1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 // * A success/failure flag indicating whether constant folding was successful.
15 // This is the 'bool' return value used by most of the code in this file. A
16 // 'false' return value indicates that constant folding has failed, and any
17 // appropriate diagnostic has already been produced.
18 //
19 // * An evaluated result, valid only if constant folding has not failed.
20 //
21 // * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 // where it is possible to determine the evaluated result regardless.
24 //
25 // * A set of notes indicating why the evaluation was not a constant expression
26 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27 // too, why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/CharUnits.h"
40 #include "clang/AST/Expr.h"
41 #include "clang/AST/RecordLayout.h"
42 #include "clang/AST/StmtVisitor.h"
43 #include "clang/AST/TypeLoc.h"
44 #include "clang/Basic/Builtins.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cstring>
49 #include <functional>
50
51 using namespace clang;
52 using llvm::APSInt;
53 using llvm::APFloat;
54
55 static bool IsGlobalLValue(APValue::LValueBase B);
56
57 namespace {
58 struct LValue;
59 struct CallStackFrame;
60 struct EvalInfo;
61
getType(APValue::LValueBase B)62 static QualType getType(APValue::LValueBase B) {
63 if (!B) return QualType();
64 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65 return D->getType();
66
67 const Expr *Base = B.get<const Expr*>();
68
69 // For a materialized temporary, the type of the temporary we materialized
70 // may not be the type of the expression.
71 if (const MaterializeTemporaryExpr *MTE =
72 dyn_cast<MaterializeTemporaryExpr>(Base)) {
73 SmallVector<const Expr *, 2> CommaLHSs;
74 SmallVector<SubobjectAdjustment, 2> Adjustments;
75 const Expr *Temp = MTE->GetTemporaryExpr();
76 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77 Adjustments);
78 // Keep any cv-qualifiers from the reference if we generated a temporary
79 // for it.
80 if (Inner != Temp)
81 return Inner->getType();
82 }
83
84 return Base->getType();
85 }
86
87 /// Get an LValue path entry, which is known to not be an array index, as a
88 /// field or base class.
89 static
getAsBaseOrMember(APValue::LValuePathEntry E)90 APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91 APValue::BaseOrMemberType Value;
92 Value.setFromOpaqueValue(E.BaseOrMember);
93 return Value;
94 }
95
96 /// Get an LValue path entry, which is known to not be an array index, as a
97 /// field declaration.
getAsField(APValue::LValuePathEntry E)98 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99 return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100 }
101 /// Get an LValue path entry, which is known to not be an array index, as a
102 /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)103 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104 return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105 }
106 /// Determine whether this LValue path entry for a base class names a virtual
107 /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)108 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109 return getAsBaseOrMember(E).getInt();
110 }
111
112 /// Find the path length and type of the most-derived subobject in the given
113 /// path, and find the size of the containing array, if any.
114 static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type)115 unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116 ArrayRef<APValue::LValuePathEntry> Path,
117 uint64_t &ArraySize, QualType &Type) {
118 unsigned MostDerivedLength = 0;
119 Type = Base;
120 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
121 if (Type->isArrayType()) {
122 const ConstantArrayType *CAT =
123 cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
124 Type = CAT->getElementType();
125 ArraySize = CAT->getSize().getZExtValue();
126 MostDerivedLength = I + 1;
127 } else if (Type->isAnyComplexType()) {
128 const ComplexType *CT = Type->castAs<ComplexType>();
129 Type = CT->getElementType();
130 ArraySize = 2;
131 MostDerivedLength = I + 1;
132 } else if (const FieldDecl *FD = getAsField(Path[I])) {
133 Type = FD->getType();
134 ArraySize = 0;
135 MostDerivedLength = I + 1;
136 } else {
137 // Path[I] describes a base class.
138 ArraySize = 0;
139 }
140 }
141 return MostDerivedLength;
142 }
143
144 // The order of this enum is important for diagnostics.
145 enum CheckSubobjectKind {
146 CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
147 CSK_This, CSK_Real, CSK_Imag
148 };
149
150 /// A path from a glvalue to a subobject of that glvalue.
151 struct SubobjectDesignator {
152 /// True if the subobject was named in a manner not supported by C++11. Such
153 /// lvalues can still be folded, but they are not core constant expressions
154 /// and we cannot perform lvalue-to-rvalue conversions on them.
155 bool Invalid : 1;
156
157 /// Is this a pointer one past the end of an object?
158 bool IsOnePastTheEnd : 1;
159
160 /// The length of the path to the most-derived object of which this is a
161 /// subobject.
162 unsigned MostDerivedPathLength : 30;
163
164 /// The size of the array of which the most-derived object is an element, or
165 /// 0 if the most-derived object is not an array element.
166 uint64_t MostDerivedArraySize;
167
168 /// The type of the most derived object referred to by this address.
169 QualType MostDerivedType;
170
171 typedef APValue::LValuePathEntry PathEntry;
172
173 /// The entries on the path from the glvalue to the designated subobject.
174 SmallVector<PathEntry, 8> Entries;
175
SubobjectDesignator__anon79c4fed30111::SubobjectDesignator176 SubobjectDesignator() : Invalid(true) {}
177
SubobjectDesignator__anon79c4fed30111::SubobjectDesignator178 explicit SubobjectDesignator(QualType T)
179 : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
180 MostDerivedArraySize(0), MostDerivedType(T) {}
181
SubobjectDesignator__anon79c4fed30111::SubobjectDesignator182 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
183 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
184 MostDerivedPathLength(0), MostDerivedArraySize(0) {
185 if (!Invalid) {
186 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
187 ArrayRef<PathEntry> VEntries = V.getLValuePath();
188 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
189 if (V.getLValueBase())
190 MostDerivedPathLength =
191 findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
192 V.getLValuePath(), MostDerivedArraySize,
193 MostDerivedType);
194 }
195 }
196
setInvalid__anon79c4fed30111::SubobjectDesignator197 void setInvalid() {
198 Invalid = true;
199 Entries.clear();
200 }
201
202 /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon79c4fed30111::SubobjectDesignator203 bool isOnePastTheEnd() const {
204 if (IsOnePastTheEnd)
205 return true;
206 if (MostDerivedArraySize &&
207 Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
208 return true;
209 return false;
210 }
211
212 /// Check that this refers to a valid subobject.
isValidSubobject__anon79c4fed30111::SubobjectDesignator213 bool isValidSubobject() const {
214 if (Invalid)
215 return false;
216 return !isOnePastTheEnd();
217 }
218 /// Check that this refers to a valid subobject, and if not, produce a
219 /// relevant diagnostic and set the designator as invalid.
220 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
221
222 /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon79c4fed30111::SubobjectDesignator223 void addArrayUnchecked(const ConstantArrayType *CAT) {
224 PathEntry Entry;
225 Entry.ArrayIndex = 0;
226 Entries.push_back(Entry);
227
228 // This is a most-derived object.
229 MostDerivedType = CAT->getElementType();
230 MostDerivedArraySize = CAT->getSize().getZExtValue();
231 MostDerivedPathLength = Entries.size();
232 }
233 /// Update this designator to refer to the given base or member of this
234 /// object.
addDeclUnchecked__anon79c4fed30111::SubobjectDesignator235 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
236 PathEntry Entry;
237 APValue::BaseOrMemberType Value(D, Virtual);
238 Entry.BaseOrMember = Value.getOpaqueValue();
239 Entries.push_back(Entry);
240
241 // If this isn't a base class, it's a new most-derived object.
242 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
243 MostDerivedType = FD->getType();
244 MostDerivedArraySize = 0;
245 MostDerivedPathLength = Entries.size();
246 }
247 }
248 /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon79c4fed30111::SubobjectDesignator249 void addComplexUnchecked(QualType EltTy, bool Imag) {
250 PathEntry Entry;
251 Entry.ArrayIndex = Imag;
252 Entries.push_back(Entry);
253
254 // This is technically a most-derived object, though in practice this
255 // is unlikely to matter.
256 MostDerivedType = EltTy;
257 MostDerivedArraySize = 2;
258 MostDerivedPathLength = Entries.size();
259 }
260 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
261 /// Add N to the address of this subobject.
adjustIndex__anon79c4fed30111::SubobjectDesignator262 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
263 if (Invalid) return;
264 if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
265 Entries.back().ArrayIndex += N;
266 if (Entries.back().ArrayIndex > MostDerivedArraySize) {
267 diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
268 setInvalid();
269 }
270 return;
271 }
272 // [expr.add]p4: For the purposes of these operators, a pointer to a
273 // nonarray object behaves the same as a pointer to the first element of
274 // an array of length one with the type of the object as its element type.
275 if (IsOnePastTheEnd && N == (uint64_t)-1)
276 IsOnePastTheEnd = false;
277 else if (!IsOnePastTheEnd && N == 1)
278 IsOnePastTheEnd = true;
279 else if (N != 0) {
280 diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
281 setInvalid();
282 }
283 }
284 };
285
286 /// A stack frame in the constexpr call stack.
287 struct CallStackFrame {
288 EvalInfo &Info;
289
290 /// Parent - The caller of this stack frame.
291 CallStackFrame *Caller;
292
293 /// CallLoc - The location of the call expression for this call.
294 SourceLocation CallLoc;
295
296 /// Callee - The function which was called.
297 const FunctionDecl *Callee;
298
299 /// Index - The call index of this call.
300 unsigned Index;
301
302 /// This - The binding for the this pointer in this call, if any.
303 const LValue *This;
304
305 /// Arguments - Parameter bindings for this function call, indexed by
306 /// parameters' function scope indices.
307 APValue *Arguments;
308
309 // Note that we intentionally use std::map here so that references to
310 // values are stable.
311 typedef std::map<const void*, APValue> MapTy;
312 typedef MapTy::const_iterator temp_iterator;
313 /// Temporaries - Temporary lvalues materialized within this stack frame.
314 MapTy Temporaries;
315
316 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
317 const FunctionDecl *Callee, const LValue *This,
318 APValue *Arguments);
319 ~CallStackFrame();
320
getTemporary__anon79c4fed30111::CallStackFrame321 APValue *getTemporary(const void *Key) {
322 MapTy::iterator I = Temporaries.find(Key);
323 return I == Temporaries.end() ? nullptr : &I->second;
324 }
325 APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
326 };
327
328 /// Temporarily override 'this'.
329 class ThisOverrideRAII {
330 public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)331 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
332 : Frame(Frame), OldThis(Frame.This) {
333 if (Enable)
334 Frame.This = NewThis;
335 }
~ThisOverrideRAII()336 ~ThisOverrideRAII() {
337 Frame.This = OldThis;
338 }
339 private:
340 CallStackFrame &Frame;
341 const LValue *OldThis;
342 };
343
344 /// A partial diagnostic which we might know in advance that we are not going
345 /// to emit.
346 class OptionalDiagnostic {
347 PartialDiagnostic *Diag;
348
349 public:
OptionalDiagnostic(PartialDiagnostic * Diag=nullptr)350 explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
351 : Diag(Diag) {}
352
353 template<typename T>
operator <<(const T & v)354 OptionalDiagnostic &operator<<(const T &v) {
355 if (Diag)
356 *Diag << v;
357 return *this;
358 }
359
operator <<(const APSInt & I)360 OptionalDiagnostic &operator<<(const APSInt &I) {
361 if (Diag) {
362 SmallVector<char, 32> Buffer;
363 I.toString(Buffer);
364 *Diag << StringRef(Buffer.data(), Buffer.size());
365 }
366 return *this;
367 }
368
operator <<(const APFloat & F)369 OptionalDiagnostic &operator<<(const APFloat &F) {
370 if (Diag) {
371 // FIXME: Force the precision of the source value down so we don't
372 // print digits which are usually useless (we don't really care here if
373 // we truncate a digit by accident in edge cases). Ideally,
374 // APFloat::toString would automatically print the shortest
375 // representation which rounds to the correct value, but it's a bit
376 // tricky to implement.
377 unsigned precision =
378 llvm::APFloat::semanticsPrecision(F.getSemantics());
379 precision = (precision * 59 + 195) / 196;
380 SmallVector<char, 32> Buffer;
381 F.toString(Buffer, precision);
382 *Diag << StringRef(Buffer.data(), Buffer.size());
383 }
384 return *this;
385 }
386 };
387
388 /// A cleanup, and a flag indicating whether it is lifetime-extended.
389 class Cleanup {
390 llvm::PointerIntPair<APValue*, 1, bool> Value;
391
392 public:
Cleanup(APValue * Val,bool IsLifetimeExtended)393 Cleanup(APValue *Val, bool IsLifetimeExtended)
394 : Value(Val, IsLifetimeExtended) {}
395
isLifetimeExtended() const396 bool isLifetimeExtended() const { return Value.getInt(); }
endLifetime()397 void endLifetime() {
398 *Value.getPointer() = APValue();
399 }
400 };
401
402 /// EvalInfo - This is a private struct used by the evaluator to capture
403 /// information about a subexpression as it is folded. It retains information
404 /// about the AST context, but also maintains information about the folded
405 /// expression.
406 ///
407 /// If an expression could be evaluated, it is still possible it is not a C
408 /// "integer constant expression" or constant expression. If not, this struct
409 /// captures information about how and why not.
410 ///
411 /// One bit of information passed *into* the request for constant folding
412 /// indicates whether the subexpression is "evaluated" or not according to C
413 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
414 /// evaluate the expression regardless of what the RHS is, but C only allows
415 /// certain things in certain situations.
416 struct EvalInfo {
417 ASTContext &Ctx;
418
419 /// EvalStatus - Contains information about the evaluation.
420 Expr::EvalStatus &EvalStatus;
421
422 /// CurrentCall - The top of the constexpr call stack.
423 CallStackFrame *CurrentCall;
424
425 /// CallStackDepth - The number of calls in the call stack right now.
426 unsigned CallStackDepth;
427
428 /// NextCallIndex - The next call index to assign.
429 unsigned NextCallIndex;
430
431 /// StepsLeft - The remaining number of evaluation steps we're permitted
432 /// to perform. This is essentially a limit for the number of statements
433 /// we will evaluate.
434 unsigned StepsLeft;
435
436 /// BottomFrame - The frame in which evaluation started. This must be
437 /// initialized after CurrentCall and CallStackDepth.
438 CallStackFrame BottomFrame;
439
440 /// A stack of values whose lifetimes end at the end of some surrounding
441 /// evaluation frame.
442 llvm::SmallVector<Cleanup, 16> CleanupStack;
443
444 /// EvaluatingDecl - This is the declaration whose initializer is being
445 /// evaluated, if any.
446 APValue::LValueBase EvaluatingDecl;
447
448 /// EvaluatingDeclValue - This is the value being constructed for the
449 /// declaration whose initializer is being evaluated, if any.
450 APValue *EvaluatingDeclValue;
451
452 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
453 /// notes attached to it will also be stored, otherwise they will not be.
454 bool HasActiveDiagnostic;
455
456 enum EvaluationMode {
457 /// Evaluate as a constant expression. Stop if we find that the expression
458 /// is not a constant expression.
459 EM_ConstantExpression,
460
461 /// Evaluate as a potential constant expression. Keep going if we hit a
462 /// construct that we can't evaluate yet (because we don't yet know the
463 /// value of something) but stop if we hit something that could never be
464 /// a constant expression.
465 EM_PotentialConstantExpression,
466
467 /// Fold the expression to a constant. Stop if we hit a side-effect that
468 /// we can't model.
469 EM_ConstantFold,
470
471 /// Evaluate the expression looking for integer overflow and similar
472 /// issues. Don't worry about side-effects, and try to visit all
473 /// subexpressions.
474 EM_EvaluateForOverflow,
475
476 /// Evaluate in any way we know how. Don't worry about side-effects that
477 /// can't be modeled.
478 EM_IgnoreSideEffects,
479
480 /// Evaluate as a constant expression. Stop if we find that the expression
481 /// is not a constant expression. Some expressions can be retried in the
482 /// optimizer if we don't constant fold them here, but in an unevaluated
483 /// context we try to fold them immediately since the optimizer never
484 /// gets a chance to look at it.
485 EM_ConstantExpressionUnevaluated,
486
487 /// Evaluate as a potential constant expression. Keep going if we hit a
488 /// construct that we can't evaluate yet (because we don't yet know the
489 /// value of something) but stop if we hit something that could never be
490 /// a constant expression. Some expressions can be retried in the
491 /// optimizer if we don't constant fold them here, but in an unevaluated
492 /// context we try to fold them immediately since the optimizer never
493 /// gets a chance to look at it.
494 EM_PotentialConstantExpressionUnevaluated
495 } EvalMode;
496
497 /// Are we checking whether the expression is a potential constant
498 /// expression?
checkingPotentialConstantExpression__anon79c4fed30111::EvalInfo499 bool checkingPotentialConstantExpression() const {
500 return EvalMode == EM_PotentialConstantExpression ||
501 EvalMode == EM_PotentialConstantExpressionUnevaluated;
502 }
503
504 /// Are we checking an expression for overflow?
505 // FIXME: We should check for any kind of undefined or suspicious behavior
506 // in such constructs, not just overflow.
checkingForOverflow__anon79c4fed30111::EvalInfo507 bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
508
EvalInfo__anon79c4fed30111::EvalInfo509 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
510 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
511 CallStackDepth(0), NextCallIndex(1),
512 StepsLeft(getLangOpts().ConstexprStepLimit),
513 BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
514 EvaluatingDecl((const ValueDecl *)nullptr),
515 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
516 EvalMode(Mode) {}
517
setEvaluatingDecl__anon79c4fed30111::EvalInfo518 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
519 EvaluatingDecl = Base;
520 EvaluatingDeclValue = &Value;
521 }
522
getLangOpts__anon79c4fed30111::EvalInfo523 const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
524
CheckCallLimit__anon79c4fed30111::EvalInfo525 bool CheckCallLimit(SourceLocation Loc) {
526 // Don't perform any constexpr calls (other than the call we're checking)
527 // when checking a potential constant expression.
528 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
529 return false;
530 if (NextCallIndex == 0) {
531 // NextCallIndex has wrapped around.
532 Diag(Loc, diag::note_constexpr_call_limit_exceeded);
533 return false;
534 }
535 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
536 return true;
537 Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
538 << getLangOpts().ConstexprCallDepth;
539 return false;
540 }
541
getCallFrame__anon79c4fed30111::EvalInfo542 CallStackFrame *getCallFrame(unsigned CallIndex) {
543 assert(CallIndex && "no call index in getCallFrame");
544 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
545 // be null in this loop.
546 CallStackFrame *Frame = CurrentCall;
547 while (Frame->Index > CallIndex)
548 Frame = Frame->Caller;
549 return (Frame->Index == CallIndex) ? Frame : nullptr;
550 }
551
nextStep__anon79c4fed30111::EvalInfo552 bool nextStep(const Stmt *S) {
553 if (!StepsLeft) {
554 Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
555 return false;
556 }
557 --StepsLeft;
558 return true;
559 }
560
561 private:
562 /// Add a diagnostic to the diagnostics list.
addDiag__anon79c4fed30111::EvalInfo563 PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
564 PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
565 EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
566 return EvalStatus.Diag->back().second;
567 }
568
569 /// Add notes containing a call stack to the current point of evaluation.
570 void addCallStack(unsigned Limit);
571
572 public:
573 /// Diagnose that the evaluation cannot be folded.
Diag__anon79c4fed30111::EvalInfo574 OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
575 = diag::note_invalid_subexpr_in_const_expr,
576 unsigned ExtraNotes = 0) {
577 if (EvalStatus.Diag) {
578 // If we have a prior diagnostic, it will be noting that the expression
579 // isn't a constant expression. This diagnostic is more important,
580 // unless we require this evaluation to produce a constant expression.
581 //
582 // FIXME: We might want to show both diagnostics to the user in
583 // EM_ConstantFold mode.
584 if (!EvalStatus.Diag->empty()) {
585 switch (EvalMode) {
586 case EM_ConstantFold:
587 case EM_IgnoreSideEffects:
588 case EM_EvaluateForOverflow:
589 if (!EvalStatus.HasSideEffects)
590 break;
591 // We've had side-effects; we want the diagnostic from them, not
592 // some later problem.
593 case EM_ConstantExpression:
594 case EM_PotentialConstantExpression:
595 case EM_ConstantExpressionUnevaluated:
596 case EM_PotentialConstantExpressionUnevaluated:
597 HasActiveDiagnostic = false;
598 return OptionalDiagnostic();
599 }
600 }
601
602 unsigned CallStackNotes = CallStackDepth - 1;
603 unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
604 if (Limit)
605 CallStackNotes = std::min(CallStackNotes, Limit + 1);
606 if (checkingPotentialConstantExpression())
607 CallStackNotes = 0;
608
609 HasActiveDiagnostic = true;
610 EvalStatus.Diag->clear();
611 EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
612 addDiag(Loc, DiagId);
613 if (!checkingPotentialConstantExpression())
614 addCallStack(Limit);
615 return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
616 }
617 HasActiveDiagnostic = false;
618 return OptionalDiagnostic();
619 }
620
Diag__anon79c4fed30111::EvalInfo621 OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
622 = diag::note_invalid_subexpr_in_const_expr,
623 unsigned ExtraNotes = 0) {
624 if (EvalStatus.Diag)
625 return Diag(E->getExprLoc(), DiagId, ExtraNotes);
626 HasActiveDiagnostic = false;
627 return OptionalDiagnostic();
628 }
629
630 /// Diagnose that the evaluation does not produce a C++11 core constant
631 /// expression.
632 ///
633 /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
634 /// EM_PotentialConstantExpression mode and we produce one of these.
635 template<typename LocArg>
CCEDiag__anon79c4fed30111::EvalInfo636 OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
637 = diag::note_invalid_subexpr_in_const_expr,
638 unsigned ExtraNotes = 0) {
639 // Don't override a previous diagnostic. Don't bother collecting
640 // diagnostics if we're evaluating for overflow.
641 if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
642 HasActiveDiagnostic = false;
643 return OptionalDiagnostic();
644 }
645 return Diag(Loc, DiagId, ExtraNotes);
646 }
647
648 /// Add a note to a prior diagnostic.
Note__anon79c4fed30111::EvalInfo649 OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
650 if (!HasActiveDiagnostic)
651 return OptionalDiagnostic();
652 return OptionalDiagnostic(&addDiag(Loc, DiagId));
653 }
654
655 /// Add a stack of notes to a prior diagnostic.
addNotes__anon79c4fed30111::EvalInfo656 void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
657 if (HasActiveDiagnostic) {
658 EvalStatus.Diag->insert(EvalStatus.Diag->end(),
659 Diags.begin(), Diags.end());
660 }
661 }
662
663 /// Should we continue evaluation after encountering a side-effect that we
664 /// couldn't model?
keepEvaluatingAfterSideEffect__anon79c4fed30111::EvalInfo665 bool keepEvaluatingAfterSideEffect() {
666 switch (EvalMode) {
667 case EM_PotentialConstantExpression:
668 case EM_PotentialConstantExpressionUnevaluated:
669 case EM_EvaluateForOverflow:
670 case EM_IgnoreSideEffects:
671 return true;
672
673 case EM_ConstantExpression:
674 case EM_ConstantExpressionUnevaluated:
675 case EM_ConstantFold:
676 return false;
677 }
678 llvm_unreachable("Missed EvalMode case");
679 }
680
681 /// Note that we have had a side-effect, and determine whether we should
682 /// keep evaluating.
noteSideEffect__anon79c4fed30111::EvalInfo683 bool noteSideEffect() {
684 EvalStatus.HasSideEffects = true;
685 return keepEvaluatingAfterSideEffect();
686 }
687
688 /// Should we continue evaluation as much as possible after encountering a
689 /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure__anon79c4fed30111::EvalInfo690 bool keepEvaluatingAfterFailure() {
691 if (!StepsLeft)
692 return false;
693
694 switch (EvalMode) {
695 case EM_PotentialConstantExpression:
696 case EM_PotentialConstantExpressionUnevaluated:
697 case EM_EvaluateForOverflow:
698 return true;
699
700 case EM_ConstantExpression:
701 case EM_ConstantExpressionUnevaluated:
702 case EM_ConstantFold:
703 case EM_IgnoreSideEffects:
704 return false;
705 }
706 llvm_unreachable("Missed EvalMode case");
707 }
708 };
709
710 /// Object used to treat all foldable expressions as constant expressions.
711 struct FoldConstant {
712 EvalInfo &Info;
713 bool Enabled;
714 bool HadNoPriorDiags;
715 EvalInfo::EvaluationMode OldMode;
716
FoldConstant__anon79c4fed30111::FoldConstant717 explicit FoldConstant(EvalInfo &Info, bool Enabled)
718 : Info(Info),
719 Enabled(Enabled),
720 HadNoPriorDiags(Info.EvalStatus.Diag &&
721 Info.EvalStatus.Diag->empty() &&
722 !Info.EvalStatus.HasSideEffects),
723 OldMode(Info.EvalMode) {
724 if (Enabled &&
725 (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
726 Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
727 Info.EvalMode = EvalInfo::EM_ConstantFold;
728 }
keepDiagnostics__anon79c4fed30111::FoldConstant729 void keepDiagnostics() { Enabled = false; }
~FoldConstant__anon79c4fed30111::FoldConstant730 ~FoldConstant() {
731 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
732 !Info.EvalStatus.HasSideEffects)
733 Info.EvalStatus.Diag->clear();
734 Info.EvalMode = OldMode;
735 }
736 };
737
738 /// RAII object used to suppress diagnostics and side-effects from a
739 /// speculative evaluation.
740 class SpeculativeEvaluationRAII {
741 EvalInfo &Info;
742 Expr::EvalStatus Old;
743
744 public:
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)745 SpeculativeEvaluationRAII(EvalInfo &Info,
746 SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
747 : Info(Info), Old(Info.EvalStatus) {
748 Info.EvalStatus.Diag = NewDiag;
749 // If we're speculatively evaluating, we may have skipped over some
750 // evaluations and missed out a side effect.
751 Info.EvalStatus.HasSideEffects = true;
752 }
~SpeculativeEvaluationRAII()753 ~SpeculativeEvaluationRAII() {
754 Info.EvalStatus = Old;
755 }
756 };
757
758 /// RAII object wrapping a full-expression or block scope, and handling
759 /// the ending of the lifetime of temporaries created within it.
760 template<bool IsFullExpression>
761 class ScopeRAII {
762 EvalInfo &Info;
763 unsigned OldStackSize;
764 public:
ScopeRAII(EvalInfo & Info)765 ScopeRAII(EvalInfo &Info)
766 : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
~ScopeRAII()767 ~ScopeRAII() {
768 // Body moved to a static method to encourage the compiler to inline away
769 // instances of this class.
770 cleanup(Info, OldStackSize);
771 }
772 private:
cleanup(EvalInfo & Info,unsigned OldStackSize)773 static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
774 unsigned NewEnd = OldStackSize;
775 for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
776 I != N; ++I) {
777 if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
778 // Full-expression cleanup of a lifetime-extended temporary: nothing
779 // to do, just move this cleanup to the right place in the stack.
780 std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
781 ++NewEnd;
782 } else {
783 // End the lifetime of the object.
784 Info.CleanupStack[I].endLifetime();
785 }
786 }
787 Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
788 Info.CleanupStack.end());
789 }
790 };
791 typedef ScopeRAII<false> BlockScopeRAII;
792 typedef ScopeRAII<true> FullExpressionRAII;
793 }
794
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)795 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
796 CheckSubobjectKind CSK) {
797 if (Invalid)
798 return false;
799 if (isOnePastTheEnd()) {
800 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
801 << CSK;
802 setInvalid();
803 return false;
804 }
805 return true;
806 }
807
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)808 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
809 const Expr *E, uint64_t N) {
810 if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
811 Info.CCEDiag(E, diag::note_constexpr_array_index)
812 << static_cast<int>(N) << /*array*/ 0
813 << static_cast<unsigned>(MostDerivedArraySize);
814 else
815 Info.CCEDiag(E, diag::note_constexpr_array_index)
816 << static_cast<int>(N) << /*non-array*/ 1;
817 setInvalid();
818 }
819
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,APValue * Arguments)820 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
821 const FunctionDecl *Callee, const LValue *This,
822 APValue *Arguments)
823 : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
824 Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
825 Info.CurrentCall = this;
826 ++Info.CallStackDepth;
827 }
828
~CallStackFrame()829 CallStackFrame::~CallStackFrame() {
830 assert(Info.CurrentCall == this && "calls retired out of order");
831 --Info.CallStackDepth;
832 Info.CurrentCall = Caller;
833 }
834
createTemporary(const void * Key,bool IsLifetimeExtended)835 APValue &CallStackFrame::createTemporary(const void *Key,
836 bool IsLifetimeExtended) {
837 APValue &Result = Temporaries[Key];
838 assert(Result.isUninit() && "temporary created multiple times");
839 Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
840 return Result;
841 }
842
843 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
844
addCallStack(unsigned Limit)845 void EvalInfo::addCallStack(unsigned Limit) {
846 // Determine which calls to skip, if any.
847 unsigned ActiveCalls = CallStackDepth - 1;
848 unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
849 if (Limit && Limit < ActiveCalls) {
850 SkipStart = Limit / 2 + Limit % 2;
851 SkipEnd = ActiveCalls - Limit / 2;
852 }
853
854 // Walk the call stack and add the diagnostics.
855 unsigned CallIdx = 0;
856 for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
857 Frame = Frame->Caller, ++CallIdx) {
858 // Skip this call?
859 if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
860 if (CallIdx == SkipStart) {
861 // Note that we're skipping calls.
862 addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
863 << unsigned(ActiveCalls - Limit);
864 }
865 continue;
866 }
867
868 SmallVector<char, 128> Buffer;
869 llvm::raw_svector_ostream Out(Buffer);
870 describeCall(Frame, Out);
871 addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
872 }
873 }
874
875 namespace {
876 struct ComplexValue {
877 private:
878 bool IsInt;
879
880 public:
881 APSInt IntReal, IntImag;
882 APFloat FloatReal, FloatImag;
883
ComplexValue__anon79c4fed30211::ComplexValue884 ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
885
makeComplexFloat__anon79c4fed30211::ComplexValue886 void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon79c4fed30211::ComplexValue887 bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon79c4fed30211::ComplexValue888 APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon79c4fed30211::ComplexValue889 APFloat &getComplexFloatImag() { return FloatImag; }
890
makeComplexInt__anon79c4fed30211::ComplexValue891 void makeComplexInt() { IsInt = true; }
isComplexInt__anon79c4fed30211::ComplexValue892 bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon79c4fed30211::ComplexValue893 APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon79c4fed30211::ComplexValue894 APSInt &getComplexIntImag() { return IntImag; }
895
moveInto__anon79c4fed30211::ComplexValue896 void moveInto(APValue &v) const {
897 if (isComplexFloat())
898 v = APValue(FloatReal, FloatImag);
899 else
900 v = APValue(IntReal, IntImag);
901 }
setFrom__anon79c4fed30211::ComplexValue902 void setFrom(const APValue &v) {
903 assert(v.isComplexFloat() || v.isComplexInt());
904 if (v.isComplexFloat()) {
905 makeComplexFloat();
906 FloatReal = v.getComplexFloatReal();
907 FloatImag = v.getComplexFloatImag();
908 } else {
909 makeComplexInt();
910 IntReal = v.getComplexIntReal();
911 IntImag = v.getComplexIntImag();
912 }
913 }
914 };
915
916 struct LValue {
917 APValue::LValueBase Base;
918 CharUnits Offset;
919 unsigned CallIndex;
920 SubobjectDesignator Designator;
921
getLValueBase__anon79c4fed30211::LValue922 const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon79c4fed30211::LValue923 CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon79c4fed30211::LValue924 const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon79c4fed30211::LValue925 unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon79c4fed30211::LValue926 SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon79c4fed30211::LValue927 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
928
moveInto__anon79c4fed30211::LValue929 void moveInto(APValue &V) const {
930 if (Designator.Invalid)
931 V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
932 else
933 V = APValue(Base, Offset, Designator.Entries,
934 Designator.IsOnePastTheEnd, CallIndex);
935 }
setFrom__anon79c4fed30211::LValue936 void setFrom(ASTContext &Ctx, const APValue &V) {
937 assert(V.isLValue());
938 Base = V.getLValueBase();
939 Offset = V.getLValueOffset();
940 CallIndex = V.getLValueCallIndex();
941 Designator = SubobjectDesignator(Ctx, V);
942 }
943
set__anon79c4fed30211::LValue944 void set(APValue::LValueBase B, unsigned I = 0) {
945 Base = B;
946 Offset = CharUnits::Zero();
947 CallIndex = I;
948 Designator = SubobjectDesignator(getType(B));
949 }
950
951 // Check that this LValue is not based on a null pointer. If it is, produce
952 // a diagnostic and mark the designator as invalid.
checkNullPointer__anon79c4fed30211::LValue953 bool checkNullPointer(EvalInfo &Info, const Expr *E,
954 CheckSubobjectKind CSK) {
955 if (Designator.Invalid)
956 return false;
957 if (!Base) {
958 Info.CCEDiag(E, diag::note_constexpr_null_subobject)
959 << CSK;
960 Designator.setInvalid();
961 return false;
962 }
963 return true;
964 }
965
966 // Check this LValue refers to an object. If not, set the designator to be
967 // invalid and emit a diagnostic.
checkSubobject__anon79c4fed30211::LValue968 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
969 // Outside C++11, do not build a designator referring to a subobject of
970 // any object: we won't use such a designator for anything.
971 if (!Info.getLangOpts().CPlusPlus11)
972 Designator.setInvalid();
973 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
974 Designator.checkSubobject(Info, E, CSK);
975 }
976
addDecl__anon79c4fed30211::LValue977 void addDecl(EvalInfo &Info, const Expr *E,
978 const Decl *D, bool Virtual = false) {
979 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
980 Designator.addDeclUnchecked(D, Virtual);
981 }
addArray__anon79c4fed30211::LValue982 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
983 if (checkSubobject(Info, E, CSK_ArrayToPointer))
984 Designator.addArrayUnchecked(CAT);
985 }
addComplex__anon79c4fed30211::LValue986 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
987 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
988 Designator.addComplexUnchecked(EltTy, Imag);
989 }
adjustIndex__anon79c4fed30211::LValue990 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
991 if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
992 Designator.adjustIndex(Info, E, N);
993 }
994 };
995
996 struct MemberPtr {
MemberPtr__anon79c4fed30211::MemberPtr997 MemberPtr() {}
MemberPtr__anon79c4fed30211::MemberPtr998 explicit MemberPtr(const ValueDecl *Decl) :
999 DeclAndIsDerivedMember(Decl, false), Path() {}
1000
1001 /// The member or (direct or indirect) field referred to by this member
1002 /// pointer, or 0 if this is a null member pointer.
getDecl__anon79c4fed30211::MemberPtr1003 const ValueDecl *getDecl() const {
1004 return DeclAndIsDerivedMember.getPointer();
1005 }
1006 /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon79c4fed30211::MemberPtr1007 bool isDerivedMember() const {
1008 return DeclAndIsDerivedMember.getInt();
1009 }
1010 /// Get the class which the declaration actually lives in.
getContainingRecord__anon79c4fed30211::MemberPtr1011 const CXXRecordDecl *getContainingRecord() const {
1012 return cast<CXXRecordDecl>(
1013 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1014 }
1015
moveInto__anon79c4fed30211::MemberPtr1016 void moveInto(APValue &V) const {
1017 V = APValue(getDecl(), isDerivedMember(), Path);
1018 }
setFrom__anon79c4fed30211::MemberPtr1019 void setFrom(const APValue &V) {
1020 assert(V.isMemberPointer());
1021 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1022 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1023 Path.clear();
1024 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1025 Path.insert(Path.end(), P.begin(), P.end());
1026 }
1027
1028 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1029 /// whether the member is a member of some class derived from the class type
1030 /// of the member pointer.
1031 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1032 /// Path - The path of base/derived classes from the member declaration's
1033 /// class (exclusive) to the class type of the member pointer (inclusive).
