1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines ExprEngine's support for C expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ExprCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17
18 using namespace clang;
19 using namespace ento;
20 using llvm::APSInt;
21
VisitBinaryOperator(const BinaryOperator * B,ExplodedNode * Pred,ExplodedNodeSet & Dst)22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23 ExplodedNode *Pred,
24 ExplodedNodeSet &Dst) {
25
26 Expr *LHS = B->getLHS()->IgnoreParens();
27 Expr *RHS = B->getRHS()->IgnoreParens();
28
29 // FIXME: Prechecks eventually go in ::Visit().
30 ExplodedNodeSet CheckedSet;
31 ExplodedNodeSet Tmp2;
32 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33
34 // With both the LHS and RHS evaluated, process the operation itself.
35 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36 it != ei; ++it) {
37
38 ProgramStateRef state = (*it)->getState();
39 const LocationContext *LCtx = (*it)->getLocationContext();
40 SVal LeftV = state->getSVal(LHS, LCtx);
41 SVal RightV = state->getSVal(RHS, LCtx);
42
43 BinaryOperator::Opcode Op = B->getOpcode();
44
45 if (Op == BO_Assign) {
46 // EXPERIMENTAL: "Conjured" symbols.
47 // FIXME: Handle structs.
48 if (RightV.isUnknown()) {
49 unsigned Count = currBldrCtx->blockCount();
50 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
51 Count);
52 }
53 // Simulate the effects of a "store": bind the value of the RHS
54 // to the L-Value represented by the LHS.
55 SVal ExprVal = B->isGLValue() ? LeftV : RightV;
56 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
57 LeftV, RightV);
58 continue;
59 }
60
61 if (!B->isAssignmentOp()) {
62 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
63
64 if (B->isAdditiveOp()) {
65 // If one of the operands is a location, conjure a symbol for the other
66 // one (offset) if it's unknown so that memory arithmetic always
67 // results in an ElementRegion.
68 // TODO: This can be removed after we enable history tracking with
69 // SymSymExpr.
70 unsigned Count = currBldrCtx->blockCount();
71 if (LeftV.getAs<Loc>() &&
72 RHS->getType()->isIntegralOrEnumerationType() &&
73 RightV.isUnknown()) {
74 RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
75 Count);
76 }
77 if (RightV.getAs<Loc>() &&
78 LHS->getType()->isIntegralOrEnumerationType() &&
79 LeftV.isUnknown()) {
80 LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
81 Count);
82 }
83 }
84
85 // Although we don't yet model pointers-to-members, we do need to make
86 // sure that the members of temporaries have a valid 'this' pointer for
87 // other checks.
88 if (B->getOpcode() == BO_PtrMemD)
89 state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
90
91 // Process non-assignments except commas or short-circuited
92 // logical expressions (LAnd and LOr).
93 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
94 if (Result.isUnknown()) {
95 Bldr.generateNode(B, *it, state);
96 continue;
97 }
98
99 state = state->BindExpr(B, LCtx, Result);
100 Bldr.generateNode(B, *it, state);
101 continue;
102 }
103
104 assert (B->isCompoundAssignmentOp());
105
106 switch (Op) {
107 default:
108 llvm_unreachable("Invalid opcode for compound assignment.");
109 case BO_MulAssign: Op = BO_Mul; break;
110 case BO_DivAssign: Op = BO_Div; break;
111 case BO_RemAssign: Op = BO_Rem; break;
112 case BO_AddAssign: Op = BO_Add; break;
113 case BO_SubAssign: Op = BO_Sub; break;
114 case BO_ShlAssign: Op = BO_Shl; break;
115 case BO_ShrAssign: Op = BO_Shr; break;
116 case BO_AndAssign: Op = BO_And; break;
117 case BO_XorAssign: Op = BO_Xor; break;
118 case BO_OrAssign: Op = BO_Or; break;
119 }
120
121 // Perform a load (the LHS). This performs the checks for
122 // null dereferences, and so on.
123 ExplodedNodeSet Tmp;
124 SVal location = LeftV;
125 evalLoad(Tmp, B, LHS, *it, state, location);
126
127 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
128 ++I) {
129
130 state = (*I)->getState();
131 const LocationContext *LCtx = (*I)->getLocationContext();
132 SVal V = state->getSVal(LHS, LCtx);
133
134 // Get the computation type.
