Info);
3287 
3288       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3289       if (ESR != ESR_CaseNotFound || !IS->getElse())
3290         return ESR;
3291       return EvaluateStmt(Result, Info, IS->getElse(), Case);
3292     }
3293 
3294     case Stmt::WhileStmtClass: {
3295       EvalStmtResult ESR =
3296           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3297       if (ESR != ESR_Continue)
3298         return ESR;
3299       break;
3300     }
3301 
3302     case Stmt::ForStmtClass: {
3303       const ForStmt *FS = cast<ForStmt>(S);
3304       EvalStmtResult ESR =
3305           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3306       if (ESR != ESR_Continue)
3307         return ESR;
3308       if (FS->getInc()) {
3309         FullExpressionRAII IncScope(Info);
3310         if (!EvaluateIgnoredValue(Info, FS->getInc()))
3311           return ESR_Failed;
3312       }
3313       break;
3314     }
3315 
3316     case Stmt::DeclStmtClass:
3317       // FIXME: If the variable has initialization that can't be jumped over,
3318       // bail out of any immediately-surrounding compound-statement too.
3319     default:
3320       return ESR_CaseNotFound;
3321     }
3322   }
3323 
3324   switch (S->getStmtClass()) {
3325   default:
3326     if (const Expr *E = dyn_cast<Expr>(S)) {
3327       // Don't bother evaluating beyond an expression-statement which couldn't
3328       // be evaluated.
3329       FullExpressionRAII Scope(Info);
3330       if (!EvaluateIgnoredValue(Info, E))
3331         return ESR_Failed;
3332       return ESR_Succeeded;
3333     }
3334 
3335     Info.Diag(S->getLocStart());
3336     return ESR_Failed;
3337 
3338   case Stmt::NullStmtClass:
3339     return ESR_Succeeded;
3340 
3341   case Stmt::DeclStmtClass: {
3342     const DeclStmt *DS = cast<DeclStmt>(S);
3343     for (const auto *DclIt : DS->decls()) {
3344       // Each declaration initialization is its own full-expression.
3345       // FIXME: This isn't quite right; if we're performing aggregate
3346       // initialization, each braced subexpression is its own full-expression.
3347       FullExpressionRAII Scope(Info);
3348       if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure())
3349         return ESR_Failed;
3350     }
3351     return ESR_Succeeded;
3352   }
3353 
3354   case Stmt::ReturnStmtClass: {
3355     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3356     FullExpressionRAII Scope(Info);
3357     if (RetExpr && !Evaluate(Result, Info, RetExpr))
3358       return ESR_Failed;
3359     return ESR_Returned;
3360   }
3361 
3362   case Stmt::CompoundStmtClass: {
3363     BlockScopeRAII Scope(Info);
3364 
3365     const CompoundStmt *CS = cast<CompoundStmt>(S);
3366     for (const auto *BI : CS->body()) {
3367       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
3368       if (ESR == ESR_Succeeded)
3369         Case = nullptr;
3370       else if (ESR != ESR_CaseNotFound)
3371         return ESR;
3372     }
3373     return Case ? ESR_CaseNotFound : ESR_Succeeded;
3374   }
3375 
3376   case Stmt::IfStmtClass: {
3377     const IfStmt *IS = cast<IfStmt>(S);
3378 
3379     // Evaluate the condition, as either a var decl or as an expression.
3380     BlockScopeRAII Scope(Info);
3381     bool Cond;
3382     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3383       return ESR_Failed;
3384 
3385     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3386       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3387       if (ESR != ESR_Succeeded)
3388         return ESR;
3389     }
3390     return ESR_Succeeded;
3391   }
3392 
3393   case Stmt::WhileStmtClass: {
3394     const WhileStmt *WS = cast<WhileStmt>(S);
3395     while (true) {
3396       BlockScopeRAII Scope(Info);
3397       bool Continue;
3398       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3399                         Continue))
3400         return ESR_Failed;
3401       if (!Continue)
3402         break;
3403 
3404       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3405       if (ESR != ESR_Continue)
3406         return ESR;
3407     }
3408     return ESR_Succeeded;
3409   }
3410 
3411   case Stmt::DoStmtClass: {
3412     const DoStmt *DS = cast<DoStmt>(S);
3413     bool Continue;
3414     do {
3415       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3416       if (ESR != ESR_Continue)
3417         return ESR;
3418       Case = nullptr;
3419 
3420       FullExpressionRAII CondScope(Info);
3421       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3422         return ESR_Failed;
3423     } while (Continue);
3424     return ESR_Succeeded;
3425   }
3426 
3427   case Stmt::ForStmtClass: {
3428     const ForStmt *FS = cast<ForStmt>(S);
3429     BlockScopeRAII Scope(Info);
3430     if (FS->getInit()) {
3431       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3432       if (ESR != ESR_Succeeded)
3433         return ESR;
3434     }
3435     while (true) {
3436       BlockScopeRAII Scope(Info);
3437       bool Continue = true;
3438       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3439                                          FS->getCond(), Continue))
3440         return ESR_Failed;
3441       if (!Continue)
3442         break;
3443 
3444       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3445       if (ESR != ESR_Continue)
3446         return ESR;
3447 
3448       if (FS->getInc()) {
3449         FullExpressionRAII IncScope(Info);
3450         if (!EvaluateIgnoredValue(Info, FS->getInc()))
3451           return ESR_Failed;
3452       }
3453     }
3454     return ESR_Succeeded;
3455   }
3456 
3457   case Stmt::CXXForRangeStmtClass: {
3458     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3459     BlockScopeRAII Scope(Info);
3460 
3461     // Initialize the __range variable.
3462     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3463     if (ESR != ESR_Succeeded)
3464       return ESR;
3465 
3466     // Create the __begin and __end iterators.
3467     ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3468     if (ESR != ESR_Succeeded)
3469       return ESR;
3470 
3471     while (true) {
3472       // Condition: __begin != __end.
3473       {
3474         bool Continue = true;
3475         FullExpressionRAII CondExpr(Info);
3476         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3477           return ESR_Failed;
3478         if (!Continue)
3479           break;
3480       }
3481 
3482       // User's variable declaration, initialized by *__begin.
3483       BlockScopeRAII InnerScope(Info);
3484       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3485       if (ESR != ESR_Succeeded)
3486         return ESR;
3487 
3488       // Loop body.
3489       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3490       if (ESR != ESR_Continue)
3491         return ESR;
3492 
3493       // Increment: ++__begin
3494       if (!EvaluateIgnoredValue(Info, FS->getInc()))
3495         return ESR_Failed;
3496     }
3497 
3498     return ESR_Succeeded;
3499   }
3500 
3501   case Stmt::SwitchStmtClass:
3502     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3503 
3504   case Stmt::ContinueStmtClass:
3505     return ESR_Continue;
3506 
3507   case Stmt::BreakStmtClass:
3508     return ESR_Break;
3509 
3510   case Stmt::LabelStmtClass:
3511     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3512 
3513   case Stmt::AttributedStmtClass:
3514     // As a general principle, C++11 attributes can be ignored without
3515     // any semantic impact.
3516     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3517                         Case);
3518 
3519   case Stmt::CaseStmtClass:
3520   case Stmt::DefaultStmtClass:
3521     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3522   }
3523 }
3524 
3525 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3526 /// default constructor. If so, we'll fold it whether or not it's marked as
3527 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
3528 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)3529 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3530                                            const CXXConstructorDecl *CD,
3531                                            bool IsValueInitialization) {
3532   if (!CD->isTrivial() || !CD->isDefaultConstructor())
3533     return false;
3534 
3535   // Value-initialization does not call a trivial default constructor, so such a
3536   // call is a core constant expression whether or not the constructor is
3537   // constexpr.
3538   if (!CD->isConstexpr() && !IsValueInitialization) {
3539     if (Info.getLangOpts().CPlusPlus11) {
3540       // FIXME: If DiagDecl is an implicitly-declared special member function,
3541       // we should be much more explicit about why it's not constexpr.
3542       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3543         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3544       Info.Note(CD->getLocation(), diag::note_declared_at);
3545     } else {
3546       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3547     }
3548   }
3549   return true;
3550 }
3551 
3552 /// CheckConstexprFunction - Check that a function can be called in a constant
3553 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition)3554 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3555                                    const FunctionDecl *Declaration,
3556                                    const FunctionDecl *Definition) {
3557   // Potential constant expressions can contain calls to declared, but not yet
3558   // defined, constexpr functions.
3559   if (Info.checkingPotentialConstantExpression() && !Definition &&
3560       Declaration->isConstexpr())
3561     return false;
3562 
3563   // Bail out with no diagnostic if the function declaration itself is invalid.
3564   // We will have produced a relevant diagnostic while parsing it.
3565   if (Declaration->isInvalidDecl())
3566     return false;
3567 
3568   // Can we evaluate this function call?
3569   if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3570     return true;
3571 
3572   if (Info.getLangOpts().CPlusPlus11) {
3573     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3574     // FIXME: If DiagDecl is an implicitly-declared special member function, we
3575     // should be much more explicit about why it's not constexpr.
3576     Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3577       << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3578       << DiagDecl;
3579     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3580   } else {
3581     Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3582   }
3583   return false;
3584 }
3585 
3586 namespace {
3587 typedef SmallVector<APValue, 8> ArgVector;
3588 }
3589 
3590 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)3591 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3592                          EvalInfo &Info) {
3593   bool Success = true;
3594   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3595        I != E; ++I) {
3596     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3597       // If we're checking for a potential constant expression, evaluate all
3598       // initializers even if some of them fail.
3599       if (!Info.keepEvaluatingAfterFailure())
3600         return false;
3601       Success = false;
3602     }
3603   }
3604   return Success;
3605 }
3606 
3607 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result)3608 static bool HandleFunctionCall(SourceLocation CallLoc,
3609                                const FunctionDecl *Callee, const LValue *This,
3610                                ArrayRef<const Expr*> Args, const Stmt *Body,
3611                                EvalInfo &Info, APValue &Result) {
3612   ArgVector ArgValues(Args.size());
3613   if (!EvaluateArgs(Args, ArgValues, Info))
3614     return false;
3615 
3616   if (!Info.CheckCallLimit(CallLoc))
3617     return false;
3618 
3619   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3620 
3621   // For a trivial copy or move assignment, perform an APValue copy. This is
3622   // essential for unions, where the operations performed by the assignment
3623   // operator cannot be represented as statements.
3624   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3625   if (MD && MD->isDefaulted() && MD->isTrivial()) {
3626     assert(This &&
3627            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3628     LValue RHS;
3629     RHS.setFrom(Info.Ctx, ArgValues[0]);
3630     APValue RHSValue;
3631     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3632                                         RHS, RHSValue))
3633       return false;
3634     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3635                           RHSValue))
3636       return false;
3637     This->moveInto(Result);
3638     return true;
3639   }
3640 
3641   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
3642   if (ESR == ESR_Succeeded) {
3643     if (Callee->getReturnType()->isVoidType())
3644       return true;
3645     Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3646   }
3647   return ESR == ESR_Returned;
3648 }
3649 
3650 /// Evaluate a constructor call.
HandleConstructorCall(SourceLocation CallLoc,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)3651 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3652                                   ArrayRef<const Expr*> Args,
3653                                   const CXXConstructorDecl *Definition,
3654                                   EvalInfo &Info, APValue &Result) {
3655   ArgVector ArgValues(Args.size());
3656   if (!EvaluateArgs(Args, ArgValues, Info))
3657     return false;
3658 
3659   if (!Info.CheckCallLimit(CallLoc))
3660     return false;
3661 
3662   const CXXRecordDecl *RD = Definition->getParent();
3663   if (RD->getNumVBases()) {
3664     Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3665     return false;
3666   }
3667 
3668   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3669 
3670   // If it's a delegating constructor, just delegate.
3671   if (Definition->isDelegatingConstructor()) {
3672     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3673     {
3674       FullExpressionRAII InitScope(Info);
3675       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3676         return false;
3677     }
3678     return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3679   }
3680 
3681   // For a trivial copy or move constructor, perform an APValue copy. This is
3682   // essential for unions, where the operations performed by the constructor
3683   // cannot be represented by ctor-initializers.
3684   if (Definition->isDefaulted() &&
3685       ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
3686        (Definition->isMoveConstructor() && Definition->isTrivial()))) {
3687     LValue RHS;
3688     RHS.setFrom(Info.Ctx, ArgValues[0]);
3689     return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3690                                           RHS, Result);
3691   }
3692 
3693   // Reserve space for the struct members.
3694   if (!RD->isUnion() && Result.isUninit())
3695     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3696                      std::distance(RD->field_begin(), RD->field_end()));
3697 
3698   if (RD->isInvalidDecl()) return false;
3699   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3700 
3701   // A scope for temporaries lifetime-extended by reference members.
3702   BlockScopeRAII LifetimeExtendedScope(Info);
3703 
3704   bool Success = true;
3705   unsigned BasesSeen = 0;
3706 #ifndef NDEBUG
3707   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3708 #endif
3709   for (const auto *I : Definition->inits()) {
3710     LValue Subobject = This;
3711     APValue *Value = &Result;
3712 
3713     // Determine the subobject to initialize.
3714     FieldDecl *FD = nullptr;
3715     if (I->isBaseInitializer()) {
3716       QualType BaseType(I->getBaseClass(), 0);
3717 #ifndef NDEBUG
3718       // Non-virtual base classes are initialized in the order in the class
3719       // definition. We have already checked for virtual base classes.
3720       assert(!BaseIt->isVirtual() && "virtual base for literal type");
3721       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3722              "base class initializers not in expected order");
3723       ++BaseIt;
3724 #endif
3725       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
3726                                   BaseType->getAsCXXRecordDecl(), &Layout))
3727         return false;
3728       Value = &Result.getStructBase(BasesSeen++);
3729     } else if ((FD = I->getMember())) {
3730       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
3731         return false;
3732       if (RD->isUnion()) {
3733         Result = APValue(FD);
3734         Value = &Result.getUnionValue();
3735       } else {
3736         Value = &Result.getStructField(FD->getFieldIndex());
3737       }
3738     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
3739       // Walk the indirect field decl's chain to find the object to initialize,
3740       // and make sure we've initialized every step along it.
3741       for (auto *C : IFD->chain()) {
3742         FD = cast<FieldDecl>(C);
3743         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3744         // Switch the union field if it differs. This happens if we had
3745         // preceding zero-initialization, and we're now initializing a union
3746         // subobject other than the first.
3747         // FIXME: In this case, the values of the other subobjects are
3748         // specified, since zero-initialization sets all padding bits to zero.
3749         if (Value->isUninit() ||
3750             (Value->isUnion() && Value->getUnionField() != FD)) {
3751           if (CD->isUnion())
3752             *Value = APValue(FD);
3753           else
3754             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3755                              std::distance(CD->field_begin(), CD->field_end()));
3756         }
3757         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
3758           return false;
3759         if (CD->isUnion())
3760           Value = &Value->getUnionValue();
3761         else
3762           Value = &Value->getStructField(FD->getFieldIndex());
3763       }
3764     } else {
3765       llvm_unreachable("unknown base initializer kind");
3766     }
3767 
3768     FullExpressionRAII InitScope(Info);
3769     if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
3770         (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
3771                                                           *Value, FD))) {
3772       // If we're checking for a potential constant expression, evaluate all
3773       // initializers even if some of them fail.
3774       if (!Info.keepEvaluatingAfterFailure())
3775         return false;
3776       Success = false;
3777     }
3778   }
3779 
3780   return Success &&
3781          EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3782 }
3783 
3784 //===----------------------------------------------------------------------===//
3785 // Generic Evaluation
3786 //===----------------------------------------------------------------------===//
3787 namespace {
3788 
3789 template <class Derived>
3790 class ExprEvaluatorBase
3791   : public ConstStmtVisitor<Derived, bool> {
3792 private:
DerivedSuccess(const APValue & V,const Expr * E)3793   bool DerivedSuccess(const APValue &V, const Expr *E) {
3794     return static_cast<Derived*>(this)->Success(V, E);
3795   }
DerivedZeroInitialization(const Expr * E)3796   bool DerivedZeroInitialization(const Expr *E) {
3797     return static_cast<Derived*>(this)->ZeroInitialization(E);
3798   }
3799 
3800   // Check whether a conditional operator with a non-constant condition is a
3801   // potential constant expression. If neither arm is a potential constant
3802   // expression, then the conditional operator is not either.
3803   template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)3804   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
3805     assert(Info.checkingPotentialConstantExpression());
3806 
3807     // Speculatively evaluate both arms.
3808     {
3809       SmallVector<PartialDiagnosticAt, 8> Diag;
3810       SpeculativeEvaluationRAII Speculate(Info, &Diag);
3811 
3812       StmtVisitorTy::Visit(E->getFalseExpr());
3813       if (Diag.empty())
3814         return;
3815 
3816       Diag.clear();
3817       StmtVisitorTy::Visit(E->getTrueExpr());
3818       if (Diag.empty())
3819         return;
3820     }
3821 
3822     Error(E, diag::note_constexpr_conditional_never_const);
3823   }
3824 
3825 
3826   template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)3827   bool HandleConditionalOperator(const ConditionalOperator *E) {
3828     bool BoolResult;
3829     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
3830       if (Info.checkingPotentialConstantExpression())
3831         CheckPotentialConstantConditional(E);
3832       return false;
3833     }
3834 
3835     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
3836     return StmtVisitorTy::Visit(EvalExpr);
3837   }
3838 
3839 protected:
3840   EvalInfo &Info;
3841   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
3842   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
3843 
CCEDiag(const Expr * E,diag::kind D)3844   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
3845     return Info.CCEDiag(E, D);
3846   }
3847 
ZeroInitialization(const Expr * E)3848   bool ZeroInitialization(const Expr *E) { return Error(E); }
3849 
3850 public:
ExprEvaluatorBase(EvalInfo & Info)3851   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
3852 
getEvalInfo()3853   EvalInfo &getEvalInfo() { return Info; }
3854 
3855   /// Report an evaluation error. This should only be called when an error is
3856   /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)3857   bool Error(const Expr *E, diag::kind D) {
3858     Info.Diag(E, D);
3859     return false;
3860   }
Error(const Expr * E)3861   bool Error(const Expr *E) {
3862     return Error(E, diag::note_invalid_subexpr_in_const_expr);
3863   }
3864 
VisitStmt(const Stmt *)3865   bool VisitStmt(const Stmt *) {
3866     llvm_unreachable("Expression evaluator should not be called on stmts");
3867   }
VisitExpr(const Expr * E)3868   bool VisitExpr(const Expr *E) {
3869     return Error(E);
3870   }
3871 
VisitParenExpr(const ParenExpr * E)3872   bool VisitParenExpr(const ParenExpr *E)
3873     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)3874   bool VisitUnaryExtension(const UnaryOperator *E)
3875     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)3876   bool VisitUnaryPlus(const UnaryOperator *E)
3877     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)3878   bool VisitChooseExpr(const ChooseExpr *E)
3879     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)3880   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
3881     { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)3882   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
3883     { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)3884   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
3885     { return StmtVisitorTy::Visit(E->getExpr()); }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)3886   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
3887     // The initializer may not have been parsed yet, or might be erroneous.
3888     if (!E->getExpr())
3889       return Error(E);
3890     return StmtVisitorTy::Visit(E->getExpr());
3891   }
3892   // We cannot create any objects for which cleanups are required, so there is
3893   // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)3894   bool VisitExprWithCleanups(const ExprWithCleanups *E)
3895     { return StmtVisitorTy::Visit(E->getSubExpr()); }
3896 
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)3897   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
3898     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
3899     return static_cast<Derived*>(this)->VisitCastExpr(E);
3900   }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)3901   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
3902     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
3903     return static_cast<Derived*>(this)->VisitCastExpr(E);
3904   }
3905 
VisitBinaryOperator(const BinaryOperator * E)3906   bool VisitBinaryOperator(const BinaryOperator *E) {
3907     switch (E->getOpcode()) {
3908     default:
3909       return Error(E);
3910 
3911     case BO_Comma:
3912       VisitIgnoredValue(E->getLHS());
3913       return StmtVisitorTy::Visit(E->getRHS());
3914 
3915     case BO_PtrMemD:
3916     case BO_PtrMemI: {
3917       LValue Obj;
3918       if (!HandleMemberPointerAccess(Info, E, Obj))
3919         return false;
3920       APValue Result;
3921       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
3922         return false;
3923       return DerivedSuccess(Result, E);
3924     }
3925     }
3926   }
3927 
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)3928   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
3929     // Evaluate and cache the common expression. We treat it as a temporary,
3930     // even though it's not quite the same thing.
3931     if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
3932                   Info, E->getCommon()))
3933       return false;
3934 
3935     return HandleConditionalOperator(E);
3936   }
3937 
VisitConditionalOperator(const ConditionalOperator * E)3938   bool VisitConditionalOperator(const ConditionalOperator *E) {
3939     bool IsBcpCall = false;
3940     // If the condition (ignoring parens) is a __builtin_constant_p call,
3941     // the result is a constant expression if it can be folded without
3942     // side-effects. This is an important GNU extension. See GCC PR38377
3943     // for discussion.
3944     if (const CallExpr *CallCE =
3945           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
3946       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
3947         IsBcpCall = true;
3948 
3949     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
3950     // constant expression; we can't check whether it's potentially foldable.
3951     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
3952       return false;
3953 
3954     FoldConstant Fold(Info, IsBcpCall);
3955     if (!HandleConditionalOperator(E)) {
3956       Fold.keepDiagnostics();
3957       return false;
3958     }
3959 
3960     return true;
3961   }
3962 
VisitOpaqueValueExpr(const OpaqueValueExpr * E)3963   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
3964     if (APValue *Value = Info.CurrentCall->getTemporary(E))
3965       return DerivedSuccess(*Value, E);
3966 
3967     const Expr *Source = E->getSourceExpr();
3968     if (!Source)
3969       return Error(E);
3970     if (Source == E) { // sanity checking.
3971       assert(0 && "OpaqueValueExpr recursively refers to itself");
3972       return Error(E);
3973     }
3974     return StmtVisitorTy::Visit(Source);
3975   }
3976 
VisitCallExpr(const CallExpr * E)3977   bool VisitCallExpr(const CallExpr *E) {
3978     const Expr *Callee = E->getCallee()->IgnoreParens();
3979     QualType CalleeType = Callee->getType();
3980 
3981     const FunctionDecl *FD = nullptr;
3982     LValue *This = nullptr, ThisVal;
3983     ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3984     bool HasQualifier = false;
3985 
3986     // Extract function decl and 'this' pointer from the callee.
3987     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
3988       const ValueDecl *Member = nullptr;
3989       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
3990         // Explicit bound member calls, such as x.f() or p->g();
3991         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
3992           return false;
3993         Member = ME->getMemberDecl();
3994         This = &ThisVal;
3995         HasQualifier = ME->hasQualifier();
3996       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
3997         // Indirect bound member calls ('.*' or '->*').