1034 SmallVector<const CXXRecordDecl*, 4> Path;
1035
1036 /// Perform a cast towards the class of the Decl (either up or down the
1037 /// hierarchy).
castBack__anon79c4fed30211::MemberPtr1038 bool castBack(const CXXRecordDecl *Class) {
1039 assert(!Path.empty());
1040 const CXXRecordDecl *Expected;
1041 if (Path.size() >= 2)
1042 Expected = Path[Path.size() - 2];
1043 else
1044 Expected = getContainingRecord();
1045 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1046 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1047 // if B does not contain the original member and is not a base or
1048 // derived class of the class containing the original member, the result
1049 // of the cast is undefined.
1050 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1051 // (D::*). We consider that to be a language defect.
1052 return false;
1053 }
1054 Path.pop_back();
1055 return true;
1056 }
1057 /// Perform a base-to-derived member pointer cast.
castToDerived__anon79c4fed30211::MemberPtr1058 bool castToDerived(const CXXRecordDecl *Derived) {
1059 if (!getDecl())
1060 return true;
1061 if (!isDerivedMember()) {
1062 Path.push_back(Derived);
1063 return true;
1064 }
1065 if (!castBack(Derived))
1066 return false;
1067 if (Path.empty())
1068 DeclAndIsDerivedMember.setInt(false);
1069 return true;
1070 }
1071 /// Perform a derived-to-base member pointer cast.
castToBase__anon79c4fed30211::MemberPtr1072 bool castToBase(const CXXRecordDecl *Base) {
1073 if (!getDecl())
1074 return true;
1075 if (Path.empty())
1076 DeclAndIsDerivedMember.setInt(true);
1077 if (isDerivedMember()) {
1078 Path.push_back(Base);
1079 return true;
1080 }
1081 return castBack(Base);
1082 }
1083 };
1084
1085 /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1086 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1087 if (!LHS.getDecl() || !RHS.getDecl())
1088 return !LHS.getDecl() && !RHS.getDecl();
1089 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1090 return false;
1091 return LHS.Path == RHS.Path;
1092 }
1093 }
1094
1095 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1096 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1097 const LValue &This, const Expr *E,
1098 bool AllowNonLiteralTypes = false);
1099 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
1100 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
1101 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1102 EvalInfo &Info);
1103 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1104 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1105 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1106 EvalInfo &Info);
1107 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1108 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1109 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
1110
1111 //===----------------------------------------------------------------------===//
1112 // Misc utilities
1113 //===----------------------------------------------------------------------===//
1114
1115 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)1116 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1117 unsigned ArgIndex = 0;
1118 bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1119 !isa<CXXConstructorDecl>(Frame->Callee) &&
1120 cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1121
1122 if (!IsMemberCall)
1123 Out << *Frame->Callee << '(';
1124
1125 if (Frame->This && IsMemberCall) {
1126 APValue Val;
1127 Frame->This->moveInto(Val);
1128 Val.printPretty(Out, Frame->Info.Ctx,
1129 Frame->This->Designator.MostDerivedType);
1130 // FIXME: Add parens around Val if needed.
1131 Out << "->" << *Frame->Callee << '(';
1132 IsMemberCall = false;
1133 }
1134
1135 for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1136 E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1137 if (ArgIndex > (unsigned)IsMemberCall)
1138 Out << ", ";
1139
1140 const ParmVarDecl *Param = *I;
1141 const APValue &Arg = Frame->Arguments[ArgIndex];
1142 Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1143
1144 if (ArgIndex == 0 && IsMemberCall)
1145 Out << "->" << *Frame->Callee << '(';
1146 }
1147
1148 Out << ')';
1149 }
1150
1151 /// Evaluate an expression to see if it had side-effects, and discard its
1152 /// result.
1153 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1154 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1155 APValue Scratch;
1156 if (!Evaluate(Scratch, Info, E))
1157 // We don't need the value, but we might have skipped a side effect here.
1158 return Info.noteSideEffect();
1159 return true;
1160 }
1161
1162 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1163 /// return its existing value.
getExtValue(const APSInt & Value)1164 static int64_t getExtValue(const APSInt &Value) {
1165 return Value.isSigned() ? Value.getSExtValue()
1166 : static_cast<int64_t>(Value.getZExtValue());
1167 }
1168
1169 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1170 static bool IsStringLiteralCall(const CallExpr *E) {
1171 unsigned Builtin = E->getBuiltinCallee();
1172 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1173 Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1174 }
1175
IsGlobalLValue(APValue::LValueBase B)1176 static bool IsGlobalLValue(APValue::LValueBase B) {
1177 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1178 // constant expression of pointer type that evaluates to...
1179
1180 // ... a null pointer value, or a prvalue core constant expression of type
1181 // std::nullptr_t.
1182 if (!B) return true;
1183
1184 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1185 // ... the address of an object with static storage duration,
1186 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1187 return VD->hasGlobalStorage();
1188 // ... the address of a function,
1189 return isa<FunctionDecl>(D);
1190 }
1191
1192 const Expr *E = B.get<const Expr*>();
1193 switch (E->getStmtClass()) {
1194 default:
1195 return false;
1196 case Expr::CompoundLiteralExprClass: {
1197 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1198 return CLE->isFileScope() && CLE->isLValue();
1199 }
1200 case Expr::MaterializeTemporaryExprClass:
1201 // A materialized temporary might have been lifetime-extended to static
1202 // storage duration.
1203 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1204 // A string literal has static storage duration.
1205 case Expr::StringLiteralClass:
1206 case Expr::PredefinedExprClass:
1207 case Expr::ObjCStringLiteralClass:
1208 case Expr::ObjCEncodeExprClass:
1209 case Expr::CXXTypeidExprClass:
1210 case Expr::CXXUuidofExprClass:
1211 return true;
1212 case Expr::CallExprClass:
1213 return IsStringLiteralCall(cast<CallExpr>(E));
1214 // For GCC compatibility, &&label has static storage duration.
1215 case Expr::AddrLabelExprClass:
1216 return true;
1217 // A Block literal expression may be used as the initialization value for
1218 // Block variables at global or local static scope.
1219 case Expr::BlockExprClass:
1220 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1221 case Expr::ImplicitValueInitExprClass:
1222 // FIXME:
1223 // We can never form an lvalue with an implicit value initialization as its
1224 // base through expression evaluation, so these only appear in one case: the
1225 // implicit variable declaration we invent when checking whether a constexpr
1226 // constructor can produce a constant expression. We must assume that such
1227 // an expression might be a global lvalue.
1228 return true;
1229 }
1230 }
1231
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)1232 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1233 assert(Base && "no location for a null lvalue");
1234 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1235 if (VD)
1236 Info.Note(VD->getLocation(), diag::note_declared_at);
1237 else
1238 Info.Note(Base.get<const Expr*>()->getExprLoc(),
1239 diag::note_constexpr_temporary_here);
1240 }
1241
1242 /// Check that this reference or pointer core constant expression is a valid
1243 /// value for an address or reference constant expression. Return true if we
1244 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)1245 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1246 QualType Type, const LValue &LVal) {
1247 bool IsReferenceType = Type->isReferenceType();
1248
1249 APValue::LValueBase Base = LVal.getLValueBase();
1250 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1251
1252 // Check that the object is a global. Note that the fake 'this' object we
1253 // manufacture when checking potential constant expressions is conservatively
1254 // assumed to be global here.
1255 if (!IsGlobalLValue(Base)) {
1256 if (Info.getLangOpts().CPlusPlus11) {
1257 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1258 Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1259 << IsReferenceType << !Designator.Entries.empty()
1260 << !!VD << VD;
1261 NoteLValueLocation(Info, Base);
1262 } else {
1263 Info.Diag(Loc);
1264 }
1265 // Don't allow references to temporaries to escape.
1266 return false;
1267 }
1268 assert((Info.checkingPotentialConstantExpression() ||
1269 LVal.getLValueCallIndex() == 0) &&
1270 "have call index for global lvalue");
1271
1272 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1273 if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1274 // Check if this is a thread-local variable.
1275 if (Var->getTLSKind())
1276 return false;
1277
1278 // A dllimport variable never acts like a constant.
1279 if (Var->hasAttr<DLLImportAttr>())
1280 return false;
1281 }
1282 if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1283 // __declspec(dllimport) must be handled very carefully:
1284 // We must never initialize an expression with the thunk in C++.
1285 // Doing otherwise would allow the same id-expression to yield
1286 // different addresses for the same function in different translation
1287 // units. However, this means that we must dynamically initialize the
1288 // expression with the contents of the import address table at runtime.
1289 //
1290 // The C language has no notion of ODR; furthermore, it has no notion of
1291 // dynamic initialization. This means that we are permitted to
1292 // perform initialization with the address of the thunk.
1293 if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
1294 return false;
1295 }
1296 }
1297
1298 // Allow address constant expressions to be past-the-end pointers. This is
1299 // an extension: the standard requires them to point to an object.
1300 if (!IsReferenceType)
1301 return true;
1302
1303 // A reference constant expression must refer to an object.
1304 if (!Base) {
1305 // FIXME: diagnostic
1306 Info.CCEDiag(Loc);
1307 return true;
1308 }
1309
1310 // Does this refer one past the end of some object?
1311 if (Designator.isOnePastTheEnd()) {
1312 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1313 Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1314 << !Designator.Entries.empty() << !!VD << VD;
1315 NoteLValueLocation(Info, Base);
1316 }
1317
1318 return true;
1319 }
1320
1321 /// Check that this core constant expression is of literal type, and if not,
1322 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)1323 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1324 const LValue *This = nullptr) {
1325 if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1326 return true;
1327
1328 // C++1y: A constant initializer for an object o [...] may also invoke
1329 // constexpr constructors for o and its subobjects even if those objects
1330 // are of non-literal class types.
1331 if (Info.getLangOpts().CPlusPlus1y && This &&
1332 Info.EvaluatingDecl == This->getLValueBase())
1333 return true;
1334
1335 // Prvalue constant expressions must be of literal types.
1336 if (Info.getLangOpts().CPlusPlus11)
1337 Info.Diag(E, diag::note_constexpr_nonliteral)
1338 << E->getType();
1339 else
1340 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1341 return false;
1342 }
1343
1344 /// Check that this core constant expression value is a valid value for a
1345 /// constant expression. If not, report an appropriate diagnostic. Does not
1346 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1347 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1348 QualType Type, const APValue &Value) {
1349 if (Value.isUninit()) {
1350 Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
1351 << true << Type;
1352 return false;
1353 }
1354
1355 // Core issue 1454: For a literal constant expression of array or class type,
1356 // each subobject of its value shall have been initialized by a constant
1357 // expression.
1358 if (Value.isArray()) {
1359 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1360 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1361 if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1362 Value.getArrayInitializedElt(I)))
1363 return false;
1364 }
1365 if (!Value.hasArrayFiller())
1366 return true;
1367 return CheckConstantExpression(Info, DiagLoc, EltTy,
1368 Value.getArrayFiller());
1369 }
1370 if (Value.isUnion() && Value.getUnionField()) {
1371 return CheckConstantExpression(Info, DiagLoc,
1372 Value.getUnionField()->getType(),
1373 Value.getUnionValue());
1374 }
1375 if (Value.isStruct()) {
1376 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1377 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1378 unsigned BaseIndex = 0;
1379 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1380 End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1381 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1382 Value.getStructBase(BaseIndex)))
1383 return false;
1384 }
1385 }
1386 for (const auto *I : RD->fields()) {
1387 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1388 Value.getStructField(I->getFieldIndex())))
1389 return false;
1390 }
1391 }
1392
1393 if (Value.isLValue()) {
1394 LValue LVal;
1395 LVal.setFrom(Info.Ctx, Value);
1396 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1397 }
1398
1399 // Everything else is fine.
1400 return true;
1401 }
1402
GetLValueBaseDecl(const LValue & LVal)1403 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1404 return LVal.Base.dyn_cast<const ValueDecl*>();
1405 }
1406
IsLiteralLValue(const LValue & Value)1407 static bool IsLiteralLValue(const LValue &Value) {
1408 if (Value.CallIndex)
1409 return false;
1410 const Expr *E = Value.Base.dyn_cast<const Expr*>();
1411 return E && !isa<MaterializeTemporaryExpr>(E);
1412 }
1413
IsWeakLValue(const LValue & Value)1414 static bool IsWeakLValue(const LValue &Value) {
1415 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1416 return Decl && Decl->isWeak();
1417 }
1418
EvalPointerValueAsBool(const APValue & Value,bool & Result)1419 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1420 // A null base expression indicates a null pointer. These are always
1421 // evaluatable, and they are false unless the offset is zero.
1422 if (!Value.getLValueBase()) {
1423 Result = !Value.getLValueOffset().isZero();
1424 return true;
1425 }
1426
1427 // We have a non-null base. These are generally known to be true, but if it's
1428 // a weak declaration it can be null at runtime.
1429 Result = true;
1430 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1431 return !Decl || !Decl->isWeak();
1432 }
1433
HandleConversionToBool(const APValue & Val,bool & Result)1434 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1435 switch (Val.getKind()) {
1436 case APValue::Uninitialized:
1437 return false;
1438 case APValue::Int:
1439 Result = Val.getInt().getBoolValue();
1440 return true;
1441 case APValue::Float:
1442 Result = !Val.getFloat().isZero();
1443 return true;
1444 case APValue::ComplexInt:
1445 Result = Val.getComplexIntReal().getBoolValue() ||
1446 Val.getComplexIntImag().getBoolValue();
1447 return true;
1448 case APValue::ComplexFloat:
1449 Result = !Val.getComplexFloatReal().isZero() ||
1450 !Val.getComplexFloatImag().isZero();
1451 return true;
1452 case APValue::LValue:
1453 return EvalPointerValueAsBool(Val, Result);
1454 case APValue::MemberPointer:
1455 Result = Val.getMemberPointerDecl();
1456 return true;
1457 case APValue::Vector:
1458 case APValue::Array:
1459 case APValue::Struct:
1460 case APValue::Union:
1461 case APValue::AddrLabelDiff:
1462 return false;
1463 }
1464
1465 llvm_unreachable("unknown APValue kind");
1466 }
1467
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1468 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1469 EvalInfo &Info) {
1470 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1471 APValue Val;
1472 if (!Evaluate(Val, Info, E))
1473 return false;
1474 return HandleConversionToBool(Val, Result);
1475 }
1476
1477 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1478 static void HandleOverflow(EvalInfo &Info, const Expr *E,
1479 const T &SrcValue, QualType DestType) {
1480 Info.CCEDiag(E, diag::note_constexpr_overflow)
1481 << SrcValue << DestType;
1482 }
1483
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1484 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1485 QualType SrcType, const APFloat &Value,
1486 QualType DestType, APSInt &Result) {
1487 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1488 // Determine whether we are converting to unsigned or signed.
1489 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1490
1491 Result = APSInt(DestWidth, !DestSigned);
1492 bool ignored;
1493 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1494 & APFloat::opInvalidOp)
1495 HandleOverflow(Info, E, Value, DestType);
1496 return true;
1497 }
1498
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1499 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1500 QualType SrcType, QualType DestType,
1501 APFloat &Result) {
1502 APFloat Value = Result;
1503 bool ignored;
1504 if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1505 APFloat::rmNearestTiesToEven, &ignored)
1506 & APFloat::opOverflow)
1507 HandleOverflow(Info, E, Value, DestType);
1508 return true;
1509 }
1510
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,APSInt & Value)1511 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1512 QualType DestType, QualType SrcType,
1513 APSInt &Value) {
1514 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1515 APSInt Result = Value;
1516 // Figure out if this is a truncate, extend or noop cast.
1517 // If the input is signed, do a sign extend, noop, or truncate.
1518 Result = Result.extOrTrunc(DestWidth);
1519 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1520 return Result;
1521 }
1522
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1523 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1524 QualType SrcType, const APSInt &Value,
1525 QualType DestType, APFloat &Result) {
1526 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1527 if (Result.convertFromAPInt(Value, Value.isSigned(),
1528 APFloat::rmNearestTiesToEven)
1529 & APFloat::opOverflow)
1530 HandleOverflow(Info, E, Value, DestType);
1531 return true;
1532 }
1533
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)1534 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1535 APValue &Value, const FieldDecl *FD) {
1536 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1537
1538 if (!Value.isInt()) {
1539 // Trying to store a pointer-cast-to-integer into a bitfield.
1540 // FIXME: In this case, we should provide the diagnostic for casting
1541 // a pointer to an integer.
1542 assert(Value.isLValue() && "integral value neither int nor lvalue?");
1543 Info.Diag(E);
1544 return false;
1545 }
1546
1547 APSInt &Int = Value.getInt();
1548 unsigned OldBitWidth = Int.getBitWidth();
1549 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1550 if (NewBitWidth < OldBitWidth)
1551 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1552 return true;
1553 }
1554
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1555 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1556 llvm::APInt &Res) {
1557 APValue SVal;
1558 if (!Evaluate(SVal, Info, E))
1559 return false;
1560 if (SVal.isInt()) {
1561 Res = SVal.getInt();
1562 return true;
1563 }
1564 if (SVal.isFloat()) {
1565 Res = SVal.getFloat().bitcastToAPInt();
1566 return true;
1567 }
1568 if (SVal.isVector()) {
1569 QualType VecTy = E->getType();
1570 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1571 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1572 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1573 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1574 Res = llvm::APInt::getNullValue(VecSize);
1575 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1576 APValue &Elt = SVal.getVectorElt(i);
1577 llvm::APInt EltAsInt;
1578 if (Elt.isInt()) {
1579 EltAsInt = Elt.getInt();
1580 } else if (Elt.isFloat()) {
1581 EltAsInt = Elt.getFloat().bitcastToAPInt();
1582 } else {
1583 // Don't try to handle vectors of anything other than int or float
1584 // (not sure if it's possible to hit this case).
1585 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1586 return false;
1587 }
1588 unsigned BaseEltSize = EltAsInt.getBitWidth();
1589 if (BigEndian)
1590 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1591 else
1592 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1593 }
1594 return true;
1595 }
1596 // Give up if the input isn't an int, float, or vector. For example, we
1597 // reject "(v4i16)(intptr_t)&a".
1598 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1599 return false;
1600 }
1601
1602 /// Perform the given integer operation, which is known to need at most BitWidth
1603 /// bits, and check for overflow in the original type (if that type was not an
1604 /// unsigned type).
1605 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op)1606 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1607 const APSInt &LHS, const APSInt &RHS,
1608 unsigned BitWidth, Operation Op) {
1609 if (LHS.isUnsigned())
1610 return Op(LHS, RHS);
1611
1612 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1613 APSInt Result = Value.trunc(LHS.getBitWidth());
1614 if (Result.extend(BitWidth) != Value) {
1615 if (Info.checkingForOverflow())
1616 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1617 diag::warn_integer_constant_overflow)
1618 << Result.toString(10) << E->getType();
1619 else
1620 HandleOverflow(Info, E, Value, E->getType());
1621 }
1622 return Result;
1623 }
1624
1625 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)1626 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1627 BinaryOperatorKind Opcode, APSInt RHS,
1628 APSInt &Result) {
1629 switch (Opcode) {
1630 default:
1631 Info.Diag(E);
1632 return false;
1633 case BO_Mul:
1634 Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1635 std::multiplies<APSInt>());
1636 return true;
1637 case BO_Add:
1638 Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1639 std::plus<APSInt>());
1640 return true;
1641 case BO_Sub:
1642 Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1643 std::minus<APSInt>());
1644 return true;
1645 case BO_And: Result = LHS & RHS; return true;
1646 case BO_Xor: Result = LHS ^ RHS; return true;
1647 case BO_Or: Result = LHS | RHS; return true;
1648 case BO_Div:
1649 case BO_Rem:
1650 if (RHS == 0) {
1651 Info.Diag(E, diag::note_expr_divide_by_zero);
1652 return false;
1653 }
1654 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
1655 if (RHS.isNegative() && RHS.isAllOnesValue() &&
1656 LHS.isSigned() && LHS.isMinSignedValue())
1657 HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
1658 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1659 return true;
1660 case BO_Shl: {
1661 if (Info.getLangOpts().OpenCL)
1662 // OpenCL 6.3j: shift values are effectively % word size of LHS.
1663 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1664 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1665 RHS.isUnsigned());
1666 else if (RHS.isSigned() && RHS.isNegative()) {
1667 // During constant-folding, a negative shift is an opposite shift. Such
1668 // a shift is not a constant expression.
1669 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1670 RHS = -RHS;
1671 goto shift_right;
1672 }
1673 shift_left:
1674 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1675 // the shifted type.
1676 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1677 if (SA != RHS) {
1678 Info.CCEDiag(E, diag::note_constexpr_large_shift)
1679 << RHS << E->getType() << LHS.getBitWidth();
1680 } else if (LHS.isSigned()) {
1681 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1682 // operand, and must not overflow the corresponding unsigned type.
1683 if (LHS.isNegative())
1684 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1685 else if (LHS.countLeadingZeros() < SA)
1686 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1687 }
1688 Result = LHS << SA;
1689 return true;
1690 }
1691 case BO_Shr: {
1692 if (Info.getLangOpts().OpenCL)
1693 // OpenCL 6.3j: shift values are effectively % word size of LHS.
1694 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1695 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1696 RHS.isUnsigned());
1697 else if (RHS.isSigned() && RHS.isNegative()) {
1698 // During constant-folding, a negative shift is an opposite shift. Such a
1699 // shift is not a constant expression.
1700 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1701 RHS = -RHS;
1702 goto shift_left;
1703 }
1704 shift_right:
1705 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1706 // shifted type.
1707 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1708 if (SA != RHS)
1709 Info.CCEDiag(E, diag::note_constexpr_large_shift)
1710 << RHS << E->getType() << LHS.getBitWidth();
1711 Result = LHS >> SA;
1712 return true;
1713 }
1714
1715 case BO_LT: Result = LHS < RHS; return true;
1716 case BO_GT: Result = LHS > RHS; return true;
1717 case BO_LE: Result = LHS <= RHS; return true;
1718 case BO_GE: Result = LHS >= RHS; return true;
1719 case BO_EQ: Result = LHS == RHS; return true;
1720 case BO_NE: Result = LHS != RHS; return true;
1721 }
1722 }
1723
1724 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const Expr * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)1725 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1726 APFloat &LHS, BinaryOperatorKind Opcode,
1727 const APFloat &RHS) {
1728 switch (Opcode) {
1729 default:
1730 Info.Diag(E);
1731 return false;
1732 case BO_Mul:
1733 LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1734 break;
1735 case BO_Add:
1736 LHS.add(RHS, APFloat::rmNearestTiesToEven);
1737 break;
1738 case BO_Sub:
1739 LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1740 break;
1741 case BO_Div:
1742 LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1743 break;
1744 }
1745
1746 if (LHS.isInfinity() || LHS.isNaN())
1747 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1748 return true;
1749 }
1750
1751 /// Cast an lvalue referring to a base subobject to a derived class, by
1752 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1753 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1754 const RecordDecl *TruncatedType,
1755 unsigned TruncatedElements) {
1756 SubobjectDesignator &D = Result.Designator;
1757
1758 // Check we actually point to a derived class object.
1759 if (TruncatedElements == D.Entries.size())
1760 return true;
1761 assert(TruncatedElements >= D.MostDerivedPathLength &&
1762 "not casting to a derived class");
1763 if (!Result.checkSubobject(Info, E, CSK_Derived))
1764 return false;
1765
1766 // Truncate the path to the subobject, and remove any derived-to-base offsets.
1767 const RecordDecl *RD = TruncatedType;
1768 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1769 if (RD->isInvalidDecl()) return false;
1770 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1771 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1772 if (isVirtualBaseClass(D.Entries[I]))
1773 Result.Offset -= Layout.getVBaseClassOffset(Base);
1774 else
1775 Result.Offset -= Layout.getBaseClassOffset(Base);
1776 RD = Base;
1777 }
1778 D.Entries.resize(TruncatedElements);
1779 return true;
1780 }
1781
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)1782 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1783 const CXXRecordDecl *Derived,
1784 const CXXRecordDecl *Base,
1785 const ASTRecordLayout *RL = nullptr) {
1786 if (!RL) {
1787 if (Derived->isInvalidDecl()) return false;
1788 RL = &Info.Ctx.getASTRecordLayout(Derived);
1789 }
1790
1791 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1792 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1793 return true;
1794 }
1795
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1796 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1797 const CXXRecordDecl *DerivedDecl,
1798 const CXXBaseSpecifier *Base) {
1799 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1800
1801 if (!Base->isVirtual())
1802 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1803
1804 SubobjectDesignator &D = Obj.Designator;
1805 if (D.Invalid)
1806 return false;
1807
1808 // Extract most-derived object and corresponding type.
1809 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1810 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1811 return false;
1812
1813 // Find the virtual base class.
1814 if (DerivedDecl->isInvalidDecl()) return false;
1815 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1816 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1817 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1818 return true;
1819 }
1820
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)1821 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1822 QualType Type, LValue &Result) {
1823 for (CastExpr::path_const_iterator PathI = E->path_begin(),
1824 PathE = E->path_end();
1825 PathI != PathE; ++PathI) {
1826 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1827 *PathI))
1828 return false;
1829 Type = (*PathI)->getType();
1830 }
1831 return true;
1832 }
1833
1834 /// Update LVal to refer to the given field, which must be a member of the type
1835 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)1836 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1837 const FieldDecl *FD,
1838 const ASTRecordLayout *RL = nullptr) {
1839 if (!RL) {
1840 if (FD->getParent()->isInvalidDecl()) return false;
1841 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1842 }
1843
1844 unsigned I = FD->getFieldIndex();
1845 LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1846 LVal.addDecl(Info, E, FD);
1847 return true;
1848 }
1849
1850 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)1851 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1852 LValue &LVal,
1853 const IndirectFieldDecl *IFD) {
1854 for (const auto *C : IFD->chain())
1855 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
1856 return false;
1857 return true;
1858 }
1859
1860 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)1861 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1862 QualType Type, CharUnits &Size) {
1863 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1864 // extension.
1865 if (Type->isVoidType() || Type->isFunctionType()) {
1866 Size = CharUnits::One();
1867 return true;
1868 }
1869
1870 if (!Type->isConstantSizeType()) {
1871 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1872 // FIXME: Better diagnostic.
1873 Info.Diag(Loc);
1874 return false;
1875 }
1876
1877 Size = Info.Ctx.getTypeSizeInChars(Type);
1878 return true;
1879 }
1880
1881 /// Update a pointer value to model pointer arithmetic.
1882 /// \param Info - Information about the ongoing evaluation.
1883 /// \param E - The expression being evaluated, for diagnostic purposes.
1884 /// \param LVal - The pointer value to be updated.
1885 /// \param EltTy - The pointee type represented by LVal.
1886 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)1887 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1888 LValue &LVal, QualType EltTy,
1889 int64_t Adjustment) {
1890 CharUnits SizeOfPointee;
1891 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1892 return false;
1893
1894 // Compute the new offset in the appropriate width.
1895 LVal.Offset += Adjustment * SizeOfPointee;
1896 LVal.adjustIndex(Info, E, Adjustment);
1897 return true;
1898 }
1899
1900 /// Update an lvalue to refer to a component of a complex number.
1901 /// \param Info - Information about the ongoing evaluation.
1902 /// \param LVal - The lvalue to be updated.
1903 /// \param EltTy - The complex number's component type.
1904 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)1905 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1906 LValue &LVal, QualType EltTy,
1907 bool Imag) {
1908 if (Imag) {
1909 CharUnits SizeOfComponent;
1910 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1911 return false;
1912 LVal.Offset += SizeOfComponent;
1913 }
1914 LVal.addComplex(Info, E, EltTy, Imag);
1915 return true;
1916 }
1917
1918 /// Try to evaluate the initializer for a variable declaration.
1919 ///
1920 /// \param Info Information about the ongoing evaluation.
1921 /// \param E An expression to be used when printing diagnostics.
1922 /// \param VD The variable whose initializer should be obtained.
1923 /// \param Frame The frame in which the variable was created. Must be null
1924 /// if this variable is not local to the evaluation.
1925 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue * & Result)1926 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1927 const VarDecl *VD, CallStackFrame *Frame,
1928 APValue *&Result) {
1929 // If this is a parameter to an active constexpr function call, perform
1930 // argument substitution.
1931 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1932 // Assume arguments of a potential constant expression are unknown
1933 // constant expressions.
1934 if (Info.checkingPotentialConstantExpression())
1935 return false;
1936 if (!Frame || !Frame->Arguments) {
1937 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1938 return false;
1939 }
1940 Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
1941 return true;
1942 }
1943
1944 // If this is a local variable, dig out its value.
1945 if (Frame) {
1946 Result = Frame->getTemporary(VD);
1947 assert(Result && "missing value for local variable");
1948 return true;
1949 }
1950
1951 // Dig out the initializer, and use the declaration which it's attached to.
1952 const Expr *Init = VD->getAnyInitializer(VD);
1953 if (!Init || Init->isValueDependent()) {
1954 // If we're checking a potential constant expression, the variable could be
1955 // initialized later.
1956 if (!Info.checkingPotentialConstantExpression())
1957 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1958 return false;
1959 }
1960
1961 // If we're currently evaluating the initializer of this declaration, use that
1962 // in-flight value.
1963 if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
1964 Result = Info.EvaluatingDeclValue;
1965 return true;
1966 }
1967
1968 // Never evaluate the initializer of a weak variable. We can't be sure that
1969 // this is the definition which will be used.
1970 if (VD->isWeak()) {
1971 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1972 return false;
1973 }
1974
1975 // Check that we can fold the initializer. In C++, we will have already done
1976 // this in the cases where it matters for conformance.
1977 SmallVector<PartialDiagnosticAt, 8> Notes;
1978 if (!VD->evaluateValue(Notes)) {
1979 Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1980 Notes.size() + 1) << VD;
1981 Info.Note(VD->getLocation(), diag::note_declared_at);
1982 Info.addNotes(Notes);
1983 return false;
1984 } else if (!VD->checkInitIsICE()) {
1985 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1986 Notes.size() + 1) << VD;
1987 Info.Note(VD->getLocation(), diag::note_declared_at);
1988 Info.addNotes(Notes);
1989 }
1990
1991 Result = VD->getEvaluatedValue();
1992 return true;
1993 }
1994
IsConstNonVolatile(QualType T)1995 static bool IsConstNonVolatile(QualType T) {
1996 Qualifiers Quals = T.getQualifiers();
1997 return Quals.hasConst() && !Quals.hasVolatile();
1998 }
1999
2000 /// Get the base index of the given base class within an APValue representing
2001 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)2002 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2003 const CXXRecordDecl *Base) {
2004 Base = Base->getCanonicalDecl();
2005 unsigned Index = 0;
2006 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2007 E = Derived->bases_end(); I != E; ++I, ++Index) {
2008 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2009 return Index;
2010 }
2011
2012 llvm_unreachable("base class missing from derived class's bases list");
2013 }
2014
2015 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)2016 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2017 uint64_t Index) {
2018 // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
2019 const StringLiteral *S = cast<StringLiteral>(Lit);
2020 const ConstantArrayType *CAT =
2021 Info.Ctx.getAsConstantArrayType(S->getType());
2022 assert(CAT && "string literal isn't an array");
2023 QualType CharType = CAT->getElementType();
2024 assert(CharType->isIntegerType() && "unexpected character type");
2025
2026 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2027 CharType->isUnsignedIntegerType());
2028 if (Index < S->getLength())
2029 Value = S->getCodeUnit(Index);
2030 return Value;
2031 }
2032
2033 // Expand a string literal into an array of characters.
expandStringLiteral(EvalInfo & Info,const Expr * Lit,APValue & Result)2034 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2035 APValue &Result) {
2036 const StringLiteral *S = cast<StringLiteral>(Lit);
2037 const ConstantArrayType *CAT =
2038 Info.Ctx.getAsConstantArrayType(S->getType());
2039 assert(CAT && "string literal isn't an array");
2040 QualType CharType = CAT->getElementType();
2041 assert(CharType->isIntegerType() && "unexpected character type");
2042
2043 unsigned Elts = CAT->getSize().getZExtValue();
2044 Result = APValue(APValue::UninitArray(),
2045 std::min(S->getLength(), Elts), Elts);
2046 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2047 CharType->isUnsignedIntegerType());
2048 if (Result.hasArrayFiller())
2049 Result.getArrayFiller() = APValue(Value);
2050 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2051 Value = S->getCodeUnit(I);
2052 Result.getArrayInitializedElt(I) = APValue(Value);
2053 }
2054 }
2055
2056 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)2057 static void expandArray(APValue &Array, unsigned Index) {
2058 unsigned Size = Array.getArraySize();
2059 assert(Index < Size);
2060
2061 // Always at least double the number of elements for which we store a value.
2062 unsigned OldElts = Array.getArrayInitializedElts();
2063 unsigned NewElts = std::max(Index+1, OldElts * 2);
2064 NewElts = std::min(Size, std::max(NewElts, 8u));
2065
2066 // Copy the data across.
2067 APValue NewValue(APValue::UninitArray(), NewElts, Size);
2068 for (unsigned I = 0; I != OldElts; ++I)
2069 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2070 for (unsigned I = OldElts; I != NewElts; ++I)
2071 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2072 if (NewValue.hasArrayFiller())
2073 NewValue.getArrayFiller() = Array.getArrayFiller();
2074 Array.swap(NewValue);
2075 }
2076
2077 /// Kinds of access we can perform on an object, for diagnostics.
2078 enum AccessKinds {
2079 AK_Read,
2080 AK_Assign,
2081 AK_Increment,
2082 AK_Decrement
2083 };
2084
2085 /// A handle to a complete object (an object that is not a subobject of
2086 /// another object).
2087 struct CompleteObject {
2088 /// The value of the complete object.
2089 APValue *Value;
2090 /// The type of the complete object.
2091 QualType Type;
2092
CompleteObjectCompleteObject2093 CompleteObject() : Value(nullptr) {}
CompleteObjectCompleteObject2094 CompleteObject(APValue *Value, QualType Type)
2095 : Value(Value), Type(Type) {
2096 assert(Value && "missing value for complete object");
2097 }
2098
operator boolCompleteObject2099 LLVM_EXPLICIT operator bool() const { return Value; }
2100 };
2101
2102 /// Find the designated sub-object of an rvalue.
2103 template<typename SubobjectHandler>
2104 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)2105 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2106 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2107 if (Sub.Invalid)
2108 // A diagnostic will have already been produced.
2109 return handler.failed();
2110 if (Sub.isOnePastTheEnd()) {
2111 if (Info.getLangOpts().CPlusPlus11)
2112 Info.Diag(E, diag::note_constexpr_access_past_end)
2113 << handler.AccessKind;
2114 else
2115 Info.Diag(E);
2116 return handler.failed();
2117 }
2118
2119 APValue *O = Obj.Value;
2120 QualType ObjType = Obj.Type;
2121 const FieldDecl *LastField = nullptr;
2122
2123 // Walk the designator's path to find the subobject.
2124 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2125 if (O->isUninit()) {
2126 if (!Info.checkingPotentialConstantExpression())
2127 Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2128 return handler.failed();
2129 }
2130
2131 if (I == N) {
2132 if (!handler.found(*O, ObjType))
2133 return false;
2134
2135 // If we modified a bit-field, truncate it to the right width.
2136 if (handler.AccessKind != AK_Read &&
2137 LastField && LastField->isBitField() &&
2138 !truncateBitfieldValue(Info, E, *O, LastField))
2139 return false;
2140
2141 return true;
2142 }
2143
2144 LastField = nullptr;
2145 if (ObjType->isArrayType()) {
2146 // Next subobject is an array element.
2147 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2148 assert(CAT && "vla in literal type?");
2149 uint64_t Index = Sub.Entries[I].ArrayIndex;
2150 if (CAT->getSize().ule(Index)) {
2151 // Note, it should not be possible to form a pointer with a valid
2152 // designator which points more than one past the end of the array.
2153 if (Info.getLangOpts().CPlusPlus11)
2154 Info.Diag(E, diag::note_constexpr_access_past_end)
2155 << handler.AccessKind;
2156 else
2157 Info.Diag(E);
2158 return handler.failed();
2159 }
2160
2161 ObjType = CAT->getElementType();
2162
2163 // An array object is represented as either an Array APValue or as an
2164 // LValue which refers to a string literal.