135 QualType CTy =
136 cast<CompoundAssignOperator>(B)->getComputationResultType();
137 CTy = getContext().getCanonicalType(CTy);
138
139 QualType CLHSTy =
140 cast<CompoundAssignOperator>(B)->getComputationLHSType();
141 CLHSTy = getContext().getCanonicalType(CLHSTy);
142
143 QualType LTy = getContext().getCanonicalType(LHS->getType());
144
145 // Promote LHS.
146 V = svalBuilder.evalCast(V, CLHSTy, LTy);
147
148 // Compute the result of the operation.
149 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
150 B->getType(), CTy);
151
152 // EXPERIMENTAL: "Conjured" symbols.
153 // FIXME: Handle structs.
154
155 SVal LHSVal;
156
157 if (Result.isUnknown()) {
158 // The symbolic value is actually for the type of the left-hand side
159 // expression, not the computation type, as this is the value the
160 // LValue on the LHS will bind to.
161 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
162 currBldrCtx->blockCount());
163 // However, we need to convert the symbol to the computation type.
164 Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
165 }
166 else {
167 // The left-hand side may bind to a different value then the
168 // computation type.
169 LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
170 }
171
172 // In C++, assignment and compound assignment operators return an
173 // lvalue.
174 if (B->isGLValue())
175 state = state->BindExpr(B, LCtx, location);
176 else
177 state = state->BindExpr(B, LCtx, Result);
178
179 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
180 }
181 }
182
183 // FIXME: postvisits eventually go in ::Visit()
184 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
185 }
186
VisitBlockExpr(const BlockExpr * BE,ExplodedNode * Pred,ExplodedNodeSet & Dst)187 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
188 ExplodedNodeSet &Dst) {
189
190 CanQualType T = getContext().getCanonicalType(BE->getType());
191
192 // Get the value of the block itself.
193 SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
194 Pred->getLocationContext(),
195 currBldrCtx->blockCount());
196
197 ProgramStateRef State = Pred->getState();
198
199 // If we created a new MemRegion for the block, we should explicitly bind
200 // the captured variables.
201 if (const BlockDataRegion *BDR =
202 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
203
204 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
205 E = BDR->referenced_vars_end();
206
207 for (; I != E; ++I) {
208 const MemRegion *capturedR = I.getCapturedRegion();
209 const MemRegion *originalR = I.getOriginalRegion();
210 if (capturedR != originalR) {
211 SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
212 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
213 }
214 }
215 }
216
217 ExplodedNodeSet Tmp;
218 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
219 Bldr.generateNode(BE, Pred,
220 State->BindExpr(BE, Pred->getLocationContext(), V),
221 nullptr, ProgramPoint::PostLValueKind);
222
223 // FIXME: Move all post/pre visits to ::Visit().
224 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
225 }
226
VisitCast(const CastExpr * CastE,const Expr * Ex,ExplodedNode * Pred,ExplodedNodeSet & Dst)227 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
228 ExplodedNode *Pred, ExplodedNodeSet &Dst) {
229
230 ExplodedNodeSet dstPreStmt;
231 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
232
233 if (CastE->getCastKind() == CK_LValueToRValue) {
234 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
235 I!=E; ++I) {
236 ExplodedNode *subExprNode = *I;
237 ProgramStateRef state = subExprNode->getState();
238 const LocationContext *LCtx = subExprNode->getLocationContext();
239 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
240 }
241 return;
242 }
243
244 // All other casts.
245 QualType T = CastE->getType();
246 QualType ExTy = Ex->getType();
247
248 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
249 T = ExCast->getTypeAsWritten();
250
251 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
252 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
253 I != E; ++I) {
254
255 Pred = *I;
256 ProgramStateRef state = Pred->getState();
257 const LocationContext *LCtx = Pred->getLocationContext();
258
259 switch (CastE->getCastKind()) {
260 case CK_LValueToRValue:
261 llvm_unreachable("LValueToRValue casts handled earlier.");
262 case CK_ToVoid:
263 continue;
264 // The analyzer doesn't do anything special with these casts,
265 // since it understands retain/release semantics already.