3998         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
3999         if (!Member) return false;
4000         This = &ThisVal;
4001       } else
4002         return Error(Callee);
4003 
4004       FD = dyn_cast<FunctionDecl>(Member);
4005       if (!FD)
4006         return Error(Callee);
4007     } else if (CalleeType->isFunctionPointerType()) {
4008       LValue Call;
4009       if (!EvaluatePointer(Callee, Call, Info))
4010         return false;
4011 
4012       if (!Call.getLValueOffset().isZero())
4013         return Error(Callee);
4014       FD = dyn_cast_or_null<FunctionDecl>(
4015                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
4016       if (!FD)
4017         return Error(Callee);
4018 
4019       // Overloaded operator calls to member functions are represented as normal
4020       // calls with '*this' as the first argument.
4021       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4022       if (MD && !MD->isStatic()) {
4023         // FIXME: When selecting an implicit conversion for an overloaded
4024         // operator delete, we sometimes try to evaluate calls to conversion
4025         // operators without a 'this' parameter!
4026         if (Args.empty())
4027           return Error(E);
4028 
4029         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4030           return false;
4031         This = &ThisVal;
4032         Args = Args.slice(1);
4033       }
4034 
4035       // Don't call function pointers which have been cast to some other type.
4036       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
4037         return Error(E);
4038     } else
4039       return Error(E);
4040 
4041     if (This && !This->checkSubobject(Info, E, CSK_This))
4042       return false;
4043 
4044     // DR1358 allows virtual constexpr functions in some cases. Don't allow
4045     // calls to such functions in constant expressions.
4046     if (This && !HasQualifier &&
4047         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4048       return Error(E, diag::note_constexpr_virtual_call);
4049 
4050     const FunctionDecl *Definition = nullptr;
4051     Stmt *Body = FD->getBody(Definition);
4052     APValue Result;
4053 
4054     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
4055         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
4056                             Info, Result))
4057       return false;
4058 
4059     return DerivedSuccess(Result, E);
4060   }
4061 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4062   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4063     return StmtVisitorTy::Visit(E->getInitializer());
4064   }
VisitInitListExpr(const InitListExpr * E)4065   bool VisitInitListExpr(const InitListExpr *E) {
4066     if (E->getNumInits() == 0)
4067       return DerivedZeroInitialization(E);
4068     if (E->getNumInits() == 1)
4069       return StmtVisitorTy::Visit(E->getInit(0));
4070     return Error(E);
4071   }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)4072   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4073     return DerivedZeroInitialization(E);
4074   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)4075   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4076     return DerivedZeroInitialization(E);
4077   }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)4078   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4079     return DerivedZeroInitialization(E);
4080   }
4081 
4082   /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)4083   bool VisitMemberExpr(const MemberExpr *E) {
4084     assert(!E->isArrow() && "missing call to bound member function?");
4085 
4086     APValue Val;
4087     if (!Evaluate(Val, Info, E->getBase()))
4088       return false;
4089 
4090     QualType BaseTy = E->getBase()->getType();
4091 
4092     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4093     if (!FD) return Error(E);
4094     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4095     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4096            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4097 
4098     CompleteObject Obj(&Val, BaseTy);
4099     SubobjectDesignator Designator(BaseTy);
4100     Designator.addDeclUnchecked(FD);
4101 
4102     APValue Result;
4103     return extractSubobject(Info, E, Obj, Designator, Result) &&
4104            DerivedSuccess(Result, E);
4105   }
4106 
VisitCastExpr(const CastExpr * E)4107   bool VisitCastExpr(const CastExpr *E) {
4108     switch (E->getCastKind()) {
4109     default:
4110       break;
4111 
4112     case CK_AtomicToNonAtomic: {
4113       APValue AtomicVal;
4114       if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
4115         return false;
4116       return DerivedSuccess(AtomicVal, E);
4117     }
4118 
4119     case CK_NoOp:
4120     case CK_UserDefinedConversion:
4121       return StmtVisitorTy::Visit(E->getSubExpr());
4122 
4123     case CK_LValueToRValue: {
4124       LValue LVal;
4125       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4126         return false;
4127       APValue RVal;
4128       // Note, we use the subexpression's type in order to retain cv-qualifiers.
4129       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4130                                           LVal, RVal))
4131         return false;
4132       return DerivedSuccess(RVal, E);
4133     }
4134     }
4135 
4136     return Error(E);
4137   }
4138 
VisitUnaryPostInc(const UnaryOperator * UO)4139   bool VisitUnaryPostInc(const UnaryOperator *UO) {
4140     return VisitUnaryPostIncDec(UO);
4141   }
VisitUnaryPostDec(const UnaryOperator * UO)4142   bool VisitUnaryPostDec(const UnaryOperator *UO) {
4143     return VisitUnaryPostIncDec(UO);
4144   }
VisitUnaryPostIncDec(const UnaryOperator * UO)4145   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
4146     if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4147       return Error(UO);
4148 
4149     LValue LVal;
4150     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4151       return false;
4152     APValue RVal;
4153     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4154                       UO->isIncrementOp(), &RVal))
4155       return false;
4156     return DerivedSuccess(RVal, UO);
4157   }
4158 
VisitStmtExpr(const StmtExpr * E)4159   bool VisitStmtExpr(const StmtExpr *E) {
4160     // We will have checked the full-expressions inside the statement expression
4161     // when they were completed, and don't need to check them again now.
4162     if (Info.checkingForOverflow())
4163       return Error(E);
4164 
4165     BlockScopeRAII Scope(Info);
4166     const CompoundStmt *CS = E->getSubStmt();
4167     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4168                                            BE = CS->body_end();
4169          /**/; ++BI) {
4170       if (BI + 1 == BE) {
4171         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4172         if (!FinalExpr) {
4173           Info.Diag((*BI)->getLocStart(),
4174                     diag::note_constexpr_stmt_expr_unsupported);
4175           return false;
4176         }
4177         return this->Visit(FinalExpr);
4178       }
4179 
4180       APValue ReturnValue;
4181       EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
4182       if (ESR != ESR_Succeeded) {
4183         // FIXME: If the statement-expression terminated due to 'return',
4184         // 'break', or 'continue', it would be nice to propagate that to
4185         // the outer statement evaluation rather than bailing out.
4186         if (ESR != ESR_Failed)
4187           Info.Diag((*BI)->getLocStart(),
4188                     diag::note_constexpr_stmt_expr_unsupported);
4189         return false;
4190       }
4191     }
4192   }
4193 
4194   /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)4195   void VisitIgnoredValue(const Expr *E) {
4196     EvaluateIgnoredValue(Info, E);
4197   }
4198 };
4199 
4200 }
4201 
4202 //===----------------------------------------------------------------------===//
4203 // Common base class for lvalue and temporary evaluation.
4204 //===----------------------------------------------------------------------===//
4205 namespace {
4206 template<class Derived>
4207 class LValueExprEvaluatorBase
4208   : public ExprEvaluatorBase<Derived> {
4209 protected:
4210   LValue &Result;
4211   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4212   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
4213 
Success(APValue::LValueBase B)4214   bool Success(APValue::LValueBase B) {
4215     Result.set(B);
4216     return true;
4217   }
4218 
4219 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)4220   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4221     ExprEvaluatorBaseTy(Info), Result(Result) {}
4222 
Success(const APValue & V,const Expr * E)4223   bool Success(const APValue &V, const Expr *E) {
4224     Result.setFrom(this->Info.Ctx, V);
4225     return true;
4226   }
4227 
VisitMemberExpr(const MemberExpr * E)4228   bool VisitMemberExpr(const MemberExpr *E) {
4229     // Handle non-static data members.
4230     QualType BaseTy;
4231     if (E->isArrow()) {
4232       if (!EvaluatePointer(E->getBase(), Result, this->Info))
4233         return false;
4234       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4235     } else if (E->getBase()->isRValue()) {
4236       assert(E->getBase()->getType()->isRecordType());
4237       if (!EvaluateTemporary(E->getBase(), Result, this->Info))
4238         return false;
4239       BaseTy = E->getBase()->getType();
4240     } else {
4241       if (!this->Visit(E->getBase()))
4242         return false;
4243       BaseTy = E->getBase()->getType();
4244     }
4245 
4246     const ValueDecl *MD = E->getMemberDecl();
4247     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4248       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4249              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4250       (void)BaseTy;
4251       if (!HandleLValueMember(this->Info, E, Result, FD))
4252         return false;
4253     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4254       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4255         return false;
4256     } else
4257       return this->Error(E);
4258 
4259     if (MD->getType()->isReferenceType()) {
4260       APValue RefValue;
4261       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4262                                           RefValue))
4263         return false;
4264       return Success(RefValue, E);
4265     }
4266     return true;
4267   }
4268 
VisitBinaryOperator(const BinaryOperator * E)4269   bool VisitBinaryOperator(const BinaryOperator *E) {
4270     switch (E->getOpcode()) {
4271     default:
4272       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4273 
4274     case BO_PtrMemD:
4275     case BO_PtrMemI:
4276       return HandleMemberPointerAccess(this->Info, E, Result);
4277     }
4278   }
4279 
VisitCastExpr(const CastExpr * E)4280   bool VisitCastExpr(const CastExpr *E) {
4281     switch (E->getCastKind()) {
4282     default:
4283       return ExprEvaluatorBaseTy::VisitCastExpr(E);
4284 
4285     case CK_DerivedToBase:
4286     case CK_UncheckedDerivedToBase:
4287       if (!this->Visit(E->getSubExpr()))
4288         return false;
4289 
4290       // Now figure out the necessary offset to add to the base LV to get from
4291       // the derived class to the base class.
4292       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4293                                   Result);
4294     }
4295   }
4296 };
4297 }
4298 
4299 //===----------------------------------------------------------------------===//
4300 // LValue Evaluation
4301 //
4302 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4303 // function designators (in C), decl references to void objects (in C), and
4304 // temporaries (if building with -Wno-address-of-temporary).
4305 //
4306 // LValue evaluation produces values comprising a base expression of one of the
4307 // following types:
4308 // - Declarations
4309 //  * VarDecl
4310 //  * FunctionDecl
4311 // - Literals
4312 //  * CompoundLiteralExpr in C
4313 //  * StringLiteral
4314 //  * CXXTypeidExpr
4315 //  * PredefinedExpr
4316 //  * ObjCStringLiteralExpr
4317 //  * ObjCEncodeExpr
4318 //  * AddrLabelExpr
4319 //  * BlockExpr
4320 //  * CallExpr for a MakeStringConstant builtin
4321 // - Locals and temporaries
4322 //  * MaterializeTemporaryExpr
4323 //  * Any Expr, with a CallIndex indicating the function in which the temporary
4324 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
4325 //    from the AST (FIXME).
4326 //  * A MaterializeTemporaryExpr that has static storage duration, with no
4327 //    CallIndex, for a lifetime-extended temporary.
4328 // plus an offset in bytes.
4329 //===----------------------------------------------------------------------===//
4330 namespace {
4331 class LValueExprEvaluator
4332   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4333 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)4334   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4335     LValueExprEvaluatorBaseTy(Info, Result) {}
4336 
4337   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4338   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4339 
4340   bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)4341   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4342   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4343   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4344   bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)4345   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)4346   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4347   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4348   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4349   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4350   bool VisitUnaryDeref(const UnaryOperator *E);
4351   bool VisitUnaryReal(const UnaryOperator *E);
4352   bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)4353   bool VisitUnaryPreInc(const UnaryOperator *UO) {
4354     return VisitUnaryPreIncDec(UO);
4355   }
VisitUnaryPreDec(const UnaryOperator * UO)4356   bool VisitUnaryPreDec(const UnaryOperator *UO) {
4357     return VisitUnaryPreIncDec(UO);
4358   }
4359   bool VisitBinAssign(const BinaryOperator *BO);
4360   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4361 
VisitCastExpr(const CastExpr * E)4362   bool VisitCastExpr(const CastExpr *E) {
4363     switch (E->getCastKind()) {
4364     default:
4365       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4366 
4367     case CK_LValueBitCast:
4368       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4369       if (!Visit(E->getSubExpr()))
4370         return false;
4371       Result.Designator.setInvalid();
4372       return true;
4373 
4374     case CK_BaseToDerived:
4375       if (!Visit(E->getSubExpr()))
4376         return false;
4377       return HandleBaseToDerivedCast(Info, E, Result);
4378     }
4379   }
4380 };
4381 } // end anonymous namespace
4382 
4383 /// Evaluate an expression as an lvalue. This can be legitimately called on
4384 /// expressions which are not glvalues, in two cases:
4385 ///  * function designators in C, and
4386 ///  * "extern void" objects
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)4387 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4388   assert(E->isGLValue() || E->getType()->isFunctionType() ||
4389          E->getType()->isVoidType());
4390   return LValueExprEvaluator(Info, Result).Visit(E);
4391 }
4392 
VisitDeclRefExpr(const DeclRefExpr * E)4393 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4394   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4395     return Success(FD);
4396   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4397     return VisitVarDecl(E, VD);
4398   return Error(E);
4399 }
4400 
VisitVarDecl(const Expr * E,const VarDecl * VD)4401 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4402   CallStackFrame *Frame = nullptr;
4403   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4404     Frame = Info.CurrentCall;
4405 
4406   if (!VD->getType()->isReferenceType()) {
4407     if (Frame) {
4408       Result.set(VD, Frame->Index);
4409       return true;
4410     }
4411     return Success(VD);
4412   }
4413 
4414   APValue *V;
4415   if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4416     return false;
4417   if (V->isUninit()) {
4418     if (!Info.checkingPotentialConstantExpression())
4419       Info.Diag(E, diag::note_constexpr_use_uninit_reference);
4420     return false;
4421   }
4422   return Success(*V, E);
4423 }
4424 
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)4425 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4426     const MaterializeTemporaryExpr *E) {
4427   // Walk through the expression to find the materialized temporary itself.
4428   SmallVector<const Expr *, 2> CommaLHSs;
4429   SmallVector<SubobjectAdjustment, 2> Adjustments;
4430   const Expr *Inner = E->GetTemporaryExpr()->
4431       skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4432 
4433   // If we passed any comma operators, evaluate their LHSs.
4434   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4435     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4436       return false;
4437 
4438   // A materialized temporary with static storage duration can appear within the
4439   // result of a constant expression evaluation, so we need to preserve its
4440   // value for use outside this evaluation.
4441   APValue *Value;
4442   if (E->getStorageDuration() == SD_Static) {
4443     Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4444     *Value = APValue();
4445     Result.set(E);
4446   } else {
4447     Value = &Info.CurrentCall->
4448         createTemporary(E, E->getStorageDuration() == SD_Automatic);
4449     Result.set(E, Info.CurrentCall->Index);
4450   }
4451 
4452   QualType Type = Inner->getType();
4453 
4454   // Materialize the temporary itself.
4455   if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4456       (E->getStorageDuration() == SD_Static &&
4457        !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4458     *Value = APValue();
4459     return false;
4460   }
4461 
4462   // Adjust our lvalue to refer to the desired subobject.
4463   for (unsigned I = Adjustments.size(); I != 0; /**/) {
4464     --I;
4465     switch (Adjustments[I].Kind) {
4466     case SubobjectAdjustment::DerivedToBaseAdjustment:
4467       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4468                                 Type, Result))
4469         return false;
4470       Type = Adjustments[I].DerivedToBase.BasePath->getType();
4471       break;
4472 
4473     case SubobjectAdjustment::FieldAdjustment:
4474       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4475         return false;
4476       Type = Adjustments[I].Field->getType();
4477       break;
4478 
4479     case SubobjectAdjustment::MemberPointerAdjustment:
4480       if (!HandleMemberPointerAccess(this->Info, Type, Result,
4481                                      Adjustments[I].Ptr.RHS))
4482         return false;
4483       Type = Adjustments[I].Ptr.MPT->getPointeeType();
4484       break;
4485     }
4486   }
4487 
4488   return true;
4489 }
4490 
4491 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4492 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4493   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4494   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4495   // only see this when folding in C, so there's no standard to follow here.
4496   return Success(E);
4497 }
4498 
VisitCXXTypeidExpr(const CXXTypeidExpr * E)4499 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4500   if (!E->isPotentiallyEvaluated())
4501     return Success(E);
4502 
4503   Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4504     << E->getExprOperand()->getType()
4505     << E->getExprOperand()->getSourceRange();
4506   return false;
4507 }
4508 
VisitCXXUuidofExpr(const CXXUuidofExpr * E)4509 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4510   return Success(E);
4511 }
4512 
VisitMemberExpr(const MemberExpr * E)4513 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4514   // Handle static data members.
4515   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4516     VisitIgnoredValue(E->getBase());
4517     return VisitVarDecl(E, VD);
4518   }
4519 
4520   // Handle static member functions.
4521   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4522     if (MD->isStatic()) {
4523       VisitIgnoredValue(E->getBase());
4524       return Success(MD);
4525     }
4526   }
4527 
4528   // Handle non-static data members.
4529   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4530 }
4531 
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)4532 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4533   // FIXME: Deal with vectors as array subscript bases.
4534   if (E->getBase()->getType()->isVectorType())
4535     return Error(E);
4536 
4537   if (!EvaluatePointer(E->getBase(), Result, Info))
4538     return false;
4539 
4540   APSInt Index;
4541   if (!EvaluateInteger(E->getIdx(), Index, Info))
4542     return false;
4543 
4544   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4545                                      getExtValue(Index));
4546 }
4547 
VisitUnaryDeref(const UnaryOperator * E)4548 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4549   return EvaluatePointer(E->getSubExpr(), Result, Info);
4550 }
4551 
VisitUnaryReal(const UnaryOperator * E)4552 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4553   if (!Visit(E->getSubExpr()))
4554     return false;
4555   // __real is a no-op on scalar lvalues.
4556   if (E->getSubExpr()->getType()->isAnyComplexType())
4557     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4558   return true;
4559 }
4560 
VisitUnaryImag(const UnaryOperator * E)4561 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4562   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4563          "lvalue __imag__ on scalar?");
4564   if (!Visit(E->getSubExpr()))
4565     return false;
4566   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4567   return true;
4568 }
4569 
VisitUnaryPreIncDec(const UnaryOperator * UO)4570 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4571   if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4572     return Error(UO);
4573 
4574   if (!this->Visit(UO->getSubExpr()))
4575     return false;
4576 
4577   return handleIncDec(
4578       this->Info, UO, Result, UO->getSubExpr()->getType(),
4579       UO->isIncrementOp(), nullptr);
4580 }
4581 
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)4582 bool LValueExprEvaluator::VisitCompoundAssignOperator(
4583     const CompoundAssignOperator *CAO) {
4584   if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4585     return Error(CAO);
4586 
4587   APValue RHS;
4588 
4589   // The overall lvalue result is the result of evaluating the LHS.
4590   if (!this->Visit(CAO->getLHS())) {
4591     if (Info.keepEvaluatingAfterFailure())
4592       Evaluate(RHS, this->Info, CAO->getRHS());
4593     return false;
4594   }
4595 
4596   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4597     return false;
4598 
4599   return handleCompoundAssignment(
4600       this->Info, CAO,
4601       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4602       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4603 }
4604 
VisitBinAssign(const BinaryOperator * E)4605 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4606   if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4607     return Error(E);
4608 
4609   APValue NewVal;
4610 
4611   if (!this->Visit(E->getLHS())) {
4612     if (Info.keepEvaluatingAfterFailure())
4613       Evaluate(NewVal, this->Info, E->getRHS());
4614     return false;
4615   }
4616 
4617   if (!Evaluate(NewVal, this->Info, E->getRHS()))
4618     return false;
4619 
4620   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4621                           NewVal);
4622 }
4623 
4624 //===----------------------------------------------------------------------===//
4625 // Pointer Evaluation
4626 //===----------------------------------------------------------------------===//
4627 
4628 namespace {
4629 class PointerExprEvaluator
4630   : public ExprEvaluatorBase<PointerExprEvaluator> {
4631   LValue &Result;
4632 
Success(const Expr * E)4633   bool Success(const Expr *E) {
4634     Result.set(E);
4635     return true;
4636   }
4637 public:
4638 
PointerExprEvaluator(EvalInfo & info,LValue & Result)4639   PointerExprEvaluator(EvalInfo &info, LValue &Result)
4640     : ExprEvaluatorBaseTy(info), Result(Result) {}
4641 
Success(const APValue & V,const Expr * E)4642   bool Success(const APValue &V, const Expr *E) {
4643     Result.setFrom(Info.Ctx, V);
4644     return true;
4645   }
ZeroInitialization(const Expr * E)4646   bool ZeroInitialization(const Expr *E) {
4647     return Success((Expr*)nullptr);
4648   }
4649 
4650   bool VisitBinaryOperator(const BinaryOperator *E);
4651   bool VisitCastExpr(const CastExpr* E);
4652   bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)4653   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4654       { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)4655   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4656       { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)4657   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4658       { return Success(E); }
4659   bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)4660   bool VisitBlockExpr(const BlockExpr *E) {
4661     if (!E->getBlockDecl()->hasCaptures())
4662       return Success(E);
4663     return Error(E);
4664   }
VisitCXXThisExpr(const CXXThisExpr * E)4665   bool VisitCXXThisExpr(const CXXThisExpr *E) {
4666     // Can't look at 'this' when checking a potential constant expression.
4667     if (Info.checkingPotentialConstantExpression())
4668       return false;
4669     if (!Info.CurrentCall->This) {
4670       if (Info.getLangOpts().CPlusPlus11)
4671         Info.Diag(E, diag::note_constexpr_this) << E->isImplicit();
4672       else
4673         Info.Diag(E);
4674       return false;
4675     }
4676     Result = *Info.CurrentCall->This;
4677     return true;
4678   }
4679 
4680   // FIXME: Missing: @protocol, @selector
4681 };
4682 } // end anonymous namespace
4683 
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)4684 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4685   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4686   return PointerExprEvaluator(Info, Result).Visit(E);
4687 }
4688 
VisitBinaryOperator(const BinaryOperator * E)4689 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4690   if (E->getOpcode() != BO_Add &&
4691       E->getOpcode() != BO_Sub)
4692     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4693 
4694   const Expr *PExp = E->getLHS();
4695   const Expr *IExp = E->getRHS();
4696   if (IExp->getType()->isPointerType())
4697     std::swap(PExp, IExp);
4698 
4699   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4700   if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4701     return false;
4702 
4703   llvm::APSInt Offset;
4704   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4705     return false;
4706 
4707   int64_t AdditionalOffset = getExtValue(Offset);
4708   if (E->getOpcode() == BO_Sub)
4709     AdditionalOffset = -AdditionalOffset;
4710 
4711   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4712   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4713                                      AdditionalOffset);
4714 }
4715 
VisitUnaryAddrOf(const UnaryOperator * E)4716 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4717   return EvaluateLValue(E->getSubExpr(), Result, Info);
4718 }
4719 
VisitCastExpr(const CastExpr * E)4720 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4721   const Expr* SubExpr = E->getSubExpr();
4722 
4723   switch (E->getCastKind()) {
4724   default:
4725     break;
4726 
4727   case CK_BitCast:
4728   case CK_CPointerToObjCPointerCast:
4729   case CK_BlockPointerToObjCPointerCast:
4730   case CK_AnyPointerToBlockPointerCast:
4731     if (!Visit(SubExpr))
4732       return false;
4733     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4734     // permitted in constant expressions in C++11. Bitcasts from cv void* are
4735     // also static_casts, but we disallow them as a resolution to DR1312.