2165 if (O->isLValue()) {
2166 assert(I == N - 1 && "extracting subobject of character?");
2167 assert(!O->hasLValuePath() || O->getLValuePath().empty());
2168 if (handler.AccessKind != AK_Read)
2169 expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2170 *O);
2171 else
2172 return handler.foundString(*O, ObjType, Index);
2173 }
2174
2175 if (O->getArrayInitializedElts() > Index)
2176 O = &O->getArrayInitializedElt(Index);
2177 else if (handler.AccessKind != AK_Read) {
2178 expandArray(*O, Index);
2179 O = &O->getArrayInitializedElt(Index);
2180 } else
2181 O = &O->getArrayFiller();
2182 } else if (ObjType->isAnyComplexType()) {
2183 // Next subobject is a complex number.
2184 uint64_t Index = Sub.Entries[I].ArrayIndex;
2185 if (Index > 1) {
2186 if (Info.getLangOpts().CPlusPlus11)
2187 Info.Diag(E, diag::note_constexpr_access_past_end)
2188 << handler.AccessKind;
2189 else
2190 Info.Diag(E);
2191 return handler.failed();
2192 }
2193
2194 bool WasConstQualified = ObjType.isConstQualified();
2195 ObjType = ObjType->castAs<ComplexType>()->getElementType();
2196 if (WasConstQualified)
2197 ObjType.addConst();
2198
2199 assert(I == N - 1 && "extracting subobject of scalar?");
2200 if (O->isComplexInt()) {
2201 return handler.found(Index ? O->getComplexIntImag()
2202 : O->getComplexIntReal(), ObjType);
2203 } else {
2204 assert(O->isComplexFloat());
2205 return handler.found(Index ? O->getComplexFloatImag()
2206 : O->getComplexFloatReal(), ObjType);
2207 }
2208 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2209 if (Field->isMutable() && handler.AccessKind == AK_Read) {
2210 Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
2211 << Field;
2212 Info.Note(Field->getLocation(), diag::note_declared_at);
2213 return handler.failed();
2214 }
2215
2216 // Next subobject is a class, struct or union field.
2217 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2218 if (RD->isUnion()) {
2219 const FieldDecl *UnionField = O->getUnionField();
2220 if (!UnionField ||
2221 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2222 Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
2223 << handler.AccessKind << Field << !UnionField << UnionField;
2224 return handler.failed();
2225 }
2226 O = &O->getUnionValue();
2227 } else
2228 O = &O->getStructField(Field->getFieldIndex());
2229
2230 bool WasConstQualified = ObjType.isConstQualified();
2231 ObjType = Field->getType();
2232 if (WasConstQualified && !Field->isMutable())
2233 ObjType.addConst();
2234
2235 if (ObjType.isVolatileQualified()) {
2236 if (Info.getLangOpts().CPlusPlus) {
2237 // FIXME: Include a description of the path to the volatile subobject.
2238 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2239 << handler.AccessKind << 2 << Field;
2240 Info.Note(Field->getLocation(), diag::note_declared_at);
2241 } else {
2242 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2243 }
2244 return handler.failed();
2245 }
2246
2247 LastField = Field;
2248 } else {
2249 // Next subobject is a base class.
2250 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2251 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2252 O = &O->getStructBase(getBaseIndex(Derived, Base));
2253
2254 bool WasConstQualified = ObjType.isConstQualified();
2255 ObjType = Info.Ctx.getRecordType(Base);
2256 if (WasConstQualified)
2257 ObjType.addConst();
2258 }
2259 }
2260 }
2261
2262 namespace {
2263 struct ExtractSubobjectHandler {
2264 EvalInfo &Info;
2265 APValue &Result;
2266
2267 static const AccessKinds AccessKind = AK_Read;
2268
2269 typedef bool result_type;
failed__anon79c4fed30311::ExtractSubobjectHandler2270 bool failed() { return false; }
found__anon79c4fed30311::ExtractSubobjectHandler2271 bool found(APValue &Subobj, QualType SubobjType) {
2272 Result = Subobj;
2273 return true;
2274 }
found__anon79c4fed30311::ExtractSubobjectHandler2275 bool found(APSInt &Value, QualType SubobjType) {
2276 Result = APValue(Value);
2277 return true;
2278 }
found__anon79c4fed30311::ExtractSubobjectHandler2279 bool found(APFloat &Value, QualType SubobjType) {
2280 Result = APValue(Value);
2281 return true;
2282 }
foundString__anon79c4fed30311::ExtractSubobjectHandler2283 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2284 Result = APValue(extractStringLiteralCharacter(
2285 Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2286 return true;
2287 }
2288 };
2289 } // end anonymous namespace
2290
2291 const AccessKinds ExtractSubobjectHandler::AccessKind;
2292
2293 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result)2294 static bool extractSubobject(EvalInfo &Info, const Expr *E,
2295 const CompleteObject &Obj,
2296 const SubobjectDesignator &Sub,
2297 APValue &Result) {
2298 ExtractSubobjectHandler Handler = { Info, Result };
2299 return findSubobject(Info, E, Obj, Sub, Handler);
2300 }
2301
2302 namespace {
2303 struct ModifySubobjectHandler {
2304 EvalInfo &Info;
2305 APValue &NewVal;
2306 const Expr *E;
2307
2308 typedef bool result_type;
2309 static const AccessKinds AccessKind = AK_Assign;
2310
checkConst__anon79c4fed30411::ModifySubobjectHandler2311 bool checkConst(QualType QT) {
2312 // Assigning to a const object has undefined behavior.
2313 if (QT.isConstQualified()) {
2314 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2315 return false;
2316 }
2317 return true;
2318 }
2319
failed__anon79c4fed30411::ModifySubobjectHandler2320 bool failed() { return false; }
found__anon79c4fed30411::ModifySubobjectHandler2321 bool found(APValue &Subobj, QualType SubobjType) {
2322 if (!checkConst(SubobjType))
2323 return false;
2324 // We've been given ownership of NewVal, so just swap it in.
2325 Subobj.swap(NewVal);
2326 return true;
2327 }
found__anon79c4fed30411::ModifySubobjectHandler2328 bool found(APSInt &Value, QualType SubobjType) {
2329 if (!checkConst(SubobjType))
2330 return false;
2331 if (!NewVal.isInt()) {
2332 // Maybe trying to write a cast pointer value into a complex?
2333 Info.Diag(E);
2334 return false;
2335 }
2336 Value = NewVal.getInt();
2337 return true;
2338 }
found__anon79c4fed30411::ModifySubobjectHandler2339 bool found(APFloat &Value, QualType SubobjType) {
2340 if (!checkConst(SubobjType))
2341 return false;
2342 Value = NewVal.getFloat();
2343 return true;
2344 }
foundString__anon79c4fed30411::ModifySubobjectHandler2345 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2346 llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2347 }
2348 };
2349 } // end anonymous namespace
2350
2351 const AccessKinds ModifySubobjectHandler::AccessKind;
2352
2353 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)2354 static bool modifySubobject(EvalInfo &Info, const Expr *E,
2355 const CompleteObject &Obj,
2356 const SubobjectDesignator &Sub,
2357 APValue &NewVal) {
2358 ModifySubobjectHandler Handler = { Info, NewVal, E };
2359 return findSubobject(Info, E, Obj, Sub, Handler);
2360 }
2361
2362 /// Find the position where two subobject designators diverge, or equivalently
2363 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)2364 static unsigned FindDesignatorMismatch(QualType ObjType,
2365 const SubobjectDesignator &A,
2366 const SubobjectDesignator &B,
2367 bool &WasArrayIndex) {
2368 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2369 for (/**/; I != N; ++I) {
2370 if (!ObjType.isNull() &&
2371 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2372 // Next subobject is an array element.
2373 if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2374 WasArrayIndex = true;
2375 return I;
2376 }
2377 if (ObjType->isAnyComplexType())
2378 ObjType = ObjType->castAs<ComplexType>()->getElementType();
2379 else
2380 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2381 } else {
2382 if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2383 WasArrayIndex = false;
2384 return I;
2385 }
2386 if (const FieldDecl *FD = getAsField(A.Entries[I]))
2387 // Next subobject is a field.
2388 ObjType = FD->getType();
2389 else
2390 // Next subobject is a base class.
2391 ObjType = QualType();
2392 }
2393 }
2394 WasArrayIndex = false;
2395 return I;
2396 }
2397
2398 /// Determine whether the given subobject designators refer to elements of the
2399 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)2400 static bool AreElementsOfSameArray(QualType ObjType,
2401 const SubobjectDesignator &A,
2402 const SubobjectDesignator &B) {
2403 if (A.Entries.size() != B.Entries.size())
2404 return false;
2405
2406 bool IsArray = A.MostDerivedArraySize != 0;
2407 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2408 // A is a subobject of the array element.
2409 return false;
2410
2411 // If A (and B) designates an array element, the last entry will be the array
2412 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2413 // of length 1' case, and the entire path must match.
2414 bool WasArrayIndex;
2415 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2416 return CommonLength >= A.Entries.size() - IsArray;
2417 }
2418
2419 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)2420 CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, AccessKinds AK,
2421 const LValue &LVal, QualType LValType) {
2422 if (!LVal.Base) {
2423 Info.Diag(E, diag::note_constexpr_access_null) << AK;
2424 return CompleteObject();
2425 }
2426
2427 CallStackFrame *Frame = nullptr;
2428 if (LVal.CallIndex) {
2429 Frame = Info.getCallFrame(LVal.CallIndex);
2430 if (!Frame) {
2431 Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2432 << AK << LVal.Base.is<const ValueDecl*>();
2433 NoteLValueLocation(Info, LVal.Base);
2434 return CompleteObject();
2435 }
2436 }
2437
2438 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2439 // is not a constant expression (even if the object is non-volatile). We also
2440 // apply this rule to C++98, in order to conform to the expected 'volatile'
2441 // semantics.
2442 if (LValType.isVolatileQualified()) {
2443 if (Info.getLangOpts().CPlusPlus)
2444 Info.Diag(E, diag::note_constexpr_access_volatile_type)
2445 << AK << LValType;
2446 else
2447 Info.Diag(E);
2448 return CompleteObject();
2449 }
2450
2451 // Compute value storage location and type of base object.
2452 APValue *BaseVal = nullptr;
2453 QualType BaseType = getType(LVal.Base);
2454
2455 if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2456 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2457 // In C++11, constexpr, non-volatile variables initialized with constant
2458 // expressions are constant expressions too. Inside constexpr functions,
2459 // parameters are constant expressions even if they're non-const.
2460 // In C++1y, objects local to a constant expression (those with a Frame) are
2461 // both readable and writable inside constant expressions.
2462 // In C, such things can also be folded, although they are not ICEs.
2463 const VarDecl *VD = dyn_cast<VarDecl>(D);
2464 if (VD) {
2465 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2466 VD = VDef;
2467 }
2468 if (!VD || VD->isInvalidDecl()) {
2469 Info.Diag(E);
2470 return CompleteObject();
2471 }
2472
2473 // Accesses of volatile-qualified objects are not allowed.
2474 if (BaseType.isVolatileQualified()) {
2475 if (Info.getLangOpts().CPlusPlus) {
2476 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2477 << AK << 1 << VD;
2478 Info.Note(VD->getLocation(), diag::note_declared_at);
2479 } else {
2480 Info.Diag(E);
2481 }
2482 return CompleteObject();
2483 }
2484
2485 // Unless we're looking at a local variable or argument in a constexpr call,
2486 // the variable we're reading must be const.
2487 if (!Frame) {
2488 if (Info.getLangOpts().CPlusPlus1y &&
2489 VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2490 // OK, we can read and modify an object if we're in the process of
2491 // evaluating its initializer, because its lifetime began in this
2492 // evaluation.
2493 } else if (AK != AK_Read) {
2494 // All the remaining cases only permit reading.
2495 Info.Diag(E, diag::note_constexpr_modify_global);
2496 return CompleteObject();
2497 } else if (VD->isConstexpr()) {
2498 // OK, we can read this variable.
2499 } else if (BaseType->isIntegralOrEnumerationType()) {
2500 if (!BaseType.isConstQualified()) {
2501 if (Info.getLangOpts().CPlusPlus) {
2502 Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2503 Info.Note(VD->getLocation(), diag::note_declared_at);
2504 } else {
2505 Info.Diag(E);
2506 }
2507 return CompleteObject();
2508 }
2509 } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2510 // We support folding of const floating-point types, in order to make
2511 // static const data members of such types (supported as an extension)
2512 // more useful.
2513 if (Info.getLangOpts().CPlusPlus11) {
2514 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2515 Info.Note(VD->getLocation(), diag::note_declared_at);
2516 } else {
2517 Info.CCEDiag(E);
2518 }
2519 } else {
2520 // FIXME: Allow folding of values of any literal type in all languages.
2521 if (Info.getLangOpts().CPlusPlus11) {
2522 Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2523 Info.Note(VD->getLocation(), diag::note_declared_at);
2524 } else {
2525 Info.Diag(E);
2526 }
2527 return CompleteObject();
2528 }
2529 }
2530
2531 if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2532 return CompleteObject();
2533 } else {
2534 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2535
2536 if (!Frame) {
2537 if (const MaterializeTemporaryExpr *MTE =
2538 dyn_cast<MaterializeTemporaryExpr>(Base)) {
2539 assert(MTE->getStorageDuration() == SD_Static &&
2540 "should have a frame for a non-global materialized temporary");
2541
2542 // Per C++1y [expr.const]p2:
2543 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2544 // - a [...] glvalue of integral or enumeration type that refers to
2545 // a non-volatile const object [...]
2546 // [...]
2547 // - a [...] glvalue of literal type that refers to a non-volatile
2548 // object whose lifetime began within the evaluation of e.
2549 //
2550 // C++11 misses the 'began within the evaluation of e' check and
2551 // instead allows all temporaries, including things like:
2552 // int &&r = 1;
2553 // int x = ++r;
2554 // constexpr int k = r;
2555 // Therefore we use the C++1y rules in C++11 too.
2556 const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2557 const ValueDecl *ED = MTE->getExtendingDecl();
2558 if (!(BaseType.isConstQualified() &&
2559 BaseType->isIntegralOrEnumerationType()) &&
2560 !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2561 Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2562 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2563 return CompleteObject();
2564 }
2565
2566 BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2567 assert(BaseVal && "got reference to unevaluated temporary");
2568 } else {
2569 Info.Diag(E);
2570 return CompleteObject();
2571 }
2572 } else {
2573 BaseVal = Frame->getTemporary(Base);
2574 assert(BaseVal && "missing value for temporary");
2575 }
2576
2577 // Volatile temporary objects cannot be accessed in constant expressions.
2578 if (BaseType.isVolatileQualified()) {
2579 if (Info.getLangOpts().CPlusPlus) {
2580 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2581 << AK << 0;
2582 Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2583 } else {
2584 Info.Diag(E);
2585 }
2586 return CompleteObject();
2587 }
2588 }
2589
2590 // During the construction of an object, it is not yet 'const'.
2591 // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2592 // and this doesn't do quite the right thing for const subobjects of the
2593 // object under construction.
2594 if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2595 BaseType = Info.Ctx.getCanonicalType(BaseType);
2596 BaseType.removeLocalConst();
2597 }
2598
2599 // In C++1y, we can't safely access any mutable state when we might be
2600 // evaluating after an unmodeled side effect or an evaluation failure.
2601 //
2602 // FIXME: Not all local state is mutable. Allow local constant subobjects
2603 // to be read here (but take care with 'mutable' fields).
2604 if (Frame && Info.getLangOpts().CPlusPlus1y &&
2605 (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
2606 return CompleteObject();
2607
2608 return CompleteObject(BaseVal, BaseType);
2609 }
2610
2611 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2612 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2613 /// glvalue referred to by an entity of reference type.
2614 ///
2615 /// \param Info - Information about the ongoing evaluation.
2616 /// \param Conv - The expression for which we are performing the conversion.
2617 /// Used for diagnostics.
2618 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2619 /// case of a non-class type).
2620 /// \param LVal - The glvalue on which we are attempting to perform this action.
2621 /// \param RVal - The produced value will be placed here.
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)2622 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2623 QualType Type,
2624 const LValue &LVal, APValue &RVal) {
2625 if (LVal.Designator.Invalid)
2626 return false;
2627
2628 // Check for special cases where there is no existing APValue to look at.
2629 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2630 if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
2631 !Type.isVolatileQualified()) {
2632 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2633 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2634 // initializer until now for such expressions. Such an expression can't be
2635 // an ICE in C, so this only matters for fold.
2636 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2637 if (Type.isVolatileQualified()) {
2638 Info.Diag(Conv);
2639 return false;
2640 }
2641 APValue Lit;
2642 if (!Evaluate(Lit, Info, CLE->getInitializer()))
2643 return false;
2644 CompleteObject LitObj(&Lit, Base->getType());
2645 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2646 } else if (isa<StringLiteral>(Base)) {
2647 // We represent a string literal array as an lvalue pointing at the
2648 // corresponding expression, rather than building an array of chars.
2649 // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
2650 APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2651 CompleteObject StrObj(&Str, Base->getType());
2652 return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2653 }
2654 }
2655
2656 CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2657 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2658 }
2659
2660 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)2661 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2662 QualType LValType, APValue &Val) {
2663 if (LVal.Designator.Invalid)
2664 return false;
2665
2666 if (!Info.getLangOpts().CPlusPlus1y) {
2667 Info.Diag(E);
2668 return false;
2669 }
2670
2671 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2672 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2673 }
2674
isOverflowingIntegerType(ASTContext & Ctx,QualType T)2675 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2676 return T->isSignedIntegerType() &&
2677 Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2678 }
2679
2680 namespace {
2681 struct CompoundAssignSubobjectHandler {
2682 EvalInfo &Info;
2683 const Expr *E;
2684 QualType PromotedLHSType;
2685 BinaryOperatorKind Opcode;
2686 const APValue &RHS;
2687
2688 static const AccessKinds AccessKind = AK_Assign;
2689
2690 typedef bool result_type;
2691
checkConst__anon79c4fed30511::CompoundAssignSubobjectHandler2692 bool checkConst(QualType QT) {
2693 // Assigning to a const object has undefined behavior.
2694 if (QT.isConstQualified()) {
2695 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2696 return false;
2697 }
2698 return true;
2699 }
2700
failed__anon79c4fed30511::CompoundAssignSubobjectHandler2701 bool failed() { return false; }
found__anon79c4fed30511::CompoundAssignSubobjectHandler2702 bool found(APValue &Subobj, QualType SubobjType) {
2703 switch (Subobj.getKind()) {
2704 case APValue::Int:
2705 return found(Subobj.getInt(), SubobjType);
2706 case APValue::Float:
2707 return found(Subobj.getFloat(), SubobjType);
2708 case APValue::ComplexInt:
2709 case APValue::ComplexFloat:
2710 // FIXME: Implement complex compound assignment.
2711 Info.Diag(E);
2712 return false;
2713 case APValue::LValue:
2714 return foundPointer(Subobj, SubobjType);
2715 default:
2716 // FIXME: can this happen?
2717 Info.Diag(E);
2718 return false;
2719 }
2720 }
found__anon79c4fed30511::CompoundAssignSubobjectHandler2721 bool found(APSInt &Value, QualType SubobjType) {
2722 if (!checkConst(SubobjType))
2723 return false;
2724
2725 if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2726 // We don't support compound assignment on integer-cast-to-pointer
2727 // values.
2728 Info.Diag(E);
2729 return false;
2730 }
2731
2732 APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2733 SubobjType, Value);
2734 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2735 return false;
2736 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2737 return true;
2738 }
found__anon79c4fed30511::CompoundAssignSubobjectHandler2739 bool found(APFloat &Value, QualType SubobjType) {
2740 return checkConst(SubobjType) &&
2741 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2742 Value) &&
2743 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2744 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2745 }
foundPointer__anon79c4fed30511::CompoundAssignSubobjectHandler2746 bool foundPointer(APValue &Subobj, QualType SubobjType) {
2747 if (!checkConst(SubobjType))
2748 return false;
2749
2750 QualType PointeeType;
2751 if (const PointerType *PT = SubobjType->getAs<PointerType>())
2752 PointeeType = PT->getPointeeType();
2753
2754 if (PointeeType.isNull() || !RHS.isInt() ||
2755 (Opcode != BO_Add && Opcode != BO_Sub)) {
2756 Info.Diag(E);
2757 return false;
2758 }
2759
2760 int64_t Offset = getExtValue(RHS.getInt());
2761 if (Opcode == BO_Sub)
2762 Offset = -Offset;
2763
2764 LValue LVal;
2765 LVal.setFrom(Info.Ctx, Subobj);
2766 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2767 return false;
2768 LVal.moveInto(Subobj);
2769 return true;
2770 }
foundString__anon79c4fed30511::CompoundAssignSubobjectHandler2771 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2772 llvm_unreachable("shouldn't encounter string elements here");
2773 }
2774 };
2775 } // end anonymous namespace
2776
2777 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2778
2779 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)2780 static bool handleCompoundAssignment(
2781 EvalInfo &Info, const Expr *E,
2782 const LValue &LVal, QualType LValType, QualType PromotedLValType,
2783 BinaryOperatorKind Opcode, const APValue &RVal) {
2784 if (LVal.Designator.Invalid)
2785 return false;
2786
2787 if (!Info.getLangOpts().CPlusPlus1y) {
2788 Info.Diag(E);
2789 return false;
2790 }
2791
2792 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2793 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2794 RVal };
2795 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2796 }
2797
2798 namespace {
2799 struct IncDecSubobjectHandler {
2800 EvalInfo &Info;
2801 const Expr *E;
2802 AccessKinds AccessKind;
2803 APValue *Old;
2804
2805 typedef bool result_type;
2806
checkConst__anon79c4fed30611::IncDecSubobjectHandler2807 bool checkConst(QualType QT) {
2808 // Assigning to a const object has undefined behavior.
2809 if (QT.isConstQualified()) {
2810 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2811 return false;
2812 }
2813 return true;
2814 }
2815
failed__anon79c4fed30611::IncDecSubobjectHandler2816 bool failed() { return false; }
found__anon79c4fed30611::IncDecSubobjectHandler2817 bool found(APValue &Subobj, QualType SubobjType) {
2818 // Stash the old value. Also clear Old, so we don't clobber it later
2819 // if we're post-incrementing a complex.
2820 if (Old) {
2821 *Old = Subobj;
2822 Old = nullptr;
2823 }
2824
2825 switch (Subobj.getKind()) {
2826 case APValue::Int:
2827 return found(Subobj.getInt(), SubobjType);
2828 case APValue::Float:
2829 return found(Subobj.getFloat(), SubobjType);
2830 case APValue::ComplexInt:
2831 return found(Subobj.getComplexIntReal(),
2832 SubobjType->castAs<ComplexType>()->getElementType()
2833 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2834 case APValue::ComplexFloat:
2835 return found(Subobj.getComplexFloatReal(),
2836 SubobjType->castAs<ComplexType>()->getElementType()
2837 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2838 case APValue::LValue:
2839 return foundPointer(Subobj, SubobjType);
2840 default:
2841 // FIXME: can this happen?
2842 Info.Diag(E);
2843 return false;
2844 }
2845 }
found__anon79c4fed30611::IncDecSubobjectHandler2846 bool found(APSInt &Value, QualType SubobjType) {
2847 if (!checkConst(SubobjType))
2848 return false;
2849
2850 if (!SubobjType->isIntegerType()) {
2851 // We don't support increment / decrement on integer-cast-to-pointer
2852 // values.
2853 Info.Diag(E);
2854 return false;
2855 }
2856
2857 if (Old) *Old = APValue(Value);
2858
2859 // bool arithmetic promotes to int, and the conversion back to bool
2860 // doesn't reduce mod 2^n, so special-case it.
2861 if (SubobjType->isBooleanType()) {
2862 if (AccessKind == AK_Increment)
2863 Value = 1;
2864 else
2865 Value = !Value;
2866 return true;
2867 }
2868
2869 bool WasNegative = Value.isNegative();
2870 if (AccessKind == AK_Increment) {
2871 ++Value;
2872
2873 if (!WasNegative && Value.isNegative() &&
2874 isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2875 APSInt ActualValue(Value, /*IsUnsigned*/true);
2876 HandleOverflow(Info, E, ActualValue, SubobjType);
2877 }
2878 } else {
2879 --Value;
2880
2881 if (WasNegative && !Value.isNegative() &&
2882 isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2883 unsigned BitWidth = Value.getBitWidth();
2884 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
2885 ActualValue.setBit(BitWidth);
2886 HandleOverflow(Info, E, ActualValue, SubobjType);
2887 }
2888 }
2889 return true;
2890 }
found__anon79c4fed30611::IncDecSubobjectHandler2891 bool found(APFloat &Value, QualType SubobjType) {
2892 if (!checkConst(SubobjType))
2893 return false;
2894
2895 if (Old) *Old = APValue(Value);
2896
2897 APFloat One(Value.getSemantics(), 1);
2898 if (AccessKind == AK_Increment)
2899 Value.add(One, APFloat::rmNearestTiesToEven);
2900 else
2901 Value.subtract(One, APFloat::rmNearestTiesToEven);
2902 return true;
2903 }
foundPointer__anon79c4fed30611::IncDecSubobjectHandler2904 bool foundPointer(APValue &Subobj, QualType SubobjType) {
2905 if (!checkConst(SubobjType))
2906 return false;
2907
2908 QualType PointeeType;
2909 if (const PointerType *PT = SubobjType->getAs<PointerType>())
2910 PointeeType = PT->getPointeeType();
2911 else {
2912 Info.Diag(E);
2913 return false;
2914 }
2915
2916 LValue LVal;
2917 LVal.setFrom(Info.Ctx, Subobj);
2918 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
2919 AccessKind == AK_Increment ? 1 : -1))
2920 return false;
2921 LVal.moveInto(Subobj);
2922 return true;
2923 }
foundString__anon79c4fed30611::IncDecSubobjectHandler2924 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2925 llvm_unreachable("shouldn't encounter string elements here");
2926 }
2927 };
2928 } // end anonymous namespace
2929
2930 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)2931 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
2932 QualType LValType, bool IsIncrement, APValue *Old) {
2933 if (LVal.Designator.Invalid)
2934 return false;
2935
2936 if (!Info.getLangOpts().CPlusPlus1y) {
2937 Info.Diag(E);
2938 return false;
2939 }
2940
2941 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
2942 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
2943 IncDecSubobjectHandler Handler = { Info, E, AK, Old };
2944 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2945 }
2946
2947 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)2948 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
2949 LValue &This) {
2950 if (Object->getType()->isPointerType())
2951 return EvaluatePointer(Object, This, Info);
2952
2953 if (Object->isGLValue())
2954 return EvaluateLValue(Object, This, Info);
2955
2956 if (Object->getType()->isLiteralType(Info.Ctx))
2957 return EvaluateTemporary(Object, This, Info);
2958
2959 Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType();
2960 return false;
2961 }
2962
2963 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
2964 /// lvalue referring to the result.
2965 ///
2966 /// \param Info - Information about the ongoing evaluation.
2967 /// \param LV - An lvalue referring to the base of the member pointer.
2968 /// \param RHS - The member pointer expression.
2969 /// \param IncludeMember - Specifies whether the member itself is included in
2970 /// the resulting LValue subobject designator. This is not possible when
2971 /// creating a bound member function.
2972 /// \return The field or method declaration to which the member pointer refers,
2973 /// or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)2974 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
2975 QualType LVType,
2976 LValue &LV,
2977 const Expr *RHS,
2978 bool IncludeMember = true) {
2979 MemberPtr MemPtr;
2980 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
2981 return nullptr;
2982
2983 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
2984 // member value, the behavior is undefined.
2985 if (!MemPtr.getDecl()) {
2986 // FIXME: Specific diagnostic.
2987 Info.Diag(RHS);
2988 return nullptr;
2989 }
2990
2991 if (MemPtr.isDerivedMember()) {
2992 // This is a member of some derived class. Truncate LV appropriately.
2993 // The end of the derived-to-base path for the base object must match the
2994 // derived-to-base path for the member pointer.
2995 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
2996 LV.Designator.Entries.size()) {
2997 Info.Diag(RHS);
2998 return nullptr;
2999 }
3000 unsigned PathLengthToMember =
3001 LV.Designator.Entries.size() - MemPtr.Path.size();
3002 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3003 const CXXRecordDecl *LVDecl = getAsBaseClass(
3004 LV.Designator.Entries[PathLengthToMember + I]);
3005 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3006 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3007 Info.Diag(RHS);
3008 return nullptr;
3009 }
3010 }
3011
3012 // Truncate the lvalue to the appropriate derived class.
3013 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3014 PathLengthToMember))
3015 return nullptr;
3016 } else if (!MemPtr.Path.empty()) {
3017 // Extend the LValue path with the member pointer's path.
3018 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3019 MemPtr.Path.size() + IncludeMember);
3020
3021 // Walk down to the appropriate base class.
3022 if (const PointerType *PT = LVType->getAs<PointerType>())
3023 LVType = PT->getPointeeType();
3024 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3025 assert(RD && "member pointer access on non-class-type expression");
3026 // The first class in the path is that of the lvalue.
3027 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3028 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3029 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3030 return nullptr;
3031 RD = Base;
3032 }
3033 // Finally cast to the class containing the member.
3034 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3035 MemPtr.getContainingRecord()))
3036 return nullptr;
3037 }
3038
3039 // Add the member. Note that we cannot build bound member functions here.
3040 if (IncludeMember) {
3041 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3042 if (!HandleLValueMember(Info, RHS, LV, FD))
3043 return nullptr;
3044 } else if (const IndirectFieldDecl *IFD =
3045 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3046 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3047 return nullptr;
3048 } else {
3049 llvm_unreachable("can't construct reference to bound member function");
3050 }
3051 }
3052
3053 return MemPtr.getDecl();
3054 }
3055
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)3056 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3057 const BinaryOperator *BO,
3058 LValue &LV,
3059 bool IncludeMember = true) {
3060 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3061
3062 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3063 if (Info.keepEvaluatingAfterFailure()) {
3064 MemberPtr MemPtr;
3065 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3066 }
3067 return nullptr;
3068 }
3069
3070 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3071 BO->getRHS(), IncludeMember);
3072 }
3073
3074 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3075 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)3076 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3077 LValue &Result) {
3078 SubobjectDesignator &D = Result.Designator;
3079 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3080 return false;
3081
3082 QualType TargetQT = E->getType();
3083 if (const PointerType *PT = TargetQT->getAs<PointerType>())
3084 TargetQT = PT->getPointeeType();
3085
3086 // Check this cast lands within the final derived-to-base subobject path.
3087 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3088 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3089 << D.MostDerivedType << TargetQT;
3090 return false;
3091 }
3092
3093 // Check the type of the final cast. We don't need to check the path,
3094 // since a cast can only be formed if the path is unique.
3095 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3096 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3097 const CXXRecordDecl *FinalType;
3098 if (NewEntriesSize == D.MostDerivedPathLength)
3099 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3100 else
3101 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3102 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3103 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3104 << D.MostDerivedType << TargetQT;
3105 return false;
3106 }
3107
3108 // Truncate the lvalue to the appropriate derived class.
3109 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3110 }
3111
3112 namespace {
3113 enum EvalStmtResult {
3114 /// Evaluation failed.
3115 ESR_Failed,
3116 /// Hit a 'return' statement.
3117 ESR_Returned,
3118 /// Evaluation succeeded.
3119 ESR_Succeeded,
3120 /// Hit a 'continue' statement.
3121 ESR_Continue,
3122 /// Hit a 'break' statement.
3123 ESR_Break,
3124 /// Still scanning for 'case' or 'default' statement.
3125 ESR_CaseNotFound
3126 };
3127 }
3128
EvaluateDecl(EvalInfo & Info,const Decl * D)3129 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3130 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3131 // We don't need to evaluate the initializer for a static local.
3132 if (!VD->hasLocalStorage())
3133 return true;
3134
3135 LValue Result;
3136 Result.set(VD, Info.CurrentCall->Index);
3137 APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3138
3139 const Expr *InitE = VD->getInit();
3140 if (!InitE) {
3141 Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
3142 << false << VD->getType();
3143 Val = APValue();
3144 return false;
3145 }
3146
3147 if (InitE->isValueDependent())
3148 return false;
3149
3150 if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3151 // Wipe out any partially-computed value, to allow tracking that this
3152 // evaluation failed.
3153 Val = APValue();
3154 return false;
3155 }
3156 }
3157
3158 return true;
3159 }
3160
3161 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)3162 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3163 const Expr *Cond, bool &Result) {
3164 FullExpressionRAII Scope(Info);
3165 if (CondDecl && !EvaluateDecl(Info, CondDecl))
3166 return false;
3167 return EvaluateAsBooleanCondition(Cond, Result, Info);
3168 }
3169
3170 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3171 const Stmt *S,
3172 const SwitchCase *SC = nullptr);
3173
3174 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(APValue & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)3175 static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
3176 const Stmt *Body,
3177 const SwitchCase *Case = nullptr) {
3178 BlockScopeRAII Scope(Info);
3179 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3180 case ESR_Break:
3181 return ESR_Succeeded;
3182 case ESR_Succeeded:
3183 case ESR_Continue:
3184 return ESR_Continue;
3185 case ESR_Failed:
3186 case ESR_Returned:
3187 case ESR_CaseNotFound:
3188 return ESR;
3189 }
3190 llvm_unreachable("Invalid EvalStmtResult!");
3191 }
3192
3193 /// Evaluate a switch statement.
EvaluateSwitch(APValue & Result,EvalInfo & Info,const SwitchStmt * SS)3194 static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
3195 const SwitchStmt *SS) {
3196 BlockScopeRAII Scope(Info);
3197
3198 // Evaluate the switch condition.
3199 APSInt Value;
3200 {
3201 FullExpressionRAII Scope(Info);
3202 if (SS->getConditionVariable() &&
3203 !EvaluateDecl(Info, SS->getConditionVariable()))
3204 return ESR_Failed;
3205 if (!EvaluateInteger(SS->getCond(), Value, Info))
3206 return ESR_Failed;
3207 }
3208
3209 // Find the switch case corresponding to the value of the condition.
3210 // FIXME: Cache this lookup.
3211 const SwitchCase *Found = nullptr;
3212 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3213 SC = SC->getNextSwitchCase()) {
3214 if (isa<DefaultStmt>(SC)) {
3215 Found = SC;
3216 continue;
3217 }
3218
3219 const CaseStmt *CS = cast<CaseStmt>(SC);
3220 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3221 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3222 : LHS;
3223 if (LHS <= Value && Value <= RHS) {
3224 Found = SC;
3225 break;
3226 }
3227 }
3228
3229 if (!Found)
3230 return ESR_Succeeded;
3231
3232 // Search the switch body for the switch case and evaluate it from there.
3233 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3234 case ESR_Break:
3235 return ESR_Succeeded;
3236 case ESR_Succeeded:
3237 case ESR_Continue:
3238 case ESR_Failed:
3239 case ESR_Returned:
3240 return ESR;
3241 case ESR_CaseNotFound:
3242 // This can only happen if the switch case is nested within a statement
3243 // expression. We have no intention of supporting that.
3244 Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3245 return ESR_Failed;
3246 }
3247 llvm_unreachable("Invalid EvalStmtResult!");
3248 }
3249
3250 // Evaluate a statement.
EvaluateStmt(APValue & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)3251 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3252 const Stmt *S, const SwitchCase *Case) {
3253 if (!Info.nextStep(S))
3254 return ESR_Failed;
3255
3256 // If we're hunting down a 'case' or 'default' label, recurse through
3257 // substatements until we hit the label.
3258 if (Case) {
3259 // FIXME: We don't start the lifetime of objects whose initialization we
3260 // jump over. However, such objects must be of class type with a trivial
3261 // default constructor that initialize all subobjects, so must be empty,
3262 // so this almost never matters.
3263 switch (S->getStmtClass()) {
3264 case Stmt::CompoundStmtClass:
3265 // FIXME: Precompute which substatement of a compound statement we
3266 // would jump to, and go straight there rather than performing a
3267 // linear scan each time.
3268 case Stmt::LabelStmtClass:
3269 case Stmt::AttributedStmtClass:
3270 case Stmt::DoStmtClass:
3271 break;
3272
3273 case Stmt::CaseStmtClass:
3274 case Stmt::DefaultStmtClass:
3275 if (Case == S)
3276 Case = nullptr;
3277 break;
3278
3279 case Stmt::IfStmtClass: {
3280 // FIXME: Precompute which side of an 'if' we would jump to, and go
3281 // straight there rather than scanning both sides.