266 case CK_ARCProduceObject:
267 case CK_ARCConsumeObject:
268 case CK_ARCReclaimReturnedObject:
269 case CK_ARCExtendBlockObject: // Fall-through.
270 case CK_CopyAndAutoreleaseBlockObject:
271 // The analyser can ignore atomic casts for now, although some future
272 // checkers may want to make certain that you're not modifying the same
273 // value through atomic and nonatomic pointers.
274 case CK_AtomicToNonAtomic:
275 case CK_NonAtomicToAtomic:
276 // True no-ops.
277 case CK_NoOp:
278 case CK_ConstructorConversion:
279 case CK_UserDefinedConversion:
280 case CK_FunctionToPointerDecay:
281 case CK_BuiltinFnToFnPtr: {
282 // Copy the SVal of Ex to CastE.
283 ProgramStateRef state = Pred->getState();
284 const LocationContext *LCtx = Pred->getLocationContext();
285 SVal V = state->getSVal(Ex, LCtx);
286 state = state->BindExpr(CastE, LCtx, V);
287 Bldr.generateNode(CastE, Pred, state);
288 continue;
289 }
290 case CK_MemberPointerToBoolean:
291 // FIXME: For now, member pointers are represented by void *.
292 // FALLTHROUGH
293 case CK_Dependent:
294 case CK_ArrayToPointerDecay:
295 case CK_BitCast:
296 case CK_AddressSpaceConversion:
297 case CK_IntegralCast:
298 case CK_NullToPointer:
299 case CK_IntegralToPointer:
300 case CK_PointerToIntegral:
301 case CK_PointerToBoolean:
302 case CK_IntegralToBoolean:
303 case CK_IntegralToFloating:
304 case CK_FloatingToIntegral:
305 case CK_FloatingToBoolean:
306 case CK_FloatingCast:
307 case CK_FloatingRealToComplex:
308 case CK_FloatingComplexToReal:
309 case CK_FloatingComplexToBoolean:
310 case CK_FloatingComplexCast:
311 case CK_FloatingComplexToIntegralComplex:
312 case CK_IntegralRealToComplex:
313 case CK_IntegralComplexToReal:
314 case CK_IntegralComplexToBoolean:
315 case CK_IntegralComplexCast:
316 case CK_IntegralComplexToFloatingComplex:
317 case CK_CPointerToObjCPointerCast:
318 case CK_BlockPointerToObjCPointerCast:
319 case CK_AnyPointerToBlockPointerCast:
320 case CK_ObjCObjectLValueCast:
321 case CK_ZeroToOCLEvent:
322 case CK_LValueBitCast: {
323 // Delegate to SValBuilder to process.
324 SVal V = state->getSVal(Ex, LCtx);
325 V = svalBuilder.evalCast(V, T, ExTy);
326 state = state->BindExpr(CastE, LCtx, V);
327 Bldr.generateNode(CastE, Pred, state);
328 continue;
329 }
330 case CK_DerivedToBase:
331 case CK_UncheckedDerivedToBase: {
332 // For DerivedToBase cast, delegate to the store manager.
333 SVal val = state->getSVal(Ex, LCtx);
334 val = getStoreManager().evalDerivedToBase(val, CastE);
335 state = state->BindExpr(CastE, LCtx, val);
336 Bldr.generateNode(CastE, Pred, state);
337 continue;
338 }
339 // Handle C++ dyn_cast.
340 case CK_Dynamic: {
341 SVal val = state->getSVal(Ex, LCtx);
342
343 // Compute the type of the result.
344 QualType resultType = CastE->getType();
345 if (CastE->isGLValue())
346 resultType = getContext().getPointerType(resultType);
347
348 bool Failed = false;
349
350 // Check if the value being cast evaluates to 0.
351 if (val.isZeroConstant())
352 Failed = true;
353 // Else, evaluate the cast.
354 else
355 val = getStoreManager().evalDynamicCast(val, T, Failed);
356
357 if (Failed) {
358 if (T->isReferenceType()) {
359 // A bad_cast exception is thrown if input value is a reference.