4736     if (!E->getType()->isVoidPointerType()) {
4737       Result.Designator.setInvalid();
4738       if (SubExpr->getType()->isVoidPointerType())
4739         CCEDiag(E, diag::note_constexpr_invalid_cast)
4740           << 3 << SubExpr->getType();
4741       else
4742         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4743     }
4744     return true;
4745 
4746   case CK_DerivedToBase:
4747   case CK_UncheckedDerivedToBase:
4748     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4749       return false;
4750     if (!Result.Base && Result.Offset.isZero())
4751       return true;
4752 
4753     // Now figure out the necessary offset to add to the base LV to get from
4754     // the derived class to the base class.
4755     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4756                                   castAs<PointerType>()->getPointeeType(),
4757                                 Result);
4758 
4759   case CK_BaseToDerived:
4760     if (!Visit(E->getSubExpr()))
4761       return false;
4762     if (!Result.Base && Result.Offset.isZero())
4763       return true;
4764     return HandleBaseToDerivedCast(Info, E, Result);
4765 
4766   case CK_NullToPointer:
4767     VisitIgnoredValue(E->getSubExpr());
4768     return ZeroInitialization(E);
4769 
4770   case CK_IntegralToPointer: {
4771     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4772 
4773     APValue Value;
4774     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
4775       break;
4776 
4777     if (Value.isInt()) {
4778       unsigned Size = Info.Ctx.getTypeSize(E->getType());
4779       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
4780       Result.Base = (Expr*)nullptr;
4781       Result.Offset = CharUnits::fromQuantity(N);
4782       Result.CallIndex = 0;
4783       Result.Designator.setInvalid();
4784       return true;
4785     } else {
4786       // Cast is of an lvalue, no need to change value.
4787       Result.setFrom(Info.Ctx, Value);
4788       return true;
4789     }
4790   }
4791   case CK_ArrayToPointerDecay:
4792     if (SubExpr->isGLValue()) {
4793       if (!EvaluateLValue(SubExpr, Result, Info))
4794         return false;
4795     } else {
4796       Result.set(SubExpr, Info.CurrentCall->Index);
4797       if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
4798                            Info, Result, SubExpr))
4799         return false;
4800     }
4801     // The result is a pointer to the first element of the array.
4802     if (const ConstantArrayType *CAT
4803           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
4804       Result.addArray(Info, E, CAT);
4805     else
4806       Result.Designator.setInvalid();
4807     return true;
4808 
4809   case CK_FunctionToPointerDecay:
4810     return EvaluateLValue(SubExpr, Result, Info);
4811   }
4812 
4813   return ExprEvaluatorBaseTy::VisitCastExpr(E);
4814 }
4815 
VisitCallExpr(const CallExpr * E)4816 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
4817   if (IsStringLiteralCall(E))
4818     return Success(E);
4819 
4820   switch (E->getBuiltinCallee()) {
4821   case Builtin::BI__builtin_addressof:
4822     return EvaluateLValue(E->getArg(0), Result, Info);
4823 
4824   default:
4825     return ExprEvaluatorBaseTy::VisitCallExpr(E);
4826   }
4827 }
4828 
4829 //===----------------------------------------------------------------------===//
4830 // Member Pointer Evaluation
4831 //===----------------------------------------------------------------------===//
4832 
4833 namespace {
4834 class MemberPointerExprEvaluator
4835   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
4836   MemberPtr &Result;
4837 
Success(const ValueDecl * D)4838   bool Success(const ValueDecl *D) {
4839     Result = MemberPtr(D);
4840     return true;
4841   }
4842 public:
4843 
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)4844   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
4845     : ExprEvaluatorBaseTy(Info), Result(Result) {}
4846 
Success(const APValue & V,const Expr * E)4847   bool Success(const APValue &V, const Expr *E) {
4848     Result.setFrom(V);
4849     return true;
4850   }
ZeroInitialization(const Expr * E)4851   bool ZeroInitialization(const Expr *E) {
4852     return Success((const ValueDecl*)nullptr);
4853   }
4854 
4855   bool VisitCastExpr(const CastExpr *E);
4856   bool VisitUnaryAddrOf(const UnaryOperator *E);
4857 };
4858 } // end anonymous namespace
4859 
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)4860 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
4861                                   EvalInfo &Info) {
4862   assert(E->isRValue() && E->getType()->isMemberPointerType());
4863   return MemberPointerExprEvaluator(Info, Result).Visit(E);
4864 }
4865 
VisitCastExpr(const CastExpr * E)4866 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
4867   switch (E->getCastKind()) {
4868   default:
4869     return ExprEvaluatorBaseTy::VisitCastExpr(E);
4870 
4871   case CK_NullToMemberPointer:
4872     VisitIgnoredValue(E->getSubExpr());
4873     return ZeroInitialization(E);
4874 
4875   case CK_BaseToDerivedMemberPointer: {
4876     if (!Visit(E->getSubExpr()))
4877       return false;
4878     if (E->path_empty())
4879       return true;
4880     // Base-to-derived member pointer casts store the path in derived-to-base
4881     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
4882     // the wrong end of the derived->base arc, so stagger the path by one class.
4883     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
4884     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
4885          PathI != PathE; ++PathI) {
4886       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4887       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
4888       if (!Result.castToDerived(Derived))
4889         return Error(E);
4890     }
4891     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
4892     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
4893       return Error(E);
4894     return true;
4895   }
4896 
4897   case CK_DerivedToBaseMemberPointer:
4898     if (!Visit(E->getSubExpr()))
4899       return false;
4900     for (CastExpr::path_const_iterator PathI = E->path_begin(),
4901          PathE = E->path_end(); PathI != PathE; ++PathI) {
4902       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4903       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4904       if (!Result.castToBase(Base))
4905         return Error(E);
4906     }
4907     return true;
4908   }
4909 }
4910 
VisitUnaryAddrOf(const UnaryOperator * E)4911 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4912   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
4913   // member can be formed.
4914   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
4915 }
4916 
4917 //===----------------------------------------------------------------------===//
4918 // Record Evaluation
4919 //===----------------------------------------------------------------------===//
4920 
4921 namespace {
4922   class RecordExprEvaluator
4923   : public ExprEvaluatorBase<RecordExprEvaluator> {
4924     const LValue &This;
4925     APValue &Result;
4926   public:
4927 
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)4928     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
4929       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
4930 
Success(const APValue & V,const Expr * E)4931     bool Success(const APValue &V, const Expr *E) {
4932       Result = V;
4933       return true;
4934     }
4935     bool ZeroInitialization(const Expr *E);
4936 
4937     bool VisitCastExpr(const CastExpr *E);
4938     bool VisitInitListExpr(const InitListExpr *E);
4939     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
4940     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
4941   };
4942 }
4943 
4944 /// Perform zero-initialization on an object of non-union class type.
4945 /// C++11 [dcl.init]p5:
4946 ///  To zero-initialize an object or reference of type T means:
4947 ///    [...]
4948 ///    -- if T is a (possibly cv-qualified) non-union class type,
4949 ///       each non-static data member and each base-class subobject is
4950 ///       zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)4951 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
4952                                           const RecordDecl *RD,
4953                                           const LValue &This, APValue &Result) {
4954   assert(!RD->isUnion() && "Expected non-union class type");
4955   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
4956   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
4957                    std::distance(RD->field_begin(), RD->field_end()));
4958 
4959   if (RD->isInvalidDecl()) return false;
4960   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4961 
4962   if (CD) {
4963     unsigned Index = 0;
4964     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
4965            End = CD->bases_end(); I != End; ++I, ++Index) {
4966       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
4967       LValue Subobject = This;
4968       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
4969         return false;
4970       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
4971                                          Result.getStructBase(Index)))
4972         return false;
4973     }
4974   }
4975 
4976   for (const auto *I : RD->fields()) {
4977     // -- if T is a reference type, no initialization is performed.
4978     if (I->getType()->isReferenceType())
4979       continue;
4980 
4981     LValue Subobject = This;
4982     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
4983       return false;
4984 
4985     ImplicitValueInitExpr VIE(I->getType());
4986     if (!EvaluateInPlace(
4987           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
4988       return false;
4989   }
4990 
4991   return true;
4992 }
4993 
ZeroInitialization(const Expr * E)4994 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
4995   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4996   if (RD->isInvalidDecl()) return false;
4997   if (RD->isUnion()) {
4998     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
4999     // object's first non-static named data member is zero-initialized
5000     RecordDecl::field_iterator I = RD->field_begin();
5001     if (I == RD->field_end()) {
5002       Result = APValue((const FieldDecl*)nullptr);
5003       return true;
5004     }
5005 
5006     LValue Subobject = This;
5007     if (!HandleLValueMember(Info, E, Subobject, *I))
5008       return false;
5009     Result = APValue(*I);
5010     ImplicitValueInitExpr VIE(I->getType());
5011     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
5012   }
5013 
5014   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
5015     Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
5016     return false;
5017   }
5018 
5019   return HandleClassZeroInitialization(Info, E, RD, This, Result);
5020 }
5021 
VisitCastExpr(const CastExpr * E)5022 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
5023   switch (E->getCastKind()) {
5024   default:
5025     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5026 
5027   case CK_ConstructorConversion:
5028     return Visit(E->getSubExpr());
5029 
5030   case CK_DerivedToBase:
5031   case CK_UncheckedDerivedToBase: {
5032     APValue DerivedObject;
5033     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
5034       return false;
5035     if (!DerivedObject.isStruct())
5036       return Error(E->getSubExpr());
5037 
5038     // Derived-to-base rvalue conversion: just slice off the derived part.
5039     APValue *Value = &DerivedObject;
5040     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
5041     for (CastExpr::path_const_iterator PathI = E->path_begin(),
5042          PathE = E->path_end(); PathI != PathE; ++PathI) {
5043       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
5044       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5045       Value = &Value->getStructBase(getBaseIndex(RD, Base));
5046       RD = Base;
5047     }
5048     Result = *Value;
5049     return true;
5050   }
5051   }
5052 }
5053 
VisitInitListExpr(const InitListExpr * E)5054 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5055   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5056   if (RD->isInvalidDecl()) return false;
5057   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5058 
5059   if (RD->isUnion()) {
5060     const FieldDecl *Field = E->getInitializedFieldInUnion();
5061     Result = APValue(Field);
5062     if (!Field)
5063       return true;
5064 
5065     // If the initializer list for a union does not contain any elements, the
5066     // first element of the union is value-initialized.
5067     // FIXME: The element should be initialized from an initializer list.
5068     //        Is this difference ever observable for initializer lists which
5069     //        we don't build?
5070     ImplicitValueInitExpr VIE(Field->getType());
5071     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
5072 
5073     LValue Subobject = This;
5074     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
5075       return false;
5076 
5077     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5078     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5079                                   isa<CXXDefaultInitExpr>(InitExpr));
5080 
5081     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
5082   }
5083 
5084   assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
5085          "initializer list for class with base classes");
5086   Result = APValue(APValue::UninitStruct(), 0,
5087                    std::distance(RD->field_begin(), RD->field_end()));
5088   unsigned ElementNo = 0;
5089   bool Success = true;
5090   for (const auto *Field : RD->fields()) {
5091     // Anonymous bit-fields are not considered members of the class for
5092     // purposes of aggregate initialization.
5093     if (Field->isUnnamedBitfield())
5094       continue;
5095 
5096     LValue Subobject = This;
5097 
5098     bool HaveInit = ElementNo < E->getNumInits();
5099 
5100     // FIXME: Diagnostics here should point to the end of the initializer
5101     // list, not the start.
5102     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
5103                             Subobject, Field, &Layout))
5104       return false;
5105 
5106     // Perform an implicit value-initialization for members beyond the end of
5107     // the initializer list.
5108     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
5109     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
5110 
5111     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5112     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5113                                   isa<CXXDefaultInitExpr>(Init));
5114 
5115     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
5116     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
5117         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
5118                                                        FieldVal, Field))) {
5119       if (!Info.keepEvaluatingAfterFailure())
5120         return false;
5121       Success = false;
5122     }
5123   }
5124 
5125   return Success;
5126 }
5127 
VisitCXXConstructExpr(const CXXConstructExpr * E)5128 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5129   const CXXConstructorDecl *FD = E->getConstructor();
5130   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
5131 
5132   bool ZeroInit = E->requiresZeroInitialization();
5133   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5134     // If we've already performed zero-initialization, we're already done.
5135     if (!Result.isUninit())
5136       return true;
5137 
5138     // We can get here in two different ways:
5139     //  1) We're performing value-initialization, and should zero-initialize
5140     //     the object, or
5141     //  2) We're performing default-initialization of an object with a trivial
5142     //     constexpr default constructor, in which case we should start the
5143     //     lifetimes of all the base subobjects (there can be no data member
5144     //     subobjects in this case) per [basic.life]p1.
5145     // Either way, ZeroInitialization is appropriate.
5146     return ZeroInitialization(E);
5147   }
5148 
5149   const FunctionDecl *Definition = nullptr;
5150   FD->getBody(Definition);
5151 
5152   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5153     return false;
5154 
5155   // Avoid materializing a temporary for an elidable copy/move constructor.
5156   if (E->isElidable() && !ZeroInit)
5157     if (const MaterializeTemporaryExpr *ME
5158           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5159       return Visit(ME->GetTemporaryExpr());
5160 
5161   if (ZeroInit && !ZeroInitialization(E))
5162     return false;
5163 
5164   ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5165   return HandleConstructorCall(E->getExprLoc(), This, Args,
5166                                cast<CXXConstructorDecl>(Definition), Info,
5167                                Result);
5168 }
5169 
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5170 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5171     const CXXStdInitializerListExpr *E) {
5172   const ConstantArrayType *ArrayType =
5173       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5174 
5175   LValue Array;
5176   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5177     return false;
5178 
5179   // Get a pointer to the first element of the array.
5180   Array.addArray(Info, E, ArrayType);
5181 
5182   // FIXME: Perform the checks on the field types in SemaInit.
5183   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5184   RecordDecl::field_iterator Field = Record->field_begin();
5185   if (Field == Record->field_end())
5186     return Error(E);
5187 
5188   // Start pointer.
5189   if (!Field->getType()->isPointerType() ||
5190       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5191                             ArrayType->getElementType()))
5192     return Error(E);
5193 
5194   // FIXME: What if the initializer_list type has base classes, etc?
5195   Result = APValue(APValue::UninitStruct(), 0, 2);
5196   Array.moveInto(Result.getStructField(0));
5197 
5198   if (++Field == Record->field_end())
5199     return Error(E);
5200 
5201   if (Field->getType()->isPointerType() &&
5202       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5203                            ArrayType->getElementType())) {
5204     // End pointer.
5205     if (!HandleLValueArrayAdjustment(Info, E, Array,
5206                                      ArrayType->getElementType(),
5207                                      ArrayType->getSize().getZExtValue()))
5208       return false;
5209     Array.moveInto(Result.getStructField(1));
5210   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5211     // Length.
5212     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5213   else
5214     return Error(E);
5215 
5216   if (++Field != Record->field_end())
5217     return Error(E);
5218 
5219   return true;
5220 }
5221 
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5222 static bool EvaluateRecord(const Expr *E, const LValue &This,
5223                            APValue &Result, EvalInfo &Info) {
5224   assert(E->isRValue() && E->getType()->isRecordType() &&
5225          "can't evaluate expression as a record rvalue");
5226   return RecordExprEvaluator(Info, This, Result).Visit(E);
5227 }
5228 
5229 //===----------------------------------------------------------------------===//
5230 // Temporary Evaluation
5231 //
5232 // Temporaries are represented in the AST as rvalues, but generally behave like
5233 // lvalues. The full-object of which the temporary is a subobject is implicitly
5234 // materialized so that a reference can bind to it.
5235 //===----------------------------------------------------------------------===//
5236 namespace {
5237 class TemporaryExprEvaluator
5238   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5239 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)5240   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5241     LValueExprEvaluatorBaseTy(Info, Result) {}
5242 
5243   /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)5244   bool VisitConstructExpr(const Expr *E) {
5245     Result.set(E, Info.CurrentCall->Index);
5246     return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5247                            Info, Result, E);
5248   }
5249 
VisitCastExpr(const CastExpr * E)5250   bool VisitCastExpr(const CastExpr *E) {
5251     switch (E->getCastKind()) {
5252     default:
5253       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5254 
5255     case CK_ConstructorConversion:
5256       return VisitConstructExpr(E->getSubExpr());
5257     }
5258   }
VisitInitListExpr(const InitListExpr * E)5259   bool VisitInitListExpr(const InitListExpr *E) {
5260     return VisitConstructExpr(E);
5261   }
VisitCXXConstructExpr(const CXXConstructExpr * E)5262   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5263     return VisitConstructExpr(E);
5264   }
VisitCallExpr(const CallExpr * E)5265   bool VisitCallExpr(const CallExpr *E) {
5266     return VisitConstructExpr(E);
5267   }
5268 };
5269 } // end anonymous namespace
5270 
5271 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)5272 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5273   assert(E->isRValue() && E->getType()->isRecordType());
5274   return TemporaryExprEvaluator(Info, Result).Visit(E);
5275 }
5276 
5277 //===----------------------------------------------------------------------===//
5278 // Vector Evaluation
5279 //===----------------------------------------------------------------------===//
5280 
5281 namespace {
5282   class VectorExprEvaluator
5283   : public ExprEvaluatorBase<VectorExprEvaluator> {
5284     APValue &Result;
5285   public:
5286 
VectorExprEvaluator(EvalInfo & info,APValue & Result)5287     VectorExprEvaluator(EvalInfo &info, APValue &Result)
5288       : ExprEvaluatorBaseTy(info), Result(Result) {}
5289 
Success(const ArrayRef<APValue> & V,const Expr * E)5290     bool Success(const ArrayRef<APValue> &V, const Expr *E) {
5291       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5292       // FIXME: remove this APValue copy.
5293       Result = APValue(V.data(), V.size());
5294       return true;
5295     }
Success(const APValue & V,const Expr * E)5296     bool Success(const APValue &V, const Expr *E) {
5297       assert(V.isVector());
5298       Result = V;
5299       return true;
5300     }
5301     bool ZeroInitialization(const Expr *E);
5302 
VisitUnaryReal(const UnaryOperator * E)5303     bool VisitUnaryReal(const UnaryOperator *E)
5304       { return Visit(E->getSubExpr()); }
5305     bool VisitCastExpr(const CastExpr* E);
5306     bool VisitInitListExpr(const InitListExpr *E);
5307     bool VisitUnaryImag(const UnaryOperator *E);
5308     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5309     //                 binary comparisons, binary and/or/xor,
5310     //                 shufflevector, ExtVectorElementExpr
5311   };
5312 } // end anonymous namespace
5313 
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)5314 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5315   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5316   return VectorExprEvaluator(Info, Result).Visit(E);
5317 }
5318 
VisitCastExpr(const CastExpr * E)5319 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
5320   const VectorType *VTy = E->getType()->castAs<VectorType>();
5321   unsigned NElts = VTy->getNumElements();
5322 
5323   const Expr *SE = E->getSubExpr();
5324   QualType SETy = SE->getType();
5325 
5326   switch (E->getCastKind()) {
5327   case CK_VectorSplat: {
5328     APValue Val = APValue();
5329     if (SETy->isIntegerType()) {
5330       APSInt IntResult;
5331       if (!EvaluateInteger(SE, IntResult, Info))
5332          return false;
5333       Val = APValue(IntResult);
5334     } else if (SETy->isRealFloatingType()) {
5335        APFloat F(0.0);
5336        if (!EvaluateFloat(SE, F, Info))
5337          return false;
5338        Val = APValue(F);
5339     } else {
5340       return Error(E);
5341     }
5342 
5343     // Splat and create vector APValue.
5344     SmallVector<APValue, 4> Elts(NElts, Val);
5345     return Success(Elts, E);
5346   }
5347   case CK_BitCast: {
5348     // Evaluate the operand into an APInt we can extract from.
5349     llvm::APInt SValInt;
5350     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5351       return false;
5352     // Extract the elements
5353     QualType EltTy = VTy->getElementType();
5354     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5355     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5356     SmallVector<APValue, 4> Elts;
5357     if (EltTy->isRealFloatingType()) {
5358       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5359       unsigned FloatEltSize = EltSize;
5360       if (&Sem == &APFloat::x87DoubleExtended)
5361         FloatEltSize = 80;
5362       for (unsigned i = 0; i < NElts; i++) {
5363         llvm::APInt Elt;
5364         if (BigEndian)
5365           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5366         else
5367           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5368         Elts.push_back(APValue(APFloat(Sem, Elt)));
5369       }
5370     } else if (EltTy->isIntegerType()) {
5371       for (unsigned i = 0; i < NElts; i++) {
5372         llvm::APInt Elt;
5373         if (BigEndian)
5374           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5375         else
5376           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5377         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5378       }
5379     } else {
5380       return Error(E);
5381     }
5382     return Success(Elts, E);
5383   }
5384   default:
5385     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5386   }
5387 }
5388 
5389 bool
VisitInitListExpr(const InitListExpr * E)5390 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5391   const VectorType *VT = E->getType()->castAs<VectorType>();
5392   unsigned NumInits = E->getNumInits();
5393   unsigned NumElements = VT->getNumElements();
5394 
5395   QualType EltTy = VT->getElementType();
5396   SmallVector<APValue, 4> Elements;
5397 
5398   // The number of initializers can be less than the number of
5399   // vector elements. For OpenCL, this can be due to nested vector
5400   // initialization. For GCC compatibility, missing trailing elements
5401   // should be initialized with zeroes.
5402   unsigned CountInits = 0, CountElts = 0;
5403   while (CountElts < NumElements) {
5404     // Handle nested vector initialization.
5405     if (CountInits < NumInits
5406         && E->getInit(CountInits)->getType()->isVectorType()) {
5407       APValue v;
5408       if (!EvaluateVector(E->getInit(CountInits), v, Info))
5409         return Error(E);
5410       unsigned vlen = v.getVectorLength();
5411       for (unsigned j = 0; j < vlen; j++)
5412         Elements.push_back(v.getVectorElt(j));
5413       CountElts += vlen;
5414     } else if (EltTy->isIntegerType()) {
5415       llvm::APSInt sInt(32);
5416       if (CountInits < NumInits) {
5417         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5418           return false;
5419       } else // trailing integer zero.
5420         sInt = Info.Ctx.MakeIntValue(0, EltTy);
5421       Elements.push_back(APValue(sInt));
5422       CountElts++;
5423     } else {
5424       llvm::APFloat f(0.0);
5425       if (CountInits < NumInits) {
5426         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5427           return false;
5428       } else // trailing float zero.