3282 const IfStmt *IS = cast<IfStmt>(S);
3283
3284 // Wrap the evaluation in a block scope, in case it's a DeclStmt
3285 // preceded by our switch label.
3286 BlockScopeRAII Scope(Info);
3287
3288 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3289 if (ESR != ESR_CaseNotFound || !IS->getElse())
3290 return ESR;
3291 return EvaluateStmt(Result, Info, IS->getElse(), Case);
3292 }
3293
3294 case Stmt::WhileStmtClass: {
3295 EvalStmtResult ESR =
3296 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3297 if (ESR != ESR_Continue)
3298 return ESR;
3299 break;
3300 }
3301
3302 case Stmt::ForStmtClass: {
3303 const ForStmt *FS = cast<ForStmt>(S);
3304 EvalStmtResult ESR =
3305 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3306 if (ESR != ESR_Continue)
3307 return ESR;
3308 if (FS->getInc()) {
3309 FullExpressionRAII IncScope(Info);
3310 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3311 return ESR_Failed;
3312 }
3313 break;
3314 }
3315
3316 case Stmt::DeclStmtClass:
3317 // FIXME: If the variable has initialization that can't be jumped over,
3318 // bail out of any immediately-surrounding compound-statement too.
3319 default:
3320 return ESR_CaseNotFound;
3321 }
3322 }
3323
3324 switch (S->getStmtClass()) {
3325 default:
3326 if (const Expr *E = dyn_cast<Expr>(S)) {
3327 // Don't bother evaluating beyond an expression-statement which couldn't
3328 // be evaluated.
3329 FullExpressionRAII Scope(Info);
3330 if (!EvaluateIgnoredValue(Info, E))
3331 return ESR_Failed;
3332 return ESR_Succeeded;
3333 }
3334
3335 Info.Diag(S->getLocStart());
3336 return ESR_Failed;
3337
3338 case Stmt::NullStmtClass:
3339 return ESR_Succeeded;
3340
3341 case Stmt::DeclStmtClass: {
3342 const DeclStmt *DS = cast<DeclStmt>(S);
3343 for (const auto *DclIt : DS->decls()) {
3344 // Each declaration initialization is its own full-expression.
3345 // FIXME: This isn't quite right; if we're performing aggregate
3346 // initialization, each braced subexpression is its own full-expression.
3347 FullExpressionRAII Scope(Info);
3348 if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure())
3349 return ESR_Failed;
3350 }
3351 return ESR_Succeeded;
3352 }
3353
3354 case Stmt::ReturnStmtClass: {
3355 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3356 FullExpressionRAII Scope(Info);
3357 if (RetExpr && !Evaluate(Result, Info, RetExpr))
3358 return ESR_Failed;
3359 return ESR_Returned;
3360 }
3361
3362 case Stmt::CompoundStmtClass: {
3363 BlockScopeRAII Scope(Info);
3364
3365 const CompoundStmt *CS = cast<CompoundStmt>(S);
3366 for (const auto *BI : CS->body()) {
3367 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
3368 if (ESR == ESR_Succeeded)
3369 Case = nullptr;
3370 else if (ESR != ESR_CaseNotFound)
3371 return ESR;
3372 }
3373 return Case ? ESR_CaseNotFound : ESR_Succeeded;
3374 }
3375
3376 case Stmt::IfStmtClass: {
3377 const IfStmt *IS = cast<IfStmt>(S);
3378
3379 // Evaluate the condition, as either a var decl or as an expression.
3380 BlockScopeRAII Scope(Info);
3381 bool Cond;
3382 if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3383 return ESR_Failed;
3384
3385 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3386 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3387 if (ESR != ESR_Succeeded)
3388 return ESR;
3389 }
3390 return ESR_Succeeded;
3391 }
3392
3393 case Stmt::WhileStmtClass: {
3394 const WhileStmt *WS = cast<WhileStmt>(S);
3395 while (true) {
3396 BlockScopeRAII Scope(Info);
3397 bool Continue;
3398 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3399 Continue))
3400 return ESR_Failed;
3401 if (!Continue)
3402 break;
3403
3404 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3405 if (ESR != ESR_Continue)
3406 return ESR;
3407 }
3408 return ESR_Succeeded;
3409 }
3410
3411 case Stmt::DoStmtClass: {
3412 const DoStmt *DS = cast<DoStmt>(S);
3413 bool Continue;
3414 do {
3415 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3416 if (ESR != ESR_Continue)
3417 return ESR;
3418 Case = nullptr;
3419
3420 FullExpressionRAII CondScope(Info);
3421 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3422 return ESR_Failed;
3423 } while (Continue);
3424 return ESR_Succeeded;
3425 }
3426
3427 case Stmt::ForStmtClass: {
3428 const ForStmt *FS = cast<ForStmt>(S);
3429 BlockScopeRAII Scope(Info);
3430 if (FS->getInit()) {
3431 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3432 if (ESR != ESR_Succeeded)
3433 return ESR;
3434 }
3435 while (true) {
3436 BlockScopeRAII Scope(Info);
3437 bool Continue = true;
3438 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3439 FS->getCond(), Continue))
3440 return ESR_Failed;
3441 if (!Continue)
3442 break;
3443
3444 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3445 if (ESR != ESR_Continue)
3446 return ESR;
3447
3448 if (FS->getInc()) {
3449 FullExpressionRAII IncScope(Info);
3450 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3451 return ESR_Failed;
3452 }
3453 }
3454 return ESR_Succeeded;
3455 }
3456
3457 case Stmt::CXXForRangeStmtClass: {
3458 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3459 BlockScopeRAII Scope(Info);
3460
3461 // Initialize the __range variable.
3462 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3463 if (ESR != ESR_Succeeded)
3464 return ESR;
3465
3466 // Create the __begin and __end iterators.
3467 ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3468 if (ESR != ESR_Succeeded)
3469 return ESR;
3470
3471 while (true) {
3472 // Condition: __begin != __end.
3473 {
3474 bool Continue = true;
3475 FullExpressionRAII CondExpr(Info);
3476 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3477 return ESR_Failed;
3478 if (!Continue)
3479 break;
3480 }
3481
3482 // User's variable declaration, initialized by *__begin.
3483 BlockScopeRAII InnerScope(Info);
3484 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3485 if (ESR != ESR_Succeeded)
3486 return ESR;
3487
3488 // Loop body.
3489 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3490 if (ESR != ESR_Continue)
3491 return ESR;
3492
3493 // Increment: ++__begin
3494 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3495 return ESR_Failed;
3496 }
3497
3498 return ESR_Succeeded;
3499 }
3500
3501 case Stmt::SwitchStmtClass:
3502 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3503
3504 case Stmt::ContinueStmtClass:
3505 return ESR_Continue;
3506
3507 case Stmt::BreakStmtClass:
3508 return ESR_Break;
3509
3510 case Stmt::LabelStmtClass:
3511 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3512
3513 case Stmt::AttributedStmtClass:
3514 // As a general principle, C++11 attributes can be ignored without
3515 // any semantic impact.
3516 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3517 Case);
3518
3519 case Stmt::CaseStmtClass:
3520 case Stmt::DefaultStmtClass:
3521 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3522 }
3523 }
3524
3525 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3526 /// default constructor. If so, we'll fold it whether or not it's marked as
3527 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
3528 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)3529 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3530 const CXXConstructorDecl *CD,
3531 bool IsValueInitialization) {
3532 if (!CD->isTrivial() || !CD->isDefaultConstructor())
3533 return false;
3534
3535 // Value-initialization does not call a trivial default constructor, so such a
3536 // call is a core constant expression whether or not the constructor is
3537 // constexpr.
3538 if (!CD->isConstexpr() && !IsValueInitialization) {
3539 if (Info.getLangOpts().CPlusPlus11) {
3540 // FIXME: If DiagDecl is an implicitly-declared special member function,
3541 // we should be much more explicit about why it's not constexpr.
3542 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3543 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3544 Info.Note(CD->getLocation(), diag::note_declared_at);
3545 } else {
3546 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3547 }
3548 }
3549 return true;
3550 }
3551
3552 /// CheckConstexprFunction - Check that a function can be called in a constant
3553 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition)3554 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3555 const FunctionDecl *Declaration,
3556 const FunctionDecl *Definition) {
3557 // Potential constant expressions can contain calls to declared, but not yet
3558 // defined, constexpr functions.
3559 if (Info.checkingPotentialConstantExpression() && !Definition &&
3560 Declaration->isConstexpr())
3561 return false;
3562
3563 // Bail out with no diagnostic if the function declaration itself is invalid.
3564 // We will have produced a relevant diagnostic while parsing it.
3565 if (Declaration->isInvalidDecl())
3566 return false;
3567
3568 // Can we evaluate this function call?
3569 if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3570 return true;
3571
3572 if (Info.getLangOpts().CPlusPlus11) {
3573 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3574 // FIXME: If DiagDecl is an implicitly-declared special member function, we
3575 // should be much more explicit about why it's not constexpr.
3576 Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3577 << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3578 << DiagDecl;
3579 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3580 } else {
3581 Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3582 }
3583 return false;
3584 }
3585
3586 namespace {
3587 typedef SmallVector<APValue, 8> ArgVector;
3588 }
3589
3590 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)3591 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3592 EvalInfo &Info) {
3593 bool Success = true;
3594 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3595 I != E; ++I) {
3596 if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3597 // If we're checking for a potential constant expression, evaluate all
3598 // initializers even if some of them fail.
3599 if (!Info.keepEvaluatingAfterFailure())
3600 return false;
3601 Success = false;
3602 }
3603 }
3604 return Success;
3605 }
3606
3607 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result)3608 static bool HandleFunctionCall(SourceLocation CallLoc,
3609 const FunctionDecl *Callee, const LValue *This,
3610 ArrayRef<const Expr*> Args, const Stmt *Body,
3611 EvalInfo &Info, APValue &Result) {
3612 ArgVector ArgValues(Args.size());
3613 if (!EvaluateArgs(Args, ArgValues, Info))
3614 return false;
3615
3616 if (!Info.CheckCallLimit(CallLoc))
3617 return false;
3618
3619 CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3620
3621 // For a trivial copy or move assignment, perform an APValue copy. This is
3622 // essential for unions, where the operations performed by the assignment
3623 // operator cannot be represented as statements.
3624 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3625 if (MD && MD->isDefaulted() && MD->isTrivial()) {
3626 assert(This &&
3627 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3628 LValue RHS;
3629 RHS.setFrom(Info.Ctx, ArgValues[0]);
3630 APValue RHSValue;
3631 if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3632 RHS, RHSValue))
3633 return false;
3634 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3635 RHSValue))
3636 return false;
3637 This->moveInto(Result);
3638 return true;
3639 }
3640
3641 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
3642 if (ESR == ESR_Succeeded) {
3643 if (Callee->getReturnType()->isVoidType())
3644 return true;
3645 Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3646 }
3647 return ESR == ESR_Returned;
3648 }
3649
3650 /// Evaluate a constructor call.
HandleConstructorCall(SourceLocation CallLoc,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)3651 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3652 ArrayRef<const Expr*> Args,
3653 const CXXConstructorDecl *Definition,
3654 EvalInfo &Info, APValue &Result) {
3655 ArgVector ArgValues(Args.size());
3656 if (!EvaluateArgs(Args, ArgValues, Info))
3657 return false;
3658
3659 if (!Info.CheckCallLimit(CallLoc))
3660 return false;
3661
3662 const CXXRecordDecl *RD = Definition->getParent();
3663 if (RD->getNumVBases()) {
3664 Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3665 return false;
3666 }
3667
3668 CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3669
3670 // If it's a delegating constructor, just delegate.
3671 if (Definition->isDelegatingConstructor()) {
3672 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3673 {
3674 FullExpressionRAII InitScope(Info);
3675 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3676 return false;
3677 }
3678 return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3679 }
3680
3681 // For a trivial copy or move constructor, perform an APValue copy. This is
3682 // essential for unions, where the operations performed by the constructor
3683 // cannot be represented by ctor-initializers.
3684 if (Definition->isDefaulted() &&
3685 ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
3686 (Definition->isMoveConstructor() && Definition->isTrivial()))) {
3687 LValue RHS;
3688 RHS.setFrom(Info.Ctx, ArgValues[0]);
3689 return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3690 RHS, Result);
3691 }
3692
3693 // Reserve space for the struct members.
3694 if (!RD->isUnion() && Result.isUninit())
3695 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3696 std::distance(RD->field_begin(), RD->field_end()));
3697
3698 if (RD->isInvalidDecl()) return false;
3699 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3700
3701 // A scope for temporaries lifetime-extended by reference members.
3702 BlockScopeRAII LifetimeExtendedScope(Info);
3703
3704 bool Success = true;
3705 unsigned BasesSeen = 0;
3706 #ifndef NDEBUG
3707 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3708 #endif
3709 for (const auto *I : Definition->inits()) {
3710 LValue Subobject = This;
3711 APValue *Value = &Result;
3712
3713 // Determine the subobject to initialize.
3714 FieldDecl *FD = nullptr;
3715 if (I->isBaseInitializer()) {
3716 QualType BaseType(I->getBaseClass(), 0);
3717 #ifndef NDEBUG
3718 // Non-virtual base classes are initialized in the order in the class
3719 // definition. We have already checked for virtual base classes.
3720 assert(!BaseIt->isVirtual() && "virtual base for literal type");
3721 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3722 "base class initializers not in expected order");
3723 ++BaseIt;
3724 #endif
3725 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
3726 BaseType->getAsCXXRecordDecl(), &Layout))
3727 return false;
3728 Value = &Result.getStructBase(BasesSeen++);
3729 } else if ((FD = I->getMember())) {
3730 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
3731 return false;
3732 if (RD->isUnion()) {
3733 Result = APValue(FD);
3734 Value = &Result.getUnionValue();
3735 } else {
3736 Value = &Result.getStructField(FD->getFieldIndex());
3737 }
3738 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
3739 // Walk the indirect field decl's chain to find the object to initialize,
3740 // and make sure we've initialized every step along it.
3741 for (auto *C : IFD->chain()) {
3742 FD = cast<FieldDecl>(C);
3743 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3744 // Switch the union field if it differs. This happens if we had
3745 // preceding zero-initialization, and we're now initializing a union
3746 // subobject other than the first.
3747 // FIXME: In this case, the values of the other subobjects are
3748 // specified, since zero-initialization sets all padding bits to zero.
3749 if (Value->isUninit() ||
3750 (Value->isUnion() && Value->getUnionField() != FD)) {
3751 if (CD->isUnion())
3752 *Value = APValue(FD);
3753 else
3754 *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3755 std::distance(CD->field_begin(), CD->field_end()));
3756 }
3757 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
3758 return false;
3759 if (CD->isUnion())
3760 Value = &Value->getUnionValue();
3761 else
3762 Value = &Value->getStructField(FD->getFieldIndex());
3763 }
3764 } else {
3765 llvm_unreachable("unknown base initializer kind");
3766 }
3767
3768 FullExpressionRAII InitScope(Info);
3769 if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
3770 (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
3771 *Value, FD))) {
3772 // If we're checking for a potential constant expression, evaluate all
3773 // initializers even if some of them fail.
3774 if (!Info.keepEvaluatingAfterFailure())
3775 return false;
3776 Success = false;
3777 }
3778 }
3779
3780 return Success &&
3781 EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3782 }
3783
3784 //===----------------------------------------------------------------------===//
3785 // Generic Evaluation
3786 //===----------------------------------------------------------------------===//
3787 namespace {
3788
3789 template <class Derived>
3790 class ExprEvaluatorBase
3791 : public ConstStmtVisitor<Derived, bool> {
3792 private:
DerivedSuccess(const APValue & V,const Expr * E)3793 bool DerivedSuccess(const APValue &V, const Expr *E) {
3794 return static_cast<Derived*>(this)->Success(V, E);
3795 }
DerivedZeroInitialization(const Expr * E)3796 bool DerivedZeroInitialization(const Expr *E) {
3797 return static_cast<Derived*>(this)->ZeroInitialization(E);
3798 }
3799
3800 // Check whether a conditional operator with a non-constant condition is a
3801 // potential constant expression. If neither arm is a potential constant
3802 // expression, then the conditional operator is not either.
3803 template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)3804 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
3805 assert(Info.checkingPotentialConstantExpression());
3806
3807 // Speculatively evaluate both arms.
3808 {
3809 SmallVector<PartialDiagnosticAt, 8> Diag;
3810 SpeculativeEvaluationRAII Speculate(Info, &Diag);
3811
3812 StmtVisitorTy::Visit(E->getFalseExpr());
3813 if (Diag.empty())
3814 return;
3815
3816 Diag.clear();
3817 StmtVisitorTy::Visit(E->getTrueExpr());
3818 if (Diag.empty())
3819 return;
3820 }
3821
3822 Error(E, diag::note_constexpr_conditional_never_const);
3823 }
3824
3825
3826 template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)3827 bool HandleConditionalOperator(const ConditionalOperator *E) {
3828 bool BoolResult;
3829 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
3830 if (Info.checkingPotentialConstantExpression())
3831 CheckPotentialConstantConditional(E);
3832 return false;
3833 }
3834
3835 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
3836 return StmtVisitorTy::Visit(EvalExpr);
3837 }
3838
3839 protected:
3840 EvalInfo &Info;
3841 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
3842 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
3843
CCEDiag(const Expr * E,diag::kind D)3844 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
3845 return Info.CCEDiag(E, D);
3846 }
3847
ZeroInitialization(const Expr * E)3848 bool ZeroInitialization(const Expr *E) { return Error(E); }
3849
3850 public:
ExprEvaluatorBase(EvalInfo & Info)3851 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
3852
getEvalInfo()3853 EvalInfo &getEvalInfo() { return Info; }
3854
3855 /// Report an evaluation error. This should only be called when an error is
3856 /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)3857 bool Error(const Expr *E, diag::kind D) {
3858 Info.Diag(E, D);
3859 return false;
3860 }
Error(const Expr * E)3861 bool Error(const Expr *E) {
3862 return Error(E, diag::note_invalid_subexpr_in_const_expr);
3863 }
3864
VisitStmt(const Stmt *)3865 bool VisitStmt(const Stmt *) {
3866 llvm_unreachable("Expression evaluator should not be called on stmts");
3867 }
VisitExpr(const Expr * E)3868 bool VisitExpr(const Expr *E) {
3869 return Error(E);
3870 }
3871
VisitParenExpr(const ParenExpr * E)3872 bool VisitParenExpr(const ParenExpr *E)
3873 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)3874 bool VisitUnaryExtension(const UnaryOperator *E)
3875 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)3876 bool VisitUnaryPlus(const UnaryOperator *E)
3877 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)3878 bool VisitChooseExpr(const ChooseExpr *E)
3879 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)3880 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
3881 { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)3882 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
3883 { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)3884 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
3885 { return StmtVisitorTy::Visit(E->getExpr()); }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)3886 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
3887 // The initializer may not have been parsed yet, or might be erroneous.
3888 if (!E->getExpr())
3889 return Error(E);
3890 return StmtVisitorTy::Visit(E->getExpr());
3891 }
3892 // We cannot create any objects for which cleanups are required, so there is
3893 // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)3894 bool VisitExprWithCleanups(const ExprWithCleanups *E)
3895 { return StmtVisitorTy::Visit(E->getSubExpr()); }
3896
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)3897 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
3898 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
3899 return static_cast<Derived*>(this)->VisitCastExpr(E);
3900 }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)3901 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
3902 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
3903 return static_cast<Derived*>(this)->VisitCastExpr(E);
3904 }
3905
VisitBinaryOperator(const BinaryOperator * E)3906 bool VisitBinaryOperator(const BinaryOperator *E) {
3907 switch (E->getOpcode()) {
3908 default:
3909 return Error(E);
3910
3911 case BO_Comma:
3912 VisitIgnoredValue(E->getLHS());
3913 return StmtVisitorTy::Visit(E->getRHS());
3914
3915 case BO_PtrMemD:
3916 case BO_PtrMemI: {
3917 LValue Obj;
3918 if (!HandleMemberPointerAccess(Info, E, Obj))
3919 return false;
3920 APValue Result;
3921 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
3922 return false;
3923 return DerivedSuccess(Result, E);
3924 }
3925 }
3926 }
3927
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)3928 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
3929 // Evaluate and cache the common expression. We treat it as a temporary,
3930 // even though it's not quite the same thing.
3931 if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
3932 Info, E->getCommon()))
3933 return false;
3934
3935 return HandleConditionalOperator(E);
3936 }
3937
VisitConditionalOperator(const ConditionalOperator * E)3938 bool VisitConditionalOperator(const ConditionalOperator *E) {
3939 bool IsBcpCall = false;
3940 // If the condition (ignoring parens) is a __builtin_constant_p call,
3941 // the result is a constant expression if it can be folded without
3942 // side-effects. This is an important GNU extension. See GCC PR38377
3943 // for discussion.
3944 if (const CallExpr *CallCE =
3945 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
3946 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
3947 IsBcpCall = true;
3948
3949 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
3950 // constant expression; we can't check whether it's potentially foldable.
3951 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
3952 return false;
3953
3954 FoldConstant Fold(Info, IsBcpCall);
3955 if (!HandleConditionalOperator(E)) {
3956 Fold.keepDiagnostics();
3957 return false;
3958 }
3959
3960 return true;
3961 }
3962
VisitOpaqueValueExpr(const OpaqueValueExpr * E)3963 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
3964 if (APValue *Value = Info.CurrentCall->getTemporary(E))
3965 return DerivedSuccess(*Value, E);
3966
3967 const Expr *Source = E->getSourceExpr();
3968 if (!Source)
3969 return Error(E);
3970 if (Source == E) { // sanity checking.
3971 assert(0 && "OpaqueValueExpr recursively refers to itself");
3972 return Error(E);
3973 }
3974 return StmtVisitorTy::Visit(Source);
3975 }
3976
VisitCallExpr(const CallExpr * E)3977 bool VisitCallExpr(const CallExpr *E) {
3978 const Expr *Callee = E->getCallee()->IgnoreParens();
3979 QualType CalleeType = Callee->getType();
3980
3981 const FunctionDecl *FD = nullptr;
3982 LValue *This = nullptr, ThisVal;
3983 ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3984 bool HasQualifier = false;
3985
3986 // Extract function decl and 'this' pointer from the callee.
3987 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
3988 const ValueDecl *Member = nullptr;
3989 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
3990 // Explicit bound member calls, such as x.f() or p->g();
3991 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
3992 return false;
3993 Member = ME->getMemberDecl();
3994 This = &ThisVal;
3995 HasQualifier = ME->hasQualifier();
3996 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
3997 // Indirect bound member calls ('.*' or '->*').
3998 Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
3999 if (!Member) return false;
4000 This = &ThisVal;
4001 } else
4002 return Error(Callee);
4003
4004 FD = dyn_cast<FunctionDecl>(Member);
4005 if (!FD)
4006 return Error(Callee);
4007 } else if (CalleeType->isFunctionPointerType()) {
4008 LValue Call;
4009 if (!EvaluatePointer(Callee, Call, Info))
4010 return false;
4011
4012 if (!Call.getLValueOffset().isZero())
4013 return Error(Callee);
4014 FD = dyn_cast_or_null<FunctionDecl>(
4015 Call.getLValueBase().dyn_cast<const ValueDecl*>());
4016 if (!FD)
4017 return Error(Callee);
4018
4019 // Overloaded operator calls to member functions are represented as normal
4020 // calls with '*this' as the first argument.
4021 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4022 if (MD && !MD->isStatic()) {
4023 // FIXME: When selecting an implicit conversion for an overloaded
4024 // operator delete, we sometimes try to evaluate calls to conversion
4025 // operators without a 'this' parameter!
4026 if (Args.empty())
4027 return Error(E);
4028
4029 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4030 return false;
4031 This = &ThisVal;
4032 Args = Args.slice(1);
4033 }
4034
4035 // Don't call function pointers which have been cast to some other type.
4036 if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
4037 return Error(E);
4038 } else
4039 return Error(E);
4040
4041 if (This && !This->checkSubobject(Info, E, CSK_This))
4042 return false;
4043
4044 // DR1358 allows virtual constexpr functions in some cases. Don't allow
4045 // calls to such functions in constant expressions.
4046 if (This && !HasQualifier &&
4047 isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4048 return Error(E, diag::note_constexpr_virtual_call);
4049
4050 const FunctionDecl *Definition = nullptr;
4051 Stmt *Body = FD->getBody(Definition);
4052 APValue Result;
4053
4054 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
4055 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
4056 Info, Result))
4057 return false;
4058
4059 return DerivedSuccess(Result, E);
4060 }
4061
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4062 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4063 return StmtVisitorTy::Visit(E->getInitializer());
4064 }
VisitInitListExpr(const InitListExpr * E)4065 bool VisitInitListExpr(const InitListExpr *E) {
4066 if (E->getNumInits() == 0)
4067 return DerivedZeroInitialization(E);
4068 if (E->getNumInits() == 1)
4069 return StmtVisitorTy::Visit(E->getInit(0));
4070 return Error(E);
4071 }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)4072 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4073 return DerivedZeroInitialization(E);
4074 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)4075 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4076 return DerivedZeroInitialization(E);
4077 }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)4078 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4079 return DerivedZeroInitialization(E);
4080 }
4081
4082 /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)4083 bool VisitMemberExpr(const MemberExpr *E) {
4084 assert(!E->isArrow() && "missing call to bound member function?");
4085
4086 APValue Val;
4087 if (!Evaluate(Val, Info, E->getBase()))
4088 return false;
4089
4090 QualType BaseTy = E->getBase()->getType();
4091
4092 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4093 if (!FD) return Error(E);
4094 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4095 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4096 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4097
4098 CompleteObject Obj(&Val, BaseTy);
4099 SubobjectDesignator Designator(BaseTy);
4100 Designator.addDeclUnchecked(FD);
4101
4102 APValue Result;
4103 return extractSubobject(Info, E, Obj, Designator, Result) &&
4104 DerivedSuccess(Result, E);
4105 }
4106
VisitCastExpr(const CastExpr * E)4107 bool VisitCastExpr(const CastExpr *E) {
4108 switch (E->getCastKind()) {
4109 default:
4110 break;
4111
4112 case CK_AtomicToNonAtomic: {
4113 APValue AtomicVal;
4114 if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
4115 return false;
4116 return DerivedSuccess(AtomicVal, E);
4117 }
4118
4119 case CK_NoOp:
4120 case CK_UserDefinedConversion:
4121 return StmtVisitorTy::Visit(E->getSubExpr());
4122
4123 case CK_LValueToRValue: {
4124 LValue LVal;
4125 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4126 return false;
4127 APValue RVal;
4128 // Note, we use the subexpression's type in order to retain cv-qualifiers.
4129 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4130 LVal, RVal))
4131 return false;
4132 return DerivedSuccess(RVal, E);
4133 }
4134 }
4135
4136 return Error(E);
4137 }
4138
VisitUnaryPostInc(const UnaryOperator * UO)4139 bool VisitUnaryPostInc(const UnaryOperator *UO) {
4140 return VisitUnaryPostIncDec(UO);
4141 }
VisitUnaryPostDec(const UnaryOperator * UO)4142 bool VisitUnaryPostDec(const UnaryOperator *UO) {
4143 return VisitUnaryPostIncDec(UO);
4144 }
VisitUnaryPostIncDec(const UnaryOperator * UO)4145 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
4146 if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4147 return Error(UO);
4148
4149 LValue LVal;
4150 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4151 return false;
4152 APValue RVal;
4153 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4154 UO->isIncrementOp(), &RVal))
4155 return false;
4156 return DerivedSuccess(RVal, UO);
4157 }
4158
VisitStmtExpr(const StmtExpr * E)4159 bool VisitStmtExpr(const StmtExpr *E) {
4160 // We will have checked the full-expressions inside the statement expression
4161 // when they were completed, and don't need to check them again now.
4162 if (Info.checkingForOverflow())
4163 return Error(E);
4164
4165 BlockScopeRAII Scope(Info);
4166 const CompoundStmt *CS = E->getSubStmt();
4167 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4168 BE = CS->body_end();
4169 /**/; ++BI) {
4170 if (BI + 1 == BE) {
4171 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4172 if (!FinalExpr) {
4173 Info.Diag((*BI)->getLocStart(),
4174 diag::note_constexpr_stmt_expr_unsupported);
4175 return false;
4176 }
4177 return this->Visit(FinalExpr);
4178 }
4179
4180 APValue ReturnValue;
4181 EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
4182 if (ESR != ESR_Succeeded) {
4183 // FIXME: If the statement-expression terminated due to 'return',
4184 // 'break', or 'continue', it would be nice to propagate that to
4185 // the outer statement evaluation rather than bailing out.
4186 if (ESR != ESR_Failed)
4187 Info.Diag((*BI)->getLocStart(),
4188 diag::note_constexpr_stmt_expr_unsupported);
4189 return false;
4190 }
4191 }
4192 }
4193
4194 /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)4195 void VisitIgnoredValue(const Expr *E) {
4196 EvaluateIgnoredValue(Info, E);
4197 }
4198 };
4199
4200 }
4201
4202 //===----------------------------------------------------------------------===//
4203 // Common base class for lvalue and temporary evaluation.
4204 //===----------------------------------------------------------------------===//
4205 namespace {
4206 template<class Derived>
4207 class LValueExprEvaluatorBase
4208 : public ExprEvaluatorBase<Derived> {
4209 protected:
4210 LValue &Result;
4211 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4212 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
4213
Success(APValue::LValueBase B)4214 bool Success(APValue::LValueBase B) {
4215 Result.set(B);
4216 return true;
4217 }
4218
4219 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)4220 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4221 ExprEvaluatorBaseTy(Info), Result(Result) {}
4222
Success(const APValue & V,const Expr * E)4223 bool Success(const APValue &V, const Expr *E) {
4224 Result.setFrom(this->Info.Ctx, V);
4225 return true;
4226 }
4227
VisitMemberExpr(const MemberExpr * E)4228 bool VisitMemberExpr(const MemberExpr *E) {
4229 // Handle non-static data members.
4230 QualType BaseTy;
4231 if (E->isArrow()) {
4232 if (!EvaluatePointer(E->getBase(), Result, this->Info))
4233 return false;
4234 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4235 } else if (E->getBase()->isRValue()) {
4236 assert(E->getBase()->getType()->isRecordType());
4237 if (!EvaluateTemporary(E->getBase(), Result, this->Info))
4238 return false;
4239 BaseTy = E->getBase()->getType();
4240 } else {
4241 if (!this->Visit(E->getBase()))
4242 return false;
4243 BaseTy = E->getBase()->getType();
4244 }
4245
4246 const ValueDecl *MD = E->getMemberDecl();
4247 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4248 assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4249 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4250 (void)BaseTy;
4251 if (!HandleLValueMember(this->Info, E, Result, FD))
4252 return false;
4253 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4254 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4255 return false;
4256 } else
4257 return this->Error(E);
4258
4259 if (MD->getType()->isReferenceType()) {
4260 APValue RefValue;
4261 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4262 RefValue))
4263 return false;
4264 return Success(RefValue, E);
4265 }
4266 return true;
4267 }
4268
VisitBinaryOperator(const BinaryOperator * E)4269 bool VisitBinaryOperator(const BinaryOperator *E) {
4270 switch (E->getOpcode()) {
4271 default:
4272 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4273
4274 case BO_PtrMemD:
4275 case BO_PtrMemI:
4276 return HandleMemberPointerAccess(this->Info, E, Result);
4277 }
4278 }
4279
VisitCastExpr(const CastExpr * E)4280 bool VisitCastExpr(const CastExpr *E) {
4281 switch (E->getCastKind()) {
4282 default:
4283 return ExprEvaluatorBaseTy::VisitCastExpr(E);
4284
4285 case CK_DerivedToBase:
4286 case CK_UncheckedDerivedToBase:
4287 if (!this->Visit(E->getSubExpr()))
4288 return false;
4289
4290 // Now figure out the necessary offset to add to the base LV to get from
4291 // the derived class to the base class.
4292 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4293 Result);
4294 }
4295 }
4296 };
4297 }
4298
4299 //===----------------------------------------------------------------------===//
4300 // LValue Evaluation
4301 //
4302 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4303 // function designators (in C), decl references to void objects (in C), and
4304 // temporaries (if building with -Wno-address-of-temporary).
4305 //
4306 // LValue evaluation produces values comprising a base expression of one of the
4307 // following types:
4308 // - Declarations
4309 // * VarDecl
4310 // * FunctionDecl
4311 // - Literals
4312 // * CompoundLiteralExpr in C
4313 // * StringLiteral
4314 // * CXXTypeidExpr
4315 // * PredefinedExpr
4316 // * ObjCStringLiteralExpr
4317 // * ObjCEncodeExpr
4318 // * AddrLabelExpr
4319 // * BlockExpr
4320 // * CallExpr for a MakeStringConstant builtin
4321 // - Locals and temporaries
4322 // * MaterializeTemporaryExpr
4323 // * Any Expr, with a CallIndex indicating the function in which the temporary
4324 // was evaluated, for cases where the MaterializeTemporaryExpr is missing
4325 // from the AST (FIXME).
4326 // * A MaterializeTemporaryExpr that has static storage duration, with no
4327 // CallIndex, for a lifetime-extended temporary.
4328 // plus an offset in bytes.
4329 //===----------------------------------------------------------------------===//
4330 namespace {
4331 class LValueExprEvaluator
4332 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4333 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)4334 LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4335 LValueExprEvaluatorBaseTy(Info, Result) {}
4336
4337 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4338 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4339
4340 bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)4341 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4342 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4343 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4344 bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)4345 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)4346 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4347 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4348 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4349 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4350 bool VisitUnaryDeref(const UnaryOperator *E);
4351 bool VisitUnaryReal(const UnaryOperator *E);
4352 bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)4353 bool VisitUnaryPreInc(const UnaryOperator *UO) {
4354 return VisitUnaryPreIncDec(UO);
4355 }
VisitUnaryPreDec(const UnaryOperator * UO)4356 bool VisitUnaryPreDec(const UnaryOperator *UO) {
4357 return VisitUnaryPreIncDec(UO);
4358 }
4359 bool VisitBinAssign(const BinaryOperator *BO);
4360 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4361
VisitCastExpr(const CastExpr * E)4362 bool VisitCastExpr(const CastExpr *E) {
4363 switch (E->getCastKind()) {
4364 default:
4365 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4366
4367 case CK_LValueBitCast:
4368 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4369 if (!Visit(E->getSubExpr()))
4370 return false;
4371 Result.Designator.setInvalid();
4372 return true;
4373
4374 case CK_BaseToDerived:
4375 if (!Visit(E->getSubExpr()))
4376 return false;
4377 return HandleBaseToDerivedCast(Info, E, Result);
4378 }
4379 }
4380 };
4381 } // end anonymous namespace
4382
4383 /// Evaluate an expression as an lvalue. This can be legitimately called on
4384 /// expressions which are not glvalues, in two cases:
4385 /// * function designators in C, and
4386 /// * "extern void" objects
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)4387 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4388 assert(E->isGLValue() || E->getType()->isFunctionType() ||
4389 E->getType()->isVoidType());
4390 return LValueExprEvaluator(Info, Result).Visit(E);
4391 }
4392
VisitDeclRefExpr(const DeclRefExpr * E)4393 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4394 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4395 return Success(FD);
4396 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4397 return VisitVarDecl(E, VD);
4398 return Error(E);
4399 }
4400
VisitVarDecl(const Expr * E,const VarDecl * VD)4401 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4402 CallStackFrame *Frame = nullptr;
4403 if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4404 Frame = Info.CurrentCall;
4405
4406 if (!VD->getType()->isReferenceType()) {
4407 if (Frame) {
4408 Result.set(VD, Frame->Index);
4409 return true;
4410 }
4411 return Success(VD);
4412 }
4413
4414 APValue *V;
4415 if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4416 return false;
4417 if (V->isUninit()) {
4418 if (!Info.checkingPotentialConstantExpression())
4419 Info.Diag(E, diag::note_constexpr_use_uninit_reference);
4420 return false;
4421 }
4422 return Success(*V, E);
4423 }
4424
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)4425 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4426 const MaterializeTemporaryExpr *E) {
4427 // Walk through the expression to find the materialized temporary itself.