360 // Currently, we model this, by generating a sink.
361 Bldr.generateSink(CastE, Pred, state);
362 continue;
363 } else {
364 // If the cast fails on a pointer, bind to 0.
365 state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
366 }
367 } else {
368 // If we don't know if the cast succeeded, conjure a new symbol.
369 if (val.isUnknown()) {
370 DefinedOrUnknownSVal NewSym =
371 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
372 currBldrCtx->blockCount());
373 state = state->BindExpr(CastE, LCtx, NewSym);
374 } else
375 // Else, bind to the derived region value.
376 state = state->BindExpr(CastE, LCtx, val);
377 }
378 Bldr.generateNode(CastE, Pred, state);
379 continue;
380 }
381 case CK_NullToMemberPointer: {
382 // FIXME: For now, member pointers are represented by void *.
383 SVal V = svalBuilder.makeNull();
384 state = state->BindExpr(CastE, LCtx, V);
385 Bldr.generateNode(CastE, Pred, state);
386 continue;
387 }
388 // Various C++ casts that are not handled yet.
389 case CK_ToUnion:
390 case CK_BaseToDerived:
391 case CK_BaseToDerivedMemberPointer:
392 case CK_DerivedToBaseMemberPointer:
393 case CK_ReinterpretMemberPointer:
394 case CK_VectorSplat: {
395 // Recover some path-sensitivty by conjuring a new value.
396 QualType resultType = CastE->getType();
397 if (CastE->isGLValue())
398 resultType = getContext().getPointerType(resultType);
399 SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
400 resultType,
401 currBldrCtx->blockCount());
402 state = state->BindExpr(CastE, LCtx, result);
403 Bldr.generateNode(CastE, Pred, state);
404 continue;
405 }
406 }
407 }
408 }
409
VisitCompoundLiteralExpr(const CompoundLiteralExpr * CL,ExplodedNode * Pred,ExplodedNodeSet & Dst)410 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
411 ExplodedNode *Pred,
412 ExplodedNodeSet &Dst) {
413 StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
414
415 ProgramStateRef State = Pred->getState();
416 const LocationContext *LCtx = Pred->getLocationContext();
417
418 const Expr *Init = CL->getInitializer();
419 SVal V = State->getSVal(CL->getInitializer(), LCtx);
420
421 if (isa<CXXConstructExpr>(Init)) {
422 // No work needed. Just pass the value up to this expression.
423 } else {
424 assert(isa<InitListExpr>(Init));
425 Loc CLLoc = State->getLValue(CL, LCtx);
426 State = State->bindLoc(CLLoc, V);
427
428 // Compound literal expressions are a GNU extension in C++.
429 // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
430 // and like temporary objects created by the functional notation T()
431 // CLs are destroyed at the end of the containing full-expression.
432 // HOWEVER, an rvalue of array type is not something the analyzer can
433 // reason about, since we expect all regions to be wrapped in Locs.
434 // So we treat array CLs as lvalues as well, knowing that they will decay
435 // to pointers as soon as they are used.
436 if (CL->isGLValue() || CL->getType()->isArrayType())
437 V = CLLoc;
438 }
439
440 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
441 }
442
VisitDeclStmt(const DeclStmt * DS,ExplodedNode * Pred,ExplodedNodeSet & Dst)443 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
444 ExplodedNodeSet &Dst) {
445 // Assumption: The CFG has one DeclStmt per Decl.
446 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
447
448 if (!VD) {
449 //TODO:AZ: remove explicit insertion after refactoring is done.
450 Dst.insert(Pred);
451 return;
452 }
453
454 // FIXME: all pre/post visits should eventually be handled by ::Visit().
455 ExplodedNodeSet dstPreVisit;
456 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
457
458 ExplodedNodeSet dstEvaluated;
459 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
460 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
461 I!=E; ++I) {
462 ExplodedNode *N = *I;
463 ProgramStateRef state = N->getState();
464 const LocationContext *LC = N->getLocationContext();
465
466 // Decls without InitExpr are not initialized explicitly.
467 if (const Expr *InitEx = VD->getInit()) {
468
469 // Note in the state that the initialization has occurred.