5429         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5430       Elements.push_back(APValue(f));
5431       CountElts++;
5432     }
5433     CountInits++;
5434   }
5435   return Success(Elements, E);
5436 }
5437 
5438 bool
ZeroInitialization(const Expr * E)5439 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5440   const VectorType *VT = E->getType()->getAs<VectorType>();
5441   QualType EltTy = VT->getElementType();
5442   APValue ZeroElement;
5443   if (EltTy->isIntegerType())
5444     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5445   else
5446     ZeroElement =
5447         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5448 
5449   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5450   return Success(Elements, E);
5451 }
5452 
VisitUnaryImag(const UnaryOperator * E)5453 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5454   VisitIgnoredValue(E->getSubExpr());
5455   return ZeroInitialization(E);
5456 }
5457 
5458 //===----------------------------------------------------------------------===//
5459 // Array Evaluation
5460 //===----------------------------------------------------------------------===//
5461 
5462 namespace {
5463   class ArrayExprEvaluator
5464   : public ExprEvaluatorBase<ArrayExprEvaluator> {
5465     const LValue &This;
5466     APValue &Result;
5467   public:
5468 
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)5469     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5470       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5471 
Success(const APValue & V,const Expr * E)5472     bool Success(const APValue &V, const Expr *E) {
5473       assert((V.isArray() || V.isLValue()) &&
5474              "expected array or string literal");
5475       Result = V;
5476       return true;
5477     }
5478 
ZeroInitialization(const Expr * E)5479     bool ZeroInitialization(const Expr *E) {
5480       const ConstantArrayType *CAT =
5481           Info.Ctx.getAsConstantArrayType(E->getType());
5482       if (!CAT)
5483         return Error(E);
5484 
5485       Result = APValue(APValue::UninitArray(), 0,
5486                        CAT->getSize().getZExtValue());
5487       if (!Result.hasArrayFiller()) return true;
5488 
5489       // Zero-initialize all elements.
5490       LValue Subobject = This;
5491       Subobject.addArray(Info, E, CAT);
5492       ImplicitValueInitExpr VIE(CAT->getElementType());
5493       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5494     }
5495 
5496     bool VisitInitListExpr(const InitListExpr *E);
5497     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5498     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5499                                const LValue &Subobject,
5500                                APValue *Value, QualType Type);
5501   };
5502 } // end anonymous namespace
5503 
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5504 static bool EvaluateArray(const Expr *E, const LValue &This,
5505                           APValue &Result, EvalInfo &Info) {
5506   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5507   return ArrayExprEvaluator(Info, This, Result).Visit(E);
5508 }
5509 
VisitInitListExpr(const InitListExpr * E)5510 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5511   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5512   if (!CAT)
5513     return Error(E);
5514 
5515   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5516   // an appropriately-typed string literal enclosed in braces.
5517   if (E->isStringLiteralInit()) {
5518     LValue LV;
5519     if (!EvaluateLValue(E->getInit(0), LV, Info))
5520       return false;
5521     APValue Val;
5522     LV.moveInto(Val);
5523     return Success(Val, E);
5524   }
5525 
5526   bool Success = true;
5527 
5528   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5529          "zero-initialized array shouldn't have any initialized elts");
5530   APValue Filler;
5531   if (Result.isArray() && Result.hasArrayFiller())
5532     Filler = Result.getArrayFiller();
5533 
5534   unsigned NumEltsToInit = E->getNumInits();
5535   unsigned NumElts = CAT->getSize().getZExtValue();
5536   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
5537 
5538   // If the initializer might depend on the array index, run it for each
5539   // array element. For now, just whitelist non-class value-initialization.
5540   if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5541     NumEltsToInit = NumElts;
5542 
5543   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5544 
5545   // If the array was previously zero-initialized, preserve the
5546   // zero-initialized values.
5547   if (!Filler.isUninit()) {
5548     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5549       Result.getArrayInitializedElt(I) = Filler;
5550     if (Result.hasArrayFiller())
5551       Result.getArrayFiller() = Filler;
5552   }
5553 
5554   LValue Subobject = This;
5555   Subobject.addArray(Info, E, CAT);
5556   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5557     const Expr *Init =
5558         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5559     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5560                          Info, Subobject, Init) ||
5561         !HandleLValueArrayAdjustment(Info, Init, Subobject,
5562                                      CAT->getElementType(), 1)) {
5563       if (!Info.keepEvaluatingAfterFailure())
5564         return false;
5565       Success = false;
5566     }
5567   }
5568 
5569   if (!Result.hasArrayFiller())
5570     return Success;
5571 
5572   // If we get here, we have a trivial filler, which we can just evaluate
5573   // once and splat over the rest of the array elements.
5574   assert(FillerExpr && "no array filler for incomplete init list");
5575   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5576                          FillerExpr) && Success;
5577 }
5578 
VisitCXXConstructExpr(const CXXConstructExpr * E)5579 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5580   return VisitCXXConstructExpr(E, This, &Result, E->getType());
5581 }
5582 
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)5583 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5584                                                const LValue &Subobject,
5585                                                APValue *Value,
5586                                                QualType Type) {
5587   bool HadZeroInit = !Value->isUninit();
5588 
5589   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5590     unsigned N = CAT->getSize().getZExtValue();
5591 
5592     // Preserve the array filler if we had prior zero-initialization.
5593     APValue Filler =
5594       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5595                                              : APValue();
5596 
5597     *Value = APValue(APValue::UninitArray(), N, N);
5598 
5599     if (HadZeroInit)
5600       for (unsigned I = 0; I != N; ++I)
5601         Value->getArrayInitializedElt(I) = Filler;
5602 
5603     // Initialize the elements.
5604     LValue ArrayElt = Subobject;
5605     ArrayElt.addArray(Info, E, CAT);
5606     for (unsigned I = 0; I != N; ++I)
5607       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5608                                  CAT->getElementType()) ||
5609           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5610                                        CAT->getElementType(), 1))
5611         return false;
5612 
5613     return true;
5614   }
5615 
5616   if (!Type->isRecordType())
5617     return Error(E);
5618 
5619   const CXXConstructorDecl *FD = E->getConstructor();
5620 
5621   bool ZeroInit = E->requiresZeroInitialization();
5622   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5623     if (HadZeroInit)
5624       return true;
5625 
5626     // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
5627     ImplicitValueInitExpr VIE(Type);
5628     return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5629   }
5630 
5631   const FunctionDecl *Definition = nullptr;
5632   FD->getBody(Definition);
5633 
5634   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5635     return false;
5636 
5637   if (ZeroInit && !HadZeroInit) {
5638     ImplicitValueInitExpr VIE(Type);
5639     if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5640       return false;
5641   }
5642 
5643   ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5644   return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5645                                cast<CXXConstructorDecl>(Definition),
5646                                Info, *Value);
5647 }
5648 
5649 //===----------------------------------------------------------------------===//
5650 // Integer Evaluation
5651 //
5652 // As a GNU extension, we support casting pointers to sufficiently-wide integer
5653 // types and back in constant folding. Integer values are thus represented
5654 // either as an integer-valued APValue, or as an lvalue-valued APValue.
5655 //===----------------------------------------------------------------------===//
5656 
5657 namespace {
5658 class IntExprEvaluator
5659   : public ExprEvaluatorBase<IntExprEvaluator> {
5660   APValue &Result;
5661 public:
IntExprEvaluator(EvalInfo & info,APValue & result)5662   IntExprEvaluator(EvalInfo &info, APValue &result)
5663     : ExprEvaluatorBaseTy(info), Result(result) {}
5664 
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)5665   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
5666     assert(E->getType()->isIntegralOrEnumerationType() &&
5667            "Invalid evaluation result.");
5668     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
5669            "Invalid evaluation result.");
5670     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5671            "Invalid evaluation result.");
5672     Result = APValue(SI);
5673     return true;
5674   }
Success(const llvm::APSInt & SI,const Expr * E)5675   bool Success(const llvm::APSInt &SI, const Expr *E) {
5676     return Success(SI, E, Result);
5677   }
5678 
Success(const llvm::APInt & I,const Expr * E,APValue & Result)5679   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
5680     assert(E->getType()->isIntegralOrEnumerationType() &&
5681            "Invalid evaluation result.");
5682     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5683            "Invalid evaluation result.");
5684     Result = APValue(APSInt(I));
5685     Result.getInt().setIsUnsigned(
5686                             E->getType()->isUnsignedIntegerOrEnumerationType());
5687     return true;
5688   }
Success(const llvm::APInt & I,const Expr * E)5689   bool Success(const llvm::APInt &I, const Expr *E) {
5690     return Success(I, E, Result);
5691   }
5692 
Success(uint64_t Value,const Expr * E,APValue & Result)5693   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
5694     assert(E->getType()->isIntegralOrEnumerationType() &&
5695            "Invalid evaluation result.");
5696     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
5697     return true;
5698   }
Success(uint64_t Value,const Expr * E)5699   bool Success(uint64_t Value, const Expr *E) {
5700     return Success(Value, E, Result);
5701   }
5702 
Success(CharUnits Size,const Expr * E)5703   bool Success(CharUnits Size, const Expr *E) {
5704     return Success(Size.getQuantity(), E);
5705   }
5706 
Success(const APValue & V,const Expr * E)5707   bool Success(const APValue &V, const Expr *E) {
5708     if (V.isLValue() || V.isAddrLabelDiff()) {
5709       Result = V;
5710       return true;
5711     }
5712     return Success(V.getInt(), E);
5713   }
5714 
ZeroInitialization(const Expr * E)5715   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
5716 
5717   //===--------------------------------------------------------------------===//
5718   //                            Visitor Methods
5719   //===--------------------------------------------------------------------===//
5720 
VisitIntegerLiteral(const IntegerLiteral * E)5721   bool VisitIntegerLiteral(const IntegerLiteral *E) {
5722     return Success(E->getValue(), E);
5723   }
VisitCharacterLiteral(const CharacterLiteral * E)5724   bool VisitCharacterLiteral(const CharacterLiteral *E) {
5725     return Success(E->getValue(), E);
5726   }
5727 
5728   bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)5729   bool VisitDeclRefExpr(const DeclRefExpr *E) {
5730     if (CheckReferencedDecl(E, E->getDecl()))
5731       return true;
5732 
5733     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
5734   }
VisitMemberExpr(const MemberExpr * E)5735   bool VisitMemberExpr(const MemberExpr *E) {
5736     if (CheckReferencedDecl(E, E->getMemberDecl())) {
5737       VisitIgnoredValue(E->getBase());
5738       return true;
5739     }
5740 
5741     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
5742   }
5743 
5744   bool VisitCallExpr(const CallExpr *E);
5745   bool VisitBinaryOperator(const BinaryOperator *E);
5746   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
5747   bool VisitUnaryOperator(const UnaryOperator *E);
5748 
5749   bool VisitCastExpr(const CastExpr* E);
5750   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
5751 
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)5752   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
5753     return Success(E->getValue(), E);
5754   }
5755 
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)5756   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
5757     return Success(E->getValue(), E);
5758   }
5759 
5760   // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)5761   bool VisitGNUNullExpr(const GNUNullExpr *E) {
5762     return ZeroInitialization(E);
5763   }
5764 
VisitTypeTraitExpr(const TypeTraitExpr * E)5765   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
5766     return Success(E->getValue(), E);
5767   }
5768 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)5769   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
5770     return Success(E->getValue(), E);
5771   }
5772 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)5773   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
5774     return Success(E->getValue(), E);
5775   }
5776 
5777   bool VisitUnaryReal(const UnaryOperator *E);
5778   bool VisitUnaryImag(const UnaryOperator *E);
5779 
5780   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
5781   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
5782 
5783 private:
5784   CharUnits GetAlignOfExpr(const Expr *E);
5785   CharUnits GetAlignOfType(QualType T);
5786   static QualType GetObjectType(APValue::LValueBase B);
5787   bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
5788   // FIXME: Missing: array subscript of vector, member of vector
5789 };
5790 } // end anonymous namespace
5791 
5792 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
5793 /// produce either the integer value or a pointer.
5794 ///
5795 /// GCC has a heinous extension which folds casts between pointer types and
5796 /// pointer-sized integral types. We support this by allowing the evaluation of
5797 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
5798 /// Some simple arithmetic on such values is supported (they are treated much
5799 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)5800 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
5801                                     EvalInfo &Info) {
5802   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
5803   return IntExprEvaluator(Info, Result).Visit(E);
5804 }
5805 
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)5806 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
5807   APValue Val;
5808   if (!EvaluateIntegerOrLValue(E, Val, Info))
5809     return false;
5810   if (!Val.isInt()) {
5811     // FIXME: It would be better to produce the diagnostic for casting
5812     //        a pointer to an integer.
5813     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
5814     return false;
5815   }
5816   Result = Val.getInt();
5817   return true;
5818 }
5819 
5820 /// Check whether the given declaration can be directly converted to an integral
5821 /// rvalue. If not, no diagnostic is produced; there are other things we can
5822 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)5823 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
5824   // Enums are integer constant exprs.
5825   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
5826     // Check for signedness/width mismatches between E type and ECD value.
5827     bool SameSign = (ECD->getInitVal().isSigned()
5828                      == E->getType()->isSignedIntegerOrEnumerationType());
5829     bool SameWidth = (ECD->getInitVal().getBitWidth()
5830                       == Info.Ctx.getIntWidth(E->getType()));
5831     if (SameSign && SameWidth)
5832       return Success(ECD->getInitVal(), E);
5833     else {
5834       // Get rid of mismatch (otherwise Success assertions will fail)
5835       // by computing a new value matching the type of E.
5836       llvm::APSInt Val = ECD->getInitVal();
5837       if (!SameSign)
5838         Val.setIsSigned(!ECD->getInitVal().isSigned());
5839       if (!SameWidth)
5840         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
5841       return Success(Val, E);
5842     }
5843   }
5844   return false;
5845 }
5846 
5847 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
5848 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E)5849 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
5850   // The following enum mimics the values returned by GCC.
5851   // FIXME: Does GCC differ between lvalue and rvalue references here?
5852   enum gcc_type_class {
5853     no_type_class = -1,
5854     void_type_class, integer_type_class, char_type_class,
5855     enumeral_type_class, boolean_type_class,
5856     pointer_type_class, reference_type_class, offset_type_class,
5857     real_type_class, complex_type_class,
5858     function_type_class, method_type_class,
5859     record_type_class, union_type_class,
5860     array_type_class, string_type_class,
5861     lang_type_class
5862   };
5863 
5864   // If no argument was supplied, default to "no_type_class". This isn't
5865   // ideal, however it is what gcc does.
5866   if (E->getNumArgs() == 0)
5867     return no_type_class;
5868 
5869   QualType ArgTy = E->getArg(0)->getType();
5870   if (ArgTy->isVoidType())
5871     return void_type_class;
5872   else if (ArgTy->isEnumeralType())
5873     return enumeral_type_class;
5874   else if (ArgTy->isBooleanType())
5875     return boolean_type_class;
5876   else if (ArgTy->isCharType())
5877     return string_type_class; // gcc doesn't appear to use char_type_class
5878   else if (ArgTy->isIntegerType())
5879     return integer_type_class;
5880   else if (ArgTy->isPointerType())
5881     return pointer_type_class;
5882   else if (ArgTy->isReferenceType())
5883     return reference_type_class;
5884   else if (ArgTy->isRealType())
5885     return real_type_class;
5886   else if (ArgTy->isComplexType())
5887     return complex_type_class;
5888   else if (ArgTy->isFunctionType())
5889     return function_type_class;
5890   else if (ArgTy->isStructureOrClassType())
5891     return record_type_class;
5892   else if (ArgTy->isUnionType())
5893     return union_type_class;
5894   else if (ArgTy->isArrayType())
5895     return array_type_class;
5896   else if (ArgTy->isUnionType())
5897     return union_type_class;
5898   else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
5899     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
5900 }
5901 
5902 /// EvaluateBuiltinConstantPForLValue - Determine the result of
5903 /// __builtin_constant_p when applied to the given lvalue.
5904 ///
5905 /// An lvalue is only "constant" if it is a pointer or reference to the first
5906 /// character of a string literal.
5907 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)5908 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
5909   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
5910   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
5911 }
5912 
5913 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
5914 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)5915 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
5916   QualType ArgType = Arg->getType();
5917 
5918   // __builtin_constant_p always has one operand. The rules which gcc follows
5919   // are not precisely documented, but are as follows:
5920   //
5921   //  - If the operand is of integral, floating, complex or enumeration type,
5922   //    and can be folded to a known value of that type, it returns 1.
5923   //  - If the operand and can be folded to a pointer to the first character
5924   //    of a string literal (or such a pointer cast to an integral type), it
5925   //    returns 1.
5926   //
5927   // Otherwise, it returns 0.
5928   //
5929   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
5930   // its support for this does not currently work.
5931   if (ArgType->isIntegralOrEnumerationType()) {
5932     Expr::EvalResult Result;
5933     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
5934       return false;
5935 
5936     APValue &V = Result.Val;
5937     if (V.getKind() == APValue::Int)
5938       return true;
5939 
5940     return EvaluateBuiltinConstantPForLValue(V);
5941   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
5942     return Arg->isEvaluatable(Ctx);
5943   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
5944     LValue LV;
5945     Expr::EvalStatus Status;
5946     EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
5947     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
5948                           : EvaluatePointer(Arg, LV, Info)) &&
5949         !Status.HasSideEffects)
5950       return EvaluateBuiltinConstantPForLValue(LV);
5951   }
5952 
5953   // Anything else isn't considered to be sufficiently constant.
5954   return false;
5955 }
5956 
5957 /// Retrieves the "underlying object type" of the given expression,
5958 /// as used by __builtin_object_size.
GetObjectType(APValue::LValueBase B)5959 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
5960   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
5961     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
5962       return VD->getType();
5963   } else if (const Expr *E = B.get<const Expr*>()) {
5964     if (isa<CompoundLiteralExpr>(E))
5965       return E->getType();
5966   }
5967 
5968   return QualType();
5969 }
5970 
TryEvaluateBuiltinObjectSize(const CallExpr * E)5971 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
5972   LValue Base;
5973 
5974   {
5975     // The operand of __builtin_object_size is never evaluated for side-effects.
5976     // If there are any, but we can determine the pointed-to object anyway, then
5977     // ignore the side-effects.
5978     SpeculativeEvaluationRAII SpeculativeEval(Info);
5979     if (!EvaluatePointer(E->getArg(0), Base, Info))
5980       return false;
5981   }
5982 
5983   // If we can prove the base is null, lower to zero now.
5984   if (!Base.getLValueBase()) return Success(0, E);
5985 
5986   QualType T = GetObjectType(Base.getLValueBase());
5987   if (T.isNull() ||
5988       T->isIncompleteType() ||
5989       T->isFunctionType() ||
5990       T->isVariablyModifiedType() ||
5991       T->isDependentType())
5992     return Error(E);
5993 
5994   CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
5995   CharUnits Offset = Base.getLValueOffset();
5996 
5997   if (!Offset.isNegative() && Offset <= Size)
5998     Size -= Offset;
5999   else
6000     Size = CharUnits::Zero();
6001   return Success(Size, E);
6002 }
6003 
VisitCallExpr(const CallExpr * E)6004 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
6005   switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
6006   default:
6007     return ExprEvaluatorBaseTy::VisitCallExpr(E);
6008 
6009   case Builtin::BI__builtin_object_size: {
6010     if (TryEvaluateBuiltinObjectSize(E))
6011       return true;
6012 
6013     // If evaluating the argument has side-effects, we can't determine the size
6014     // of the object, and so we lower it to unknown now. CodeGen relies on us to
6015     // handle all cases where the expression has side-effects.
6016     if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
6017       if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
6018         return Success(-1ULL, E);
6019       return Success(0, E);
6020     }
6021 
6022     // Expression had no side effects, but we couldn't statically determine the
6023     // size of the referenced object.
6024     switch (Info.EvalMode) {
6025     case EvalInfo::EM_ConstantExpression:
6026     case EvalInfo::EM_PotentialConstantExpression:
6027     case EvalInfo::EM_ConstantFold:
6028     case EvalInfo::EM_EvaluateForOverflow:
6029     case EvalInfo::EM_IgnoreSideEffects:
6030       return Error(E);
6031     case EvalInfo::EM_ConstantExpressionUnevaluated:
6032     case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
6033       return Success(-1ULL, E);
6034     }
6035   }
6036 
6037   case Builtin::BI__builtin_bswap16:
6038   case Builtin::BI__builtin_bswap32:
6039   case Builtin::BI__builtin_bswap64: {
6040     APSInt Val;
6041     if (!EvaluateInteger(E->getArg(0), Val, Info))
6042       return false;
6043 
6044     return Success(Val.byteSwap(), E);
6045   }
6046 
6047   case Builtin::BI__builtin_classify_type:
6048     return Success(EvaluateBuiltinClassifyType(E), E);
6049 
6050   // FIXME: BI__builtin_clrsb
6051   // FIXME: BI__builtin_clrsbl
6052   // FIXME: BI__builtin_clrsbll
6053 
6054   case Builtin::BI__builtin_clz:
6055   case Builtin::BI__builtin_clzl:
6056   case Builtin::BI__builtin_clzll:
6057   case Builtin::BI__builtin_clzs: {
6058     APSInt Val;
6059     if (!EvaluateInteger(E->getArg(0), Val, Info))
6060       return false;
6061     if (!Val)
6062       return Error(E);
6063 
6064     return Success(Val.countLeadingZeros(), E);
6065   }
6066 
6067   case Builtin::BI__builtin_constant_p:
6068     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
6069 
6070   case Builtin::BI__builtin_ctz:
6071   case Builtin::BI__builtin_ctzl:
6072   case Builtin::BI__builtin_ctzll:
6073   case Builtin::BI__builtin_ctzs: {
6074     APSInt Val;
6075     if (!EvaluateInteger(E->getArg(0), Val, Info))
6076       return false;
6077     if (!Val)
6078       return Error(E);
6079 
6080     return Success(Val.countTrailingZeros(), E);
6081   }
6082 
6083   case Builtin::BI__builtin_eh_return_data_regno: {
6084     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6085     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
6086     return Success(Operand, E);
6087   }
6088 
6089   case Builtin::BI__builtin_expect:
6090     return Visit(E->getArg(0));
6091 
6092   case Builtin::BI__builtin_ffs:
6093   case Builtin::BI__builtin_ffsl:
6094   case Builtin::BI__builtin_ffsll: {
6095     APSInt Val;
6096     if (!EvaluateInteger(E->getArg(0), Val, Info))
6097       return false;
6098 
6099     unsigned N = Val.countTrailingZeros();
6100     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
6101   }
6102 
6103   case Builtin::BI__builtin_fpclassify: {
6104     APFloat Val(0.0);
6105     if (!EvaluateFloat(E->getArg(5), Val, Info))
6106       return false;
6107     unsigned Arg;
6108     switch (Val.getCategory()) {
6109     case APFloat::fcNaN: Arg = 0; break;
6110     case APFloat::fcInfinity: Arg = 1; break;
6111     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
6112     case APFloat::fcZero: Arg = 4; break;
6113     }
6114     return Visit(E->getArg(Arg));
6115   }
6116 
6117   case Builtin::BI__builtin_isinf_sign: {
6118     APFloat Val(0.0);
6119     return EvaluateFloat(E->getArg(0), Val, Info) &&
6120            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
6121   }
6122 
6123   case Builtin::BI__builtin_isinf: {
6124     APFloat Val(0.0);
6125     return EvaluateFloat(E->getArg(0), Val, Info) &&
6126            Success(Val.isInfinity() ? 1 : 0, E);
6127   }
6128 
6129   case Builtin::BI__builtin_isfinite: {
6130     APFloat Val(0.0);
6131     return EvaluateFloat(E->getArg(0), Val, Info) &&
6132            Success(Val.isFinite() ? 1 : 0, E);
6133   }
6134 
6135   case Builtin::BI__builtin_isnan: {
6136     APFloat Val(0.0);
6137     return EvaluateFloat(E->getArg(0), Val, Info) &&
6138            Success(Val.isNaN() ? 1 : 0, E);
6139   }
6140 
6141   case Builtin::BI__builtin_isnormal: {
6142     APFloat Val(0.0);
6143     return EvaluateFloat(E->getArg(0), Val, Info) &&
6144            Success(Val.isNormal() ? 1 : 0, E);
6145   }
6146 
6147   case Builtin::BI__builtin_parity:
6148   case Builtin::BI__builtin_parityl:
6149   case Builtin::BI__builtin_parityll: {
6150     APSInt Val;
6151     if (!EvaluateInteger(E->getArg(0), Val, Info))
6152       return false;
6153 
6154     return Success(Val.countPopulation() % 2, E);
6155   }
6156 
6157   case Builtin::BI__builtin_popcount:
6158   case Builtin::BI__builtin_popcountl:
6159   case Builtin::BI__builtin_popcountll: {
6160     APSInt Val;
6161     if (!EvaluateInteger(E->getArg(0), Val, Info))
6162       return false;
6163 
6164     return Success(Val.countPopulation(), E);
6165   }
6166 
6167   case Builtin::BIstrlen:
6168     // A call to strlen is not a constant expression.