4428 SmallVector<const Expr *, 2> CommaLHSs;
4429 SmallVector<SubobjectAdjustment, 2> Adjustments;
4430 const Expr *Inner = E->GetTemporaryExpr()->
4431 skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4432
4433 // If we passed any comma operators, evaluate their LHSs.
4434 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4435 if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4436 return false;
4437
4438 // A materialized temporary with static storage duration can appear within the
4439 // result of a constant expression evaluation, so we need to preserve its
4440 // value for use outside this evaluation.
4441 APValue *Value;
4442 if (E->getStorageDuration() == SD_Static) {
4443 Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4444 *Value = APValue();
4445 Result.set(E);
4446 } else {
4447 Value = &Info.CurrentCall->
4448 createTemporary(E, E->getStorageDuration() == SD_Automatic);
4449 Result.set(E, Info.CurrentCall->Index);
4450 }
4451
4452 QualType Type = Inner->getType();
4453
4454 // Materialize the temporary itself.
4455 if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4456 (E->getStorageDuration() == SD_Static &&
4457 !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4458 *Value = APValue();
4459 return false;
4460 }
4461
4462 // Adjust our lvalue to refer to the desired subobject.
4463 for (unsigned I = Adjustments.size(); I != 0; /**/) {
4464 --I;
4465 switch (Adjustments[I].Kind) {
4466 case SubobjectAdjustment::DerivedToBaseAdjustment:
4467 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4468 Type, Result))
4469 return false;
4470 Type = Adjustments[I].DerivedToBase.BasePath->getType();
4471 break;
4472
4473 case SubobjectAdjustment::FieldAdjustment:
4474 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4475 return false;
4476 Type = Adjustments[I].Field->getType();
4477 break;
4478
4479 case SubobjectAdjustment::MemberPointerAdjustment:
4480 if (!HandleMemberPointerAccess(this->Info, Type, Result,
4481 Adjustments[I].Ptr.RHS))
4482 return false;
4483 Type = Adjustments[I].Ptr.MPT->getPointeeType();
4484 break;
4485 }
4486 }
4487
4488 return true;
4489 }
4490
4491 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4492 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4493 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4494 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4495 // only see this when folding in C, so there's no standard to follow here.
4496 return Success(E);
4497 }
4498
VisitCXXTypeidExpr(const CXXTypeidExpr * E)4499 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4500 if (!E->isPotentiallyEvaluated())
4501 return Success(E);
4502
4503 Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4504 << E->getExprOperand()->getType()
4505 << E->getExprOperand()->getSourceRange();
4506 return false;
4507 }
4508
VisitCXXUuidofExpr(const CXXUuidofExpr * E)4509 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4510 return Success(E);
4511 }
4512
VisitMemberExpr(const MemberExpr * E)4513 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4514 // Handle static data members.
4515 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4516 VisitIgnoredValue(E->getBase());
4517 return VisitVarDecl(E, VD);
4518 }
4519
4520 // Handle static member functions.
4521 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4522 if (MD->isStatic()) {
4523 VisitIgnoredValue(E->getBase());
4524 return Success(MD);
4525 }
4526 }
4527
4528 // Handle non-static data members.
4529 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4530 }
4531
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)4532 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4533 // FIXME: Deal with vectors as array subscript bases.
4534 if (E->getBase()->getType()->isVectorType())
4535 return Error(E);
4536
4537 if (!EvaluatePointer(E->getBase(), Result, Info))
4538 return false;
4539
4540 APSInt Index;
4541 if (!EvaluateInteger(E->getIdx(), Index, Info))
4542 return false;
4543
4544 return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4545 getExtValue(Index));
4546 }
4547
VisitUnaryDeref(const UnaryOperator * E)4548 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4549 return EvaluatePointer(E->getSubExpr(), Result, Info);
4550 }
4551
VisitUnaryReal(const UnaryOperator * E)4552 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4553 if (!Visit(E->getSubExpr()))
4554 return false;
4555 // __real is a no-op on scalar lvalues.
4556 if (E->getSubExpr()->getType()->isAnyComplexType())
4557 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4558 return true;
4559 }
4560
VisitUnaryImag(const UnaryOperator * E)4561 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4562 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4563 "lvalue __imag__ on scalar?");
4564 if (!Visit(E->getSubExpr()))
4565 return false;
4566 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4567 return true;
4568 }
4569
VisitUnaryPreIncDec(const UnaryOperator * UO)4570 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4571 if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4572 return Error(UO);
4573
4574 if (!this->Visit(UO->getSubExpr()))
4575 return false;
4576
4577 return handleIncDec(
4578 this->Info, UO, Result, UO->getSubExpr()->getType(),
4579 UO->isIncrementOp(), nullptr);
4580 }
4581
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)4582 bool LValueExprEvaluator::VisitCompoundAssignOperator(
4583 const CompoundAssignOperator *CAO) {
4584 if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4585 return Error(CAO);
4586
4587 APValue RHS;
4588
4589 // The overall lvalue result is the result of evaluating the LHS.
4590 if (!this->Visit(CAO->getLHS())) {
4591 if (Info.keepEvaluatingAfterFailure())
4592 Evaluate(RHS, this->Info, CAO->getRHS());
4593 return false;
4594 }
4595
4596 if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4597 return false;
4598
4599 return handleCompoundAssignment(
4600 this->Info, CAO,
4601 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4602 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4603 }
4604
VisitBinAssign(const BinaryOperator * E)4605 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4606 if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
4607 return Error(E);
4608
4609 APValue NewVal;
4610
4611 if (!this->Visit(E->getLHS())) {
4612 if (Info.keepEvaluatingAfterFailure())
4613 Evaluate(NewVal, this->Info, E->getRHS());
4614 return false;
4615 }
4616
4617 if (!Evaluate(NewVal, this->Info, E->getRHS()))
4618 return false;
4619
4620 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4621 NewVal);
4622 }
4623
4624 //===----------------------------------------------------------------------===//
4625 // Pointer Evaluation
4626 //===----------------------------------------------------------------------===//
4627
4628 namespace {
4629 class PointerExprEvaluator
4630 : public ExprEvaluatorBase<PointerExprEvaluator> {
4631 LValue &Result;
4632
Success(const Expr * E)4633 bool Success(const Expr *E) {
4634 Result.set(E);
4635 return true;
4636 }
4637 public:
4638
PointerExprEvaluator(EvalInfo & info,LValue & Result)4639 PointerExprEvaluator(EvalInfo &info, LValue &Result)
4640 : ExprEvaluatorBaseTy(info), Result(Result) {}
4641
Success(const APValue & V,const Expr * E)4642 bool Success(const APValue &V, const Expr *E) {
4643 Result.setFrom(Info.Ctx, V);
4644 return true;
4645 }
ZeroInitialization(const Expr * E)4646 bool ZeroInitialization(const Expr *E) {
4647 return Success((Expr*)nullptr);
4648 }
4649
4650 bool VisitBinaryOperator(const BinaryOperator *E);
4651 bool VisitCastExpr(const CastExpr* E);
4652 bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)4653 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4654 { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)4655 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4656 { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)4657 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4658 { return Success(E); }
4659 bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)4660 bool VisitBlockExpr(const BlockExpr *E) {
4661 if (!E->getBlockDecl()->hasCaptures())
4662 return Success(E);
4663 return Error(E);
4664 }
VisitCXXThisExpr(const CXXThisExpr * E)4665 bool VisitCXXThisExpr(const CXXThisExpr *E) {
4666 // Can't look at 'this' when checking a potential constant expression.
4667 if (Info.checkingPotentialConstantExpression())
4668 return false;
4669 if (!Info.CurrentCall->This) {
4670 if (Info.getLangOpts().CPlusPlus11)
4671 Info.Diag(E, diag::note_constexpr_this) << E->isImplicit();
4672 else
4673 Info.Diag(E);
4674 return false;
4675 }
4676 Result = *Info.CurrentCall->This;
4677 return true;
4678 }
4679
4680 // FIXME: Missing: @protocol, @selector
4681 };
4682 } // end anonymous namespace
4683
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)4684 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4685 assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4686 return PointerExprEvaluator(Info, Result).Visit(E);
4687 }
4688
VisitBinaryOperator(const BinaryOperator * E)4689 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4690 if (E->getOpcode() != BO_Add &&
4691 E->getOpcode() != BO_Sub)
4692 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4693
4694 const Expr *PExp = E->getLHS();
4695 const Expr *IExp = E->getRHS();
4696 if (IExp->getType()->isPointerType())
4697 std::swap(PExp, IExp);
4698
4699 bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4700 if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4701 return false;
4702
4703 llvm::APSInt Offset;
4704 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4705 return false;
4706
4707 int64_t AdditionalOffset = getExtValue(Offset);
4708 if (E->getOpcode() == BO_Sub)
4709 AdditionalOffset = -AdditionalOffset;
4710
4711 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4712 return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4713 AdditionalOffset);
4714 }
4715
VisitUnaryAddrOf(const UnaryOperator * E)4716 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4717 return EvaluateLValue(E->getSubExpr(), Result, Info);
4718 }
4719
VisitCastExpr(const CastExpr * E)4720 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4721 const Expr* SubExpr = E->getSubExpr();
4722
4723 switch (E->getCastKind()) {
4724 default:
4725 break;
4726
4727 case CK_BitCast:
4728 case CK_CPointerToObjCPointerCast:
4729 case CK_BlockPointerToObjCPointerCast:
4730 case CK_AnyPointerToBlockPointerCast:
4731 if (!Visit(SubExpr))
4732 return false;
4733 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4734 // permitted in constant expressions in C++11. Bitcasts from cv void* are
4735 // also static_casts, but we disallow them as a resolution to DR1312.
4736 if (!E->getType()->isVoidPointerType()) {
4737 Result.Designator.setInvalid();
4738 if (SubExpr->getType()->isVoidPointerType())
4739 CCEDiag(E, diag::note_constexpr_invalid_cast)
4740 << 3 << SubExpr->getType();
4741 else
4742 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4743 }
4744 return true;
4745
4746 case CK_DerivedToBase:
4747 case CK_UncheckedDerivedToBase:
4748 if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4749 return false;
4750 if (!Result.Base && Result.Offset.isZero())
4751 return true;
4752
4753 // Now figure out the necessary offset to add to the base LV to get from
4754 // the derived class to the base class.
4755 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4756 castAs<PointerType>()->getPointeeType(),
4757 Result);
4758
4759 case CK_BaseToDerived:
4760 if (!Visit(E->getSubExpr()))
4761 return false;
4762 if (!Result.Base && Result.Offset.isZero())
4763 return true;
4764 return HandleBaseToDerivedCast(Info, E, Result);
4765
4766 case CK_NullToPointer:
4767 VisitIgnoredValue(E->getSubExpr());
4768 return ZeroInitialization(E);
4769
4770 case CK_IntegralToPointer: {
4771 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4772
4773 APValue Value;
4774 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
4775 break;
4776
4777 if (Value.isInt()) {
4778 unsigned Size = Info.Ctx.getTypeSize(E->getType());
4779 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
4780 Result.Base = (Expr*)nullptr;
4781 Result.Offset = CharUnits::fromQuantity(N);
4782 Result.CallIndex = 0;
4783 Result.Designator.setInvalid();
4784 return true;
4785 } else {
4786 // Cast is of an lvalue, no need to change value.
4787 Result.setFrom(Info.Ctx, Value);
4788 return true;
4789 }
4790 }
4791 case CK_ArrayToPointerDecay:
4792 if (SubExpr->isGLValue()) {
4793 if (!EvaluateLValue(SubExpr, Result, Info))
4794 return false;
4795 } else {
4796 Result.set(SubExpr, Info.CurrentCall->Index);
4797 if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
4798 Info, Result, SubExpr))
4799 return false;
4800 }
4801 // The result is a pointer to the first element of the array.
4802 if (const ConstantArrayType *CAT
4803 = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
4804 Result.addArray(Info, E, CAT);
4805 else
4806 Result.Designator.setInvalid();
4807 return true;
4808
4809 case CK_FunctionToPointerDecay:
4810 return EvaluateLValue(SubExpr, Result, Info);
4811 }
4812
4813 return ExprEvaluatorBaseTy::VisitCastExpr(E);
4814 }
4815
VisitCallExpr(const CallExpr * E)4816 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
4817 if (IsStringLiteralCall(E))
4818 return Success(E);
4819
4820 switch (E->getBuiltinCallee()) {
4821 case Builtin::BI__builtin_addressof:
4822 return EvaluateLValue(E->getArg(0), Result, Info);
4823
4824 default:
4825 return ExprEvaluatorBaseTy::VisitCallExpr(E);
4826 }
4827 }
4828
4829 //===----------------------------------------------------------------------===//
4830 // Member Pointer Evaluation
4831 //===----------------------------------------------------------------------===//
4832
4833 namespace {
4834 class MemberPointerExprEvaluator
4835 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
4836 MemberPtr &Result;
4837
Success(const ValueDecl * D)4838 bool Success(const ValueDecl *D) {
4839 Result = MemberPtr(D);
4840 return true;
4841 }
4842 public:
4843
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)4844 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
4845 : ExprEvaluatorBaseTy(Info), Result(Result) {}
4846
Success(const APValue & V,const Expr * E)4847 bool Success(const APValue &V, const Expr *E) {
4848 Result.setFrom(V);
4849 return true;
4850 }
ZeroInitialization(const Expr * E)4851 bool ZeroInitialization(const Expr *E) {
4852 return Success((const ValueDecl*)nullptr);
4853 }
4854
4855 bool VisitCastExpr(const CastExpr *E);
4856 bool VisitUnaryAddrOf(const UnaryOperator *E);
4857 };
4858 } // end anonymous namespace
4859
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)4860 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
4861 EvalInfo &Info) {
4862 assert(E->isRValue() && E->getType()->isMemberPointerType());
4863 return MemberPointerExprEvaluator(Info, Result).Visit(E);
4864 }
4865
VisitCastExpr(const CastExpr * E)4866 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
4867 switch (E->getCastKind()) {
4868 default:
4869 return ExprEvaluatorBaseTy::VisitCastExpr(E);
4870
4871 case CK_NullToMemberPointer:
4872 VisitIgnoredValue(E->getSubExpr());
4873 return ZeroInitialization(E);
4874
4875 case CK_BaseToDerivedMemberPointer: {
4876 if (!Visit(E->getSubExpr()))
4877 return false;
4878 if (E->path_empty())
4879 return true;
4880 // Base-to-derived member pointer casts store the path in derived-to-base
4881 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
4882 // the wrong end of the derived->base arc, so stagger the path by one class.
4883 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
4884 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
4885 PathI != PathE; ++PathI) {
4886 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4887 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
4888 if (!Result.castToDerived(Derived))
4889 return Error(E);
4890 }
4891 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
4892 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
4893 return Error(E);
4894 return true;
4895 }
4896
4897 case CK_DerivedToBaseMemberPointer:
4898 if (!Visit(E->getSubExpr()))
4899 return false;
4900 for (CastExpr::path_const_iterator PathI = E->path_begin(),
4901 PathE = E->path_end(); PathI != PathE; ++PathI) {
4902 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
4903 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
4904 if (!Result.castToBase(Base))
4905 return Error(E);
4906 }
4907 return true;
4908 }
4909 }
4910
VisitUnaryAddrOf(const UnaryOperator * E)4911 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4912 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
4913 // member can be formed.
4914 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
4915 }
4916
4917 //===----------------------------------------------------------------------===//
4918 // Record Evaluation
4919 //===----------------------------------------------------------------------===//
4920
4921 namespace {
4922 class RecordExprEvaluator
4923 : public ExprEvaluatorBase<RecordExprEvaluator> {
4924 const LValue &This;
4925 APValue &Result;
4926 public:
4927
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)4928 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
4929 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
4930
Success(const APValue & V,const Expr * E)4931 bool Success(const APValue &V, const Expr *E) {
4932 Result = V;
4933 return true;
4934 }
4935 bool ZeroInitialization(const Expr *E);
4936
4937 bool VisitCastExpr(const CastExpr *E);
4938 bool VisitInitListExpr(const InitListExpr *E);
4939 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
4940 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
4941 };
4942 }
4943
4944 /// Perform zero-initialization on an object of non-union class type.
4945 /// C++11 [dcl.init]p5:
4946 /// To zero-initialize an object or reference of type T means:
4947 /// [...]
4948 /// -- if T is a (possibly cv-qualified) non-union class type,
4949 /// each non-static data member and each base-class subobject is
4950 /// zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)4951 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
4952 const RecordDecl *RD,
4953 const LValue &This, APValue &Result) {
4954 assert(!RD->isUnion() && "Expected non-union class type");
4955 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
4956 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
4957 std::distance(RD->field_begin(), RD->field_end()));
4958
4959 if (RD->isInvalidDecl()) return false;
4960 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4961
4962 if (CD) {
4963 unsigned Index = 0;
4964 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
4965 End = CD->bases_end(); I != End; ++I, ++Index) {
4966 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
4967 LValue Subobject = This;
4968 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
4969 return false;
4970 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
4971 Result.getStructBase(Index)))
4972 return false;
4973 }
4974 }
4975
4976 for (const auto *I : RD->fields()) {
4977 // -- if T is a reference type, no initialization is performed.
4978 if (I->getType()->isReferenceType())
4979 continue;
4980
4981 LValue Subobject = This;
4982 if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
4983 return false;
4984
4985 ImplicitValueInitExpr VIE(I->getType());
4986 if (!EvaluateInPlace(
4987 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
4988 return false;
4989 }
4990
4991 return true;
4992 }
4993
ZeroInitialization(const Expr * E)4994 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
4995 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
4996 if (RD->isInvalidDecl()) return false;
4997 if (RD->isUnion()) {
4998 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
4999 // object's first non-static named data member is zero-initialized
5000 RecordDecl::field_iterator I = RD->field_begin();
5001 if (I == RD->field_end()) {
5002 Result = APValue((const FieldDecl*)nullptr);
5003 return true;
5004 }
5005
5006 LValue Subobject = This;
5007 if (!HandleLValueMember(Info, E, Subobject, *I))
5008 return false;
5009 Result = APValue(*I);
5010 ImplicitValueInitExpr VIE(I->getType());
5011 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
5012 }
5013
5014 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
5015 Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
5016 return false;
5017 }
5018
5019 return HandleClassZeroInitialization(Info, E, RD, This, Result);
5020 }
5021
VisitCastExpr(const CastExpr * E)5022 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
5023 switch (E->getCastKind()) {
5024 default:
5025 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5026
5027 case CK_ConstructorConversion:
5028 return Visit(E->getSubExpr());
5029
5030 case CK_DerivedToBase:
5031 case CK_UncheckedDerivedToBase: {
5032 APValue DerivedObject;
5033 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
5034 return false;
5035 if (!DerivedObject.isStruct())
5036 return Error(E->getSubExpr());
5037
5038 // Derived-to-base rvalue conversion: just slice off the derived part.
5039 APValue *Value = &DerivedObject;
5040 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
5041 for (CastExpr::path_const_iterator PathI = E->path_begin(),
5042 PathE = E->path_end(); PathI != PathE; ++PathI) {
5043 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
5044 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5045 Value = &Value->getStructBase(getBaseIndex(RD, Base));
5046 RD = Base;
5047 }
5048 Result = *Value;
5049 return true;
5050 }
5051 }
5052 }
5053
VisitInitListExpr(const InitListExpr * E)5054 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5055 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5056 if (RD->isInvalidDecl()) return false;
5057 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5058
5059 if (RD->isUnion()) {
5060 const FieldDecl *Field = E->getInitializedFieldInUnion();
5061 Result = APValue(Field);
5062 if (!Field)
5063 return true;
5064
5065 // If the initializer list for a union does not contain any elements, the
5066 // first element of the union is value-initialized.
5067 // FIXME: The element should be initialized from an initializer list.
5068 // Is this difference ever observable for initializer lists which
5069 // we don't build?
5070 ImplicitValueInitExpr VIE(Field->getType());
5071 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
5072
5073 LValue Subobject = This;
5074 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
5075 return false;
5076
5077 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5078 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5079 isa<CXXDefaultInitExpr>(InitExpr));
5080
5081 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
5082 }
5083
5084 assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
5085 "initializer list for class with base classes");
5086 Result = APValue(APValue::UninitStruct(), 0,
5087 std::distance(RD->field_begin(), RD->field_end()));
5088 unsigned ElementNo = 0;
5089 bool Success = true;
5090 for (const auto *Field : RD->fields()) {
5091 // Anonymous bit-fields are not considered members of the class for
5092 // purposes of aggregate initialization.
5093 if (Field->isUnnamedBitfield())
5094 continue;
5095
5096 LValue Subobject = This;
5097
5098 bool HaveInit = ElementNo < E->getNumInits();
5099
5100 // FIXME: Diagnostics here should point to the end of the initializer
5101 // list, not the start.
5102 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
5103 Subobject, Field, &Layout))
5104 return false;
5105
5106 // Perform an implicit value-initialization for members beyond the end of
5107 // the initializer list.
5108 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
5109 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
5110
5111 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5112 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5113 isa<CXXDefaultInitExpr>(Init));
5114
5115 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
5116 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
5117 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
5118 FieldVal, Field))) {
5119 if (!Info.keepEvaluatingAfterFailure())
5120 return false;
5121 Success = false;
5122 }
5123 }
5124
5125 return Success;
5126 }
5127
VisitCXXConstructExpr(const CXXConstructExpr * E)5128 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5129 const CXXConstructorDecl *FD = E->getConstructor();
5130 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
5131
5132 bool ZeroInit = E->requiresZeroInitialization();
5133 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5134 // If we've already performed zero-initialization, we're already done.
5135 if (!Result.isUninit())
5136 return true;
5137
5138 // We can get here in two different ways:
5139 // 1) We're performing value-initialization, and should zero-initialize
5140 // the object, or
5141 // 2) We're performing default-initialization of an object with a trivial
5142 // constexpr default constructor, in which case we should start the
5143 // lifetimes of all the base subobjects (there can be no data member
5144 // subobjects in this case) per [basic.life]p1.
5145 // Either way, ZeroInitialization is appropriate.
5146 return ZeroInitialization(E);
5147 }
5148
5149 const FunctionDecl *Definition = nullptr;
5150 FD->getBody(Definition);
5151
5152 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5153 return false;
5154
5155 // Avoid materializing a temporary for an elidable copy/move constructor.
5156 if (E->isElidable() && !ZeroInit)
5157 if (const MaterializeTemporaryExpr *ME
5158 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5159 return Visit(ME->GetTemporaryExpr());
5160
5161 if (ZeroInit && !ZeroInitialization(E))
5162 return false;
5163
5164 ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5165 return HandleConstructorCall(E->getExprLoc(), This, Args,
5166 cast<CXXConstructorDecl>(Definition), Info,
5167 Result);
5168 }
5169
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5170 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5171 const CXXStdInitializerListExpr *E) {
5172 const ConstantArrayType *ArrayType =
5173 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5174
5175 LValue Array;
5176 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5177 return false;
5178
5179 // Get a pointer to the first element of the array.
5180 Array.addArray(Info, E, ArrayType);
5181
5182 // FIXME: Perform the checks on the field types in SemaInit.
5183 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5184 RecordDecl::field_iterator Field = Record->field_begin();
5185 if (Field == Record->field_end())
5186 return Error(E);
5187
5188 // Start pointer.
5189 if (!Field->getType()->isPointerType() ||
5190 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5191 ArrayType->getElementType()))
5192 return Error(E);
5193
5194 // FIXME: What if the initializer_list type has base classes, etc?
5195 Result = APValue(APValue::UninitStruct(), 0, 2);
5196 Array.moveInto(Result.getStructField(0));
5197
5198 if (++Field == Record->field_end())
5199 return Error(E);
5200
5201 if (Field->getType()->isPointerType() &&
5202 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5203 ArrayType->getElementType())) {
5204 // End pointer.
5205 if (!HandleLValueArrayAdjustment(Info, E, Array,
5206 ArrayType->getElementType(),
5207 ArrayType->getSize().getZExtValue()))
5208 return false;
5209 Array.moveInto(Result.getStructField(1));
5210 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5211 // Length.
5212 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5213 else
5214 return Error(E);
5215
5216 if (++Field != Record->field_end())
5217 return Error(E);
5218
5219 return true;
5220 }
5221
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5222 static bool EvaluateRecord(const Expr *E, const LValue &This,
5223 APValue &Result, EvalInfo &Info) {
5224 assert(E->isRValue() && E->getType()->isRecordType() &&
5225 "can't evaluate expression as a record rvalue");
5226 return RecordExprEvaluator(Info, This, Result).Visit(E);
5227 }
5228
5229 //===----------------------------------------------------------------------===//
5230 // Temporary Evaluation
5231 //
5232 // Temporaries are represented in the AST as rvalues, but generally behave like
5233 // lvalues. The full-object of which the temporary is a subobject is implicitly
5234 // materialized so that a reference can bind to it.
5235 //===----------------------------------------------------------------------===//
5236 namespace {
5237 class TemporaryExprEvaluator
5238 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5239 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)5240 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5241 LValueExprEvaluatorBaseTy(Info, Result) {}
5242
5243 /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)5244 bool VisitConstructExpr(const Expr *E) {
5245 Result.set(E, Info.CurrentCall->Index);
5246 return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5247 Info, Result, E);
5248 }
5249
VisitCastExpr(const CastExpr * E)5250 bool VisitCastExpr(const CastExpr *E) {
5251 switch (E->getCastKind()) {
5252 default:
5253 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5254
5255 case CK_ConstructorConversion:
5256 return VisitConstructExpr(E->getSubExpr());
5257 }
5258 }
VisitInitListExpr(const InitListExpr * E)5259 bool VisitInitListExpr(const InitListExpr *E) {
5260 return VisitConstructExpr(E);
5261 }
VisitCXXConstructExpr(const CXXConstructExpr * E)5262 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5263 return VisitConstructExpr(E);
5264 }
VisitCallExpr(const CallExpr * E)5265 bool VisitCallExpr(const CallExpr *E) {
5266 return VisitConstructExpr(E);
5267 }
5268 };
5269 } // end anonymous namespace
5270
5271 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)5272 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5273 assert(E->isRValue() && E->getType()->isRecordType());
5274 return TemporaryExprEvaluator(Info, Result).Visit(E);
5275 }
5276
5277 //===----------------------------------------------------------------------===//
5278 // Vector Evaluation
5279 //===----------------------------------------------------------------------===//
5280
5281 namespace {
5282 class VectorExprEvaluator
5283 : public ExprEvaluatorBase<VectorExprEvaluator> {
5284 APValue &Result;
5285 public:
5286
VectorExprEvaluator(EvalInfo & info,APValue & Result)5287 VectorExprEvaluator(EvalInfo &info, APValue &Result)
5288 : ExprEvaluatorBaseTy(info), Result(Result) {}
5289
Success(const ArrayRef<APValue> & V,const Expr * E)5290 bool Success(const ArrayRef<APValue> &V, const Expr *E) {
5291 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5292 // FIXME: remove this APValue copy.
5293 Result = APValue(V.data(), V.size());
5294 return true;
5295 }
Success(const APValue & V,const Expr * E)5296 bool Success(const APValue &V, const Expr *E) {
5297 assert(V.isVector());
5298 Result = V;
5299 return true;
5300 }
5301 bool ZeroInitialization(const Expr *E);
5302
VisitUnaryReal(const UnaryOperator * E)5303 bool VisitUnaryReal(const UnaryOperator *E)
5304 { return Visit(E->getSubExpr()); }
5305 bool VisitCastExpr(const CastExpr* E);
5306 bool VisitInitListExpr(const InitListExpr *E);
5307 bool VisitUnaryImag(const UnaryOperator *E);
5308 // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5309 // binary comparisons, binary and/or/xor,
5310 // shufflevector, ExtVectorElementExpr
5311 };
5312 } // end anonymous namespace
5313
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)5314 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5315 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5316 return VectorExprEvaluator(Info, Result).Visit(E);
5317 }
5318
VisitCastExpr(const CastExpr * E)5319 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
5320 const VectorType *VTy = E->getType()->castAs<VectorType>();
5321 unsigned NElts = VTy->getNumElements();
5322
5323 const Expr *SE = E->getSubExpr();
5324 QualType SETy = SE->getType();
5325
5326 switch (E->getCastKind()) {
5327 case CK_VectorSplat: {
5328 APValue Val = APValue();
5329 if (SETy->isIntegerType()) {
5330 APSInt IntResult;
5331 if (!EvaluateInteger(SE, IntResult, Info))
5332 return false;
5333 Val = APValue(IntResult);
5334 } else if (SETy->isRealFloatingType()) {
5335 APFloat F(0.0);
5336 if (!EvaluateFloat(SE, F, Info))
5337 return false;
5338 Val = APValue(F);
5339 } else {
5340 return Error(E);
5341 }
5342
5343 // Splat and create vector APValue.
5344 SmallVector<APValue, 4> Elts(NElts, Val);
5345 return Success(Elts, E);
5346 }
5347 case CK_BitCast: {
5348 // Evaluate the operand into an APInt we can extract from.
5349 llvm::APInt SValInt;
5350 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5351 return false;
5352 // Extract the elements
5353 QualType EltTy = VTy->getElementType();
5354 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5355 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5356 SmallVector<APValue, 4> Elts;
5357 if (EltTy->isRealFloatingType()) {
5358 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5359 unsigned FloatEltSize = EltSize;
5360 if (&Sem == &APFloat::x87DoubleExtended)
5361 FloatEltSize = 80;
5362 for (unsigned i = 0; i < NElts; i++) {
5363 llvm::APInt Elt;
5364 if (BigEndian)
5365 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5366 else
5367 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5368 Elts.push_back(APValue(APFloat(Sem, Elt)));
5369 }
5370 } else if (EltTy->isIntegerType()) {
5371 for (unsigned i = 0; i < NElts; i++) {
5372 llvm::APInt Elt;
5373 if (BigEndian)
5374 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5375 else
5376 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5377 Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5378 }
5379 } else {
5380 return Error(E);
5381 }
5382 return Success(Elts, E);
5383 }
5384 default:
5385 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5386 }
5387 }
5388
5389 bool
VisitInitListExpr(const InitListExpr * E)5390 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5391 const VectorType *VT = E->getType()->castAs<VectorType>();
5392 unsigned NumInits = E->getNumInits();
5393 unsigned NumElements = VT->getNumElements();
5394
5395 QualType EltTy = VT->getElementType();
5396 SmallVector<APValue, 4> Elements;
5397
5398 // The number of initializers can be less than the number of
5399 // vector elements. For OpenCL, this can be due to nested vector
5400 // initialization. For GCC compatibility, missing trailing elements
5401 // should be initialized with zeroes.
5402 unsigned CountInits = 0, CountElts = 0;
5403 while (CountElts < NumElements) {
5404 // Handle nested vector initialization.
5405 if (CountInits < NumInits
5406 && E->getInit(CountInits)->getType()->isVectorType()) {
5407 APValue v;
5408 if (!EvaluateVector(E->getInit(CountInits), v, Info))
5409 return Error(E);
5410 unsigned vlen = v.getVectorLength();
5411 for (unsigned j = 0; j < vlen; j++)
5412 Elements.push_back(v.getVectorElt(j));
5413 CountElts += vlen;
5414 } else if (EltTy->isIntegerType()) {
5415 llvm::APSInt sInt(32);
5416 if (CountInits < NumInits) {
5417 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5418 return false;
5419 } else // trailing integer zero.
5420 sInt = Info.Ctx.MakeIntValue(0, EltTy);
5421 Elements.push_back(APValue(sInt));
5422 CountElts++;
5423 } else {
5424 llvm::APFloat f(0.0);
5425 if (CountInits < NumInits) {
5426 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5427 return false;
5428 } else // trailing float zero.
5429 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5430 Elements.push_back(APValue(f));
5431 CountElts++;
5432 }
5433 CountInits++;
5434 }
5435 return Success(Elements, E);
5436 }
5437
5438 bool
ZeroInitialization(const Expr * E)5439 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5440 const VectorType *VT = E->getType()->getAs<VectorType>();
5441 QualType EltTy = VT->getElementType();
5442 APValue ZeroElement;
5443 if (EltTy->isIntegerType())
5444 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5445 else
5446 ZeroElement =
5447 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5448
5449 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5450 return Success(Elements, E);
5451 }
5452
VisitUnaryImag(const UnaryOperator * E)5453 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5454 VisitIgnoredValue(E->getSubExpr());
5455 return ZeroInitialization(E);
5456 }
5457
5458 //===----------------------------------------------------------------------===//
5459 // Array Evaluation
5460 //===----------------------------------------------------------------------===//
5461
5462 namespace {
5463 class ArrayExprEvaluator
5464 : public ExprEvaluatorBase<ArrayExprEvaluator> {
5465 const LValue &This;
5466 APValue &Result;
5467 public:
5468
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)5469 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5470 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5471
Success(const APValue & V,const Expr * E)5472 bool Success(const APValue &V, const Expr *E) {
5473 assert((V.isArray() || V.isLValue()) &&
5474 "expected array or string literal");
5475 Result = V;
5476 return true;
5477 }
5478
ZeroInitialization(const Expr * E)5479 bool ZeroInitialization(const Expr *E) {
5480 const ConstantArrayType *CAT =
5481 Info.Ctx.getAsConstantArrayType(E->getType());
5482 if (!CAT)
5483 return Error(E);
5484
5485 Result = APValue(APValue::UninitArray(), 0,
5486 CAT->getSize().getZExtValue());
5487 if (!Result.hasArrayFiller()) return true;
5488
5489 // Zero-initialize all elements.
5490 LValue Subobject = This;
5491 Subobject.addArray(Info, E, CAT);
5492 ImplicitValueInitExpr VIE(CAT->getElementType());
5493 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5494 }
5495
5496 bool VisitInitListExpr(const InitListExpr *E);
5497 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5498 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5499 const LValue &Subobject,
5500 APValue *Value, QualType Type);
5501 };
5502 } // end anonymous namespace
5503
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5504 static bool EvaluateArray(const Expr *E, const LValue &This,
5505 APValue &Result, EvalInfo &Info) {
5506 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5507 return ArrayExprEvaluator(Info, This, Result).Visit(E);
5508 }
5509
VisitInitListExpr(const InitListExpr * E)5510 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5511 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5512 if (!CAT)
5513 return Error(E);
5514
5515 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5516 // an appropriately-typed string literal enclosed in braces.
5517 if (E->isStringLiteralInit()) {
5518 LValue LV;
5519 if (!EvaluateLValue(E->getInit(0), LV, Info))
5520 return false;
5521 APValue Val;
5522 LV.moveInto(Val);
5523 return Success(Val, E);
5524 }
5525
5526 bool Success = true;
5527
5528 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5529 "zero-initialized array shouldn't have any initialized elts");
5530 APValue Filler;
5531 if (Result.isArray() && Result.hasArrayFiller())
5532 Filler = Result.getArrayFiller();
5533
5534 unsigned NumEltsToInit = E->getNumInits();
5535 unsigned NumElts = CAT->getSize().getZExtValue();
5536 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
5537
5538 // If the initializer might depend on the array index, run it for each
5539 // array element. For now, just whitelist non-class value-initialization.
5540 if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5541 NumEltsToInit = NumElts;
5542
5543 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5544
5545 // If the array was previously zero-initialized, preserve the
5546 // zero-initialized values.
5547 if (!Filler.isUninit()) {
5548 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5549 Result.getArrayInitializedElt(I) = Filler;
5550 if (Result.hasArrayFiller())
5551 Result.getArrayFiller() = Filler;
5552 }
5553
5554 LValue Subobject = This;
5555 Subobject.addArray(Info, E, CAT);
5556 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5557 const Expr *Init =
5558 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5559 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5560 Info, Subobject, Init) ||
5561 !HandleLValueArrayAdjustment(Info, Init, Subobject,
5562 CAT->getElementType(), 1)) {
5563 if (!Info.keepEvaluatingAfterFailure())
5564 return false;
5565 Success = false;
5566 }
5567 }
5568
5569 if (!Result.hasArrayFiller())
5570 return Success;
5571
5572 // If we get here, we have a trivial filler, which we can just evaluate
5573 // once and splat over the rest of the array elements.