470 ExplodedNode *UpdatedN = N;
471 SVal InitVal = state->getSVal(InitEx, LC);
472
473 if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) {
474 // We constructed the object directly in the variable.
475 // No need to bind anything.
476 B.generateNode(DS, UpdatedN, state);
477 } else {
478 // We bound the temp obj region to the CXXConstructExpr. Now recover
479 // the lazy compound value when the variable is not a reference.
480 if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
481 !VD->getType()->isReferenceType()) {
482 if (Optional<loc::MemRegionVal> M =
483 InitVal.getAs<loc::MemRegionVal>()) {
484 InitVal = state->getSVal(M->getRegion());
485 assert(InitVal.getAs<nonloc::LazyCompoundVal>());
486 }
487 }
488
489 // Recover some path-sensitivity if a scalar value evaluated to
490 // UnknownVal.
491 if (InitVal.isUnknown()) {
492 QualType Ty = InitEx->getType();
493 if (InitEx->isGLValue()) {
494 Ty = getContext().getPointerType(Ty);
495 }
496
497 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
498 currBldrCtx->blockCount());
499 }
500
501
502 B.takeNodes(UpdatedN);
503 ExplodedNodeSet Dst2;
504 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
505 B.addNodes(Dst2);
506 }
507 }
508 else {
509 B.generateNode(DS, N, state);
510 }
511 }
512
513 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
514 }
515
VisitLogicalExpr(const BinaryOperator * B,ExplodedNode * Pred,ExplodedNodeSet & Dst)516 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
517 ExplodedNodeSet &Dst) {
518 assert(B->getOpcode() == BO_LAnd ||
519 B->getOpcode() == BO_LOr);
520
521 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
522 ProgramStateRef state = Pred->getState();
523
524 ExplodedNode *N = Pred;
525 while (!N->getLocation().getAs<BlockEntrance>()) {
526 ProgramPoint P = N->getLocation();
527 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
528 (void) P;
529 assert(N->pred_size() == 1);
530 N = *N->pred_begin();
531 }
532 assert(N->pred_size() == 1);
533 N = *N->pred_begin();
534 BlockEdge BE = N->getLocation().castAs<BlockEdge>();
535 SVal X;
536
537 // Determine the value of the expression by introspecting how we
538 // got this location in the CFG. This requires looking at the previous
539 // block we were in and what kind of control-flow transfer was involved.
540 const CFGBlock *SrcBlock = BE.getSrc();
541 // The only terminator (if there is one) that makes sense is a logical op.
542 CFGTerminator T = SrcBlock->getTerminator();
543 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
544 (void) Term;
545 assert(Term->isLogicalOp());
546 assert(SrcBlock->succ_size() == 2);
547 // Did we take the true or false branch?
548 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
549 X = svalBuilder.makeIntVal(constant, B->getType());
550 }
551 else {
552 // If there is no terminator, by construction the last statement
553 // in SrcBlock is the value of the enclosing expression.
554 // However, we still need to constrain that value to be 0 or 1.
555 assert(!SrcBlock->empty());
556 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
557 const Expr *RHS = cast<Expr>(Elem.getStmt());
558 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
559
560 if (RHSVal.isUndef()) {
561 X = RHSVal;
562 } else {
563 DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
564 ProgramStateRef StTrue, StFalse;
565 std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
566 if (StTrue) {
567 if (StFalse) {
568 // We can't constrain the value to 0 or 1.
569 // The best we can do is a cast.
570 X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
571 } else {
572 // The value is known to be true.
573 X = getSValBuilder().makeIntVal(1, B->getType());
574 }
575 } else {
576 // The value is known to be false.
577 assert(StFalse && "Infeasible path!");
578 X = getSValBuilder().makeIntVal(0, B->getType());
579 }
580 }
581 }
582 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
583 }
584
VisitInitListExpr(const InitListExpr * IE,ExplodedNode * Pred,ExplodedNodeSet & Dst)585 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
586 ExplodedNode *Pred,
587 ExplodedNodeSet &Dst) {
588 StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
589
590 ProgramStateRef state = Pred->getState();
591 const LocationContext *LCtx = Pred->getLocationContext();
592 QualType T = getContext().getCanonicalType(IE->getType());
593 unsigned NumInitElements = IE->getNumInits();
594
595 if (!IE->isGLValue() &&
596 (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
597 T->isAnyComplexType())) {
598 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
599
600 // Handle base case where the initializer has no elements.