6169     if (Info.getLangOpts().CPlusPlus11)
6170       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
6171         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
6172     else
6173       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6174     // Fall through.
6175   case Builtin::BI__builtin_strlen: {
6176     // As an extension, we support __builtin_strlen() as a constant expression,
6177     // and support folding strlen() to a constant.
6178     LValue String;
6179     if (!EvaluatePointer(E->getArg(0), String, Info))
6180       return false;
6181 
6182     // Fast path: if it's a string literal, search the string value.
6183     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
6184             String.getLValueBase().dyn_cast<const Expr *>())) {
6185       // The string literal may have embedded null characters. Find the first
6186       // one and truncate there.
6187       StringRef Str = S->getBytes();
6188       int64_t Off = String.Offset.getQuantity();
6189       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
6190           S->getCharByteWidth() == 1) {
6191         Str = Str.substr(Off);
6192 
6193         StringRef::size_type Pos = Str.find(0);
6194         if (Pos != StringRef::npos)
6195           Str = Str.substr(0, Pos);
6196 
6197         return Success(Str.size(), E);
6198       }
6199 
6200       // Fall through to slow path to issue appropriate diagnostic.
6201     }
6202 
6203     // Slow path: scan the bytes of the string looking for the terminating 0.
6204     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
6205     for (uint64_t Strlen = 0; /**/; ++Strlen) {
6206       APValue Char;
6207       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
6208           !Char.isInt())
6209         return false;
6210       if (!Char.getInt())
6211         return Success(Strlen, E);
6212       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
6213         return false;
6214     }
6215   }
6216 
6217   case Builtin::BI__atomic_always_lock_free:
6218   case Builtin::BI__atomic_is_lock_free:
6219   case Builtin::BI__c11_atomic_is_lock_free: {
6220     APSInt SizeVal;
6221     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
6222       return false;
6223 
6224     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
6225     // of two less than the maximum inline atomic width, we know it is
6226     // lock-free.  If the size isn't a power of two, or greater than the
6227     // maximum alignment where we promote atomics, we know it is not lock-free
6228     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
6229     // the answer can only be determined at runtime; for example, 16-byte
6230     // atomics have lock-free implementations on some, but not all,
6231     // x86-64 processors.
6232 
6233     // Check power-of-two.
6234     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
6235     if (Size.isPowerOfTwo()) {
6236       // Check against inlining width.
6237       unsigned InlineWidthBits =
6238           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
6239       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
6240         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
6241             Size == CharUnits::One() ||
6242             E->getArg(1)->isNullPointerConstant(Info.Ctx,
6243                                                 Expr::NPC_NeverValueDependent))
6244           // OK, we will inline appropriately-aligned operations of this size,
6245           // and _Atomic(T) is appropriately-aligned.
6246           return Success(1, E);
6247 
6248         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
6249           castAs<PointerType>()->getPointeeType();
6250         if (!PointeeType->isIncompleteType() &&
6251             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
6252           // OK, we will inline operations on this object.
6253           return Success(1, E);
6254         }
6255       }
6256     }
6257 
6258     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
6259         Success(0, E) : Error(E);
6260   }
6261   }
6262 }
6263 
HasSameBase(const LValue & A,const LValue & B)6264 static bool HasSameBase(const LValue &A, const LValue &B) {
6265   if (!A.getLValueBase())
6266     return !B.getLValueBase();
6267   if (!B.getLValueBase())
6268     return false;
6269 
6270   if (A.getLValueBase().getOpaqueValue() !=
6271       B.getLValueBase().getOpaqueValue()) {
6272     const Decl *ADecl = GetLValueBaseDecl(A);
6273     if (!ADecl)
6274       return false;
6275     const Decl *BDecl = GetLValueBaseDecl(B);
6276     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
6277       return false;
6278   }
6279 
6280   return IsGlobalLValue(A.getLValueBase()) ||
6281          A.getLValueCallIndex() == B.getLValueCallIndex();
6282 }
6283 
6284 namespace {
6285 
6286 /// \brief Data recursive integer evaluator of certain binary operators.
6287 ///
6288 /// We use a data recursive algorithm for binary operators so that we are able
6289 /// to handle extreme cases of chained binary operators without causing stack
6290 /// overflow.
6291 class DataRecursiveIntBinOpEvaluator {
6292   struct EvalResult {
6293     APValue Val;
6294     bool Failed;
6295 
EvalResult__anon79c4fed31311::DataRecursiveIntBinOpEvaluator::EvalResult6296     EvalResult() : Failed(false) { }
6297 
swap__anon79c4fed31311::DataRecursiveIntBinOpEvaluator::EvalResult6298     void swap(EvalResult &RHS) {
6299       Val.swap(RHS.Val);
6300       Failed = RHS.Failed;
6301       RHS.Failed = false;
6302     }
6303   };
6304 
6305   struct Job {
6306     const Expr *E;
6307     EvalResult LHSResult; // meaningful only for binary operator expression.
6308     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
6309 
Job__anon79c4fed31311::DataRecursiveIntBinOpEvaluator::Job6310     Job() : StoredInfo(nullptr) {}
startSpeculativeEval__anon79c4fed31311::DataRecursiveIntBinOpEvaluator::Job6311     void startSpeculativeEval(EvalInfo &Info) {
6312       OldEvalStatus = Info.EvalStatus;
6313       Info.EvalStatus.Diag = nullptr;
6314       StoredInfo = &Info;
6315     }
~Job__anon79c4fed31311::DataRecursiveIntBinOpEvaluator::Job6316     ~Job() {
6317       if (StoredInfo) {
6318         StoredInfo->EvalStatus = OldEvalStatus;
6319       }
6320     }
6321   private:
6322     EvalInfo *StoredInfo; // non-null if status changed.
6323     Expr::EvalStatus OldEvalStatus;
6324   };
6325 
6326   SmallVector<Job, 16> Queue;
6327 
6328   IntExprEvaluator &IntEval;
6329   EvalInfo &Info;
6330   APValue &FinalResult;
6331 
6332 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)6333   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
6334     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
6335 
6336   /// \brief True if \param E is a binary operator that we are going to handle
6337   /// data recursively.
6338   /// We handle binary operators that are comma, logical, or that have operands
6339   /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)6340   static bool shouldEnqueue(const BinaryOperator *E) {
6341     return E->getOpcode() == BO_Comma ||
6342            E->isLogicalOp() ||
6343            (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6344             E->getRHS()->getType()->isIntegralOrEnumerationType());
6345   }
6346 
Traverse(const BinaryOperator * E)6347   bool Traverse(const BinaryOperator *E) {
6348     enqueue(E);
6349     EvalResult PrevResult;
6350     while (!Queue.empty())
6351       process(PrevResult);
6352 
6353     if (PrevResult.Failed) return false;
6354 
6355     FinalResult.swap(PrevResult.Val);
6356     return true;
6357   }
6358 
6359 private:
Success(uint64_t Value,const Expr * E,APValue & Result)6360   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6361     return IntEval.Success(Value, E, Result);
6362   }
Success(const APSInt & Value,const Expr * E,APValue & Result)6363   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
6364     return IntEval.Success(Value, E, Result);
6365   }
Error(const Expr * E)6366   bool Error(const Expr *E) {
6367     return IntEval.Error(E);
6368   }
Error(const Expr * E,diag::kind D)6369   bool Error(const Expr *E, diag::kind D) {
6370     return IntEval.Error(E, D);
6371   }
6372 
CCEDiag(const Expr * E,diag::kind D)6373   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6374     return Info.CCEDiag(E, D);
6375   }
6376 
6377   // \brief Returns true if visiting the RHS is necessary, false otherwise.
6378   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6379                          bool &SuppressRHSDiags);
6380 
6381   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6382                   const BinaryOperator *E, APValue &Result);
6383 
EvaluateExpr(const Expr * E,EvalResult & Result)6384   void EvaluateExpr(const Expr *E, EvalResult &Result) {
6385     Result.Failed = !Evaluate(Result.Val, Info, E);
6386     if (Result.Failed)
6387       Result.Val = APValue();
6388   }
6389 
6390   void process(EvalResult &Result);
6391 
enqueue(const Expr * E)6392   void enqueue(const Expr *E) {
6393     E = E->IgnoreParens();
6394     Queue.resize(Queue.size()+1);
6395     Queue.back().E = E;
6396     Queue.back().Kind = Job::AnyExprKind;
6397   }
6398 };
6399 
6400 }
6401 
6402 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)6403        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6404                          bool &SuppressRHSDiags) {
6405   if (E->getOpcode() == BO_Comma) {
6406     // Ignore LHS but note if we could not evaluate it.
6407     if (LHSResult.Failed)
6408       return Info.noteSideEffect();
6409     return true;
6410   }
6411 
6412   if (E->isLogicalOp()) {
6413     bool LHSAsBool;
6414     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
6415       // We were able to evaluate the LHS, see if we can get away with not
6416       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
6417       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
6418         Success(LHSAsBool, E, LHSResult.Val);
6419         return false; // Ignore RHS
6420       }
6421     } else {
6422       LHSResult.Failed = true;
6423 
6424       // Since we weren't able to evaluate the left hand side, it
6425       // must have had side effects.
6426       if (!Info.noteSideEffect())
6427         return false;
6428 
6429       // We can't evaluate the LHS; however, sometimes the result
6430       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6431       // Don't ignore RHS and suppress diagnostics from this arm.
6432       SuppressRHSDiags = true;
6433     }
6434 
6435     return true;
6436   }
6437 
6438   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6439          E->getRHS()->getType()->isIntegralOrEnumerationType());
6440 
6441   if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
6442     return false; // Ignore RHS;
6443 
6444   return true;
6445 }
6446 
6447 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)6448        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6449                   const BinaryOperator *E, APValue &Result) {
6450   if (E->getOpcode() == BO_Comma) {
6451     if (RHSResult.Failed)
6452       return false;
6453     Result = RHSResult.Val;
6454     return true;
6455   }
6456 
6457   if (E->isLogicalOp()) {
6458     bool lhsResult, rhsResult;
6459     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
6460     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
6461 
6462     if (LHSIsOK) {
6463       if (RHSIsOK) {
6464         if (E->getOpcode() == BO_LOr)
6465           return Success(lhsResult || rhsResult, E, Result);
6466         else
6467           return Success(lhsResult && rhsResult, E, Result);
6468       }
6469     } else {
6470       if (RHSIsOK) {
6471         // We can't evaluate the LHS; however, sometimes the result
6472         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6473         if (rhsResult == (E->getOpcode() == BO_LOr))
6474           return Success(rhsResult, E, Result);
6475       }
6476     }
6477 
6478     return false;
6479   }
6480 
6481   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6482          E->getRHS()->getType()->isIntegralOrEnumerationType());
6483 
6484   if (LHSResult.Failed || RHSResult.Failed)
6485     return false;
6486 
6487   const APValue &LHSVal = LHSResult.Val;
6488   const APValue &RHSVal = RHSResult.Val;
6489 
6490   // Handle cases like (unsigned long)&a + 4.
6491   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
6492     Result = LHSVal;
6493     CharUnits AdditionalOffset =
6494         CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
6495     if (E->getOpcode() == BO_Add)
6496       Result.getLValueOffset() += AdditionalOffset;
6497     else
6498       Result.getLValueOffset() -= AdditionalOffset;
6499     return true;
6500   }
6501 
6502   // Handle cases like 4 + (unsigned long)&a
6503   if (E->getOpcode() == BO_Add &&
6504       RHSVal.isLValue() && LHSVal.isInt()) {
6505     Result = RHSVal;
6506     Result.getLValueOffset() +=
6507         CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
6508     return true;
6509   }
6510 
6511   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
6512     // Handle (intptr_t)&&A - (intptr_t)&&B.
6513     if (!LHSVal.getLValueOffset().isZero() ||
6514         !RHSVal.getLValueOffset().isZero())
6515       return false;
6516     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
6517     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
6518     if (!LHSExpr || !RHSExpr)
6519       return false;
6520     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6521     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6522     if (!LHSAddrExpr || !RHSAddrExpr)
6523       return false;
6524     // Make sure both labels come from the same function.
6525     if (LHSAddrExpr->getLabel()->getDeclContext() !=
6526         RHSAddrExpr->getLabel()->getDeclContext())
6527       return false;
6528     Result = APValue(LHSAddrExpr, RHSAddrExpr);
6529     return true;
6530   }
6531 
6532   // All the remaining cases expect both operands to be an integer
6533   if (!LHSVal.isInt() || !RHSVal.isInt())
6534     return Error(E);
6535 
6536   // Set up the width and signedness manually, in case it can't be deduced
6537   // from the operation we're performing.
6538   // FIXME: Don't do this in the cases where we can deduce it.
6539   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
6540                E->getType()->isUnsignedIntegerOrEnumerationType());
6541   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
6542                          RHSVal.getInt(), Value))
6543     return false;
6544   return Success(Value, E, Result);
6545 }
6546 
process(EvalResult & Result)6547 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
6548   Job &job = Queue.back();
6549 
6550   switch (job.Kind) {
6551     case Job::AnyExprKind: {
6552       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
6553         if (shouldEnqueue(Bop)) {
6554           job.Kind = Job::BinOpKind;
6555           enqueue(Bop->getLHS());
6556           return;
6557         }
6558       }
6559 
6560       EvaluateExpr(job.E, Result);
6561       Queue.pop_back();
6562       return;
6563     }
6564 
6565     case Job::BinOpKind: {
6566       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6567       bool SuppressRHSDiags = false;
6568       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
6569         Queue.pop_back();
6570         return;
6571       }
6572       if (SuppressRHSDiags)
6573         job.startSpeculativeEval(Info);
6574       job.LHSResult.swap(Result);
6575       job.Kind = Job::BinOpVisitedLHSKind;
6576       enqueue(Bop->getRHS());
6577       return;
6578     }
6579 
6580     case Job::BinOpVisitedLHSKind: {
6581       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6582       EvalResult RHS;
6583       RHS.swap(Result);
6584       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
6585       Queue.pop_back();
6586       return;
6587     }
6588   }
6589 
6590   llvm_unreachable("Invalid Job::Kind!");
6591 }
6592 
VisitBinaryOperator(const BinaryOperator * E)6593 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
6594   if (E->isAssignmentOp())
6595     return Error(E);
6596 
6597   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
6598     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
6599 
6600   QualType LHSTy = E->getLHS()->getType();
6601   QualType RHSTy = E->getRHS()->getType();
6602 
6603   if (LHSTy->isAnyComplexType()) {
6604     assert(RHSTy->isAnyComplexType() && "Invalid comparison");
6605     ComplexValue LHS, RHS;
6606 
6607     bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
6608     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6609       return false;
6610 
6611     if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
6612       return false;
6613 
6614     if (LHS.isComplexFloat()) {
6615       APFloat::cmpResult CR_r =
6616         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
6617       APFloat::cmpResult CR_i =
6618         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
6619 
6620       if (E->getOpcode() == BO_EQ)
6621         return Success((CR_r == APFloat::cmpEqual &&
6622                         CR_i == APFloat::cmpEqual), E);
6623       else {
6624         assert(E->getOpcode() == BO_NE &&
6625                "Invalid complex comparison.");
6626         return Success(((CR_r == APFloat::cmpGreaterThan ||
6627                          CR_r == APFloat::cmpLessThan ||
6628                          CR_r == APFloat::cmpUnordered) ||
6629                         (CR_i == APFloat::cmpGreaterThan ||
6630                          CR_i == APFloat::cmpLessThan ||
6631                          CR_i == APFloat::cmpUnordered)), E);
6632       }
6633     } else {
6634       if (E->getOpcode() == BO_EQ)
6635         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
6636                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
6637       else {
6638         assert(E->getOpcode() == BO_NE &&
6639                "Invalid compex comparison.");
6640         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
6641                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
6642       }
6643     }
6644   }
6645 
6646   if (LHSTy->isRealFloatingType() &&
6647       RHSTy->isRealFloatingType()) {
6648     APFloat RHS(0.0), LHS(0.0);
6649 
6650     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
6651     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6652       return false;
6653 
6654     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
6655       return false;
6656 
6657     APFloat::cmpResult CR = LHS.compare(RHS);
6658 
6659     switch (E->getOpcode()) {
6660     default:
6661       llvm_unreachable("Invalid binary operator!");
6662     case BO_LT:
6663       return Success(CR == APFloat::cmpLessThan, E);
6664     case BO_GT:
6665       return Success(CR == APFloat::cmpGreaterThan, E);
6666     case BO_LE:
6667       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
6668     case BO_GE:
6669       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
6670                      E);
6671     case BO_EQ:
6672       return Success(CR == APFloat::cmpEqual, E);
6673     case BO_NE:
6674       return Success(CR == APFloat::cmpGreaterThan
6675                      || CR == APFloat::cmpLessThan
6676                      || CR == APFloat::cmpUnordered, E);
6677     }
6678   }
6679 
6680   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
6681     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
6682       LValue LHSValue, RHSValue;
6683 
6684       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
6685       if (!LHSOK && Info.keepEvaluatingAfterFailure())
6686         return false;
6687 
6688       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6689         return false;
6690 
6691       // Reject differing bases from the normal codepath; we special-case
6692       // comparisons to null.
6693       if (!HasSameBase(LHSValue, RHSValue)) {
6694         if (E->getOpcode() == BO_Sub) {
6695           // Handle &&A - &&B.
6696           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
6697             return false;
6698           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
6699           const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
6700           if (!LHSExpr || !RHSExpr)
6701             return false;
6702           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6703           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6704           if (!LHSAddrExpr || !RHSAddrExpr)
6705             return false;
6706           // Make sure both labels come from the same function.
6707           if (LHSAddrExpr->getLabel()->getDeclContext() !=
6708               RHSAddrExpr->getLabel()->getDeclContext())
6709             return false;
6710           Result = APValue(LHSAddrExpr, RHSAddrExpr);
6711           return true;
6712         }
6713         // Inequalities and subtractions between unrelated pointers have
6714         // unspecified or undefined behavior.
6715         if (!E->isEqualityOp())
6716           return Error(E);
6717         // A constant address may compare equal to the address of a symbol.
6718         // The one exception is that address of an object cannot compare equal
6719         // to a null pointer constant.
6720         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
6721             (!RHSValue.Base && !RHSValue.Offset.isZero()))
6722           return Error(E);
6723         // It's implementation-defined whether distinct literals will have
6724         // distinct addresses. In clang, the result of such a comparison is
6725         // unspecified, so it is not a constant expression. However, we do know
6726         // that the address of a literal will be non-null.
6727         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
6728             LHSValue.Base && RHSValue.Base)
6729           return Error(E);
6730         // We can't tell whether weak symbols will end up pointing to the same
6731         // object.
6732         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
6733           return Error(E);
6734         // Pointers with different bases cannot represent the same object.
6735         // (Note that clang defaults to -fmerge-all-constants, which can
6736         // lead to inconsistent results for comparisons involving the address
6737         // of a constant; this generally doesn't matter in practice.)
6738         return Success(E->getOpcode() == BO_NE, E);
6739       }
6740 
6741       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
6742       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
6743 
6744       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
6745       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
6746 
6747       if (E->getOpcode() == BO_Sub) {
6748         // C++11 [expr.add]p6:
6749         //   Unless both pointers point to elements of the same array object, or
6750         //   one past the last element of the array object, the behavior is
6751         //   undefined.
6752         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6753             !AreElementsOfSameArray(getType(LHSValue.Base),
6754                                     LHSDesignator, RHSDesignator))
6755           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
6756 
6757         QualType Type = E->getLHS()->getType();
6758         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
6759 
6760         CharUnits ElementSize;
6761         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
6762           return false;
6763 
6764         // As an extension, a type may have zero size (empty struct or union in
6765         // C, array of zero length). Pointer subtraction in such cases has
6766         // undefined behavior, so is not constant.
6767         if (ElementSize.isZero()) {
6768           Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
6769             << ElementType;
6770           return false;
6771         }
6772 
6773         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
6774         // and produce incorrect results when it overflows. Such behavior
6775         // appears to be non-conforming, but is common, so perhaps we should
6776         // assume the standard intended for such cases to be undefined behavior
6777         // and check for them.
6778 
6779         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
6780         // overflow in the final conversion to ptrdiff_t.
6781         APSInt LHS(
6782           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
6783         APSInt RHS(
6784           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
6785         APSInt ElemSize(
6786           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
6787         APSInt TrueResult = (LHS - RHS) / ElemSize;
6788         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
6789 
6790         if (Result.extend(65) != TrueResult)
6791           HandleOverflow(Info, E, TrueResult, E->getType());
6792         return Success(Result, E);
6793       }
6794 
6795       // C++11 [expr.rel]p3:
6796       //   Pointers to void (after pointer conversions) can be compared, with a
6797       //   result defined as follows: If both pointers represent the same
6798       //   address or are both the null pointer value, the result is true if the
6799       //   operator is <= or >= and false otherwise; otherwise the result is
6800       //   unspecified.