5574 assert(FillerExpr && "no array filler for incomplete init list");
5575 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5576 FillerExpr) && Success;
5577 }
5578
VisitCXXConstructExpr(const CXXConstructExpr * E)5579 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5580 return VisitCXXConstructExpr(E, This, &Result, E->getType());
5581 }
5582
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)5583 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5584 const LValue &Subobject,
5585 APValue *Value,
5586 QualType Type) {
5587 bool HadZeroInit = !Value->isUninit();
5588
5589 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5590 unsigned N = CAT->getSize().getZExtValue();
5591
5592 // Preserve the array filler if we had prior zero-initialization.
5593 APValue Filler =
5594 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5595 : APValue();
5596
5597 *Value = APValue(APValue::UninitArray(), N, N);
5598
5599 if (HadZeroInit)
5600 for (unsigned I = 0; I != N; ++I)
5601 Value->getArrayInitializedElt(I) = Filler;
5602
5603 // Initialize the elements.
5604 LValue ArrayElt = Subobject;
5605 ArrayElt.addArray(Info, E, CAT);
5606 for (unsigned I = 0; I != N; ++I)
5607 if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5608 CAT->getElementType()) ||
5609 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5610 CAT->getElementType(), 1))
5611 return false;
5612
5613 return true;
5614 }
5615
5616 if (!Type->isRecordType())
5617 return Error(E);
5618
5619 const CXXConstructorDecl *FD = E->getConstructor();
5620
5621 bool ZeroInit = E->requiresZeroInitialization();
5622 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5623 if (HadZeroInit)
5624 return true;
5625
5626 // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
5627 ImplicitValueInitExpr VIE(Type);
5628 return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5629 }
5630
5631 const FunctionDecl *Definition = nullptr;
5632 FD->getBody(Definition);
5633
5634 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5635 return false;
5636
5637 if (ZeroInit && !HadZeroInit) {
5638 ImplicitValueInitExpr VIE(Type);
5639 if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5640 return false;
5641 }
5642
5643 ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
5644 return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5645 cast<CXXConstructorDecl>(Definition),
5646 Info, *Value);
5647 }
5648
5649 //===----------------------------------------------------------------------===//
5650 // Integer Evaluation
5651 //
5652 // As a GNU extension, we support casting pointers to sufficiently-wide integer
5653 // types and back in constant folding. Integer values are thus represented
5654 // either as an integer-valued APValue, or as an lvalue-valued APValue.
5655 //===----------------------------------------------------------------------===//
5656
5657 namespace {
5658 class IntExprEvaluator
5659 : public ExprEvaluatorBase<IntExprEvaluator> {
5660 APValue &Result;
5661 public:
IntExprEvaluator(EvalInfo & info,APValue & result)5662 IntExprEvaluator(EvalInfo &info, APValue &result)
5663 : ExprEvaluatorBaseTy(info), Result(result) {}
5664
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)5665 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
5666 assert(E->getType()->isIntegralOrEnumerationType() &&
5667 "Invalid evaluation result.");
5668 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
5669 "Invalid evaluation result.");
5670 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5671 "Invalid evaluation result.");
5672 Result = APValue(SI);
5673 return true;
5674 }
Success(const llvm::APSInt & SI,const Expr * E)5675 bool Success(const llvm::APSInt &SI, const Expr *E) {
5676 return Success(SI, E, Result);
5677 }
5678
Success(const llvm::APInt & I,const Expr * E,APValue & Result)5679 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
5680 assert(E->getType()->isIntegralOrEnumerationType() &&
5681 "Invalid evaluation result.");
5682 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5683 "Invalid evaluation result.");
5684 Result = APValue(APSInt(I));
5685 Result.getInt().setIsUnsigned(
5686 E->getType()->isUnsignedIntegerOrEnumerationType());
5687 return true;
5688 }
Success(const llvm::APInt & I,const Expr * E)5689 bool Success(const llvm::APInt &I, const Expr *E) {
5690 return Success(I, E, Result);
5691 }
5692
Success(uint64_t Value,const Expr * E,APValue & Result)5693 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
5694 assert(E->getType()->isIntegralOrEnumerationType() &&
5695 "Invalid evaluation result.");
5696 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
5697 return true;
5698 }
Success(uint64_t Value,const Expr * E)5699 bool Success(uint64_t Value, const Expr *E) {
5700 return Success(Value, E, Result);
5701 }
5702
Success(CharUnits Size,const Expr * E)5703 bool Success(CharUnits Size, const Expr *E) {
5704 return Success(Size.getQuantity(), E);
5705 }
5706
Success(const APValue & V,const Expr * E)5707 bool Success(const APValue &V, const Expr *E) {
5708 if (V.isLValue() || V.isAddrLabelDiff()) {
5709 Result = V;
5710 return true;
5711 }
5712 return Success(V.getInt(), E);
5713 }
5714
ZeroInitialization(const Expr * E)5715 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
5716
5717 //===--------------------------------------------------------------------===//
5718 // Visitor Methods
5719 //===--------------------------------------------------------------------===//
5720
VisitIntegerLiteral(const IntegerLiteral * E)5721 bool VisitIntegerLiteral(const IntegerLiteral *E) {
5722 return Success(E->getValue(), E);
5723 }
VisitCharacterLiteral(const CharacterLiteral * E)5724 bool VisitCharacterLiteral(const CharacterLiteral *E) {
5725 return Success(E->getValue(), E);
5726 }
5727
5728 bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)5729 bool VisitDeclRefExpr(const DeclRefExpr *E) {
5730 if (CheckReferencedDecl(E, E->getDecl()))
5731 return true;
5732
5733 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
5734 }
VisitMemberExpr(const MemberExpr * E)5735 bool VisitMemberExpr(const MemberExpr *E) {
5736 if (CheckReferencedDecl(E, E->getMemberDecl())) {
5737 VisitIgnoredValue(E->getBase());
5738 return true;
5739 }
5740
5741 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
5742 }
5743
5744 bool VisitCallExpr(const CallExpr *E);
5745 bool VisitBinaryOperator(const BinaryOperator *E);
5746 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
5747 bool VisitUnaryOperator(const UnaryOperator *E);
5748
5749 bool VisitCastExpr(const CastExpr* E);
5750 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
5751
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)5752 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
5753 return Success(E->getValue(), E);
5754 }
5755
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)5756 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
5757 return Success(E->getValue(), E);
5758 }
5759
5760 // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)5761 bool VisitGNUNullExpr(const GNUNullExpr *E) {
5762 return ZeroInitialization(E);
5763 }
5764
VisitTypeTraitExpr(const TypeTraitExpr * E)5765 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
5766 return Success(E->getValue(), E);
5767 }
5768
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)5769 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
5770 return Success(E->getValue(), E);
5771 }
5772
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)5773 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
5774 return Success(E->getValue(), E);
5775 }
5776
5777 bool VisitUnaryReal(const UnaryOperator *E);
5778 bool VisitUnaryImag(const UnaryOperator *E);
5779
5780 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
5781 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
5782
5783 private:
5784 CharUnits GetAlignOfExpr(const Expr *E);
5785 CharUnits GetAlignOfType(QualType T);
5786 static QualType GetObjectType(APValue::LValueBase B);
5787 bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
5788 // FIXME: Missing: array subscript of vector, member of vector
5789 };
5790 } // end anonymous namespace
5791
5792 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
5793 /// produce either the integer value or a pointer.
5794 ///
5795 /// GCC has a heinous extension which folds casts between pointer types and
5796 /// pointer-sized integral types. We support this by allowing the evaluation of
5797 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
5798 /// Some simple arithmetic on such values is supported (they are treated much
5799 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)5800 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
5801 EvalInfo &Info) {
5802 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
5803 return IntExprEvaluator(Info, Result).Visit(E);
5804 }
5805
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)5806 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
5807 APValue Val;
5808 if (!EvaluateIntegerOrLValue(E, Val, Info))
5809 return false;
5810 if (!Val.isInt()) {
5811 // FIXME: It would be better to produce the diagnostic for casting
5812 // a pointer to an integer.
5813 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
5814 return false;
5815 }
5816 Result = Val.getInt();
5817 return true;
5818 }
5819
5820 /// Check whether the given declaration can be directly converted to an integral
5821 /// rvalue. If not, no diagnostic is produced; there are other things we can
5822 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)5823 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
5824 // Enums are integer constant exprs.
5825 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
5826 // Check for signedness/width mismatches between E type and ECD value.
5827 bool SameSign = (ECD->getInitVal().isSigned()
5828 == E->getType()->isSignedIntegerOrEnumerationType());
5829 bool SameWidth = (ECD->getInitVal().getBitWidth()
5830 == Info.Ctx.getIntWidth(E->getType()));
5831 if (SameSign && SameWidth)
5832 return Success(ECD->getInitVal(), E);
5833 else {
5834 // Get rid of mismatch (otherwise Success assertions will fail)
5835 // by computing a new value matching the type of E.
5836 llvm::APSInt Val = ECD->getInitVal();
5837 if (!SameSign)
5838 Val.setIsSigned(!ECD->getInitVal().isSigned());
5839 if (!SameWidth)
5840 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
5841 return Success(Val, E);
5842 }
5843 }
5844 return false;
5845 }
5846
5847 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
5848 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E)5849 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
5850 // The following enum mimics the values returned by GCC.
5851 // FIXME: Does GCC differ between lvalue and rvalue references here?
5852 enum gcc_type_class {
5853 no_type_class = -1,
5854 void_type_class, integer_type_class, char_type_class,
5855 enumeral_type_class, boolean_type_class,
5856 pointer_type_class, reference_type_class, offset_type_class,
5857 real_type_class, complex_type_class,
5858 function_type_class, method_type_class,
5859 record_type_class, union_type_class,
5860 array_type_class, string_type_class,
5861 lang_type_class
5862 };
5863
5864 // If no argument was supplied, default to "no_type_class". This isn't
5865 // ideal, however it is what gcc does.
5866 if (E->getNumArgs() == 0)
5867 return no_type_class;
5868
5869 QualType ArgTy = E->getArg(0)->getType();
5870 if (ArgTy->isVoidType())
5871 return void_type_class;
5872 else if (ArgTy->isEnumeralType())
5873 return enumeral_type_class;
5874 else if (ArgTy->isBooleanType())
5875 return boolean_type_class;
5876 else if (ArgTy->isCharType())
5877 return string_type_class; // gcc doesn't appear to use char_type_class
5878 else if (ArgTy->isIntegerType())
5879 return integer_type_class;
5880 else if (ArgTy->isPointerType())
5881 return pointer_type_class;
5882 else if (ArgTy->isReferenceType())
5883 return reference_type_class;
5884 else if (ArgTy->isRealType())
5885 return real_type_class;
5886 else if (ArgTy->isComplexType())
5887 return complex_type_class;
5888 else if (ArgTy->isFunctionType())
5889 return function_type_class;
5890 else if (ArgTy->isStructureOrClassType())
5891 return record_type_class;
5892 else if (ArgTy->isUnionType())
5893 return union_type_class;
5894 else if (ArgTy->isArrayType())
5895 return array_type_class;
5896 else if (ArgTy->isUnionType())
5897 return union_type_class;
5898 else // FIXME: offset_type_class, method_type_class, & lang_type_class?
5899 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
5900 }
5901
5902 /// EvaluateBuiltinConstantPForLValue - Determine the result of
5903 /// __builtin_constant_p when applied to the given lvalue.
5904 ///
5905 /// An lvalue is only "constant" if it is a pointer or reference to the first
5906 /// character of a string literal.
5907 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)5908 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
5909 const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
5910 return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
5911 }
5912
5913 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
5914 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)5915 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
5916 QualType ArgType = Arg->getType();
5917
5918 // __builtin_constant_p always has one operand. The rules which gcc follows
5919 // are not precisely documented, but are as follows:
5920 //
5921 // - If the operand is of integral, floating, complex or enumeration type,
5922 // and can be folded to a known value of that type, it returns 1.
5923 // - If the operand and can be folded to a pointer to the first character
5924 // of a string literal (or such a pointer cast to an integral type), it
5925 // returns 1.
5926 //
5927 // Otherwise, it returns 0.
5928 //
5929 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
5930 // its support for this does not currently work.
5931 if (ArgType->isIntegralOrEnumerationType()) {
5932 Expr::EvalResult Result;
5933 if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
5934 return false;
5935
5936 APValue &V = Result.Val;
5937 if (V.getKind() == APValue::Int)
5938 return true;
5939
5940 return EvaluateBuiltinConstantPForLValue(V);
5941 } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
5942 return Arg->isEvaluatable(Ctx);
5943 } else if (ArgType->isPointerType() || Arg->isGLValue()) {
5944 LValue LV;
5945 Expr::EvalStatus Status;
5946 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
5947 if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
5948 : EvaluatePointer(Arg, LV, Info)) &&
5949 !Status.HasSideEffects)
5950 return EvaluateBuiltinConstantPForLValue(LV);
5951 }
5952
5953 // Anything else isn't considered to be sufficiently constant.
5954 return false;
5955 }
5956
5957 /// Retrieves the "underlying object type" of the given expression,
5958 /// as used by __builtin_object_size.
GetObjectType(APValue::LValueBase B)5959 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
5960 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
5961 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
5962 return VD->getType();
5963 } else if (const Expr *E = B.get<const Expr*>()) {
5964 if (isa<CompoundLiteralExpr>(E))
5965 return E->getType();
5966 }
5967
5968 return QualType();
5969 }
5970
TryEvaluateBuiltinObjectSize(const CallExpr * E)5971 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
5972 LValue Base;
5973
5974 {
5975 // The operand of __builtin_object_size is never evaluated for side-effects.
5976 // If there are any, but we can determine the pointed-to object anyway, then
5977 // ignore the side-effects.
5978 SpeculativeEvaluationRAII SpeculativeEval(Info);
5979 if (!EvaluatePointer(E->getArg(0), Base, Info))
5980 return false;
5981 }
5982
5983 // If we can prove the base is null, lower to zero now.
5984 if (!Base.getLValueBase()) return Success(0, E);
5985
5986 QualType T = GetObjectType(Base.getLValueBase());
5987 if (T.isNull() ||
5988 T->isIncompleteType() ||
5989 T->isFunctionType() ||
5990 T->isVariablyModifiedType() ||
5991 T->isDependentType())
5992 return Error(E);
5993
5994 CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
5995 CharUnits Offset = Base.getLValueOffset();
5996
5997 if (!Offset.isNegative() && Offset <= Size)
5998 Size -= Offset;
5999 else
6000 Size = CharUnits::Zero();
6001 return Success(Size, E);
6002 }
6003
VisitCallExpr(const CallExpr * E)6004 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
6005 switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
6006 default:
6007 return ExprEvaluatorBaseTy::VisitCallExpr(E);
6008
6009 case Builtin::BI__builtin_object_size: {
6010 if (TryEvaluateBuiltinObjectSize(E))
6011 return true;
6012
6013 // If evaluating the argument has side-effects, we can't determine the size
6014 // of the object, and so we lower it to unknown now. CodeGen relies on us to
6015 // handle all cases where the expression has side-effects.
6016 if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
6017 if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
6018 return Success(-1ULL, E);
6019 return Success(0, E);
6020 }
6021
6022 // Expression had no side effects, but we couldn't statically determine the
6023 // size of the referenced object.
6024 switch (Info.EvalMode) {
6025 case EvalInfo::EM_ConstantExpression:
6026 case EvalInfo::EM_PotentialConstantExpression:
6027 case EvalInfo::EM_ConstantFold:
6028 case EvalInfo::EM_EvaluateForOverflow:
6029 case EvalInfo::EM_IgnoreSideEffects:
6030 return Error(E);
6031 case EvalInfo::EM_ConstantExpressionUnevaluated:
6032 case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
6033 return Success(-1ULL, E);
6034 }
6035 }
6036
6037 case Builtin::BI__builtin_bswap16:
6038 case Builtin::BI__builtin_bswap32:
6039 case Builtin::BI__builtin_bswap64: {
6040 APSInt Val;
6041 if (!EvaluateInteger(E->getArg(0), Val, Info))
6042 return false;
6043
6044 return Success(Val.byteSwap(), E);
6045 }
6046
6047 case Builtin::BI__builtin_classify_type:
6048 return Success(EvaluateBuiltinClassifyType(E), E);
6049
6050 // FIXME: BI__builtin_clrsb
6051 // FIXME: BI__builtin_clrsbl
6052 // FIXME: BI__builtin_clrsbll
6053
6054 case Builtin::BI__builtin_clz:
6055 case Builtin::BI__builtin_clzl:
6056 case Builtin::BI__builtin_clzll:
6057 case Builtin::BI__builtin_clzs: {
6058 APSInt Val;
6059 if (!EvaluateInteger(E->getArg(0), Val, Info))
6060 return false;
6061 if (!Val)
6062 return Error(E);
6063
6064 return Success(Val.countLeadingZeros(), E);
6065 }
6066
6067 case Builtin::BI__builtin_constant_p:
6068 return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
6069
6070 case Builtin::BI__builtin_ctz:
6071 case Builtin::BI__builtin_ctzl:
6072 case Builtin::BI__builtin_ctzll:
6073 case Builtin::BI__builtin_ctzs: {
6074 APSInt Val;
6075 if (!EvaluateInteger(E->getArg(0), Val, Info))
6076 return false;
6077 if (!Val)
6078 return Error(E);
6079
6080 return Success(Val.countTrailingZeros(), E);
6081 }
6082
6083 case Builtin::BI__builtin_eh_return_data_regno: {
6084 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6085 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
6086 return Success(Operand, E);
6087 }
6088
6089 case Builtin::BI__builtin_expect:
6090 return Visit(E->getArg(0));
6091
6092 case Builtin::BI__builtin_ffs:
6093 case Builtin::BI__builtin_ffsl:
6094 case Builtin::BI__builtin_ffsll: {
6095 APSInt Val;
6096 if (!EvaluateInteger(E->getArg(0), Val, Info))
6097 return false;
6098
6099 unsigned N = Val.countTrailingZeros();
6100 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
6101 }
6102
6103 case Builtin::BI__builtin_fpclassify: {
6104 APFloat Val(0.0);
6105 if (!EvaluateFloat(E->getArg(5), Val, Info))
6106 return false;
6107 unsigned Arg;
6108 switch (Val.getCategory()) {
6109 case APFloat::fcNaN: Arg = 0; break;
6110 case APFloat::fcInfinity: Arg = 1; break;
6111 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
6112 case APFloat::fcZero: Arg = 4; break;
6113 }
6114 return Visit(E->getArg(Arg));
6115 }
6116
6117 case Builtin::BI__builtin_isinf_sign: {
6118 APFloat Val(0.0);
6119 return EvaluateFloat(E->getArg(0), Val, Info) &&
6120 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
6121 }
6122
6123 case Builtin::BI__builtin_isinf: {
6124 APFloat Val(0.0);
6125 return EvaluateFloat(E->getArg(0), Val, Info) &&
6126 Success(Val.isInfinity() ? 1 : 0, E);
6127 }
6128
6129 case Builtin::BI__builtin_isfinite: {
6130 APFloat Val(0.0);
6131 return EvaluateFloat(E->getArg(0), Val, Info) &&
6132 Success(Val.isFinite() ? 1 : 0, E);
6133 }
6134
6135 case Builtin::BI__builtin_isnan: {
6136 APFloat Val(0.0);
6137 return EvaluateFloat(E->getArg(0), Val, Info) &&
6138 Success(Val.isNaN() ? 1 : 0, E);
6139 }
6140
6141 case Builtin::BI__builtin_isnormal: {
6142 APFloat Val(0.0);
6143 return EvaluateFloat(E->getArg(0), Val, Info) &&
6144 Success(Val.isNormal() ? 1 : 0, E);
6145 }
6146
6147 case Builtin::BI__builtin_parity:
6148 case Builtin::BI__builtin_parityl:
6149 case Builtin::BI__builtin_parityll: {
6150 APSInt Val;
6151 if (!EvaluateInteger(E->getArg(0), Val, Info))
6152 return false;
6153
6154 return Success(Val.countPopulation() % 2, E);
6155 }
6156
6157 case Builtin::BI__builtin_popcount:
6158 case Builtin::BI__builtin_popcountl:
6159 case Builtin::BI__builtin_popcountll: {
6160 APSInt Val;
6161 if (!EvaluateInteger(E->getArg(0), Val, Info))
6162 return false;
6163
6164 return Success(Val.countPopulation(), E);
6165 }
6166
6167 case Builtin::BIstrlen:
6168 // A call to strlen is not a constant expression.
6169 if (Info.getLangOpts().CPlusPlus11)
6170 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
6171 << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
6172 else
6173 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6174 // Fall through.
6175 case Builtin::BI__builtin_strlen: {
6176 // As an extension, we support __builtin_strlen() as a constant expression,
6177 // and support folding strlen() to a constant.
6178 LValue String;
6179 if (!EvaluatePointer(E->getArg(0), String, Info))
6180 return false;
6181
6182 // Fast path: if it's a string literal, search the string value.
6183 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
6184 String.getLValueBase().dyn_cast<const Expr *>())) {
6185 // The string literal may have embedded null characters. Find the first
6186 // one and truncate there.
6187 StringRef Str = S->getBytes();
6188 int64_t Off = String.Offset.getQuantity();
6189 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
6190 S->getCharByteWidth() == 1) {
6191 Str = Str.substr(Off);
6192
6193 StringRef::size_type Pos = Str.find(0);
6194 if (Pos != StringRef::npos)
6195 Str = Str.substr(0, Pos);
6196
6197 return Success(Str.size(), E);
6198 }
6199
6200 // Fall through to slow path to issue appropriate diagnostic.
6201 }
6202
6203 // Slow path: scan the bytes of the string looking for the terminating 0.
6204 QualType CharTy = E->getArg(0)->getType()->getPointeeType();
6205 for (uint64_t Strlen = 0; /**/; ++Strlen) {
6206 APValue Char;
6207 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
6208 !Char.isInt())
6209 return false;
6210 if (!Char.getInt())
6211 return Success(Strlen, E);
6212 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
6213 return false;
6214 }
6215 }
6216
6217 case Builtin::BI__atomic_always_lock_free:
6218 case Builtin::BI__atomic_is_lock_free:
6219 case Builtin::BI__c11_atomic_is_lock_free: {
6220 APSInt SizeVal;
6221 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
6222 return false;
6223
6224 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
6225 // of two less than the maximum inline atomic width, we know it is
6226 // lock-free. If the size isn't a power of two, or greater than the
6227 // maximum alignment where we promote atomics, we know it is not lock-free
6228 // (at least not in the sense of atomic_is_lock_free). Otherwise,
6229 // the answer can only be determined at runtime; for example, 16-byte
6230 // atomics have lock-free implementations on some, but not all,
6231 // x86-64 processors.
6232
6233 // Check power-of-two.
6234 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
6235 if (Size.isPowerOfTwo()) {
6236 // Check against inlining width.
6237 unsigned InlineWidthBits =
6238 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
6239 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
6240 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
6241 Size == CharUnits::One() ||
6242 E->getArg(1)->isNullPointerConstant(Info.Ctx,
6243 Expr::NPC_NeverValueDependent))
6244 // OK, we will inline appropriately-aligned operations of this size,
6245 // and _Atomic(T) is appropriately-aligned.
6246 return Success(1, E);
6247
6248 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
6249 castAs<PointerType>()->getPointeeType();
6250 if (!PointeeType->isIncompleteType() &&
6251 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
6252 // OK, we will inline operations on this object.
6253 return Success(1, E);
6254 }
6255 }
6256 }
6257
6258 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
6259 Success(0, E) : Error(E);
6260 }
6261 }
6262 }
6263
HasSameBase(const LValue & A,const LValue & B)6264 static bool HasSameBase(const LValue &A, const LValue &B) {
6265 if (!A.getLValueBase())
6266 return !B.getLValueBase();
6267 if (!B.getLValueBase())
6268 return false;
6269
6270 if (A.getLValueBase().getOpaqueValue() !=
6271 B.getLValueBase().getOpaqueValue()) {
6272 const Decl *ADecl = GetLValueBaseDecl(A);
6273 if (!ADecl)
6274 return false;
6275 const Decl *BDecl = GetLValueBaseDecl(B);
6276 if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
6277 return false;
6278 }
6279
6280 return IsGlobalLValue(A.getLValueBase()) ||
6281 A.getLValueCallIndex() == B.getLValueCallIndex();
6282 }
6283
6284 namespace {
6285
6286 /// \brief Data recursive integer evaluator of certain binary operators.
6287 ///
6288 /// We use a data recursive algorithm for binary operators so that we are able
6289 /// to handle extreme cases of chained binary operators without causing stack
6290 /// overflow.
6291 class DataRecursiveIntBinOpEvaluator {
6292 struct EvalResult {
6293 APValue Val;
6294 bool Failed;
6295
EvalResult__anon79c4fed31311::DataRecursiveIntBinOpEvaluator::EvalResult6296 EvalResult() : Failed(false) { }
6297
swap__anon79c4fed31311::DataRecursiveIntBinOpEvaluator::EvalResult6298 void swap(EvalResult &RHS) {
6299 Val.swap(RHS.Val);
6300 Failed = RHS.Failed;
6301 RHS.Failed = false;
6302 }
6303 };
6304
6305 struct Job {
6306 const Expr *E;
6307 EvalResult LHSResult; // meaningful only for binary operator expression.
6308 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
6309
Job__anon79c4fed31311::DataRecursiveIntBinOpEvaluator::Job6310 Job() : StoredInfo(nullptr) {}
startSpeculativeEval__anon79c4fed31311::DataRecursiveIntBinOpEvaluator::Job6311 void startSpeculativeEval(EvalInfo &Info) {
6312 OldEvalStatus = Info.EvalStatus;
6313 Info.EvalStatus.Diag = nullptr;
6314 StoredInfo = &Info;
6315 }
~Job__anon79c4fed31311::DataRecursiveIntBinOpEvaluator::Job6316 ~Job() {
6317 if (StoredInfo) {
6318 StoredInfo->EvalStatus = OldEvalStatus;
6319 }
6320 }
6321 private:
6322 EvalInfo *StoredInfo; // non-null if status changed.
6323 Expr::EvalStatus OldEvalStatus;
6324 };
6325
6326 SmallVector<Job, 16> Queue;
6327
6328 IntExprEvaluator &IntEval;
6329 EvalInfo &Info;
6330 APValue &FinalResult;
6331
6332 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)6333 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
6334 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
6335
6336 /// \brief True if \param E is a binary operator that we are going to handle
6337 /// data recursively.
6338 /// We handle binary operators that are comma, logical, or that have operands
6339 /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)6340 static bool shouldEnqueue(const BinaryOperator *E) {
6341 return E->getOpcode() == BO_Comma ||
6342 E->isLogicalOp() ||
6343 (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6344 E->getRHS()->getType()->isIntegralOrEnumerationType());
6345 }
6346
Traverse(const BinaryOperator * E)6347 bool Traverse(const BinaryOperator *E) {
6348 enqueue(E);
6349 EvalResult PrevResult;
6350 while (!Queue.empty())
6351 process(PrevResult);
6352
6353 if (PrevResult.Failed) return false;
6354
6355 FinalResult.swap(PrevResult.Val);
6356 return true;
6357 }
6358
6359 private:
Success(uint64_t Value,const Expr * E,APValue & Result)6360 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6361 return IntEval.Success(Value, E, Result);
6362 }
Success(const APSInt & Value,const Expr * E,APValue & Result)6363 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
6364 return IntEval.Success(Value, E, Result);
6365 }
Error(const Expr * E)6366 bool Error(const Expr *E) {
6367 return IntEval.Error(E);
6368 }
Error(const Expr * E,diag::kind D)6369 bool Error(const Expr *E, diag::kind D) {
6370 return IntEval.Error(E, D);
6371 }
6372
CCEDiag(const Expr * E,diag::kind D)6373 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6374 return Info.CCEDiag(E, D);
6375 }
6376
6377 // \brief Returns true if visiting the RHS is necessary, false otherwise.
6378 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6379 bool &SuppressRHSDiags);
6380
6381 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6382 const BinaryOperator *E, APValue &Result);
6383
EvaluateExpr(const Expr * E,EvalResult & Result)6384 void EvaluateExpr(const Expr *E, EvalResult &Result) {
6385 Result.Failed = !Evaluate(Result.Val, Info, E);
6386 if (Result.Failed)
6387 Result.Val = APValue();
6388 }
6389
6390 void process(EvalResult &Result);
6391
enqueue(const Expr * E)6392 void enqueue(const Expr *E) {
6393 E = E->IgnoreParens();
6394 Queue.resize(Queue.size()+1);
6395 Queue.back().E = E;
6396 Queue.back().Kind = Job::AnyExprKind;
6397 }
6398 };
6399
6400 }
6401
6402 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)6403 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6404 bool &SuppressRHSDiags) {
6405 if (E->getOpcode() == BO_Comma) {
6406 // Ignore LHS but note if we could not evaluate it.
6407 if (LHSResult.Failed)
6408 return Info.noteSideEffect();
6409 return true;
6410 }
6411
6412 if (E->isLogicalOp()) {
6413 bool LHSAsBool;
6414 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
6415 // We were able to evaluate the LHS, see if we can get away with not
6416 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
6417 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
6418 Success(LHSAsBool, E, LHSResult.Val);
6419 return false; // Ignore RHS
6420 }
6421 } else {
6422 LHSResult.Failed = true;
6423
6424 // Since we weren't able to evaluate the left hand side, it
6425 // must have had side effects.
6426 if (!Info.noteSideEffect())
6427 return false;
6428
6429 // We can't evaluate the LHS; however, sometimes the result
6430 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6431 // Don't ignore RHS and suppress diagnostics from this arm.
6432 SuppressRHSDiags = true;
6433 }
6434
6435 return true;
6436 }
6437
6438 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6439 E->getRHS()->getType()->isIntegralOrEnumerationType());
6440
6441 if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
6442 return false; // Ignore RHS;
6443
6444 return true;
6445 }
6446
6447 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)6448 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6449 const BinaryOperator *E, APValue &Result) {
6450 if (E->getOpcode() == BO_Comma) {
6451 if (RHSResult.Failed)
6452 return false;
6453 Result = RHSResult.Val;
6454 return true;
6455 }
6456
6457 if (E->isLogicalOp()) {
6458 bool lhsResult, rhsResult;
6459 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
6460 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
6461
6462 if (LHSIsOK) {
6463 if (RHSIsOK) {
6464 if (E->getOpcode() == BO_LOr)
6465 return Success(lhsResult || rhsResult, E, Result);
6466 else
6467 return Success(lhsResult && rhsResult, E, Result);
6468 }
6469 } else {
6470 if (RHSIsOK) {
6471 // We can't evaluate the LHS; however, sometimes the result
6472 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6473 if (rhsResult == (E->getOpcode() == BO_LOr))
6474 return Success(rhsResult, E, Result);
6475 }
6476 }
6477
6478 return false;
6479 }
6480
6481 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6482 E->getRHS()->getType()->isIntegralOrEnumerationType());
6483
6484 if (LHSResult.Failed || RHSResult.Failed)
6485 return false;
6486
6487 const APValue &LHSVal = LHSResult.Val;
6488 const APValue &RHSVal = RHSResult.Val;
6489
6490 // Handle cases like (unsigned long)&a + 4.
6491 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
6492 Result = LHSVal;
6493 CharUnits AdditionalOffset =
6494 CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
6495 if (E->getOpcode() == BO_Add)
6496 Result.getLValueOffset() += AdditionalOffset;
6497 else
6498 Result.getLValueOffset() -= AdditionalOffset;
6499 return true;
6500 }
6501
6502 // Handle cases like 4 + (unsigned long)&a
6503 if (E->getOpcode() == BO_Add &&
6504 RHSVal.isLValue() && LHSVal.isInt()) {
6505 Result = RHSVal;
6506 Result.getLValueOffset() +=
6507 CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
6508 return true;
6509 }
6510
6511 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
6512 // Handle (intptr_t)&&A - (intptr_t)&&B.
6513 if (!LHSVal.getLValueOffset().isZero() ||
6514 !RHSVal.getLValueOffset().isZero())
6515 return false;
6516 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
6517 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
6518 if (!LHSExpr || !RHSExpr)
6519 return false;
6520 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6521 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6522 if (!LHSAddrExpr || !RHSAddrExpr)
6523 return false;
6524 // Make sure both labels come from the same function.
6525 if (LHSAddrExpr->getLabel()->getDeclContext() !=
6526 RHSAddrExpr->getLabel()->getDeclContext())
6527 return false;
6528 Result = APValue(LHSAddrExpr, RHSAddrExpr);
6529 return true;
6530 }
6531
6532 // All the remaining cases expect both operands to be an integer
6533 if (!LHSVal.isInt() || !RHSVal.isInt())
6534 return Error(E);
6535
6536 // Set up the width and signedness manually, in case it can't be deduced
6537 // from the operation we're performing.
6538 // FIXME: Don't do this in the cases where we can deduce it.
6539 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
6540 E->getType()->isUnsignedIntegerOrEnumerationType());
6541 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
6542 RHSVal.getInt(), Value))
6543 return false;
6544 return Success(Value, E, Result);
6545 }
6546
process(EvalResult & Result)6547 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
6548 Job &job = Queue.back();
6549
6550 switch (job.Kind) {
6551 case Job::AnyExprKind: {
6552 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
6553 if (shouldEnqueue(Bop)) {
6554 job.Kind = Job::BinOpKind;
6555 enqueue(Bop->getLHS());
6556 return;
6557 }
6558 }
6559
6560 EvaluateExpr(job.E, Result);
6561 Queue.pop_back();
6562 return;
6563 }
6564
6565 case Job::BinOpKind: {
6566 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6567 bool SuppressRHSDiags = false;
6568 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
6569 Queue.pop_back();
6570 return;
6571 }
6572 if (SuppressRHSDiags)
6573 job.startSpeculativeEval(Info);
6574 job.LHSResult.swap(Result);
6575 job.Kind = Job::BinOpVisitedLHSKind;
6576 enqueue(Bop->getRHS());
6577 return;
6578 }
6579
6580 case Job::BinOpVisitedLHSKind: {
6581 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6582 EvalResult RHS;
6583 RHS.swap(Result);
6584 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
6585 Queue.pop_back();
6586 return;
6587 }
6588 }
6589
6590 llvm_unreachable("Invalid Job::Kind!");
6591 }
6592
VisitBinaryOperator(const BinaryOperator * E)6593 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
6594 if (E->isAssignmentOp())
6595 return Error(E);
6596
6597 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
6598 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
6599
6600 QualType LHSTy = E->getLHS()->getType();
6601 QualType RHSTy = E->getRHS()->getType();
6602
6603 if (LHSTy->isAnyComplexType()) {
6604 assert(RHSTy->isAnyComplexType() && "Invalid comparison");
6605 ComplexValue LHS, RHS;
6606
6607 bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
6608 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6609 return false;
6610
6611 if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
6612 return false;
6613
6614 if (LHS.isComplexFloat()) {
6615 APFloat::cmpResult CR_r =
6616 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
6617 APFloat::cmpResult CR_i =
6618 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
6619
6620 if (E->getOpcode() == BO_EQ)
6621 return Success((CR_r == APFloat::cmpEqual &&
6622 CR_i == APFloat::cmpEqual), E);
6623 else {
6624 assert(E->getOpcode() == BO_NE &&
6625 "Invalid complex comparison.");
6626 return Success(((CR_r == APFloat::cmpGreaterThan ||
6627 CR_r == APFloat::cmpLessThan ||
6628 CR_r == APFloat::cmpUnordered) ||
6629 (CR_i == APFloat::cmpGreaterThan ||
6630 CR_i == APFloat::cmpLessThan ||
6631 CR_i == APFloat::cmpUnordered)), E);
6632 }
6633 } else {
6634 if (E->getOpcode() == BO_EQ)
6635 return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
6636 LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
6637 else {
6638 assert(E->getOpcode() == BO_NE &&
6639 "Invalid compex comparison.");
6640 return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
6641 LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
6642 }
6643 }
6644 }
6645
6646 if (LHSTy->isRealFloatingType() &&
6647 RHSTy->isRealFloatingType()) {
6648 APFloat RHS(0.0), LHS(0.0);
6649
6650 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
6651 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6652 return false;
6653
6654 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
6655 return false;
6656
6657 APFloat::cmpResult CR = LHS.compare(RHS);
6658
6659 switch (E->getOpcode()) {
6660 default:
6661 llvm_unreachable("Invalid binary operator!");
6662 case BO_LT:
6663 return Success(CR == APFloat::cmpLessThan, E);
6664 case BO_GT:
6665 return Success(CR == APFloat::cmpGreaterThan, E);
6666 case BO_LE:
6667 return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
6668 case BO_GE:
6669 return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
6670 E);
6671 case BO_EQ:
6672 return Success(CR == APFloat::cmpEqual, E);
6673 case BO_NE:
6674 return Success(CR == APFloat::cmpGreaterThan
6675 || CR == APFloat::cmpLessThan
6676 || CR == APFloat::cmpUnordered, E);
6677 }
6678 }
6679
6680 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
6681 if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
6682 LValue LHSValue, RHSValue;
6683
6684 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
6685 if (!LHSOK && Info.keepEvaluatingAfterFailure())
6686 return false;
6687
6688 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6689 return false;
6690
6691 // Reject differing bases from the normal codepath; we special-case
6692 // comparisons to null.