601 // e.g: static int* myArray[] = {};
602 if (NumInitElements == 0) {
603 SVal V = svalBuilder.makeCompoundVal(T, vals);
604 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
605 return;
606 }
607
608 for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
609 ei = IE->rend(); it != ei; ++it) {
610 SVal V = state->getSVal(cast<Expr>(*it), LCtx);
611 vals = getBasicVals().consVals(V, vals);
612 }
613
614 B.generateNode(IE, Pred,
615 state->BindExpr(IE, LCtx,
616 svalBuilder.makeCompoundVal(T, vals)));
617 return;
618 }
619
620 // Handle scalars: int{5} and int{} and GLvalues.
621 // Note, if the InitListExpr is a GLvalue, it means that there is an address
622 // representing it, so it must have a single init element.
623 assert(NumInitElements <= 1);
624
625 SVal V;
626 if (NumInitElements == 0)
627 V = getSValBuilder().makeZeroVal(T);
628 else
629 V = state->getSVal(IE->getInit(0), LCtx);
630
631 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
632 }
633
VisitGuardedExpr(const Expr * Ex,const Expr * L,const Expr * R,ExplodedNode * Pred,ExplodedNodeSet & Dst)634 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
635 const Expr *L,
636 const Expr *R,
637 ExplodedNode *Pred,
638 ExplodedNodeSet &Dst) {
639 assert(L && R);
640
641 StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
642 ProgramStateRef state = Pred->getState();
643 const LocationContext *LCtx = Pred->getLocationContext();
644 const CFGBlock *SrcBlock = nullptr;
645
646 // Find the predecessor block.
647 ProgramStateRef SrcState = state;
648 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
649 ProgramPoint PP = N->getLocation();
650 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
651 assert(N->pred_size() == 1);
652 continue;
653 }
654 SrcBlock = PP.castAs<BlockEdge>().getSrc();
655 SrcState = N->getState();
656 break;
657 }
658
659 assert(SrcBlock && "missing function entry");
660
661 // Find the last expression in the predecessor block. That is the
662 // expression that is used for the value of the ternary expression.
663 bool hasValue = false;
664 SVal V;
665
666 for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
667 E = SrcBlock->rend(); I != E; ++I) {
668 CFGElement CE = *I;
669 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
670 const Expr *ValEx = cast<Expr>(CS->getStmt());
671 ValEx = ValEx->IgnoreParens();
672
673 // For GNU extension '?:' operator, the left hand side will be an
674 // OpaqueValueExpr, so get the underlying expression.
675 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
676 L = OpaqueEx->getSourceExpr();
677
678 // If the last expression in the predecessor block matches true or false
679 // subexpression, get its the value.
680 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
681 hasValue = true;
682 V = SrcState->getSVal(ValEx, LCtx);
683 }
684 break;
685 }
686 }
687
688 if (!hasValue)
689 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
690 currBldrCtx->blockCount());
691
692 // Generate a new node with the binding from the appropriate path.
693 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
694 }
695
696 void ExprEngine::
VisitOffsetOfExpr(const OffsetOfExpr * OOE,ExplodedNode * Pred,ExplodedNodeSet & Dst)697 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
698 ExplodedNode *Pred, ExplodedNodeSet &Dst) {
699 StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
700 APSInt IV;
701 if (OOE->EvaluateAsInt(IV, getContext())) {
702 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
703 assert(OOE->getType()->isBuiltinType());
704 assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
705 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
706 SVal X = svalBuilder.makeIntVal(IV);
707 B.generateNode(OOE, Pred,
708 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
709 X));
710 }
711 // FIXME: Handle the case where __builtin_offsetof is not a constant.
712 }
713
714
715 void ExprEngine::
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * Ex,ExplodedNode * Pred,ExplodedNodeSet & Dst)716 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
717 ExplodedNode *Pred,
718 ExplodedNodeSet &Dst) {
719 // FIXME: Prechecks eventually go in ::Visit().