6801       // We interpret this as applying to pointers to *cv* void.
6802       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
6803           E->isRelationalOp())
6804         CCEDiag(E, diag::note_constexpr_void_comparison);
6805 
6806       // C++11 [expr.rel]p2:
6807       // - If two pointers point to non-static data members of the same object,
6808       //   or to subobjects or array elements fo such members, recursively, the
6809       //   pointer to the later declared member compares greater provided the
6810       //   two members have the same access control and provided their class is
6811       //   not a union.
6812       //   [...]
6813       // - Otherwise pointer comparisons are unspecified.
6814       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6815           E->isRelationalOp()) {
6816         bool WasArrayIndex;
6817         unsigned Mismatch =
6818           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
6819                                  RHSDesignator, WasArrayIndex);
6820         // At the point where the designators diverge, the comparison has a
6821         // specified value if:
6822         //  - we are comparing array indices
6823         //  - we are comparing fields of a union, or fields with the same access
6824         // Otherwise, the result is unspecified and thus the comparison is not a
6825         // constant expression.
6826         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
6827             Mismatch < RHSDesignator.Entries.size()) {
6828           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
6829           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
6830           if (!LF && !RF)
6831             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
6832           else if (!LF)
6833             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6834               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
6835               << RF->getParent() << RF;
6836           else if (!RF)
6837             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6838               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
6839               << LF->getParent() << LF;
6840           else if (!LF->getParent()->isUnion() &&
6841                    LF->getAccess() != RF->getAccess())
6842             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
6843               << LF << LF->getAccess() << RF << RF->getAccess()
6844               << LF->getParent();
6845         }
6846       }
6847 
6848       // The comparison here must be unsigned, and performed with the same
6849       // width as the pointer.
6850       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
6851       uint64_t CompareLHS = LHSOffset.getQuantity();
6852       uint64_t CompareRHS = RHSOffset.getQuantity();
6853       assert(PtrSize <= 64 && "Unexpected pointer width");
6854       uint64_t Mask = ~0ULL >> (64 - PtrSize);
6855       CompareLHS &= Mask;
6856       CompareRHS &= Mask;
6857 
6858       // If there is a base and this is a relational operator, we can only
6859       // compare pointers within the object in question; otherwise, the result
6860       // depends on where the object is located in memory.
6861       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
6862         QualType BaseTy = getType(LHSValue.Base);
6863         if (BaseTy->isIncompleteType())
6864           return Error(E);
6865         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
6866         uint64_t OffsetLimit = Size.getQuantity();
6867         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
6868           return Error(E);
6869       }
6870 
6871       switch (E->getOpcode()) {
6872       default: llvm_unreachable("missing comparison operator");
6873       case BO_LT: return Success(CompareLHS < CompareRHS, E);
6874       case BO_GT: return Success(CompareLHS > CompareRHS, E);
6875       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
6876       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
6877       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
6878       case BO_NE: return Success(CompareLHS != CompareRHS, E);
6879       }
6880     }
6881   }
6882 
6883   if (LHSTy->isMemberPointerType()) {
6884     assert(E->isEqualityOp() && "unexpected member pointer operation");
6885     assert(RHSTy->isMemberPointerType() && "invalid comparison");
6886 
6887     MemberPtr LHSValue, RHSValue;
6888 
6889     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
6890     if (!LHSOK && Info.keepEvaluatingAfterFailure())
6891       return false;
6892 
6893     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6894       return false;
6895 
6896     // C++11 [expr.eq]p2:
6897     //   If both operands are null, they compare equal. Otherwise if only one is
6898     //   null, they compare unequal.
6899     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
6900       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
6901       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6902     }
6903 
6904     //   Otherwise if either is a pointer to a virtual member function, the
6905     //   result is unspecified.
6906     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
6907       if (MD->isVirtual())
6908         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6909     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
6910       if (MD->isVirtual())
6911         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6912 
6913     //   Otherwise they compare equal if and only if they would refer to the
6914     //   same member of the same most derived object or the same subobject if
6915     //   they were dereferenced with a hypothetical object of the associated
6916     //   class type.
6917     bool Equal = LHSValue == RHSValue;
6918     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6919   }
6920 
6921   if (LHSTy->isNullPtrType()) {
6922     assert(E->isComparisonOp() && "unexpected nullptr operation");
6923     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
6924     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
6925     // are compared, the result is true of the operator is <=, >= or ==, and
6926     // false otherwise.
6927     BinaryOperator::Opcode Opcode = E->getOpcode();
6928     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
6929   }
6930 
6931   assert((!LHSTy->isIntegralOrEnumerationType() ||
6932           !RHSTy->isIntegralOrEnumerationType()) &&
6933          "DataRecursiveIntBinOpEvaluator should have handled integral types");
6934   // We can't continue from here for non-integral types.
6935   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
6936 }
6937 
GetAlignOfType(QualType T)6938 CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
6939   // C++ [expr.alignof]p3:
6940   //     When alignof is applied to a reference type, the result is the
6941   //     alignment of the referenced type.
6942   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
6943     T = Ref->getPointeeType();
6944 
6945   // __alignof is defined to return the preferred alignment.
6946   return Info.Ctx.toCharUnitsFromBits(
6947     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
6948 }
6949 
GetAlignOfExpr(const Expr * E)6950 CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
6951   E = E->IgnoreParens();
6952 
6953   // The kinds of expressions that we have special-case logic here for
6954   // should be kept up to date with the special checks for those
6955   // expressions in Sema.
6956 
6957   // alignof decl is always accepted, even if it doesn't make sense: we default
6958   // to 1 in those cases.
6959   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6960     return Info.Ctx.getDeclAlign(DRE->getDecl(),
6961                                  /*RefAsPointee*/true);
6962 
6963   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
6964     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
6965                                  /*RefAsPointee*/true);
6966 
6967   return GetAlignOfType(E->getType());
6968 }
6969 
6970 
6971 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
6972 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)6973 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
6974                                     const UnaryExprOrTypeTraitExpr *E) {
6975   switch(E->getKind()) {
6976   case UETT_AlignOf: {
6977     if (E->isArgumentType())
6978       return Success(GetAlignOfType(E->getArgumentType()), E);
6979     else
6980       return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
6981   }
6982 
6983   case UETT_VecStep: {
6984     QualType Ty = E->getTypeOfArgument();
6985 
6986     if (Ty->isVectorType()) {
6987       unsigned n = Ty->castAs<VectorType>()->getNumElements();
6988 
6989       // The vec_step built-in functions that take a 3-component
6990       // vector return 4. (OpenCL 1.1 spec 6.11.12)
6991       if (n == 3)
6992         n = 4;
6993 
6994       return Success(n, E);
6995     } else
6996       return Success(1, E);
6997   }
6998 
6999   case UETT_SizeOf: {
7000     QualType SrcTy = E->getTypeOfArgument();
7001     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
7002     //   the result is the size of the referenced type."
7003     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
7004       SrcTy = Ref->getPointeeType();
7005 
7006     CharUnits Sizeof;
7007     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
7008       return false;
7009     return Success(Sizeof, E);
7010   }
7011   }
7012 
7013   llvm_unreachable("unknown expr/type trait");
7014 }
7015 
VisitOffsetOfExpr(const OffsetOfExpr * OOE)7016 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
7017   CharUnits Result;
7018   unsigned n = OOE->getNumComponents();
7019   if (n == 0)
7020     return Error(OOE);
7021   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
7022   for (unsigned i = 0; i != n; ++i) {
7023     OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
7024     switch (ON.getKind()) {
7025     case OffsetOfExpr::OffsetOfNode::Array: {
7026       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
7027       APSInt IdxResult;
7028       if (!EvaluateInteger(Idx, IdxResult, Info))
7029         return false;
7030       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
7031       if (!AT)
7032         return Error(OOE);
7033       CurrentType = AT->getElementType();
7034       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
7035       Result += IdxResult.getSExtValue() * ElementSize;
7036       break;
7037     }
7038 
7039     case OffsetOfExpr::OffsetOfNode::Field: {
7040       FieldDecl *MemberDecl = ON.getField();
7041       const RecordType *RT = CurrentType->getAs<RecordType>();
7042       if (!RT)
7043         return Error(OOE);
7044       RecordDecl *RD = RT->getDecl();
7045       if (RD->isInvalidDecl()) return false;
7046       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7047       unsigned i = MemberDecl->getFieldIndex();
7048       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
7049       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
7050       CurrentType = MemberDecl->getType().getNonReferenceType();
7051       break;
7052     }
7053 
7054     case OffsetOfExpr::OffsetOfNode::Identifier:
7055       llvm_unreachable("dependent __builtin_offsetof");
7056 
7057     case OffsetOfExpr::OffsetOfNode::Base: {
7058       CXXBaseSpecifier *BaseSpec = ON.getBase();
7059       if (BaseSpec->isVirtual())
7060         return Error(OOE);
7061 
7062       // Find the layout of the class whose base we are looking into.
7063       const RecordType *RT = CurrentType->getAs<RecordType>();
7064       if (!RT)
7065         return Error(OOE);
7066       RecordDecl *RD = RT->getDecl();
7067       if (RD->isInvalidDecl()) return false;
7068       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7069 
7070       // Find the base class itself.
7071       CurrentType = BaseSpec->getType();
7072       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
7073       if (!BaseRT)
7074         return Error(OOE);
7075 
7076       // Add the offset to the base.
7077       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
7078       break;
7079     }
7080     }
7081   }
7082   return Success(Result, OOE);
7083 }
7084 
VisitUnaryOperator(const UnaryOperator * E)7085 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7086   switch (E->getOpcode()) {
7087   default:
7088     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
7089     // See C99 6.6p3.
7090     return Error(E);
7091   case UO_Extension:
7092     // FIXME: Should extension allow i-c-e extension expressions in its scope?
7093     // If so, we could clear the diagnostic ID.
7094     return Visit(E->getSubExpr());
7095   case UO_Plus:
7096     // The result is just the value.
7097     return Visit(E->getSubExpr());
7098   case UO_Minus: {
7099     if (!Visit(E->getSubExpr()))
7100       return false;
7101     if (!Result.isInt()) return Error(E);
7102     const APSInt &Value = Result.getInt();
7103     if (Value.isSigned() && Value.isMinSignedValue())
7104       HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
7105                      E->getType());
7106     return Success(-Value, E);
7107   }
7108   case UO_Not: {
7109     if (!Visit(E->getSubExpr()))
7110       return false;
7111     if (!Result.isInt()) return Error(E);
7112     return Success(~Result.getInt(), E);
7113   }
7114   case UO_LNot: {
7115     bool bres;
7116     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
7117       return false;
7118     return Success(!bres, E);
7119   }
7120   }
7121 }
7122 
7123 /// HandleCast - This is used to evaluate implicit or explicit casts where the
7124 /// result type is integer.
VisitCastExpr(const CastExpr * E)7125 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
7126   const Expr *SubExpr = E->getSubExpr();
7127   QualType DestType = E->getType();
7128   QualType SrcType = SubExpr->getType();
7129 
7130   switch (E->getCastKind()) {
7131   case CK_BaseToDerived:
7132   case CK_DerivedToBase:
7133   case CK_UncheckedDerivedToBase:
7134   case CK_Dynamic:
7135   case CK_ToUnion:
7136   case CK_ArrayToPointerDecay:
7137   case CK_FunctionToPointerDecay:
7138   case CK_NullToPointer:
7139   case CK_NullToMemberPointer:
7140   case CK_BaseToDerivedMemberPointer:
7141   case CK_DerivedToBaseMemberPointer:
7142   case CK_ReinterpretMemberPointer:
7143   case CK_ConstructorConversion:
7144   case CK_IntegralToPointer:
7145   case CK_ToVoid:
7146   case CK_VectorSplat:
7147   case CK_IntegralToFloating:
7148   case CK_FloatingCast:
7149   case CK_CPointerToObjCPointerCast:
7150   case CK_BlockPointerToObjCPointerCast:
7151   case CK_AnyPointerToBlockPointerCast:
7152   case CK_ObjCObjectLValueCast:
7153   case CK_FloatingRealToComplex:
7154   case CK_FloatingComplexToReal:
7155   case CK_FloatingComplexCast:
7156   case CK_FloatingComplexToIntegralComplex:
7157   case CK_IntegralRealToComplex:
7158   case CK_IntegralComplexCast:
7159   case CK_IntegralComplexToFloatingComplex:
7160   case CK_BuiltinFnToFnPtr:
7161   case CK_ZeroToOCLEvent:
7162   case CK_NonAtomicToAtomic:
7163   case CK_AddressSpaceConversion:
7164     llvm_unreachable("invalid cast kind for integral value");
7165 
7166   case CK_BitCast:
7167   case CK_Dependent:
7168   case CK_LValueBitCast:
7169   case CK_ARCProduceObject:
7170   case CK_ARCConsumeObject:
7171   case CK_ARCReclaimReturnedObject:
7172   case CK_ARCExtendBlockObject:
7173   case CK_CopyAndAutoreleaseBlockObject:
7174     return Error(E);
7175 
7176   case CK_UserDefinedConversion:
7177   case CK_LValueToRValue:
7178   case CK_AtomicToNonAtomic:
7179   case CK_NoOp:
7180     return ExprEvaluatorBaseTy::VisitCastExpr(E);
7181 
7182   case CK_MemberPointerToBoolean:
7183   case CK_PointerToBoolean:
7184   case CK_IntegralToBoolean:
7185   case CK_FloatingToBoolean:
7186   case CK_FloatingComplexToBoolean:
7187   case CK_IntegralComplexToBoolean: {
7188     bool BoolResult;
7189     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
7190       return false;
7191     return Success(BoolResult, E);
7192   }
7193 
7194   case CK_IntegralCast: {
7195     if (!Visit(SubExpr))
7196       return false;
7197 
7198     if (!Result.isInt()) {
7199       // Allow casts of address-of-label differences if they are no-ops
7200       // or narrowing.  (The narrowing case isn't actually guaranteed to
7201       // be constant-evaluatable except in some narrow cases which are hard
7202       // to detect here.  We let it through on the assumption the user knows
7203       // what they are doing.)
7204       if (Result.isAddrLabelDiff())
7205         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
7206       // Only allow casts of lvalues if they are lossless.
7207       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
7208     }
7209 
7210     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
7211                                       Result.getInt()), E);
7212   }
7213 
7214   case CK_PointerToIntegral: {
7215     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7216 
7217     LValue LV;
7218     if (!EvaluatePointer(SubExpr, LV, Info))
7219       return false;
7220 
7221     if (LV.getLValueBase()) {
7222       // Only allow based lvalue casts if they are lossless.
7223       // FIXME: Allow a larger integer size than the pointer size, and allow
7224       // narrowing back down to pointer width in subsequent integral casts.
7225       // FIXME: Check integer type's active bits, not its type size.
7226       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
7227         return Error(E);
7228 
7229       LV.Designator.setInvalid();
7230       LV.moveInto(Result);
7231       return true;
7232     }
7233 
7234     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
7235                                          SrcType);
7236     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
7237   }
7238 
7239   case CK_IntegralComplexToReal: {
7240     ComplexValue C;
7241     if (!EvaluateComplex(SubExpr, C, Info))
7242       return false;
7243     return Success(C.getComplexIntReal(), E);
7244   }
7245 
7246   case CK_FloatingToIntegral: {
7247     APFloat F(0.0);
7248     if (!EvaluateFloat(SubExpr, F, Info))
7249       return false;
7250 
7251     APSInt Value;
7252     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
7253       return false;
7254     return Success(Value, E);
7255   }
7256   }
7257 
7258   llvm_unreachable("unknown cast resulting in integral value");
7259 }
7260 
VisitUnaryReal(const UnaryOperator * E)7261 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7262   if (E->getSubExpr()->getType()->isAnyComplexType()) {
7263     ComplexValue LV;
7264     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7265       return false;
7266     if (!LV.isComplexInt())
7267       return Error(E);
7268     return Success(LV.getComplexIntReal(), E);
7269   }
7270 
7271   return Visit(E->getSubExpr());
7272 }
7273 
VisitUnaryImag(const UnaryOperator * E)7274 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7275   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
7276     ComplexValue LV;
7277     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7278       return false;
7279     if (!LV.isComplexInt())
7280       return Error(E);
7281     return Success(LV.getComplexIntImag(), E);
7282   }
7283 
7284   VisitIgnoredValue(E->getSubExpr());
7285   return Success(0, E);
7286 }
7287 
VisitSizeOfPackExpr(const SizeOfPackExpr * E)7288 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
7289   return Success(E->getPackLength(), E);
7290 }
7291 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)7292 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
7293   return Success(E->getValue(), E);
7294 }
7295 
7296 //===----------------------------------------------------------------------===//
7297 // Float Evaluation
7298 //===----------------------------------------------------------------------===//
7299 
7300 namespace {
7301 class FloatExprEvaluator
7302   : public ExprEvaluatorBase<FloatExprEvaluator> {
7303   APFloat &Result;
7304 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)7305   FloatExprEvaluator(EvalInfo &info, APFloat &result)
7306     : ExprEvaluatorBaseTy(info), Result(result) {}
7307 
Success(const APValue & V,const Expr * e)7308   bool Success(const APValue &V, const Expr *e) {
7309     Result = V.getFloat();
7310     return true;
7311   }
7312 
ZeroInitialization(const Expr * E)7313   bool ZeroInitialization(const Expr *E) {
7314     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
7315     return true;
7316   }
7317 
7318   bool VisitCallExpr(const CallExpr *E);
7319 
7320   bool VisitUnaryOperator(const UnaryOperator *E);
7321   bool VisitBinaryOperator(const BinaryOperator *E);
7322   bool VisitFloatingLiteral(const FloatingLiteral *E);
7323   bool VisitCastExpr(const CastExpr *E);
7324 
7325   bool VisitUnaryReal(const UnaryOperator *E);
7326   bool VisitUnaryImag(const UnaryOperator *E);
7327 
7328   // FIXME: Missing: array subscript of vector, member of vector
7329 };
7330 } // end anonymous namespace
7331 
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)7332 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
7333   assert(E->isRValue() && E->getType()->isRealFloatingType());
7334   return FloatExprEvaluator(Info, Result).Visit(E);
7335 }
7336 
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)7337 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
7338                                   QualType ResultTy,
7339                                   const Expr *Arg,
7340                                   bool SNaN,
7341                                   llvm::APFloat &Result) {
7342   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
7343   if (!S) return false;
7344 
7345   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
7346 
7347   llvm::APInt fill;
7348 
7349   // Treat empty strings as if they were zero.
7350   if (S->getString().empty())
7351     fill = llvm::APInt(32, 0);
7352   else if (S->getString().getAsInteger(0, fill))
7353     return false;
7354 
7355   if (SNaN)
7356     Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7357   else
7358     Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7359   return true;
7360 }
7361 
VisitCallExpr(const CallExpr * E)7362 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
7363   switch (E->getBuiltinCallee()) {
7364   default:
7365     return ExprEvaluatorBaseTy::VisitCallExpr(E);
7366 
7367   case Builtin::BI__builtin_huge_val:
7368   case Builtin::BI__builtin_huge_valf:
7369   case Builtin::BI__builtin_huge_vall:
7370   case Builtin::BI__builtin_inf:
7371   case Builtin::BI__builtin_inff:
7372   case Builtin::BI__builtin_infl: {
7373     const llvm::fltSemantics &Sem =
7374       Info.Ctx.getFloatTypeSemantics(E->getType());
7375     Result = llvm::APFloat::getInf(Sem);
7376     return true;
7377   }
7378 
7379   case Builtin::BI__builtin_nans:
7380   case Builtin::BI__builtin_nansf:
7381   case Builtin::BI__builtin_nansl:
7382     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7383                                true, Result))
7384       return Error(E);
7385     return true;
7386 
7387   case Builtin::BI__builtin_nan:
7388   case Builtin::BI__builtin_nanf:
7389   case Builtin::BI__builtin_nanl:
7390     // If this is __builtin_nan() turn this into a nan, otherwise we
7391     // can't constant fold it.