6693 if (!HasSameBase(LHSValue, RHSValue)) {
6694 if (E->getOpcode() == BO_Sub) {
6695 // Handle &&A - &&B.
6696 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
6697 return false;
6698 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
6699 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
6700 if (!LHSExpr || !RHSExpr)
6701 return false;
6702 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6703 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6704 if (!LHSAddrExpr || !RHSAddrExpr)
6705 return false;
6706 // Make sure both labels come from the same function.
6707 if (LHSAddrExpr->getLabel()->getDeclContext() !=
6708 RHSAddrExpr->getLabel()->getDeclContext())
6709 return false;
6710 Result = APValue(LHSAddrExpr, RHSAddrExpr);
6711 return true;
6712 }
6713 // Inequalities and subtractions between unrelated pointers have
6714 // unspecified or undefined behavior.
6715 if (!E->isEqualityOp())
6716 return Error(E);
6717 // A constant address may compare equal to the address of a symbol.
6718 // The one exception is that address of an object cannot compare equal
6719 // to a null pointer constant.
6720 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
6721 (!RHSValue.Base && !RHSValue.Offset.isZero()))
6722 return Error(E);
6723 // It's implementation-defined whether distinct literals will have
6724 // distinct addresses. In clang, the result of such a comparison is
6725 // unspecified, so it is not a constant expression. However, we do know
6726 // that the address of a literal will be non-null.
6727 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
6728 LHSValue.Base && RHSValue.Base)
6729 return Error(E);
6730 // We can't tell whether weak symbols will end up pointing to the same
6731 // object.
6732 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
6733 return Error(E);
6734 // Pointers with different bases cannot represent the same object.
6735 // (Note that clang defaults to -fmerge-all-constants, which can
6736 // lead to inconsistent results for comparisons involving the address
6737 // of a constant; this generally doesn't matter in practice.)
6738 return Success(E->getOpcode() == BO_NE, E);
6739 }
6740
6741 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
6742 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
6743
6744 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
6745 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
6746
6747 if (E->getOpcode() == BO_Sub) {
6748 // C++11 [expr.add]p6:
6749 // Unless both pointers point to elements of the same array object, or
6750 // one past the last element of the array object, the behavior is
6751 // undefined.
6752 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6753 !AreElementsOfSameArray(getType(LHSValue.Base),
6754 LHSDesignator, RHSDesignator))
6755 CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
6756
6757 QualType Type = E->getLHS()->getType();
6758 QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
6759
6760 CharUnits ElementSize;
6761 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
6762 return false;
6763
6764 // As an extension, a type may have zero size (empty struct or union in
6765 // C, array of zero length). Pointer subtraction in such cases has
6766 // undefined behavior, so is not constant.
6767 if (ElementSize.isZero()) {
6768 Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
6769 << ElementType;
6770 return false;
6771 }
6772
6773 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
6774 // and produce incorrect results when it overflows. Such behavior
6775 // appears to be non-conforming, but is common, so perhaps we should
6776 // assume the standard intended for such cases to be undefined behavior
6777 // and check for them.
6778
6779 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
6780 // overflow in the final conversion to ptrdiff_t.
6781 APSInt LHS(
6782 llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
6783 APSInt RHS(
6784 llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
6785 APSInt ElemSize(
6786 llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
6787 APSInt TrueResult = (LHS - RHS) / ElemSize;
6788 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
6789
6790 if (Result.extend(65) != TrueResult)
6791 HandleOverflow(Info, E, TrueResult, E->getType());
6792 return Success(Result, E);
6793 }
6794
6795 // C++11 [expr.rel]p3:
6796 // Pointers to void (after pointer conversions) can be compared, with a
6797 // result defined as follows: If both pointers represent the same
6798 // address or are both the null pointer value, the result is true if the
6799 // operator is <= or >= and false otherwise; otherwise the result is
6800 // unspecified.
6801 // We interpret this as applying to pointers to *cv* void.
6802 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
6803 E->isRelationalOp())
6804 CCEDiag(E, diag::note_constexpr_void_comparison);
6805
6806 // C++11 [expr.rel]p2:
6807 // - If two pointers point to non-static data members of the same object,
6808 // or to subobjects or array elements fo such members, recursively, the
6809 // pointer to the later declared member compares greater provided the
6810 // two members have the same access control and provided their class is
6811 // not a union.
6812 // [...]
6813 // - Otherwise pointer comparisons are unspecified.
6814 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
6815 E->isRelationalOp()) {
6816 bool WasArrayIndex;
6817 unsigned Mismatch =
6818 FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
6819 RHSDesignator, WasArrayIndex);
6820 // At the point where the designators diverge, the comparison has a
6821 // specified value if:
6822 // - we are comparing array indices
6823 // - we are comparing fields of a union, or fields with the same access
6824 // Otherwise, the result is unspecified and thus the comparison is not a
6825 // constant expression.
6826 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
6827 Mismatch < RHSDesignator.Entries.size()) {
6828 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
6829 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
6830 if (!LF && !RF)
6831 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
6832 else if (!LF)
6833 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6834 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
6835 << RF->getParent() << RF;
6836 else if (!RF)
6837 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
6838 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
6839 << LF->getParent() << LF;
6840 else if (!LF->getParent()->isUnion() &&
6841 LF->getAccess() != RF->getAccess())
6842 CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
6843 << LF << LF->getAccess() << RF << RF->getAccess()
6844 << LF->getParent();
6845 }
6846 }
6847
6848 // The comparison here must be unsigned, and performed with the same
6849 // width as the pointer.
6850 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
6851 uint64_t CompareLHS = LHSOffset.getQuantity();
6852 uint64_t CompareRHS = RHSOffset.getQuantity();
6853 assert(PtrSize <= 64 && "Unexpected pointer width");
6854 uint64_t Mask = ~0ULL >> (64 - PtrSize);
6855 CompareLHS &= Mask;
6856 CompareRHS &= Mask;
6857
6858 // If there is a base and this is a relational operator, we can only
6859 // compare pointers within the object in question; otherwise, the result
6860 // depends on where the object is located in memory.
6861 if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
6862 QualType BaseTy = getType(LHSValue.Base);
6863 if (BaseTy->isIncompleteType())
6864 return Error(E);
6865 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
6866 uint64_t OffsetLimit = Size.getQuantity();
6867 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
6868 return Error(E);
6869 }
6870
6871 switch (E->getOpcode()) {
6872 default: llvm_unreachable("missing comparison operator");
6873 case BO_LT: return Success(CompareLHS < CompareRHS, E);
6874 case BO_GT: return Success(CompareLHS > CompareRHS, E);
6875 case BO_LE: return Success(CompareLHS <= CompareRHS, E);
6876 case BO_GE: return Success(CompareLHS >= CompareRHS, E);
6877 case BO_EQ: return Success(CompareLHS == CompareRHS, E);
6878 case BO_NE: return Success(CompareLHS != CompareRHS, E);
6879 }
6880 }
6881 }
6882
6883 if (LHSTy->isMemberPointerType()) {
6884 assert(E->isEqualityOp() && "unexpected member pointer operation");
6885 assert(RHSTy->isMemberPointerType() && "invalid comparison");
6886
6887 MemberPtr LHSValue, RHSValue;
6888
6889 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
6890 if (!LHSOK && Info.keepEvaluatingAfterFailure())
6891 return false;
6892
6893 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6894 return false;
6895
6896 // C++11 [expr.eq]p2:
6897 // If both operands are null, they compare equal. Otherwise if only one is
6898 // null, they compare unequal.
6899 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
6900 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
6901 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6902 }
6903
6904 // Otherwise if either is a pointer to a virtual member function, the
6905 // result is unspecified.
6906 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
6907 if (MD->isVirtual())
6908 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6909 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
6910 if (MD->isVirtual())
6911 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
6912
6913 // Otherwise they compare equal if and only if they would refer to the
6914 // same member of the same most derived object or the same subobject if
6915 // they were dereferenced with a hypothetical object of the associated
6916 // class type.
6917 bool Equal = LHSValue == RHSValue;
6918 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
6919 }
6920
6921 if (LHSTy->isNullPtrType()) {
6922 assert(E->isComparisonOp() && "unexpected nullptr operation");
6923 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
6924 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
6925 // are compared, the result is true of the operator is <=, >= or ==, and
6926 // false otherwise.
6927 BinaryOperator::Opcode Opcode = E->getOpcode();
6928 return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
6929 }
6930
6931 assert((!LHSTy->isIntegralOrEnumerationType() ||
6932 !RHSTy->isIntegralOrEnumerationType()) &&
6933 "DataRecursiveIntBinOpEvaluator should have handled integral types");
6934 // We can't continue from here for non-integral types.
6935 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
6936 }
6937
GetAlignOfType(QualType T)6938 CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
6939 // C++ [expr.alignof]p3:
6940 // When alignof is applied to a reference type, the result is the
6941 // alignment of the referenced type.
6942 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
6943 T = Ref->getPointeeType();
6944
6945 // __alignof is defined to return the preferred alignment.
6946 return Info.Ctx.toCharUnitsFromBits(
6947 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
6948 }
6949
GetAlignOfExpr(const Expr * E)6950 CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
6951 E = E->IgnoreParens();
6952
6953 // The kinds of expressions that we have special-case logic here for
6954 // should be kept up to date with the special checks for those
6955 // expressions in Sema.
6956
6957 // alignof decl is always accepted, even if it doesn't make sense: we default
6958 // to 1 in those cases.
6959 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6960 return Info.Ctx.getDeclAlign(DRE->getDecl(),
6961 /*RefAsPointee*/true);
6962
6963 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
6964 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
6965 /*RefAsPointee*/true);
6966
6967 return GetAlignOfType(E->getType());
6968 }
6969
6970
6971 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
6972 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)6973 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
6974 const UnaryExprOrTypeTraitExpr *E) {
6975 switch(E->getKind()) {
6976 case UETT_AlignOf: {
6977 if (E->isArgumentType())
6978 return Success(GetAlignOfType(E->getArgumentType()), E);
6979 else
6980 return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
6981 }
6982
6983 case UETT_VecStep: {
6984 QualType Ty = E->getTypeOfArgument();
6985
6986 if (Ty->isVectorType()) {
6987 unsigned n = Ty->castAs<VectorType>()->getNumElements();
6988
6989 // The vec_step built-in functions that take a 3-component
6990 // vector return 4. (OpenCL 1.1 spec 6.11.12)
6991 if (n == 3)
6992 n = 4;
6993
6994 return Success(n, E);
6995 } else
6996 return Success(1, E);
6997 }
6998
6999 case UETT_SizeOf: {
7000 QualType SrcTy = E->getTypeOfArgument();
7001 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
7002 // the result is the size of the referenced type."
7003 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
7004 SrcTy = Ref->getPointeeType();
7005
7006 CharUnits Sizeof;
7007 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
7008 return false;
7009 return Success(Sizeof, E);
7010 }
7011 }
7012
7013 llvm_unreachable("unknown expr/type trait");
7014 }
7015
VisitOffsetOfExpr(const OffsetOfExpr * OOE)7016 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
7017 CharUnits Result;
7018 unsigned n = OOE->getNumComponents();
7019 if (n == 0)
7020 return Error(OOE);
7021 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
7022 for (unsigned i = 0; i != n; ++i) {
7023 OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
7024 switch (ON.getKind()) {
7025 case OffsetOfExpr::OffsetOfNode::Array: {
7026 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
7027 APSInt IdxResult;
7028 if (!EvaluateInteger(Idx, IdxResult, Info))
7029 return false;
7030 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
7031 if (!AT)
7032 return Error(OOE);
7033 CurrentType = AT->getElementType();
7034 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
7035 Result += IdxResult.getSExtValue() * ElementSize;
7036 break;
7037 }
7038
7039 case OffsetOfExpr::OffsetOfNode::Field: {
7040 FieldDecl *MemberDecl = ON.getField();
7041 const RecordType *RT = CurrentType->getAs<RecordType>();
7042 if (!RT)
7043 return Error(OOE);
7044 RecordDecl *RD = RT->getDecl();
7045 if (RD->isInvalidDecl()) return false;
7046 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7047 unsigned i = MemberDecl->getFieldIndex();
7048 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
7049 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
7050 CurrentType = MemberDecl->getType().getNonReferenceType();
7051 break;
7052 }
7053
7054 case OffsetOfExpr::OffsetOfNode::Identifier:
7055 llvm_unreachable("dependent __builtin_offsetof");
7056
7057 case OffsetOfExpr::OffsetOfNode::Base: {
7058 CXXBaseSpecifier *BaseSpec = ON.getBase();
7059 if (BaseSpec->isVirtual())
7060 return Error(OOE);
7061
7062 // Find the layout of the class whose base we are looking into.
7063 const RecordType *RT = CurrentType->getAs<RecordType>();
7064 if (!RT)
7065 return Error(OOE);
7066 RecordDecl *RD = RT->getDecl();
7067 if (RD->isInvalidDecl()) return false;
7068 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7069
7070 // Find the base class itself.
7071 CurrentType = BaseSpec->getType();
7072 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
7073 if (!BaseRT)
7074 return Error(OOE);
7075
7076 // Add the offset to the base.
7077 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
7078 break;
7079 }
7080 }
7081 }
7082 return Success(Result, OOE);
7083 }
7084
VisitUnaryOperator(const UnaryOperator * E)7085 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7086 switch (E->getOpcode()) {
7087 default:
7088 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
7089 // See C99 6.6p3.
7090 return Error(E);
7091 case UO_Extension:
7092 // FIXME: Should extension allow i-c-e extension expressions in its scope?
7093 // If so, we could clear the diagnostic ID.
7094 return Visit(E->getSubExpr());
7095 case UO_Plus:
7096 // The result is just the value.
7097 return Visit(E->getSubExpr());
7098 case UO_Minus: {
7099 if (!Visit(E->getSubExpr()))
7100 return false;
7101 if (!Result.isInt()) return Error(E);
7102 const APSInt &Value = Result.getInt();
7103 if (Value.isSigned() && Value.isMinSignedValue())
7104 HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
7105 E->getType());
7106 return Success(-Value, E);
7107 }
7108 case UO_Not: {
7109 if (!Visit(E->getSubExpr()))
7110 return false;
7111 if (!Result.isInt()) return Error(E);
7112 return Success(~Result.getInt(), E);
7113 }
7114 case UO_LNot: {
7115 bool bres;
7116 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
7117 return false;
7118 return Success(!bres, E);
7119 }
7120 }
7121 }
7122
7123 /// HandleCast - This is used to evaluate implicit or explicit casts where the
7124 /// result type is integer.
VisitCastExpr(const CastExpr * E)7125 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
7126 const Expr *SubExpr = E->getSubExpr();
7127 QualType DestType = E->getType();
7128 QualType SrcType = SubExpr->getType();
7129
7130 switch (E->getCastKind()) {
7131 case CK_BaseToDerived:
7132 case CK_DerivedToBase:
7133 case CK_UncheckedDerivedToBase:
7134 case CK_Dynamic:
7135 case CK_ToUnion:
7136 case CK_ArrayToPointerDecay:
7137 case CK_FunctionToPointerDecay:
7138 case CK_NullToPointer:
7139 case CK_NullToMemberPointer:
7140 case CK_BaseToDerivedMemberPointer:
7141 case CK_DerivedToBaseMemberPointer:
7142 case CK_ReinterpretMemberPointer:
7143 case CK_ConstructorConversion:
7144 case CK_IntegralToPointer:
7145 case CK_ToVoid:
7146 case CK_VectorSplat:
7147 case CK_IntegralToFloating:
7148 case CK_FloatingCast:
7149 case CK_CPointerToObjCPointerCast:
7150 case CK_BlockPointerToObjCPointerCast:
7151 case CK_AnyPointerToBlockPointerCast:
7152 case CK_ObjCObjectLValueCast:
7153 case CK_FloatingRealToComplex:
7154 case CK_FloatingComplexToReal:
7155 case CK_FloatingComplexCast:
7156 case CK_FloatingComplexToIntegralComplex:
7157 case CK_IntegralRealToComplex:
7158 case CK_IntegralComplexCast:
7159 case CK_IntegralComplexToFloatingComplex:
7160 case CK_BuiltinFnToFnPtr:
7161 case CK_ZeroToOCLEvent:
7162 case CK_NonAtomicToAtomic:
7163 case CK_AddressSpaceConversion:
7164 llvm_unreachable("invalid cast kind for integral value");
7165
7166 case CK_BitCast:
7167 case CK_Dependent:
7168 case CK_LValueBitCast:
7169 case CK_ARCProduceObject:
7170 case CK_ARCConsumeObject:
7171 case CK_ARCReclaimReturnedObject:
7172 case CK_ARCExtendBlockObject:
7173 case CK_CopyAndAutoreleaseBlockObject:
7174 return Error(E);
7175
7176 case CK_UserDefinedConversion:
7177 case CK_LValueToRValue:
7178 case CK_AtomicToNonAtomic:
7179 case CK_NoOp:
7180 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7181
7182 case CK_MemberPointerToBoolean:
7183 case CK_PointerToBoolean:
7184 case CK_IntegralToBoolean:
7185 case CK_FloatingToBoolean:
7186 case CK_FloatingComplexToBoolean:
7187 case CK_IntegralComplexToBoolean: {
7188 bool BoolResult;
7189 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
7190 return false;
7191 return Success(BoolResult, E);
7192 }
7193
7194 case CK_IntegralCast: {
7195 if (!Visit(SubExpr))
7196 return false;
7197
7198 if (!Result.isInt()) {
7199 // Allow casts of address-of-label differences if they are no-ops
7200 // or narrowing. (The narrowing case isn't actually guaranteed to
7201 // be constant-evaluatable except in some narrow cases which are hard
7202 // to detect here. We let it through on the assumption the user knows
7203 // what they are doing.)
7204 if (Result.isAddrLabelDiff())
7205 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
7206 // Only allow casts of lvalues if they are lossless.
7207 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
7208 }
7209
7210 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
7211 Result.getInt()), E);
7212 }
7213
7214 case CK_PointerToIntegral: {
7215 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7216
7217 LValue LV;
7218 if (!EvaluatePointer(SubExpr, LV, Info))
7219 return false;
7220
7221 if (LV.getLValueBase()) {
7222 // Only allow based lvalue casts if they are lossless.
7223 // FIXME: Allow a larger integer size than the pointer size, and allow
7224 // narrowing back down to pointer width in subsequent integral casts.
7225 // FIXME: Check integer type's active bits, not its type size.
7226 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
7227 return Error(E);
7228
7229 LV.Designator.setInvalid();
7230 LV.moveInto(Result);
7231 return true;
7232 }
7233
7234 APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
7235 SrcType);
7236 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
7237 }
7238
7239 case CK_IntegralComplexToReal: {
7240 ComplexValue C;
7241 if (!EvaluateComplex(SubExpr, C, Info))
7242 return false;
7243 return Success(C.getComplexIntReal(), E);
7244 }
7245
7246 case CK_FloatingToIntegral: {
7247 APFloat F(0.0);
7248 if (!EvaluateFloat(SubExpr, F, Info))
7249 return false;
7250
7251 APSInt Value;
7252 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
7253 return false;
7254 return Success(Value, E);
7255 }
7256 }
7257
7258 llvm_unreachable("unknown cast resulting in integral value");
7259 }
7260
VisitUnaryReal(const UnaryOperator * E)7261 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7262 if (E->getSubExpr()->getType()->isAnyComplexType()) {
7263 ComplexValue LV;
7264 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7265 return false;
7266 if (!LV.isComplexInt())
7267 return Error(E);
7268 return Success(LV.getComplexIntReal(), E);
7269 }
7270
7271 return Visit(E->getSubExpr());
7272 }
7273
VisitUnaryImag(const UnaryOperator * E)7274 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7275 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
7276 ComplexValue LV;
7277 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7278 return false;
7279 if (!LV.isComplexInt())
7280 return Error(E);
7281 return Success(LV.getComplexIntImag(), E);
7282 }
7283
7284 VisitIgnoredValue(E->getSubExpr());
7285 return Success(0, E);
7286 }
7287
VisitSizeOfPackExpr(const SizeOfPackExpr * E)7288 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
7289 return Success(E->getPackLength(), E);
7290 }
7291
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)7292 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
7293 return Success(E->getValue(), E);
7294 }
7295
7296 //===----------------------------------------------------------------------===//
7297 // Float Evaluation
7298 //===----------------------------------------------------------------------===//
7299
7300 namespace {
7301 class FloatExprEvaluator
7302 : public ExprEvaluatorBase<FloatExprEvaluator> {
7303 APFloat &Result;
7304 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)7305 FloatExprEvaluator(EvalInfo &info, APFloat &result)
7306 : ExprEvaluatorBaseTy(info), Result(result) {}
7307
Success(const APValue & V,const Expr * e)7308 bool Success(const APValue &V, const Expr *e) {
7309 Result = V.getFloat();
7310 return true;
7311 }
7312
ZeroInitialization(const Expr * E)7313 bool ZeroInitialization(const Expr *E) {
7314 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
7315 return true;
7316 }
7317
7318 bool VisitCallExpr(const CallExpr *E);
7319
7320 bool VisitUnaryOperator(const UnaryOperator *E);
7321 bool VisitBinaryOperator(const BinaryOperator *E);
7322 bool VisitFloatingLiteral(const FloatingLiteral *E);
7323 bool VisitCastExpr(const CastExpr *E);
7324
7325 bool VisitUnaryReal(const UnaryOperator *E);
7326 bool VisitUnaryImag(const UnaryOperator *E);
7327
7328 // FIXME: Missing: array subscript of vector, member of vector
7329 };
7330 } // end anonymous namespace
7331
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)7332 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
7333 assert(E->isRValue() && E->getType()->isRealFloatingType());
7334 return FloatExprEvaluator(Info, Result).Visit(E);
7335 }
7336
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)7337 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
7338 QualType ResultTy,
7339 const Expr *Arg,
7340 bool SNaN,
7341 llvm::APFloat &Result) {
7342 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
7343 if (!S) return false;
7344
7345 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
7346
7347 llvm::APInt fill;
7348
7349 // Treat empty strings as if they were zero.
7350 if (S->getString().empty())
7351 fill = llvm::APInt(32, 0);
7352 else if (S->getString().getAsInteger(0, fill))
7353 return false;
7354
7355 if (SNaN)
7356 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7357 else
7358 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7359 return true;
7360 }
7361
VisitCallExpr(const CallExpr * E)7362 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
7363 switch (E->getBuiltinCallee()) {
7364 default:
7365 return ExprEvaluatorBaseTy::VisitCallExpr(E);
7366
7367 case Builtin::BI__builtin_huge_val:
7368 case Builtin::BI__builtin_huge_valf:
7369 case Builtin::BI__builtin_huge_vall:
7370 case Builtin::BI__builtin_inf:
7371 case Builtin::BI__builtin_inff:
7372 case Builtin::BI__builtin_infl: {
7373 const llvm::fltSemantics &Sem =
7374 Info.Ctx.getFloatTypeSemantics(E->getType());
7375 Result = llvm::APFloat::getInf(Sem);
7376 return true;
7377 }
7378
7379 case Builtin::BI__builtin_nans:
7380 case Builtin::BI__builtin_nansf:
7381 case Builtin::BI__builtin_nansl:
7382 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7383 true, Result))
7384 return Error(E);
7385 return true;
7386
7387 case Builtin::BI__builtin_nan:
7388 case Builtin::BI__builtin_nanf:
7389 case Builtin::BI__builtin_nanl:
7390 // If this is __builtin_nan() turn this into a nan, otherwise we
7391 // can't constant fold it.
7392 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7393 false, Result))
7394 return Error(E);
7395 return true;
7396
7397 case Builtin::BI__builtin_fabs:
7398 case Builtin::BI__builtin_fabsf:
7399 case Builtin::BI__builtin_fabsl:
7400 if (!EvaluateFloat(E->getArg(0), Result, Info))
7401 return false;
7402
7403 if (Result.isNegative())
7404 Result.changeSign();
7405 return true;
7406
7407 // FIXME: Builtin::BI__builtin_powi
7408 // FIXME: Builtin::BI__builtin_powif
7409 // FIXME: Builtin::BI__builtin_powil
7410
7411 case Builtin::BI__builtin_copysign:
7412 case Builtin::BI__builtin_copysignf:
7413 case Builtin::BI__builtin_copysignl: {
7414 APFloat RHS(0.);
7415 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
7416 !EvaluateFloat(E->getArg(1), RHS, Info))
7417 return false;
7418 Result.copySign(RHS);
7419 return true;
7420 }
7421 }
7422 }
7423
VisitUnaryReal(const UnaryOperator * E)7424 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7425 if (E->getSubExpr()->getType()->isAnyComplexType()) {
7426 ComplexValue CV;
7427 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7428 return false;
7429 Result = CV.FloatReal;
7430 return true;
7431 }
7432
7433 return Visit(E->getSubExpr());
7434 }
7435
VisitUnaryImag(const UnaryOperator * E)7436 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7437 if (E->getSubExpr()->getType()->isAnyComplexType()) {
7438 ComplexValue CV;
7439 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7440 return false;
7441 Result = CV.FloatImag;
7442 return true;
7443 }
7444
7445 VisitIgnoredValue(E->getSubExpr());
7446 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
7447 Result = llvm::APFloat::getZero(Sem);
7448 return true;
7449 }
7450
VisitUnaryOperator(const UnaryOperator * E)7451 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7452 switch (E->getOpcode()) {
7453 default: return Error(E);
7454 case UO_Plus:
7455 return EvaluateFloat(E->getSubExpr(), Result, Info);
7456 case UO_Minus:
7457 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
7458 return false;
7459 Result.changeSign();
7460 return true;
7461 }
7462 }
7463
VisitBinaryOperator(const BinaryOperator * E)7464 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7465 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7466 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7467
7468 APFloat RHS(0.0);
7469 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
7470 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7471 return false;
7472 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
7473 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
7474 }
7475
VisitFloatingLiteral(const FloatingLiteral * E)7476 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
7477 Result = E->getValue();
7478 return true;
7479 }
7480
VisitCastExpr(const CastExpr * E)7481 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
7482 const Expr* SubExpr = E->getSubExpr();
7483
7484 switch (E->getCastKind()) {
7485 default:
7486 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7487
7488 case CK_IntegralToFloating: {
7489 APSInt IntResult;
7490 return EvaluateInteger(SubExpr, IntResult, Info) &&
7491 HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
7492 E->getType(), Result);
7493 }
7494
7495 case CK_FloatingCast: {
7496 if (!Visit(SubExpr))
7497 return false;
7498 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
7499 Result);
7500 }
7501
7502 case CK_FloatingComplexToReal: {
7503 ComplexValue V;
7504 if (!EvaluateComplex(SubExpr, V, Info))
7505 return false;
7506 Result = V.getComplexFloatReal();
7507 return true;
7508 }
7509 }
7510 }
7511
7512 //===----------------------------------------------------------------------===//
7513 // Complex Evaluation (for float and integer)
7514 //===----------------------------------------------------------------------===//
7515
7516 namespace {
7517 class ComplexExprEvaluator
7518 : public ExprEvaluatorBase<ComplexExprEvaluator> {
7519 ComplexValue &Result;
7520
7521 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)7522 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
7523 : ExprEvaluatorBaseTy(info), Result(Result) {}
7524
Success(const APValue & V,const Expr * e)7525 bool Success(const APValue &V, const Expr *e) {
7526 Result.setFrom(V);
7527 return true;
7528 }
7529
7530 bool ZeroInitialization(const Expr *E);
7531
7532 //===--------------------------------------------------------------------===//
7533 // Visitor Methods
7534 //===--------------------------------------------------------------------===//
7535
7536 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
7537 bool VisitCastExpr(const CastExpr *E);
7538 bool VisitBinaryOperator(const BinaryOperator *E);
7539 bool VisitUnaryOperator(const UnaryOperator *E);
7540 bool VisitInitListExpr(const InitListExpr *E);
7541 };
7542 } // end anonymous namespace
7543
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)7544 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
7545 EvalInfo &Info) {
7546 assert(E->isRValue() && E->getType()->isAnyComplexType());
7547 return ComplexExprEvaluator(Info, Result).Visit(E);
7548 }
7549
ZeroInitialization(const Expr * E)7550 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
7551 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
7552 if (ElemTy->isRealFloatingType()) {
7553 Result.makeComplexFloat();
7554 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
7555 Result.FloatReal = Zero;
7556 Result.FloatImag = Zero;
7557 } else {
7558 Result.makeComplexInt();
7559 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
7560 Result.IntReal = Zero;
7561 Result.IntImag = Zero;
7562 }
7563 return true;
7564 }
7565
VisitImaginaryLiteral(const ImaginaryLiteral * E)7566 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
7567 const Expr* SubExpr = E->getSubExpr();
7568
7569 if (SubExpr->getType()->isRealFloatingType()) {
7570 Result.makeComplexFloat();
7571 APFloat &Imag = Result.FloatImag;
7572 if (!EvaluateFloat(SubExpr, Imag, Info))
7573 return false;
7574
7575 Result.FloatReal = APFloat(Imag.getSemantics());
7576 return true;
7577 } else {
7578 assert(SubExpr->getType()->isIntegerType() &&
7579 "Unexpected imaginary literal.");
7580
7581 Result.makeComplexInt();
7582 APSInt &Imag = Result.IntImag;
7583 if (!EvaluateInteger(SubExpr, Imag, Info))
7584 return false;
7585
7586 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
7587 return true;
7588 }
7589 }
7590
VisitCastExpr(const CastExpr * E)7591 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
7592
7593 switch (E->getCastKind()) {
7594 case CK_BitCast:
7595 case CK_BaseToDerived:
7596 case CK_DerivedToBase:
7597 case CK_UncheckedDerivedToBase:
7598 case CK_Dynamic:
7599 case CK_ToUnion:
7600 case CK_ArrayToPointerDecay:
7601 case CK_FunctionToPointerDecay:
7602 case CK_NullToPointer:
7603 case CK_NullToMemberPointer:
7604 case CK_BaseToDerivedMemberPointer:
7605 case CK_DerivedToBaseMemberPointer:
7606 case CK_MemberPointerToBoolean:
7607 case CK_ReinterpretMemberPointer:
7608 case CK_ConstructorConversion:
7609 case CK_IntegralToPointer:
7610 case CK_PointerToIntegral:
7611 case CK_PointerToBoolean:
7612 case CK_ToVoid:
7613 case CK_VectorSplat:
7614 case CK_IntegralCast:
7615 case CK_IntegralToBoolean:
7616 case CK_IntegralToFloating:
7617 case CK_FloatingToIntegral:
7618 case CK_FloatingToBoolean:
7619 case CK_FloatingCast:
7620 case CK_CPointerToObjCPointerCast:
7621 case CK_BlockPointerToObjCPointerCast:
7622 case CK_AnyPointerToBlockPointerCast:
7623 case CK_ObjCObjectLValueCast:
7624 case CK_FloatingComplexToReal:
7625 case CK_FloatingComplexToBoolean:
7626 case CK_IntegralComplexToReal:
7627 case CK_IntegralComplexToBoolean:
7628 case CK_ARCProduceObject:
7629 case CK_ARCConsumeObject:
7630 case CK_ARCReclaimReturnedObject:
7631 case CK_ARCExtendBlockObject:
7632 case CK_CopyAndAutoreleaseBlockObject:
7633 case CK_BuiltinFnToFnPtr:
7634 case CK_ZeroToOCLEvent:
7635 case CK_NonAtomicToAtomic:
7636 case CK_AddressSpaceConversion:
7637 llvm_unreachable("invalid cast kind for complex value");
7638
7639 case CK_LValueToRValue:
7640 case CK_AtomicToNonAtomic:
7641 case CK_NoOp:
7642 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7643
7644 case CK_Dependent:
7645 case CK_LValueBitCast:
7646 case CK_UserDefinedConversion:
7647 return Error(E);
7648
7649 case CK_FloatingRealToComplex: {
7650 APFloat &Real = Result.FloatReal;
7651 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
7652 return false;
7653
7654 Result.makeComplexFloat();
7655 Result.FloatImag = APFloat(Real.getSemantics());
7656 return true;
7657 }
7658
7659 case CK_FloatingComplexCast: {
7660 if (!Visit(E->getSubExpr()))
7661 return false;
7662
7663 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7664 QualType From
7665 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7666
7667 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
7668 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
7669 }
7670
7671 case CK_FloatingComplexToIntegralComplex: {
7672 if (!Visit(E->getSubExpr()))
7673 return false;
7674
7675 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7676 QualType From
7677 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7678 Result.makeComplexInt();
7679 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
7680 To, Result.IntReal) &&
7681 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
7682 To, Result.IntImag);
7683 }
7684
7685 case CK_IntegralRealToComplex: {
7686 APSInt &Real = Result.IntReal;
7687 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
7688 return false;
7689
7690 Result.makeComplexInt();
7691 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
7692 return true;
7693 }
7694
7695 case CK_IntegralComplexCast: {
7696 if (!Visit(E->getSubExpr()))
7697 return false;
7698
7699 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7700 QualType From
7701 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7702
7703 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
7704 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
7705 return true;
7706 }
7707
7708 case CK_IntegralComplexToFloatingComplex: {
7709 if (!Visit(E->getSubExpr()))
7710 return false;
7711
7712 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
7713 QualType From
7714 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
7715 Result.makeComplexFloat();
7716 return HandleIntToFloatCast(Info, E, From, Result.IntReal,
7717 To, Result.FloatReal) &&
7718 HandleIntToFloatCast(Info, E, From, Result.IntImag,
7719 To, Result.FloatImag);
7720 }
7721 }
7722
7723 llvm_unreachable("unknown cast resulting in complex value");
7724 }
7725
VisitBinaryOperator(const BinaryOperator * E)7726 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7727 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7728 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7729
7730 bool LHSOK = Visit(E->getLHS());
7731 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7732 return false;
7733
7734 ComplexValue RHS;
7735 if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7736 return false;
7737
7738 assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
7739 "Invalid operands to binary operator.");
7740 switch (E->getOpcode()) {
7741 default: return Error(E);
7742 case BO_Add:
7743 if (Result.isComplexFloat()) {
7744 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
7745 APFloat::rmNearestTiesToEven);
7746 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
7747 APFloat::rmNearestTiesToEven);
7748 } else {
7749 Result.getComplexIntReal() += RHS.getComplexIntReal();
7750 Result.getComplexIntImag() += RHS.getComplexIntImag();
7751 }
7752 break;
7753 case BO_Sub:
7754 if (Result.isComplexFloat()) {
7755 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
7756 APFloat::rmNearestTiesToEven);
7757 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
7758 APFloat::rmNearestTiesToEven);
7759 } else {
7760 Result.getComplexIntReal() -= RHS.getComplexIntReal();
7761 Result.getComplexIntImag() -= RHS.getComplexIntImag();
7762 }
7763 break;
7764 case BO_Mul:
7765 if (Result.isComplexFloat()) {
7766 ComplexValue LHS = Result;
7767 APFloat &LHS_r = LHS.getComplexFloatReal();
7768 APFloat &LHS_i = LHS.getComplexFloatImag();
7769 APFloat &RHS_r = RHS.getComplexFloatReal();
7770 APFloat &RHS_i = RHS.getComplexFloatImag();
7771
7772 APFloat Tmp = LHS_r;
7773 Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7774 Result.getComplexFloatReal() = Tmp;
7775 Tmp = LHS_i;
7776 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7777 Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
7778
7779 Tmp = LHS_r;
7780 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7781 Result.getComplexFloatImag() = Tmp;
7782 Tmp = LHS_i;
7783 Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7784 Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
7785 } else {
7786 ComplexValue LHS = Result;
7787 Result.getComplexIntReal() =
7788 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
7789 LHS.getComplexIntImag() * RHS.getComplexIntImag());
7790 Result.getComplexIntImag() =
7791 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
7792 LHS.getComplexIntImag() * RHS.getComplexIntReal());
7793 }
7794 break;
7795 case BO_Div:
7796 if (Result.isComplexFloat()) {
7797 ComplexValue LHS = Result;
7798 APFloat &LHS_r = LHS.getComplexFloatReal();
7799 APFloat &LHS_i = LHS.getComplexFloatImag();
7800 APFloat &RHS_r = RHS.getComplexFloatReal();
7801 APFloat &RHS_i = RHS.getComplexFloatImag();
7802 APFloat &Res_r = Result.getComplexFloatReal();
7803 APFloat &Res_i = Result.getComplexFloatImag();
7804
7805 APFloat Den = RHS_r;
7806 Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7807 APFloat Tmp = RHS_i;
7808 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7809 Den.add(Tmp, APFloat::rmNearestTiesToEven);
7810
7811 Res_r = LHS_r;
7812 Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7813 Tmp = LHS_i;
7814 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7815 Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
7816 Res_r.divide(Den, APFloat::rmNearestTiesToEven);
7817
7818 Res_i = LHS_i;
7819 Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
7820 Tmp = LHS_r;
7821 Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
7822 Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
7823 Res_i.divide(Den, APFloat::rmNearestTiesToEven);
7824 } else {
7825 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
7826 return Error(E, diag::note_expr_divide_by_zero);
7827
7828 ComplexValue LHS = Result;
7829 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
7830 RHS.getComplexIntImag() * RHS.getComplexIntImag();
7831 Result.getComplexIntReal() =
7832 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
7833 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
7834 Result.getComplexIntImag() =
7835 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
7836 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
7837 }
7838 break;
7839 }
7840
7841 return true;
7842 }
7843
VisitUnaryOperator(const UnaryOperator * E)7844 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7845 // Get the operand value into 'Result'.