720 ExplodedNodeSet CheckedSet;
721 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
722
723 ExplodedNodeSet EvalSet;
724 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
725
726 QualType T = Ex->getTypeOfArgument();
727
728 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
729 I != E; ++I) {
730 if (Ex->getKind() == UETT_SizeOf) {
731 if (!T->isIncompleteType() && !T->isConstantSizeType()) {
732 assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
733
734 // FIXME: Add support for VLA type arguments and VLA expressions.
735 // When that happens, we should probably refactor VLASizeChecker's code.
736 continue;
737 } else if (T->getAs<ObjCObjectType>()) {
738 // Some code tries to take the sizeof an ObjCObjectType, relying that
739 // the compiler has laid out its representation. Just report Unknown
740 // for these.
741 continue;
742 }
743 }
744
745 APSInt Value = Ex->EvaluateKnownConstInt(getContext());
746 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
747
748 ProgramStateRef state = (*I)->getState();
749 state = state->BindExpr(Ex, (*I)->getLocationContext(),
750 svalBuilder.makeIntVal(amt.getQuantity(),
751 Ex->getType()));
752 Bldr.generateNode(Ex, *I, state);
753 }
754
755 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
756 }
757
VisitUnaryOperator(const UnaryOperator * U,ExplodedNode * Pred,ExplodedNodeSet & Dst)758 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
759 ExplodedNode *Pred,
760 ExplodedNodeSet &Dst) {
761 // FIXME: Prechecks eventually go in ::Visit().
762 ExplodedNodeSet CheckedSet;
763 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
764
765 ExplodedNodeSet EvalSet;
766 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
767
768 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
769 I != E; ++I) {
770 switch (U->getOpcode()) {
771 default: {
772 Bldr.takeNodes(*I);
773 ExplodedNodeSet Tmp;
774 VisitIncrementDecrementOperator(U, *I, Tmp);
775 Bldr.addNodes(Tmp);
776 break;
777 }
778 case UO_Real: {
779 const Expr *Ex = U->getSubExpr()->IgnoreParens();
780
781 // FIXME: We don't have complex SValues yet.
782 if (Ex->getType()->isAnyComplexType()) {
783 // Just report "Unknown."
784 break;
785 }
786
787 // For all other types, UO_Real is an identity operation.
788 assert (U->getType() == Ex->getType());
789 ProgramStateRef state = (*I)->getState();
790 const LocationContext *LCtx = (*I)->getLocationContext();
791 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
792 state->getSVal(Ex, LCtx)));
793 break;
794 }
795
796 case UO_Imag: {
797 const Expr *Ex = U->getSubExpr()->IgnoreParens();
798 // FIXME: We don't have complex SValues yet.
799 if (Ex->getType()->isAnyComplexType()) {
800 // Just report "Unknown."
801 break;
802 }
803 // For all other types, UO_Imag returns 0.
804 ProgramStateRef state = (*I)->getState();
805 const LocationContext *LCtx = (*I)->getLocationContext();
806 SVal X = svalBuilder.makeZeroVal(Ex->getType());
807 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
808 break;
809 }
810
811 case UO_Plus:
812 assert(!U->isGLValue());
813 // FALL-THROUGH.
814 case UO_Deref:
815 case UO_AddrOf:
816 case UO_Extension: {
817 // FIXME: We can probably just have some magic in Environment::getSVal()
818 // that propagates values, instead of creating a new node here.
819 //
820 // Unary "+" is a no-op, similar to a parentheses. We still have places
821 // where it may be a block-level expression, so we need to
822 // generate an extra node that just propagates the value of the
823 // subexpression.
824 const Expr *Ex = U->getSubExpr()->IgnoreParens();
825 ProgramStateRef state = (*I)->getState();
826 const LocationContext *LCtx = (*I)->getLocationContext();
827 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
828 state->getSVal(Ex, LCtx)));
829 break;
830 }
831
832 case UO_LNot:
833 case UO_Minus:
834 case UO_Not: {
835 assert (!U->isGLValue());
836 const Expr *Ex = U->getSubExpr()->IgnoreParens();
837 ProgramStateRef state = (*I)->getState();
838 const LocationContext *LCtx = (*I)->getLocationContext();
839
840 // Get the value of the subexpression.