7392     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7393                                false, Result))
7394       return Error(E);
7395     return true;
7396 
7397   case Builtin::BI__builtin_fabs:
7398   case Builtin::BI__builtin_fabsf:
7399   case Builtin::BI__builtin_fabsl:
7400     if (!EvaluateFloat(E->getArg(0), Result, Info))
7401       return false;
7402 
7403     if (Result.isNegative())
7404       Result.changeSign();
7405     return true;
7406 
7407   // FIXME: Builtin::BI__builtin_powi
7408   // FIXME: Builtin::BI__builtin_powif
7409   // FIXME: Builtin::BI__builtin_powil
7410 
7411   case Builtin::BI__builtin_copysign:
7412   case Builtin::BI__builtin_copysignf:
7413   case Builtin::BI__builtin_copysignl: {
7414     APFloat RHS(0.);
7415     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
7416         !EvaluateFloat(E->getArg(1), RHS, Info))
7417       return false;
7418     Result.copySign(RHS);
7419     return true;
7420   }
7421   }
7422 }
7423 
VisitUnaryReal(const UnaryOperator * E)7424 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7425   if (E->getSubExpr()->getType()->isAnyComplexType()) {
7426     ComplexValue CV;
7427     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7428       return false;
7429     Result = CV.FloatReal;
7430     return true;
7431   }
7432 
7433   return Visit(E->getSubExpr());
7434 }
7435 
VisitUnaryImag(const UnaryOperator * E)7436 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7437   if (E->getSubExpr()->getType()->isAnyComplexType()) {
7438     ComplexValue CV;
7439     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7440       return false;
7441     Result = CV.FloatImag;
7442     return true;
7443   }
7444 
7445   VisitIgnoredValue(E->getSubExpr());
7446   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
7447   Result = llvm::APFloat::getZero(Sem);
7448   return true;
7449 }
7450 
VisitUnaryOperator(const UnaryOperator * E)7451 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7452   switch (E->getOpcode()) {
7453   default: return Error(E);
7454   case UO_Plus:
7455     return EvaluateFloat(E->getSubExpr(), Result, Info);
7456   case UO_Minus:
7457     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
7458       return false;
7459     Result.changeSign();
7460     return true;
7461   }
7462 }
7463 
VisitBinaryOperator(const BinaryOperator * E)7464 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7465   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7466     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7467 
7468   APFloat RHS(0.0);
7469   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
7470   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7471     return false;
7472   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
7473          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
7474 }
7475 
VisitFloatingLiteral(const FloatingLiteral * E)7476 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
7477   Result = E->getValue();
7478   return true;
7479 }
7480 
VisitCastExpr(const CastExpr * E)7481 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
7482   const Expr* SubExpr = E->getSubExpr();
7483 
7484   switch (E->getCastKind()) {
7485   default:
7486     return ExprEvaluatorBaseTy::VisitCastExpr(E);
7487 
7488   case CK_IntegralToFloating: {
7489     APSInt IntResult;
7490     return EvaluateInteger(SubExpr, IntResult, Info) &&
7491            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
7492                                 E->getType(), Result);
7493   }
7494 
7495   case CK_FloatingCast: {
7496     if (!Visit(SubExpr))
7497       return false;
7498     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
7499                                   Result);
7500   }
7501 
7502   case CK_FloatingComplexToReal: {
7503     ComplexValue V;
7504     if (!EvaluateComplex(SubExpr, V, Info))
7505       return false;
7506     Result = V.getComplexFloatReal();
7507     return true;
7508   }
7509   }
7510 }
7511 
7512 //===----------------------------------------------------------------------===//
7513 // Complex Evaluation (for float and integer)
7514 //===----------------------------------------------------------------------===//
7515 
7516 namespace {
7517 class ComplexExprEvaluator
7518   : public ExprEvaluatorBase<ComplexExprEvaluator> {
7519   ComplexValue &Result;
7520 
7521 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)7522   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
7523     : ExprEvaluatorBaseTy(info), Result(Result) {}
7524 
Success(const APValue & V,const Expr * e)7525   bool Success(const APValue &V, const Expr *e) {
7526     Result.setFrom(V);
7527     return true;
7528   }
7529 
7530   bool ZeroInitialization(const Expr *E);
7531 
7532   //===--------------------------------------------------------------------===//
7533   //                            Visitor Methods
7534   //===--------------------------------------------------------------------===//
7535 
7536   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
7537   bool VisitCastExpr(const CastExpr *E);
7538   bool VisitBinaryOperator(const BinaryOperator *E);
7539   bool VisitUnaryOperator(const UnaryOperator *E);
7540   bool VisitInitListExpr(const InitListExpr *E);
7541 };
7542 } // end anonymous namespace
7543 
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)7544 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
7545                             EvalInfo &Info) {
7546   assert(E->isRValue() && E->getType()->isAnyComplexType());
7547   return ComplexExprEvaluator(Info, Result).Visit(E);
7548 }
7549 
ZeroInitialization(const Expr * E)7550 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
7551   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
7552   if (ElemTy->isRealFloatingType()) {
7553     Result.makeComplexFloat();
7554     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
7555     Result.FloatReal = Zero;
7556     Result.FloatImag = Zero;
7557   } else {
7558     Result.makeComplexInt();
7559     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
7560     Result.IntReal = Zero;
7561     Result.IntImag = Zero;
7562   }
7563   return true;
7564 }
7565 
VisitImaginaryLiteral(const ImaginaryLiteral * E)7566 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
7567   const Expr* SubExpr = E->getSubExpr();
7568 
7569   if (SubExpr->getType()->isRealFloatingType()) {
7570     Result.makeComplexFloat();
7571     APFloat &Imag = Result.FloatImag;
7572     if (!EvaluateFloat(SubExpr, Imag, Info))
7573       return false;
7574 
7575     Result.FloatReal = APFloat(Imag.getSemantics());
7576     return true;
7577   } else {
7578     assert(SubExpr->getType()->isIntegerType() &&
7579            "Unexpected imaginary literal.");
7580 
7581     Result.makeComplexInt();
7582     APSInt &Imag = Result.IntImag;
7583     if (!EvaluateInteger(SubExpr, Imag, Info))
7584       return false;
7585 
7586     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
7587     return true;
7588   }
7589 }
7590 
VisitCastExpr(const CastExpr * E)7591 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
7592 
7593   switch (E->getCastKind()) {
7594   case CK_BitCast:
7595   case CK_BaseToDerived:
7596   case CK_DerivedToBase:
7597   case CK_UncheckedDerivedToBase:
7598   case CK_Dynamic:
7599   case CK_ToUnion:
7600   case CK_ArrayToPointerDecay:
7601   case CK_FunctionToPointerDecay:
7602   case CK_NullToPointer:
7603   case CK_NullToMemberPointer:
7604   case CK_BaseToDerivedMemberPointer:
7605   case CK_DerivedToBaseMemberPointer:
7606   case CK_MemberPointerToBoolean:
7607   case CK_ReinterpretMemberPointer:
7608   case CK_ConstructorConversion:
7609   case CK_IntegralToPointer:
7610   case CK_PointerToIntegral:
7611   case CK_PointerToBoolean:
7612   case CK_ToVoid:
7613   case CK_VectorSplat:
7614   case CK_IntegralCast:
7615   case CK_IntegralToBoolean:
7616   case CK_IntegralToFloating:
7617   case CK_FloatingToIntegral:
7618   case CK_FloatingToBoolean:
7619   case CK_FloatingCast:
7620   case CK_CPointerToObjCPointerCast:
7621   case CK_BlockPointerToObjCPointerCast:
7622   case CK_AnyPointerToBlockPointerCast:
7623   case CK_ObjCObjectLValueCast:
7624   case CK_FloatingComplexToReal:
7625   case CK_FloatingComplexToBoolean:
7626   case CK_IntegralComplexToReal:
7627   case CK_IntegralComplexToBoolean:
7628   case CK_ARCProduceObject:
7629   case CK_ARCConsumeObject:
7630   case CK_ARCReclaimReturnedObject:
7631   case CK_ARCExtendBlockObject:
7632   case CK_CopyAndAutoreleaseBlockObject:
7633   case CK_BuiltinFnToFnPtr:
7634   case CK_ZeroToOCLEvent:
7635   case CK_NonAtomicToAtomic:
7636   case CK_AddressSpaceConversion:
7637     llvm_unreachable("invalid cast kind for complex value");
7638 
7639   case CK_LValueToRValue:
7640   case CK_AtomicToNonAtomic:
7641   case CK_NoOp:
7642     return ExprEvaluatorBaseTy::VisitCastExpr(E);
7643 
7644   case CK_Dependent:
7645   case CK_LValueBitCast:
7646   case CK_UserDefinedConversion:
7647     return Error(E);
7648 
7649   case CK_FloatingRealToComplex: {
7650     APFloat &Real = Result.FloatReal;
7651     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
7652       return false;
7653 
7654     Result.makeComplexFloat();
7655     Result.FloatImag = APFloat(Real.getSemantics());
7656     return true;
7657   }
7658 
7659   case CK_FloatingComplexCast: {
7660     if (!Visit(E->getSubExpr()))
7661       return false;
7662 
7663     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7664     QualType From
7665       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7666 
7667     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
7668            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
7669   }
7670 
7671   case CK_FloatingComplexToIntegralComplex: {
7672     if (!Visit(E->getSubExpr()))
7673       return false;
7674 
7675     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7676     QualType From
7677       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7678     Result.makeComplexInt();
7679     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
7680                                 To, Result.IntReal) &&
7681            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
7682                                 To, Result.IntImag);
7683   }
7684 
7685   case CK_IntegralRealToComplex: {
7686     APSInt &Real = Result.IntReal;
7687     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
7688       return false;
7689 
7690     Result.makeComplexInt();
7691     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
7692     return true;
7693   }
7694 
7695   case CK_IntegralComplexCast: {
7696     if (!Visit(E->getSubExpr()))
7697       return false;
7698 
7699     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7700     QualType From
7701       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7702 
7703     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
7704     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
7705     return true;
7706   }
7707 
7708   case CK_IntegralComplexToFloatingComplex: {
7709     if (!Visit(E->getSubExpr()))
7710       return false;
7711 
7712     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
7713     QualType From
7714       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
7715     Result.makeComplexFloat();
7716     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
7717                                 To, Result.FloatReal) &&
7718            HandleIntToFloatCast(Info, E, From, Result.IntImag,
7719                                 To, Result.FloatImag);
7720   }
7721   }
7722 
7723   llvm_unreachable("unknown cast resulting in complex value");
7724 }
7725 
VisitBinaryOperator(const BinaryOperator * E)7726 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7727   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7728     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7729 
7730   bool LHSOK = Visit(E->getLHS());
7731   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7732     return false;
7733 
7734   ComplexValue RHS;
7735   if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7736     return false;
7737 
7738   assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
7739          "Invalid operands to binary operator.");
7740   switch (E->getOpcode()) {
7741   default: return Error(E);
7742   case BO_Add:
7743     if (Result.isComplexFloat()) {
7744       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
7745                                        APFloat::rmNearestTiesToEven);
7746       Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
7747                                        APFloat::rmNearestTiesToEven);
7748     } else {
7749       Result.getComplexIntReal() += RHS.getComplexIntReal();
7750       Result.getComplexIntImag() += RHS.getComplexIntImag();
7751     }
7752     break;
7753   case BO_Sub:
7754     if (Result.isComplexFloat()) {
7755       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
7756                                             APFloat::rmNearestTiesToEven);
7757       Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
7758                                             APFloat::rmNearestTiesToEven);
7759     } else {
7760       Result.getComplexIntReal() -= RHS.getComplexIntReal();
7761       Result.getComplexIntImag() -= RHS.getComplexIntImag();
7762     }
7763     break;
7764   case BO_Mul:
7765     if (Result.isComplexFloat()) {
7766       ComplexValue LHS = Result;
7767       APFloat &LHS_r = LHS.getComplexFloatReal();
7768       APFloat &LHS_i = LHS.getComplexFloatImag();
7769       APFloat &RHS_r = RHS.getComplexFloatReal();
7770       APFloat &RHS_i = RHS.getComplexFloatImag();
7771 
7772       APFloat Tmp = LHS_r;
7773       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7774       Result.getComplexFloatReal() = Tmp;
7775       Tmp = LHS_i;
7776       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7777       Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
7778 
7779       Tmp = LHS_r;
7780       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7781       Result.getComplexFloatImag() = Tmp;
7782       Tmp = LHS_i;
7783       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7784       Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
7785     } else {
7786       ComplexValue LHS = Result;
7787       Result.getComplexIntReal() =
7788         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
7789          LHS.getComplexIntImag() * RHS.getComplexIntImag());
7790       Result.getComplexIntImag() =
7791         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
7792          LHS.getComplexIntImag() * RHS.getComplexIntReal());
7793     }
7794     break;
7795   case BO_Div:
7796     if (Result.isComplexFloat()) {
7797       ComplexValue LHS = Result;
7798       APFloat &LHS_r = LHS.getComplexFloatReal();
7799       APFloat &LHS_i = LHS.getComplexFloatImag();
7800       APFloat &RHS_r = RHS.getComplexFloatReal();
7801       APFloat &RHS_i = RHS.getComplexFloatImag();
7802       APFloat &Res_r = Result.getComplexFloatReal();
7803       APFloat &Res_i = Result.getComplexFloatImag();
7804 
7805       APFloat Den = RHS_r;
7806       Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7807       APFloat Tmp = RHS_i;
7808       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7809       Den.add(Tmp, APFloat::rmNearestTiesToEven);
7810 
7811       Res_r = LHS_r;
7812       Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7813       Tmp = LHS_i;
7814       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7815       Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
7816       Res_r.divide(Den, APFloat::rmNearestTiesToEven);
7817 
7818       Res_i = LHS_i;
7819       Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7820       Tmp = LHS_r;
7821       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7822       Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
7823       Res_i.divide(Den, APFloat::rmNearestTiesToEven);
7824     } else {
7825       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
7826         return Error(E, diag::note_expr_divide_by_zero);
7827 
7828       ComplexValue LHS = Result;
7829       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
7830         RHS.getComplexIntImag() * RHS.getComplexIntImag();
7831       Result.getComplexIntReal() =
7832         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
7833          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
7834       Result.getComplexIntImag() =
7835         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
7836          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
7837     }
7838     break;
7839   }
7840 
7841   return true;
7842 }
7843 
VisitUnaryOperator(const UnaryOperator * E)7844 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7845   // Get the operand value into 'Result'.
7846   if (!Visit(E->getSubExpr()))
7847     return false;
7848 
7849   switch (E->getOpcode()) {
7850   default:
7851     return Error(E);
7852   case UO_Extension:
7853     return true;
7854   case UO_Plus:
7855     // The result is always just the subexpr.
7856     return true;
7857   case UO_Minus:
7858     if (Result.isComplexFloat()) {
7859       Result.getComplexFloatReal().changeSign();
7860       Result.getComplexFloatImag().changeSign();
7861     }
7862     else {
7863       Result.getComplexIntReal() = -Result.getComplexIntReal();
7864       Result.getComplexIntImag() = -Result.getComplexIntImag();
7865     }
7866     return true;
7867   case UO_Not:
7868     if (Result.isComplexFloat())
7869       Result.getComplexFloatImag().changeSign();
7870     else
7871       Result.getComplexIntImag() = -Result.getComplexIntImag();
7872     return true;
7873   }
7874 }
7875 
VisitInitListExpr(const InitListExpr * E)7876 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
7877   if (E->getNumInits() == 2) {
7878     if (E->getType()->isComplexType()) {
7879       Result.makeComplexFloat();
7880       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
7881         return false;
7882       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
7883         return false;
7884     } else {
7885       Result.makeComplexInt();
7886       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
7887         return false;
7888       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
7889         return false;
7890     }
7891     return true;
7892   }
7893   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
7894 }
7895 
7896 //===----------------------------------------------------------------------===//
7897 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
7898 // implicit conversion.
7899 //===----------------------------------------------------------------------===//
7900 
7901 namespace {
7902 class AtomicExprEvaluator :
7903     public ExprEvaluatorBase<AtomicExprEvaluator> {
7904   APValue &Result;
7905 public:
AtomicExprEvaluator(EvalInfo & Info,APValue & Result)7906   AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
7907       : ExprEvaluatorBaseTy(Info), Result(Result) {}
7908 
Success(const APValue & V,const Expr * E)7909   bool Success(const APValue &V, const Expr *E) {
7910     Result = V;
7911     return true;
7912   }
7913 
ZeroInitialization(const Expr * E)7914   bool ZeroInitialization(const Expr *E) {
7915     ImplicitValueInitExpr VIE(
7916         E->getType()->castAs<AtomicType>()->getValueType());
7917     return Evaluate(Result, Info, &VIE);
7918   }
7919 
VisitCastExpr(const CastExpr * E)7920   bool VisitCastExpr(const CastExpr *E) {
7921     switch (E->getCastKind()) {
7922     default:
7923       return ExprEvaluatorBaseTy::VisitCastExpr(E);
7924     case CK_NonAtomicToAtomic:
7925       return Evaluate(Result, Info, E->getSubExpr());
7926     }
7927   }
7928 };
7929 } // end anonymous namespace
7930 
EvaluateAtomic(const Expr * E,APValue & Result,EvalInfo & Info)7931 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
7932   assert(E->isRValue() && E->getType()->isAtomicType());
7933   return AtomicExprEvaluator(Info, Result).Visit(E);
7934 }
7935 
7936 //===----------------------------------------------------------------------===//
7937 // Void expression evaluation, primarily for a cast to void on the LHS of a
7938 // comma operator
7939 //===----------------------------------------------------------------------===//
7940 
7941 namespace {
7942 class VoidExprEvaluator
7943   : public ExprEvaluatorBase<VoidExprEvaluator> {
7944 public:
VoidExprEvaluator(EvalInfo & Info)7945   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
7946 
Success(const APValue & V,const Expr * e)7947   bool Success(const APValue &V, const Expr *e) { return true; }
7948 
VisitCastExpr(const CastExpr * E)7949   bool VisitCastExpr(const CastExpr *E) {
7950     switch (E->getCastKind()) {
7951     default:
7952       return ExprEvaluatorBaseTy::VisitCastExpr(E);
7953     case CK_ToVoid:
7954       VisitIgnoredValue(E->getSubExpr());
7955       return true;
7956     }
7957   }
7958 };
7959 } // end anonymous namespace
7960 
EvaluateVoid(const Expr * E,EvalInfo & Info)7961 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
7962   assert(E->isRValue() && E->getType()->isVoidType());
7963   return VoidExprEvaluator(Info).Visit(E);
7964 }
7965 
7966 //===----------------------------------------------------------------------===//
7967 // Top level Expr::EvaluateAsRValue method.
7968 //===----------------------------------------------------------------------===//
7969 
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)7970 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
7971   // In C, function designators are not lvalues, but we evaluate them as if they
7972   // are.
7973   QualType T = E->getType();
7974   if (E->isGLValue() || T->isFunctionType()) {
7975     LValue LV;
7976     if (!EvaluateLValue(E, LV, Info))
7977       return false;
7978     LV.moveInto(Result);
7979   } else if (T->isVectorType()) {
7980     if (!EvaluateVector(E, Result, Info))
7981       return false;
7982   } else if (T->isIntegralOrEnumerationType()) {
7983     if (!IntExprEvaluator(Info, Result).Visit(E))
7984       return false;
7985   } else if (T->hasPointerRepresentation()) {
7986     LValue LV;
7987     if (!EvaluatePointer(E, LV, Info))
7988       return false;
7989     LV.moveInto(Result);
7990   } else if (T->isRealFloatingType()) {
7991     llvm::APFloat F(0.0);
7992     if (!EvaluateFloat(E, F, Info))
7993       return false;
7994     Result = APValue(F);
7995   } else if (T->isAnyComplexType()) {
7996     ComplexValue C;
7997     if (!EvaluateComplex(E, C, Info))
7998       return false;
7999     C.moveInto(Result);
8000   } else if (T->isMemberPointerType()) {
8001     MemberPtr P;
8002     if (!EvaluateMemberPointer(E, P, Info))
8003       return false;
8004     P.moveInto(Result);
8005     return true;
8006   } else if (T->isArrayType()) {
8007     LValue LV;
8008     LV.set(E, Info.CurrentCall->Index);
8009     APValue &Value = Info.CurrentCall->createTemporary(E, false);
8010     if (!EvaluateArray(E, LV, Value, Info))
8011       return false;
8012     Result = Value;
8013   } else if (T->isRecordType()) {
8014     LValue LV;
8015     LV.set(E, Info.CurrentCall->Index);
8016     APValue &Value = Info.CurrentCall->createTemporary(E, false);
8017     if (!EvaluateRecord(E, LV, Value, Info))
8018       return false;
8019     Result = Value;
8020   } else if (T->isVoidType()) {
8021     if (!Info.getLangOpts().CPlusPlus11)
8022       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
8023         << E->getType();
8024     if (!EvaluateVoid(E, Info))
8025       return false;
8026   } else if (T->isAtomicType()) {
8027     if (!EvaluateAtomic(E, Result, Info))
8028       return false;
8029   } else if (Info.getLangOpts().CPlusPlus11) {
8030     Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
8031     return false;
8032   } else {
8033     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
8034     return false;
8035   }
8036 
8037   return true;
8038 }
8039 
8040 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
8041 /// cases, the in-place evaluation is essential, since later initializers for
8042 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)8043 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
8044                             const Expr *E, bool AllowNonLiteralTypes) {
8045   assert(!E->isValueDependent());
8046 
8047   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
8048     return false;
8049 
8050   if (E->isRValue()) {
8051     // Evaluate arrays and record types in-place, so that later initializers can
8052     // refer to earlier-initialized members of the object.
8053     if (E->getType()->isArrayType())
8054       return EvaluateArray(E, This, Result, Info);
8055     else if (E->getType()->isRecordType())
8056       return EvaluateRecord(E, This, Result, Info);
8057   }
8058 
8059   // For any other type, in-place evaluation is unimportant.
8060   return Evaluate(Result, Info, E);
8061 }
8062 
8063 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
8064 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)8065 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
8066   if (E->getType().isNull())
8067     return false;
8068 
8069   if (!CheckLiteralType(Info, E))
8070     return false;
8071 
8072   if (!::Evaluate(Result, Info, E))
8073     return false;
8074 
8075   if (E->isGLValue()) {
8076     LValue LV;
8077     LV.setFrom(Info.Ctx, Result);
8078     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
8079       return false;
8080   }
8081 
8082   // Check this core constant expression is a constant expression.
8083   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
8084 }
8085 
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)8086 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
8087                                  const ASTContext &Ctx, bool &IsConst) {
8088   // Fast-path evaluations of integer literals, since we sometimes see files
8089   // containing vast quantities of these.
8090   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
8091     Result.Val = APValue(APSInt(L->getValue(),
8092                                 L->getType()->isUnsignedIntegerType()));
8093     IsConst = true;
8094     return true;
8095   }
8096 
8097   // This case should be rare, but we need to check it before we check on
8098   // the type below.
8099   if (Exp->getType().isNull()) {
8100     IsConst = false;
8101     return true;
8102   }
8103 
8104   // FIXME: Evaluating values of large array and record types can cause
8105   // performance problems. Only do so in C++11 for now.
8106   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
8107                           Exp->getType()->isRecordType()) &&
8108       !Ctx.getLangOpts().CPlusPlus11) {
8109     IsConst = false;
8110     return true;
8111   }
8112   return false;
8113 }
8114 
8115 
8116 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
8117 /// any crazy technique (that has nothing to do with language standards) that
8118 /// we want to.  If this function returns true, it returns the folded constant
8119 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
8120 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const8121 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
8122   bool IsConst;
8123   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
8124     return IsConst;
8125 
8126   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
8127   return ::EvaluateAsRValue(Info, this, Result.Val);
8128 }
8129 
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const8130 bool Expr::EvaluateAsBooleanCondition(bool &Result,
8131                                       const ASTContext &Ctx) const {
8132   EvalResult Scratch;
8133   return EvaluateAsRValue(Scratch, Ctx) &&
8134          HandleConversionToBool(Scratch.Val, Result);
8135 }
8136 
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const8137 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
8138                          SideEffectsKind AllowSideEffects) const {
8139   if (!getType()->isIntegralOrEnumerationType())
8140     return false;
8141 
8142   EvalResult ExprResult;
8143   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
8144       (!AllowSideEffects && ExprResult.HasSideEffects))
8145     return false;
8146 
8147   Result = ExprResult.Val.getInt();
8148   return true;
8149 }
8150 
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const8151 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
8152   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
8153 
8154   LValue LV;
8155   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
8156       !CheckLValueConstantExpression(Info, getExprLoc(),
8157                                      Ctx.getLValueReferenceType(getType()), LV))
8158     return false;
8159 
8160   LV.moveInto(Result.Val);
8161   return true;
8162 }
8163 
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const8164 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
8165                                  const VarDecl *VD,
8166                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
8167   // FIXME: Evaluating initializers for large array and record types can cause
8168   // performance problems. Only do so in C++11 for now.
8169   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
8170       !Ctx.getLangOpts().CPlusPlus11)
8171     return false;
8172 
8173   Expr::EvalStatus EStatus;
8174   EStatus.Diag = &Notes;
8175 
8176   EvalInfo InitInfo(Ctx, EStatus, EvalInfo::EM_ConstantFold);
8177   InitInfo.setEvaluatingDecl(VD, Value);
8178 
8179   LValue LVal;
8180   LVal.set(VD);
8181 
8182   // C++11 [basic.start.init]p2:
8183   //  Variables with static storage duration or thread storage duration shall be
8184   //  zero-initialized before any other initialization takes place.