7846 if (!Visit(E->getSubExpr()))
7847 return false;
7848
7849 switch (E->getOpcode()) {
7850 default:
7851 return Error(E);
7852 case UO_Extension:
7853 return true;
7854 case UO_Plus:
7855 // The result is always just the subexpr.
7856 return true;
7857 case UO_Minus:
7858 if (Result.isComplexFloat()) {
7859 Result.getComplexFloatReal().changeSign();
7860 Result.getComplexFloatImag().changeSign();
7861 }
7862 else {
7863 Result.getComplexIntReal() = -Result.getComplexIntReal();
7864 Result.getComplexIntImag() = -Result.getComplexIntImag();
7865 }
7866 return true;
7867 case UO_Not:
7868 if (Result.isComplexFloat())
7869 Result.getComplexFloatImag().changeSign();
7870 else
7871 Result.getComplexIntImag() = -Result.getComplexIntImag();
7872 return true;
7873 }
7874 }
7875
VisitInitListExpr(const InitListExpr * E)7876 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
7877 if (E->getNumInits() == 2) {
7878 if (E->getType()->isComplexType()) {
7879 Result.makeComplexFloat();
7880 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
7881 return false;
7882 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
7883 return false;
7884 } else {
7885 Result.makeComplexInt();
7886 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
7887 return false;
7888 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
7889 return false;
7890 }
7891 return true;
7892 }
7893 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
7894 }
7895
7896 //===----------------------------------------------------------------------===//
7897 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
7898 // implicit conversion.
7899 //===----------------------------------------------------------------------===//
7900
7901 namespace {
7902 class AtomicExprEvaluator :
7903 public ExprEvaluatorBase<AtomicExprEvaluator> {
7904 APValue &Result;
7905 public:
AtomicExprEvaluator(EvalInfo & Info,APValue & Result)7906 AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
7907 : ExprEvaluatorBaseTy(Info), Result(Result) {}
7908
Success(const APValue & V,const Expr * E)7909 bool Success(const APValue &V, const Expr *E) {
7910 Result = V;
7911 return true;
7912 }
7913
ZeroInitialization(const Expr * E)7914 bool ZeroInitialization(const Expr *E) {
7915 ImplicitValueInitExpr VIE(
7916 E->getType()->castAs<AtomicType>()->getValueType());
7917 return Evaluate(Result, Info, &VIE);
7918 }
7919
VisitCastExpr(const CastExpr * E)7920 bool VisitCastExpr(const CastExpr *E) {
7921 switch (E->getCastKind()) {
7922 default:
7923 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7924 case CK_NonAtomicToAtomic:
7925 return Evaluate(Result, Info, E->getSubExpr());
7926 }
7927 }
7928 };
7929 } // end anonymous namespace
7930
EvaluateAtomic(const Expr * E,APValue & Result,EvalInfo & Info)7931 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
7932 assert(E->isRValue() && E->getType()->isAtomicType());
7933 return AtomicExprEvaluator(Info, Result).Visit(E);
7934 }
7935
7936 //===----------------------------------------------------------------------===//
7937 // Void expression evaluation, primarily for a cast to void on the LHS of a
7938 // comma operator
7939 //===----------------------------------------------------------------------===//
7940
7941 namespace {
7942 class VoidExprEvaluator
7943 : public ExprEvaluatorBase<VoidExprEvaluator> {
7944 public:
VoidExprEvaluator(EvalInfo & Info)7945 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
7946
Success(const APValue & V,const Expr * e)7947 bool Success(const APValue &V, const Expr *e) { return true; }
7948
VisitCastExpr(const CastExpr * E)7949 bool VisitCastExpr(const CastExpr *E) {
7950 switch (E->getCastKind()) {
7951 default:
7952 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7953 case CK_ToVoid:
7954 VisitIgnoredValue(E->getSubExpr());
7955 return true;
7956 }
7957 }
7958 };
7959 } // end anonymous namespace
7960
EvaluateVoid(const Expr * E,EvalInfo & Info)7961 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
7962 assert(E->isRValue() && E->getType()->isVoidType());
7963 return VoidExprEvaluator(Info).Visit(E);
7964 }
7965
7966 //===----------------------------------------------------------------------===//
7967 // Top level Expr::EvaluateAsRValue method.
7968 //===----------------------------------------------------------------------===//
7969
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)7970 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
7971 // In C, function designators are not lvalues, but we evaluate them as if they
7972 // are.
7973 QualType T = E->getType();
7974 if (E->isGLValue() || T->isFunctionType()) {
7975 LValue LV;
7976 if (!EvaluateLValue(E, LV, Info))
7977 return false;
7978 LV.moveInto(Result);
7979 } else if (T->isVectorType()) {
7980 if (!EvaluateVector(E, Result, Info))
7981 return false;
7982 } else if (T->isIntegralOrEnumerationType()) {
7983 if (!IntExprEvaluator(Info, Result).Visit(E))
7984 return false;
7985 } else if (T->hasPointerRepresentation()) {
7986 LValue LV;
7987 if (!EvaluatePointer(E, LV, Info))
7988 return false;
7989 LV.moveInto(Result);
7990 } else if (T->isRealFloatingType()) {
7991 llvm::APFloat F(0.0);
7992 if (!EvaluateFloat(E, F, Info))
7993 return false;
7994 Result = APValue(F);
7995 } else if (T->isAnyComplexType()) {
7996 ComplexValue C;
7997 if (!EvaluateComplex(E, C, Info))
7998 return false;
7999 C.moveInto(Result);
8000 } else if (T->isMemberPointerType()) {
8001 MemberPtr P;
8002 if (!EvaluateMemberPointer(E, P, Info))
8003 return false;
8004 P.moveInto(Result);
8005 return true;
8006 } else if (T->isArrayType()) {
8007 LValue LV;
8008 LV.set(E, Info.CurrentCall->Index);
8009 APValue &Value = Info.CurrentCall->createTemporary(E, false);
8010 if (!EvaluateArray(E, LV, Value, Info))
8011 return false;
8012 Result = Value;
8013 } else if (T->isRecordType()) {
8014 LValue LV;
8015 LV.set(E, Info.CurrentCall->Index);
8016 APValue &Value = Info.CurrentCall->createTemporary(E, false);
8017 if (!EvaluateRecord(E, LV, Value, Info))
8018 return false;
8019 Result = Value;
8020 } else if (T->isVoidType()) {
8021 if (!Info.getLangOpts().CPlusPlus11)
8022 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
8023 << E->getType();
8024 if (!EvaluateVoid(E, Info))
8025 return false;
8026 } else if (T->isAtomicType()) {
8027 if (!EvaluateAtomic(E, Result, Info))
8028 return false;
8029 } else if (Info.getLangOpts().CPlusPlus11) {
8030 Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
8031 return false;
8032 } else {
8033 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
8034 return false;
8035 }
8036
8037 return true;
8038 }
8039
8040 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
8041 /// cases, the in-place evaluation is essential, since later initializers for
8042 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)8043 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
8044 const Expr *E, bool AllowNonLiteralTypes) {
8045 assert(!E->isValueDependent());
8046
8047 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
8048 return false;
8049
8050 if (E->isRValue()) {
8051 // Evaluate arrays and record types in-place, so that later initializers can
8052 // refer to earlier-initialized members of the object.
8053 if (E->getType()->isArrayType())
8054 return EvaluateArray(E, This, Result, Info);
8055 else if (E->getType()->isRecordType())
8056 return EvaluateRecord(E, This, Result, Info);
8057 }
8058
8059 // For any other type, in-place evaluation is unimportant.
8060 return Evaluate(Result, Info, E);
8061 }
8062
8063 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
8064 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)8065 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
8066 if (E->getType().isNull())
8067 return false;
8068
8069 if (!CheckLiteralType(Info, E))
8070 return false;
8071
8072 if (!::Evaluate(Result, Info, E))
8073 return false;
8074
8075 if (E->isGLValue()) {
8076 LValue LV;
8077 LV.setFrom(Info.Ctx, Result);
8078 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
8079 return false;
8080 }
8081
8082 // Check this core constant expression is a constant expression.
8083 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
8084 }
8085
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)8086 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
8087 const ASTContext &Ctx, bool &IsConst) {
8088 // Fast-path evaluations of integer literals, since we sometimes see files
8089 // containing vast quantities of these.
8090 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
8091 Result.Val = APValue(APSInt(L->getValue(),
8092 L->getType()->isUnsignedIntegerType()));
8093 IsConst = true;
8094 return true;
8095 }
8096
8097 // This case should be rare, but we need to check it before we check on
8098 // the type below.
8099 if (Exp->getType().isNull()) {
8100 IsConst = false;
8101 return true;
8102 }
8103
8104 // FIXME: Evaluating values of large array and record types can cause
8105 // performance problems. Only do so in C++11 for now.
8106 if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
8107 Exp->getType()->isRecordType()) &&
8108 !Ctx.getLangOpts().CPlusPlus11) {
8109 IsConst = false;
8110 return true;
8111 }
8112 return false;
8113 }
8114
8115
8116 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
8117 /// any crazy technique (that has nothing to do with language standards) that
8118 /// we want to. If this function returns true, it returns the folded constant
8119 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
8120 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const8121 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
8122 bool IsConst;
8123 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
8124 return IsConst;
8125
8126 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
8127 return ::EvaluateAsRValue(Info, this, Result.Val);
8128 }
8129
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const8130 bool Expr::EvaluateAsBooleanCondition(bool &Result,
8131 const ASTContext &Ctx) const {
8132 EvalResult Scratch;
8133 return EvaluateAsRValue(Scratch, Ctx) &&
8134 HandleConversionToBool(Scratch.Val, Result);
8135 }
8136
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const8137 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
8138 SideEffectsKind AllowSideEffects) const {
8139 if (!getType()->isIntegralOrEnumerationType())
8140 return false;
8141
8142 EvalResult ExprResult;
8143 if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
8144 (!AllowSideEffects && ExprResult.HasSideEffects))
8145 return false;
8146
8147 Result = ExprResult.Val.getInt();
8148 return true;
8149 }
8150
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const8151 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
8152 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
8153
8154 LValue LV;
8155 if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
8156 !CheckLValueConstantExpression(Info, getExprLoc(),
8157 Ctx.getLValueReferenceType(getType()), LV))
8158 return false;
8159
8160 LV.moveInto(Result.Val);
8161 return true;
8162 }
8163
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const8164 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
8165 const VarDecl *VD,
8166 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
8167 // FIXME: Evaluating initializers for large array and record types can cause
8168 // performance problems. Only do so in C++11 for now.
8169 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
8170 !Ctx.getLangOpts().CPlusPlus11)
8171 return false;
8172
8173 Expr::EvalStatus EStatus;
8174 EStatus.Diag = &Notes;
8175
8176 EvalInfo InitInfo(Ctx, EStatus, EvalInfo::EM_ConstantFold);
8177 InitInfo.setEvaluatingDecl(VD, Value);
8178
8179 LValue LVal;
8180 LVal.set(VD);
8181
8182 // C++11 [basic.start.init]p2:
8183 // Variables with static storage duration or thread storage duration shall be
8184 // zero-initialized before any other initialization takes place.
8185 // This behavior is not present in C.
8186 if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
8187 !VD->getType()->isReferenceType()) {
8188 ImplicitValueInitExpr VIE(VD->getType());
8189 if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
8190 /*AllowNonLiteralTypes=*/true))
8191 return false;
8192 }
8193
8194 if (!EvaluateInPlace(Value, InitInfo, LVal, this,
8195 /*AllowNonLiteralTypes=*/true) ||
8196 EStatus.HasSideEffects)
8197 return false;
8198
8199 return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
8200 Value);
8201 }
8202
8203 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
8204 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx) const8205 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
8206 EvalResult Result;
8207 return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
8208 }
8209
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const8210 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
8211 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
8212 EvalResult EvalResult;
8213 EvalResult.Diag = Diag;
8214 bool Result = EvaluateAsRValue(EvalResult, Ctx);
8215 (void)Result;
8216 assert(Result && "Could not evaluate expression");
8217 assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
8218
8219 return EvalResult.Val.getInt();
8220 }
8221
EvaluateForOverflow(const ASTContext & Ctx) const8222 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
8223 bool IsConst;
8224 EvalResult EvalResult;
8225 if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
8226 EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
8227 (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
8228 }
8229 }
8230
isGlobalLValue() const8231 bool Expr::EvalResult::isGlobalLValue() const {
8232 assert(Val.isLValue());
8233 return IsGlobalLValue(Val.getLValueBase());
8234 }
8235
8236
8237 /// isIntegerConstantExpr - this recursive routine will test if an expression is
8238 /// an integer constant expression.
8239
8240 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
8241 /// comma, etc
8242
8243 // CheckICE - This function does the fundamental ICE checking: the returned
8244 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
8245 // and a (possibly null) SourceLocation indicating the location of the problem.
8246 //
8247 // Note that to reduce code duplication, this helper does no evaluation
8248 // itself; the caller checks whether the expression is evaluatable, and
8249 // in the rare cases where CheckICE actually cares about the evaluated
8250 // value, it calls into Evalute.
8251
8252 namespace {
8253
8254 enum ICEKind {
8255 /// This expression is an ICE.
8256 IK_ICE,
8257 /// This expression is not an ICE, but if it isn't evaluated, it's
8258 /// a legal subexpression for an ICE. This return value is used to handle
8259 /// the comma operator in C99 mode, and non-constant subexpressions.
8260 IK_ICEIfUnevaluated,
8261 /// This expression is not an ICE, and is not a legal subexpression for one.
8262 IK_NotICE
8263 };
8264
8265 struct ICEDiag {
8266 ICEKind Kind;
8267 SourceLocation Loc;
8268
ICEDiag__anon79c4fed31911::ICEDiag8269 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
8270 };
8271
8272 }
8273
NoDiag()8274 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
8275
Worst(ICEDiag A,ICEDiag B)8276 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
8277
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)8278 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
8279 Expr::EvalResult EVResult;
8280 if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
8281 !EVResult.Val.isInt())
8282 return ICEDiag(IK_NotICE, E->getLocStart());
8283
8284 return NoDiag();
8285 }
8286
CheckICE(const Expr * E,const ASTContext & Ctx)8287 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
8288 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
8289 if (!E->getType()->isIntegralOrEnumerationType())
8290 return ICEDiag(IK_NotICE, E->getLocStart());
8291
8292 switch (E->getStmtClass()) {
8293 #define ABSTRACT_STMT(Node)
8294 #define STMT(Node, Base) case Expr::Node##Class:
8295 #define EXPR(Node, Base)
8296 #include "clang/AST/StmtNodes.inc"
8297 case Expr::PredefinedExprClass:
8298 case Expr::FloatingLiteralClass:
8299 case Expr::ImaginaryLiteralClass:
8300 case Expr::StringLiteralClass:
8301 case Expr::ArraySubscriptExprClass:
8302 case Expr::MemberExprClass:
8303 case Expr::CompoundAssignOperatorClass:
8304 case Expr::CompoundLiteralExprClass:
8305 case Expr::ExtVectorElementExprClass:
8306 case Expr::DesignatedInitExprClass:
8307 case Expr::ImplicitValueInitExprClass:
8308 case Expr::ParenListExprClass:
8309 case Expr::VAArgExprClass:
8310 case Expr::AddrLabelExprClass:
8311 case Expr::StmtExprClass:
8312 case Expr::CXXMemberCallExprClass:
8313 case Expr::CUDAKernelCallExprClass:
8314 case Expr::CXXDynamicCastExprClass:
8315 case Expr::CXXTypeidExprClass:
8316 case Expr::CXXUuidofExprClass:
8317 case Expr::MSPropertyRefExprClass:
8318 case Expr::CXXNullPtrLiteralExprClass:
8319 case Expr::UserDefinedLiteralClass:
8320 case Expr::CXXThisExprClass:
8321 case Expr::CXXThrowExprClass:
8322 case Expr::CXXNewExprClass:
8323 case Expr::CXXDeleteExprClass:
8324 case Expr::CXXPseudoDestructorExprClass:
8325 case Expr::UnresolvedLookupExprClass:
8326 case Expr::DependentScopeDeclRefExprClass:
8327 case Expr::CXXConstructExprClass:
8328 case Expr::CXXStdInitializerListExprClass:
8329 case Expr::CXXBindTemporaryExprClass:
8330 case Expr::ExprWithCleanupsClass:
8331 case Expr::CXXTemporaryObjectExprClass:
8332 case Expr::CXXUnresolvedConstructExprClass:
8333 case Expr::CXXDependentScopeMemberExprClass:
8334 case Expr::UnresolvedMemberExprClass:
8335 case Expr::ObjCStringLiteralClass:
8336 case Expr::ObjCBoxedExprClass:
8337 case Expr::ObjCArrayLiteralClass:
8338 case Expr::ObjCDictionaryLiteralClass:
8339 case Expr::ObjCEncodeExprClass:
8340 case Expr::ObjCMessageExprClass:
8341 case Expr::ObjCSelectorExprClass:
8342 case Expr::ObjCProtocolExprClass:
8343 case Expr::ObjCIvarRefExprClass:
8344 case Expr::ObjCPropertyRefExprClass:
8345 case Expr::ObjCSubscriptRefExprClass:
8346 case Expr::ObjCIsaExprClass:
8347 case Expr::ShuffleVectorExprClass:
8348 case Expr::ConvertVectorExprClass:
8349 case Expr::BlockExprClass:
8350 case Expr::NoStmtClass:
8351 case Expr::OpaqueValueExprClass:
8352 case Expr::PackExpansionExprClass:
8353 case Expr::SubstNonTypeTemplateParmPackExprClass:
8354 case Expr::FunctionParmPackExprClass:
8355 case Expr::AsTypeExprClass:
8356 case Expr::ObjCIndirectCopyRestoreExprClass:
8357 case Expr::MaterializeTemporaryExprClass:
8358 case Expr::PseudoObjectExprClass:
8359 case Expr::AtomicExprClass:
8360 case Expr::LambdaExprClass:
8361 return ICEDiag(IK_NotICE, E->getLocStart());
8362
8363 case Expr::InitListExprClass: {
8364 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
8365 // form "T x = { a };" is equivalent to "T x = a;".
8366 // Unless we're initializing a reference, T is a scalar as it is known to be
8367 // of integral or enumeration type.
8368 if (E->isRValue())
8369 if (cast<InitListExpr>(E)->getNumInits() == 1)
8370 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
8371 return ICEDiag(IK_NotICE, E->getLocStart());
8372 }
8373
8374 case Expr::SizeOfPackExprClass:
8375 case Expr::GNUNullExprClass:
8376 // GCC considers the GNU __null value to be an integral constant expression.
8377 return NoDiag();
8378
8379 case Expr::SubstNonTypeTemplateParmExprClass:
8380 return
8381 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
8382
8383 case Expr::ParenExprClass:
8384 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
8385 case Expr::GenericSelectionExprClass:
8386 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
8387 case Expr::IntegerLiteralClass:
8388 case Expr::CharacterLiteralClass:
8389 case Expr::ObjCBoolLiteralExprClass:
8390 case Expr::CXXBoolLiteralExprClass:
8391 case Expr::CXXScalarValueInitExprClass:
8392 case Expr::TypeTraitExprClass:
8393 case Expr::ArrayTypeTraitExprClass:
8394 case Expr::ExpressionTraitExprClass:
8395 case Expr::CXXNoexceptExprClass:
8396 return NoDiag();
8397 case Expr::CallExprClass:
8398 case Expr::CXXOperatorCallExprClass: {
8399 // C99 6.6/3 allows function calls within unevaluated subexpressions of
8400 // constant expressions, but they can never be ICEs because an ICE cannot
8401 // contain an operand of (pointer to) function type.
8402 const CallExpr *CE = cast<CallExpr>(E);
8403 if (CE->getBuiltinCallee())
8404 return CheckEvalInICE(E, Ctx);
8405 return ICEDiag(IK_NotICE, E->getLocStart());
8406 }
8407 case Expr::DeclRefExprClass: {
8408 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
8409 return NoDiag();
8410 const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
8411 if (Ctx.getLangOpts().CPlusPlus &&
8412 D && IsConstNonVolatile(D->getType())) {
8413 // Parameter variables are never constants. Without this check,
8414 // getAnyInitializer() can find a default argument, which leads
8415 // to chaos.
8416 if (isa<ParmVarDecl>(D))
8417 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8418
8419 // C++ 7.1.5.1p2
8420 // A variable of non-volatile const-qualified integral or enumeration
8421 // type initialized by an ICE can be used in ICEs.
8422 if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
8423 if (!Dcl->getType()->isIntegralOrEnumerationType())
8424 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8425
8426 const VarDecl *VD;
8427 // Look for a declaration of this variable that has an initializer, and
8428 // check whether it is an ICE.
8429 if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
8430 return NoDiag();
8431 else
8432 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8433 }
8434 }
8435 return ICEDiag(IK_NotICE, E->getLocStart());
8436 }
8437 case Expr::UnaryOperatorClass: {
8438 const UnaryOperator *Exp = cast<UnaryOperator>(E);
8439 switch (Exp->getOpcode()) {
8440 case UO_PostInc:
8441 case UO_PostDec:
8442 case UO_PreInc:
8443 case UO_PreDec:
8444 case UO_AddrOf:
8445 case UO_Deref:
8446 // C99 6.6/3 allows increment and decrement within unevaluated
8447 // subexpressions of constant expressions, but they can never be ICEs
8448 // because an ICE cannot contain an lvalue operand.
8449 return ICEDiag(IK_NotICE, E->getLocStart());
8450 case UO_Extension:
8451 case UO_LNot:
8452 case UO_Plus:
8453 case UO_Minus:
8454 case UO_Not:
8455 case UO_Real:
8456 case UO_Imag:
8457 return CheckICE(Exp->getSubExpr(), Ctx);
8458 }
8459
8460 // OffsetOf falls through here.
8461 }
8462 case Expr::OffsetOfExprClass: {
8463 // Note that per C99, offsetof must be an ICE. And AFAIK, using
8464 // EvaluateAsRValue matches the proposed gcc behavior for cases like
8465 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
8466 // compliance: we should warn earlier for offsetof expressions with
8467 // array subscripts that aren't ICEs, and if the array subscripts
8468 // are ICEs, the value of the offsetof must be an integer constant.
8469 return CheckEvalInICE(E, Ctx);
8470 }
8471 case Expr::UnaryExprOrTypeTraitExprClass: {
8472 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
8473 if ((Exp->getKind() == UETT_SizeOf) &&
8474 Exp->getTypeOfArgument()->isVariableArrayType())
8475 return ICEDiag(IK_NotICE, E->getLocStart());
8476 return NoDiag();
8477 }
8478 case Expr::BinaryOperatorClass: {
8479 const BinaryOperator *Exp = cast<BinaryOperator>(E);
8480 switch (Exp->getOpcode()) {
8481 case BO_PtrMemD:
8482 case BO_PtrMemI:
8483 case BO_Assign:
8484 case BO_MulAssign:
8485 case BO_DivAssign:
8486 case BO_RemAssign:
8487 case BO_AddAssign:
8488 case BO_SubAssign:
8489 case BO_ShlAssign:
8490 case BO_ShrAssign:
8491 case BO_AndAssign:
8492 case BO_XorAssign:
8493 case BO_OrAssign:
8494 // C99 6.6/3 allows assignments within unevaluated subexpressions of
8495 // constant expressions, but they can never be ICEs because an ICE cannot
8496 // contain an lvalue operand.
8497 return ICEDiag(IK_NotICE, E->getLocStart());
8498
8499 case BO_Mul:
8500 case BO_Div:
8501 case BO_Rem:
8502 case BO_Add:
8503 case BO_Sub:
8504 case BO_Shl:
8505 case BO_Shr:
8506 case BO_LT:
8507 case BO_GT:
8508 case BO_LE:
8509 case BO_GE:
8510 case BO_EQ:
8511 case BO_NE:
8512 case BO_And:
8513 case BO_Xor:
8514 case BO_Or:
8515 case BO_Comma: {
8516 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8517 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8518 if (Exp->getOpcode() == BO_Div ||
8519 Exp->getOpcode() == BO_Rem) {
8520 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
8521 // we don't evaluate one.
8522 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
8523 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
8524 if (REval == 0)
8525 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8526 if (REval.isSigned() && REval.isAllOnesValue()) {
8527 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
8528 if (LEval.isMinSignedValue())
8529 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8530 }
8531 }
8532 }
8533 if (Exp->getOpcode() == BO_Comma) {
8534 if (Ctx.getLangOpts().C99) {
8535 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
8536 // if it isn't evaluated.
8537 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
8538 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8539 } else {
8540 // In both C89 and C++, commas in ICEs are illegal.
8541 return ICEDiag(IK_NotICE, E->getLocStart());
8542 }
8543 }
8544 return Worst(LHSResult, RHSResult);
8545 }
8546 case BO_LAnd:
8547 case BO_LOr: {
8548 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8549 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8550 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
8551 // Rare case where the RHS has a comma "side-effect"; we need
8552 // to actually check the condition to see whether the side
8553 // with the comma is evaluated.
8554 if ((Exp->getOpcode() == BO_LAnd) !=
8555 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
8556 return RHSResult;
8557 return NoDiag();
8558 }
8559
8560 return Worst(LHSResult, RHSResult);
8561 }
8562 }
8563 }
8564 case Expr::ImplicitCastExprClass:
8565 case Expr::CStyleCastExprClass:
8566 case Expr::CXXFunctionalCastExprClass:
8567 case Expr::CXXStaticCastExprClass:
8568 case Expr::CXXReinterpretCastExprClass:
8569 case Expr::CXXConstCastExprClass:
8570 case Expr::ObjCBridgedCastExprClass: {
8571 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
8572 if (isa<ExplicitCastExpr>(E)) {
8573 if (const FloatingLiteral *FL
8574 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
8575 unsigned DestWidth = Ctx.getIntWidth(E->getType());
8576 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
8577 APSInt IgnoredVal(DestWidth, !DestSigned);
8578 bool Ignored;
8579 // If the value does not fit in the destination type, the behavior is
8580 // undefined, so we are not required to treat it as a constant
8581 // expression.
8582 if (FL->getValue().convertToInteger(IgnoredVal,
8583 llvm::APFloat::rmTowardZero,
8584 &Ignored) & APFloat::opInvalidOp)
8585 return ICEDiag(IK_NotICE, E->getLocStart());
8586 return NoDiag();
8587 }
8588 }
8589 switch (cast<CastExpr>(E)->getCastKind()) {
8590 case CK_LValueToRValue:
8591 case CK_AtomicToNonAtomic:
8592 case CK_NonAtomicToAtomic:
8593 case CK_NoOp:
8594 case CK_IntegralToBoolean:
8595 case CK_IntegralCast:
8596 return CheckICE(SubExpr, Ctx);
8597 default:
8598 return ICEDiag(IK_NotICE, E->getLocStart());
8599 }
8600 }
8601 case Expr::BinaryConditionalOperatorClass: {
8602 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
8603 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
8604 if (CommonResult.Kind == IK_NotICE) return CommonResult;
8605 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8606 if (FalseResult.Kind == IK_NotICE) return FalseResult;
8607 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
8608 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
8609 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
8610 return FalseResult;
8611 }
8612 case Expr::ConditionalOperatorClass: {
8613 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
8614 // If the condition (ignoring parens) is a __builtin_constant_p call,
8615 // then only the true side is actually considered in an integer constant
8616 // expression, and it is fully evaluated. This is an important GNU
8617 // extension. See GCC PR38377 for discussion.
8618 if (const CallExpr *CallCE
8619 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
8620 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
8621 return CheckEvalInICE(E, Ctx);
8622 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
8623 if (CondResult.Kind == IK_NotICE)
8624 return CondResult;
8625
8626 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
8627 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8628
8629 if (TrueResult.Kind == IK_NotICE)
8630 return TrueResult;
8631 if (FalseResult.Kind == IK_NotICE)
8632 return FalseResult;
8633 if (CondResult.Kind == IK_ICEIfUnevaluated)
8634 return CondResult;
8635 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
8636 return NoDiag();
8637 // Rare case where the diagnostics depend on which side is evaluated
8638 // Note that if we get here, CondResult is 0, and at least one of
8639 // TrueResult and FalseResult is non-zero.
8640 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
8641 return FalseResult;
8642 return TrueResult;
8643 }
8644 case Expr::CXXDefaultArgExprClass:
8645 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
8646 case Expr::CXXDefaultInitExprClass:
8647 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
8648 case Expr::ChooseExprClass: {
8649 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
8650 }
8651 }
8652
8653 llvm_unreachable("Invalid StmtClass!");
8654 }
8655
8656 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)8657 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
8658 const Expr *E,
8659 llvm::APSInt *Value,
8660 SourceLocation *Loc) {
8661 if (!E->getType()->isIntegralOrEnumerationType()) {
8662 if (Loc) *Loc = E->getExprLoc();
8663 return false;
8664 }
8665
8666 APValue Result;
8667 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
8668 return false;
8669
8670 assert(Result.isInt() && "pointer cast to int is not an ICE");
8671 if (Value) *Value = Result.getInt();
8672 return true;
8673 }
8674
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const8675 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
8676 SourceLocation *Loc) const {
8677 if (Ctx.getLangOpts().CPlusPlus11)
8678 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
8679
8680 ICEDiag D = CheckICE(this, Ctx);
8681 if (D.Kind != IK_ICE) {
8682 if (Loc) *Loc = D.Loc;
8683 return false;
8684 }
8685 return true;
8686 }
8687
isIntegerConstantExpr(llvm::APSInt & Value,const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const8688 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
8689 SourceLocation *Loc, bool isEvaluated) const {
8690 if (Ctx.getLangOpts().CPlusPlus11)
8691 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
8692
8693 if (!isIntegerConstantExpr(Ctx, Loc))
8694 return false;
8695 if (!EvaluateAsInt(Value, Ctx))
8696 llvm_unreachable("ICE cannot be evaluated!");
8697 return true;
8698 }
8699
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const8700 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
8701 return CheckICE(this, Ctx).Kind == IK_ICE;
8702 }
8703
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const8704 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
8705 SourceLocation *Loc) const {
8706 // We support this checking in C++98 mode in order to diagnose compatibility
8707 // issues.
8708 assert(Ctx.getLangOpts().CPlusPlus);
8709
8710 // Build evaluation settings.
8711 Expr::EvalStatus Status;
8712 SmallVector<PartialDiagnosticAt, 8> Diags;
8713 Status.Diag = &Diags;
8714 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
8715
8716 APValue Scratch;
8717 bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
8718
8719 if (!Diags.empty()) {
8720 IsConstExpr = false;
8721 if (Loc) *Loc = Diags[0].first;
8722 } else if (!IsConstExpr) {
8723 // FIXME: This shouldn't happen.
8724 if (Loc) *Loc = getExprLoc();
8725 }
8726
8727 return IsConstExpr;
8728 }
8729
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args) const8730 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
8731 const FunctionDecl *Callee,
8732 ArrayRef<const Expr*> Args) const {
8733 Expr::EvalStatus Status;
8734 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
8735
8736 ArgVector ArgValues(Args.size());
8737 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
8738 I != E; ++I) {
8739 if (!Evaluate(ArgValues[I - Args.begin()], Info, *I))
8740 // If evaluation fails, throw away the argument entirely.
8741 ArgValues[I - Args.begin()] = APValue();
8742 if (Info.EvalStatus.HasSideEffects)
8743 return false;
8744 }
8745
8746 // Build fake call to Callee.
8747 CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
8748 ArgValues.data());
8749 return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
8750 }
8751
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)8752 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
8753 SmallVectorImpl<
8754 PartialDiagnosticAt> &Diags) {
8755 // FIXME: It would be useful to check constexpr function templates, but at the
8756 // moment the constant expression evaluator cannot cope with the non-rigorous
8757 // ASTs which we build for dependent expressions.
8758 if (FD->isDependentContext())
8759 return true;
8760
8761 Expr::EvalStatus Status;
8762 Status.Diag = &Diags;
8763
8764 EvalInfo Info(FD->getASTContext(), Status,
8765 EvalInfo::EM_PotentialConstantExpression);
8766
8767 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8768 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
8769
8770 // Fabricate an arbitrary expression on the stack and pretend that it
8771 // is a temporary being used as the 'this' pointer.
8772 LValue This;
8773 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
8774 This.set(&VIE, Info.CurrentCall->Index);
8775
8776 ArrayRef<const Expr*> Args;
8777
8778 SourceLocation Loc = FD->getLocation();
8779
8780 APValue Scratch;
8781 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
8782 // Evaluate the call as a constant initializer, to allow the construction
8783 // of objects of non-literal types.
8784 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
8785 HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
8786 } else
8787 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
8788 Args, FD->getBody(), Info, Scratch);
8789
8790 return Diags.empty();
8791 }
8792
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)8793 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
8794 const FunctionDecl *FD,
8795 SmallVectorImpl<
8796 PartialDiagnosticAt> &Diags) {
8797 Expr::EvalStatus Status;
8798 Status.Diag = &Diags;
8799
8800 EvalInfo Info(FD->getASTContext(), Status,
8801 EvalInfo::EM_PotentialConstantExpressionUnevaluated);
8802
8803 // Fabricate a call stack frame to give the arguments a plausible cover story.
8804 ArrayRef<const Expr*> Args;
8805 ArgVector ArgValues(0);
8806 bool Success = EvaluateArgs(Args, ArgValues, Info);
8807 (void)Success;
8808 assert(Success &&
8809 "Failed to set up arguments for potential constant evaluation");
8810 CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
8811
8812 APValue ResultScratch;
8813 Evaluate(ResultScratch, Info, E);
8814 return Diags.empty();
8815 }
8816