8185   // This behavior is not present in C.
8186   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
8187       !VD->getType()->isReferenceType()) {
8188     ImplicitValueInitExpr VIE(VD->getType());
8189     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
8190                          /*AllowNonLiteralTypes=*/true))
8191       return false;
8192   }
8193 
8194   if (!EvaluateInPlace(Value, InitInfo, LVal, this,
8195                        /*AllowNonLiteralTypes=*/true) ||
8196       EStatus.HasSideEffects)
8197     return false;
8198 
8199   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
8200                                  Value);
8201 }
8202 
8203 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
8204 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx) const8205 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
8206   EvalResult Result;
8207   return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
8208 }
8209 
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const8210 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
8211                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
8212   EvalResult EvalResult;
8213   EvalResult.Diag = Diag;
8214   bool Result = EvaluateAsRValue(EvalResult, Ctx);
8215   (void)Result;
8216   assert(Result && "Could not evaluate expression");
8217   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
8218 
8219   return EvalResult.Val.getInt();
8220 }
8221 
EvaluateForOverflow(const ASTContext & Ctx) const8222 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
8223   bool IsConst;
8224   EvalResult EvalResult;
8225   if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
8226     EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
8227     (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
8228   }
8229 }
8230 
isGlobalLValue() const8231 bool Expr::EvalResult::isGlobalLValue() const {
8232   assert(Val.isLValue());
8233   return IsGlobalLValue(Val.getLValueBase());
8234 }
8235 
8236 
8237 /// isIntegerConstantExpr - this recursive routine will test if an expression is
8238 /// an integer constant expression.
8239 
8240 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
8241 /// comma, etc
8242 
8243 // CheckICE - This function does the fundamental ICE checking: the returned
8244 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
8245 // and a (possibly null) SourceLocation indicating the location of the problem.
8246 //
8247 // Note that to reduce code duplication, this helper does no evaluation
8248 // itself; the caller checks whether the expression is evaluatable, and
8249 // in the rare cases where CheckICE actually cares about the evaluated
8250 // value, it calls into Evalute.
8251 
8252 namespace {
8253 
8254 enum ICEKind {
8255   /// This expression is an ICE.
8256   IK_ICE,
8257   /// This expression is not an ICE, but if it isn't evaluated, it's
8258   /// a legal subexpression for an ICE. This return value is used to handle
8259   /// the comma operator in C99 mode, and non-constant subexpressions.
8260   IK_ICEIfUnevaluated,
8261   /// This expression is not an ICE, and is not a legal subexpression for one.
8262   IK_NotICE
8263 };
8264 
8265 struct ICEDiag {
8266   ICEKind Kind;
8267   SourceLocation Loc;
8268 
ICEDiag__anon79c4fed31911::ICEDiag8269   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
8270 };
8271 
8272 }
8273 
NoDiag()8274 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
8275 
Worst(ICEDiag A,ICEDiag B)8276 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
8277 
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)8278 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
8279   Expr::EvalResult EVResult;
8280   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
8281       !EVResult.Val.isInt())
8282     return ICEDiag(IK_NotICE, E->getLocStart());
8283 
8284   return NoDiag();
8285 }
8286 
CheckICE(const Expr * E,const ASTContext & Ctx)8287 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
8288   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
8289   if (!E->getType()->isIntegralOrEnumerationType())
8290     return ICEDiag(IK_NotICE, E->getLocStart());
8291 
8292   switch (E->getStmtClass()) {
8293 #define ABSTRACT_STMT(Node)
8294 #define STMT(Node, Base) case Expr::Node##Class:
8295 #define EXPR(Node, Base)
8296 #include "clang/AST/StmtNodes.inc"
8297   case Expr::PredefinedExprClass:
8298   case Expr::FloatingLiteralClass:
8299   case Expr::ImaginaryLiteralClass:
8300   case Expr::StringLiteralClass:
8301   case Expr::ArraySubscriptExprClass:
8302   case Expr::MemberExprClass:
8303   case Expr::CompoundAssignOperatorClass:
8304   case Expr::CompoundLiteralExprClass:
8305   case Expr::ExtVectorElementExprClass:
8306   case Expr::DesignatedInitExprClass:
8307   case Expr::ImplicitValueInitExprClass:
8308   case Expr::ParenListExprClass:
8309   case Expr::VAArgExprClass:
8310   case Expr::AddrLabelExprClass:
8311   case Expr::StmtExprClass:
8312   case Expr::CXXMemberCallExprClass:
8313   case Expr::CUDAKernelCallExprClass:
8314   case Expr::CXXDynamicCastExprClass:
8315   case Expr::CXXTypeidExprClass:
8316   case Expr::CXXUuidofExprClass:
8317   case Expr::MSPropertyRefExprClass:
8318   case Expr::CXXNullPtrLiteralExprClass:
8319   case Expr::UserDefinedLiteralClass:
8320   case Expr::CXXThisExprClass:
8321   case Expr::CXXThrowExprClass:
8322   case Expr::CXXNewExprClass:
8323   case Expr::CXXDeleteExprClass:
8324   case Expr::CXXPseudoDestructorExprClass:
8325   case Expr::UnresolvedLookupExprClass:
8326   case Expr::DependentScopeDeclRefExprClass:
8327   case Expr::CXXConstructExprClass:
8328   case Expr::CXXStdInitializerListExprClass:
8329   case Expr::CXXBindTemporaryExprClass:
8330   case Expr::ExprWithCleanupsClass:
8331   case Expr::CXXTemporaryObjectExprClass:
8332   case Expr::CXXUnresolvedConstructExprClass:
8333   case Expr::CXXDependentScopeMemberExprClass:
8334   case Expr::UnresolvedMemberExprClass:
8335   case Expr::ObjCStringLiteralClass:
8336   case Expr::ObjCBoxedExprClass:
8337   case Expr::ObjCArrayLiteralClass:
8338   case Expr::ObjCDictionaryLiteralClass:
8339   case Expr::ObjCEncodeExprClass:
8340   case Expr::ObjCMessageExprClass:
8341   case Expr::ObjCSelectorExprClass:
8342   case Expr::ObjCProtocolExprClass:
8343   case Expr::ObjCIvarRefExprClass:
8344   case Expr::ObjCPropertyRefExprClass:
8345   case Expr::ObjCSubscriptRefExprClass:
8346   case Expr::ObjCIsaExprClass:
8347   case Expr::ShuffleVectorExprClass:
8348   case Expr::ConvertVectorExprClass:
8349   case Expr::BlockExprClass:
8350   case Expr::NoStmtClass:
8351   case Expr::OpaqueValueExprClass:
8352   case Expr::PackExpansionExprClass:
8353   case Expr::SubstNonTypeTemplateParmPackExprClass:
8354   case Expr::FunctionParmPackExprClass:
8355   case Expr::AsTypeExprClass:
8356   case Expr::ObjCIndirectCopyRestoreExprClass:
8357   case Expr::MaterializeTemporaryExprClass:
8358   case Expr::PseudoObjectExprClass:
8359   case Expr::AtomicExprClass:
8360   case Expr::LambdaExprClass:
8361     return ICEDiag(IK_NotICE, E->getLocStart());
8362 
8363   case Expr::InitListExprClass: {
8364     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
8365     // form "T x = { a };" is equivalent to "T x = a;".
8366     // Unless we're initializing a reference, T is a scalar as it is known to be
8367     // of integral or enumeration type.
8368     if (E->isRValue())
8369       if (cast<InitListExpr>(E)->getNumInits() == 1)
8370         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
8371     return ICEDiag(IK_NotICE, E->getLocStart());
8372   }
8373 
8374   case Expr::SizeOfPackExprClass:
8375   case Expr::GNUNullExprClass:
8376     // GCC considers the GNU __null value to be an integral constant expression.
8377     return NoDiag();
8378 
8379   case Expr::SubstNonTypeTemplateParmExprClass:
8380     return
8381       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
8382 
8383   case Expr::ParenExprClass:
8384     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
8385   case Expr::GenericSelectionExprClass:
8386     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
8387   case Expr::IntegerLiteralClass:
8388   case Expr::CharacterLiteralClass:
8389   case Expr::ObjCBoolLiteralExprClass:
8390   case Expr::CXXBoolLiteralExprClass:
8391   case Expr::CXXScalarValueInitExprClass:
8392   case Expr::TypeTraitExprClass:
8393   case Expr::ArrayTypeTraitExprClass:
8394   case Expr::ExpressionTraitExprClass:
8395   case Expr::CXXNoexceptExprClass:
8396     return NoDiag();
8397   case Expr::CallExprClass:
8398   case Expr::CXXOperatorCallExprClass: {
8399     // C99 6.6/3 allows function calls within unevaluated subexpressions of
8400     // constant expressions, but they can never be ICEs because an ICE cannot
8401     // contain an operand of (pointer to) function type.
8402     const CallExpr *CE = cast<CallExpr>(E);
8403     if (CE->getBuiltinCallee())
8404       return CheckEvalInICE(E, Ctx);
8405     return ICEDiag(IK_NotICE, E->getLocStart());
8406   }
8407   case Expr::DeclRefExprClass: {
8408     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
8409       return NoDiag();
8410     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
8411     if (Ctx.getLangOpts().CPlusPlus &&
8412         D && IsConstNonVolatile(D->getType())) {
8413       // Parameter variables are never constants.  Without this check,
8414       // getAnyInitializer() can find a default argument, which leads
8415       // to chaos.
8416       if (isa<ParmVarDecl>(D))
8417         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8418 
8419       // C++ 7.1.5.1p2
8420       //   A variable of non-volatile const-qualified integral or enumeration
8421       //   type initialized by an ICE can be used in ICEs.
8422       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
8423         if (!Dcl->getType()->isIntegralOrEnumerationType())
8424           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8425 
8426         const VarDecl *VD;
8427         // Look for a declaration of this variable that has an initializer, and
8428         // check whether it is an ICE.
8429         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
8430           return NoDiag();
8431         else
8432           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8433       }
8434     }
8435     return ICEDiag(IK_NotICE, E->getLocStart());
8436   }
8437   case Expr::UnaryOperatorClass: {
8438     const UnaryOperator *Exp = cast<UnaryOperator>(E);
8439     switch (Exp->getOpcode()) {
8440     case UO_PostInc:
8441     case UO_PostDec:
8442     case UO_PreInc:
8443     case UO_PreDec:
8444     case UO_AddrOf:
8445     case UO_Deref:
8446       // C99 6.6/3 allows increment and decrement within unevaluated
8447       // subexpressions of constant expressions, but they can never be ICEs
8448       // because an ICE cannot contain an lvalue operand.
8449       return ICEDiag(IK_NotICE, E->getLocStart());
8450     case UO_Extension:
8451     case UO_LNot:
8452     case UO_Plus:
8453     case UO_Minus:
8454     case UO_Not:
8455     case UO_Real:
8456     case UO_Imag:
8457       return CheckICE(Exp->getSubExpr(), Ctx);
8458     }
8459 
8460     // OffsetOf falls through here.
8461   }
8462   case Expr::OffsetOfExprClass: {
8463     // Note that per C99, offsetof must be an ICE. And AFAIK, using
8464     // EvaluateAsRValue matches the proposed gcc behavior for cases like
8465     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
8466     // compliance: we should warn earlier for offsetof expressions with
8467     // array subscripts that aren't ICEs, and if the array subscripts
8468     // are ICEs, the value of the offsetof must be an integer constant.
8469     return CheckEvalInICE(E, Ctx);
8470   }
8471   case Expr::UnaryExprOrTypeTraitExprClass: {
8472     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
8473     if ((Exp->getKind() ==  UETT_SizeOf) &&
8474         Exp->getTypeOfArgument()->isVariableArrayType())
8475       return ICEDiag(IK_NotICE, E->getLocStart());
8476     return NoDiag();
8477   }
8478   case Expr::BinaryOperatorClass: {
8479     const BinaryOperator *Exp = cast<BinaryOperator>(E);
8480     switch (Exp->getOpcode()) {
8481     case BO_PtrMemD:
8482     case BO_PtrMemI:
8483     case BO_Assign:
8484     case BO_MulAssign:
8485     case BO_DivAssign:
8486     case BO_RemAssign:
8487     case BO_AddAssign:
8488     case BO_SubAssign:
8489     case BO_ShlAssign:
8490     case BO_ShrAssign:
8491     case BO_AndAssign:
8492     case BO_XorAssign:
8493     case BO_OrAssign:
8494       // C99 6.6/3 allows assignments within unevaluated subexpressions of
8495       // constant expressions, but they can never be ICEs because an ICE cannot
8496       // contain an lvalue operand.
8497       return ICEDiag(IK_NotICE, E->getLocStart());
8498 
8499     case BO_Mul:
8500     case BO_Div:
8501     case BO_Rem:
8502     case BO_Add:
8503     case BO_Sub:
8504     case BO_Shl:
8505     case BO_Shr:
8506     case BO_LT:
8507     case BO_GT:
8508     case BO_LE:
8509     case BO_GE:
8510     case BO_EQ:
8511     case BO_NE:
8512     case BO_And:
8513     case BO_Xor:
8514     case BO_Or:
8515     case BO_Comma: {
8516       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8517       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8518       if (Exp->getOpcode() == BO_Div ||
8519           Exp->getOpcode() == BO_Rem) {
8520         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
8521         // we don't evaluate one.
8522         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
8523           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
8524           if (REval == 0)
8525             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8526           if (REval.isSigned() && REval.isAllOnesValue()) {
8527             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
8528             if (LEval.isMinSignedValue())
8529               return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8530           }
8531         }
8532       }
8533       if (Exp->getOpcode() == BO_Comma) {
8534         if (Ctx.getLangOpts().C99) {
8535           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
8536           // if it isn't evaluated.
8537           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
8538             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8539         } else {
8540           // In both C89 and C++, commas in ICEs are illegal.
8541           return ICEDiag(IK_NotICE, E->getLocStart());
8542         }
8543       }
8544       return Worst(LHSResult, RHSResult);
8545     }
8546     case BO_LAnd:
8547     case BO_LOr: {
8548       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8549       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8550       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
8551         // Rare case where the RHS has a comma "side-effect"; we need
8552         // to actually check the condition to see whether the side
8553         // with the comma is evaluated.
8554         if ((Exp->getOpcode() == BO_LAnd) !=
8555             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
8556           return RHSResult;
8557         return NoDiag();
8558       }
8559 
8560       return Worst(LHSResult, RHSResult);
8561     }
8562     }
8563   }
8564   case Expr::ImplicitCastExprClass:
8565   case Expr::CStyleCastExprClass:
8566   case Expr::CXXFunctionalCastExprClass:
8567   case Expr::CXXStaticCastExprClass:
8568   case Expr::CXXReinterpretCastExprClass:
8569   case Expr::CXXConstCastExprClass:
8570   case Expr::ObjCBridgedCastExprClass: {
8571     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
8572     if (isa<ExplicitCastExpr>(E)) {
8573       if (const FloatingLiteral *FL
8574             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
8575         unsigned DestWidth = Ctx.getIntWidth(E->getType());
8576         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
8577         APSInt IgnoredVal(DestWidth, !DestSigned);
8578         bool Ignored;
8579         // If the value does not fit in the destination type, the behavior is
8580         // undefined, so we are not required to treat it as a constant
8581         // expression.
8582         if (FL->getValue().convertToInteger(IgnoredVal,
8583                                             llvm::APFloat::rmTowardZero,
8584                                             &Ignored) & APFloat::opInvalidOp)
8585           return ICEDiag(IK_NotICE, E->getLocStart());
8586         return NoDiag();
8587       }
8588     }
8589     switch (cast<CastExpr>(E)->getCastKind()) {
8590     case CK_LValueToRValue:
8591     case CK_AtomicToNonAtomic:
8592     case CK_NonAtomicToAtomic:
8593     case CK_NoOp:
8594     case CK_IntegralToBoolean:
8595     case CK_IntegralCast:
8596       return CheckICE(SubExpr, Ctx);
8597     default:
8598       return ICEDiag(IK_NotICE, E->getLocStart());
8599     }
8600   }
8601   case Expr::BinaryConditionalOperatorClass: {
8602     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
8603     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
8604     if (CommonResult.Kind == IK_NotICE) return CommonResult;
8605     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8606     if (FalseResult.Kind == IK_NotICE) return FalseResult;
8607     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
8608     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
8609         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
8610     return FalseResult;
8611   }
8612   case Expr::ConditionalOperatorClass: {
8613     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
8614     // If the condition (ignoring parens) is a __builtin_constant_p call,
8615     // then only the true side is actually considered in an integer constant
8616     // expression, and it is fully evaluated.  This is an important GNU
8617     // extension.  See GCC PR38377 for discussion.
8618     if (const CallExpr *CallCE
8619         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
8620       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
8621         return CheckEvalInICE(E, Ctx);
8622     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
8623     if (CondResult.Kind == IK_NotICE)
8624       return CondResult;
8625 
8626     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
8627     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8628 
8629     if (TrueResult.Kind == IK_NotICE)
8630       return TrueResult;
8631     if (FalseResult.Kind == IK_NotICE)
8632       return FalseResult;
8633     if (CondResult.Kind == IK_ICEIfUnevaluated)
8634       return CondResult;
8635     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
8636       return NoDiag();
8637     // Rare case where the diagnostics depend on which side is evaluated
8638     // Note that if we get here, CondResult is 0, and at least one of
8639     // TrueResult and FalseResult is non-zero.
8640     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
8641       return FalseResult;
8642     return TrueResult;
8643   }
8644   case Expr::CXXDefaultArgExprClass:
8645     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
8646   case Expr::CXXDefaultInitExprClass:
8647     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
8648   case Expr::ChooseExprClass: {
8649     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
8650   }
8651   }
8652 
8653   llvm_unreachable("Invalid StmtClass!");
8654 }
8655 
8656 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)8657 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
8658                                                     const Expr *E,
8659                                                     llvm::APSInt *Value,
8660                                                     SourceLocation *Loc) {
8661   if (!E->getType()->isIntegralOrEnumerationType()) {
8662     if (Loc) *Loc = E->getExprLoc();
8663     return false;
8664   }
8665 
8666   APValue Result;
8667   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
8668     return false;
8669 
8670   assert(Result.isInt() && "pointer cast to int is not an ICE");
8671   if (Value) *Value = Result.getInt();
8672   return true;
8673 }
8674 
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const8675 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
8676                                  SourceLocation *Loc) const {
8677   if (Ctx.getLangOpts().CPlusPlus11)
8678     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
8679 
8680   ICEDiag D = CheckICE(this, Ctx);
8681   if (D.Kind != IK_ICE) {
8682     if (Loc) *Loc = D.Loc;
8683     return false;
8684   }
8685   return true;
8686 }
8687 
isIntegerConstantExpr(llvm::APSInt & Value,const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const8688 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
8689                                  SourceLocation *Loc, bool isEvaluated) const {
8690   if (Ctx.getLangOpts().CPlusPlus11)
8691     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
8692 
8693   if (!isIntegerConstantExpr(Ctx, Loc))
8694     return false;
8695   if (!EvaluateAsInt(Value, Ctx))
8696     llvm_unreachable("ICE cannot be evaluated!");
8697   return true;
8698 }
8699 
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const8700 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
8701   return CheckICE(this, Ctx).Kind == IK_ICE;
8702 }
8703 
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const8704 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
8705                                SourceLocation *Loc) const {
8706   // We support this checking in C++98 mode in order to diagnose compatibility
8707   // issues.
8708   assert(Ctx.getLangOpts().CPlusPlus);
8709 
8710   // Build evaluation settings.
8711   Expr::EvalStatus Status;
8712   SmallVector<PartialDiagnosticAt, 8> Diags;
8713   Status.Diag = &Diags;
8714   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
8715 
8716   APValue Scratch;
8717   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
8718 
8719   if (!Diags.empty()) {
8720     IsConstExpr = false;
8721     if (Loc) *Loc = Diags[0].first;
8722   } else if (!IsConstExpr) {
8723     // FIXME: This shouldn't happen.
8724     if (Loc) *Loc = getExprLoc();
8725   }
8726 
8727   return IsConstExpr;
8728 }
8729 
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args) const8730 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
8731                                     const FunctionDecl *Callee,
8732                                     ArrayRef<const Expr*> Args) const {
8733   Expr::EvalStatus Status;
8734   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
8735 
8736   ArgVector ArgValues(Args.size());
8737   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
8738        I != E; ++I) {
8739     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I))
8740       // If evaluation fails, throw away the argument entirely.
8741       ArgValues[I - Args.begin()] = APValue();
8742     if (Info.EvalStatus.HasSideEffects)
8743       return false;
8744   }
8745 
8746   // Build fake call to Callee.
8747   CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
8748                        ArgValues.data());
8749   return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
8750 }
8751 
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)8752 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
8753                                    SmallVectorImpl<
8754                                      PartialDiagnosticAt> &Diags) {
8755   // FIXME: It would be useful to check constexpr function templates, but at the
8756   // moment the constant expression evaluator cannot cope with the non-rigorous
8757   // ASTs which we build for dependent expressions.
8758   if (FD->isDependentContext())
8759     return true;
8760 
8761   Expr::EvalStatus Status;
8762   Status.Diag = &Diags;
8763 
8764   EvalInfo Info(FD->getASTContext(), Status,
8765                 EvalInfo::EM_PotentialConstantExpression);
8766 
8767   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8768   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
8769 
8770   // Fabricate an arbitrary expression on the stack and pretend that it
8771   // is a temporary being used as the 'this' pointer.
8772   LValue This;
8773   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
8774   This.set(&VIE, Info.CurrentCall->Index);
8775 
8776   ArrayRef<const Expr*> Args;
8777 
8778   SourceLocation Loc = FD->getLocation();
8779 
8780   APValue Scratch;
8781   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
8782     // Evaluate the call as a constant initializer, to allow the construction
8783     // of objects of non-literal types.
8784     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
8785     HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
8786   } else
8787     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
8788                        Args, FD->getBody(), Info, Scratch);
8789 
8790   return Diags.empty();
8791 }
8792 
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)8793 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
8794                                               const FunctionDecl *FD,
8795                                               SmallVectorImpl<
8796                                                 PartialDiagnosticAt> &Diags) {
8797   Expr::EvalStatus Status;
8798   Status.Diag = &Diags;
8799 
8800   EvalInfo Info(FD->getASTContext(), Status,
8801                 EvalInfo::EM_PotentialConstantExpressionUnevaluated);
8802 
8803   // Fabricate a call stack frame to give the arguments a plausible cover story.
8804   ArrayRef<const Expr*> Args;
8805   ArgVector ArgValues(0);
8806   bool Success = EvaluateArgs(Args, ArgValues, Info);
8807   (void)Success;
8808   assert(Success &&
8809          "Failed to set up arguments for potential constant evaluation");
8810   CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
8811 
8812   APValue ResultScratch;
8813   Evaluate(ResultScratch, Info, E);
8814   return Diags.empty();
8815 }
8816