841 SVal V = state->getSVal(Ex, LCtx);
842
843 if (V.isUnknownOrUndef()) {
844 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
845 break;
846 }
847
848 switch (U->getOpcode()) {
849 default:
850 llvm_unreachable("Invalid Opcode.");
851 case UO_Not:
852 // FIXME: Do we need to handle promotions?
853 state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
854 break;
855 case UO_Minus:
856 // FIXME: Do we need to handle promotions?
857 state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
858 break;
859 case UO_LNot:
860 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
861 //
862 // Note: technically we do "E == 0", but this is the same in the
863 // transfer functions as "0 == E".
864 SVal Result;
865 if (Optional<Loc> LV = V.getAs<Loc>()) {
866 Loc X = svalBuilder.makeNull();
867 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
868 }
869 else if (Ex->getType()->isFloatingType()) {
870 // FIXME: handle floating point types.
871 Result = UnknownVal();
872 } else {
873 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
874 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
875 U->getType());
876 }
877
878 state = state->BindExpr(U, LCtx, Result);
879 break;
880 }
881 Bldr.generateNode(U, *I, state);
882 break;
883 }
884 }
885 }
886
887 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
888 }
889
VisitIncrementDecrementOperator(const UnaryOperator * U,ExplodedNode * Pred,ExplodedNodeSet & Dst)890 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
891 ExplodedNode *Pred,
892 ExplodedNodeSet &Dst) {
893 // Handle ++ and -- (both pre- and post-increment).
894 assert (U->isIncrementDecrementOp());
895 const Expr *Ex = U->getSubExpr()->IgnoreParens();
896
897 const LocationContext *LCtx = Pred->getLocationContext();
898 ProgramStateRef state = Pred->getState();
899 SVal loc = state->getSVal(Ex, LCtx);
900
901 // Perform a load.
902 ExplodedNodeSet Tmp;
903 evalLoad(Tmp, U, Ex, Pred, state, loc);
904
905 ExplodedNodeSet Dst2;
906 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
907 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
908
909 state = (*I)->getState();
910 assert(LCtx == (*I)->getLocationContext());
911 SVal V2_untested = state->getSVal(Ex, LCtx);
912
913 // Propagate unknown and undefined values.
914 if (V2_untested.isUnknownOrUndef()) {
915 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
916 continue;
917 }
918 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
919
920 // Handle all other values.
921 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
922
923 // If the UnaryOperator has non-location type, use its type to create the
924 // constant value. If the UnaryOperator has location type, create the
925 // constant with int type and pointer width.
926 SVal RHS;
927
928 if (U->getType()->isAnyPointerType())
929 RHS = svalBuilder.makeArrayIndex(1);
930 else if (U->getType()->isIntegralOrEnumerationType())
931 RHS = svalBuilder.makeIntVal(1, U->getType());
932 else
933 RHS = UnknownVal();
934
935 SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
936
937 // Conjure a new symbol if necessary to recover precision.
938 if (Result.isUnknown()){
939 DefinedOrUnknownSVal SymVal =
940 svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
941 currBldrCtx->blockCount());
942 Result = SymVal;
943
944 // If the value is a location, ++/-- should always preserve
945 // non-nullness. Check if the original value was non-null, and if so
946 // propagate that constraint.
947 if (Loc::isLocType(U->getType())) {
948 DefinedOrUnknownSVal Constraint =
949 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
950
951 if (!state->assume(Constraint, true)) {
952 // It isn't feasible for the original value to be null.
953 // Propagate this constraint.
954 Constraint = svalBuilder.evalEQ(state, SymVal,
955 svalBuilder.makeZeroVal(U->getType()));
956
957
958 state = state->assume(Constraint, false);
959 assert(state);
960 }
961 }
962 }
963
964 // Since the lvalue-to-rvalue conversion is explicit in the AST,
965 // we bind an l-value if the operator is prefix and an lvalue (in C++).
966 if (U->isGLValue())
967 state = state->BindExpr(U, LCtx, loc);
968 else
969 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
970
971 // Perform the store.
972 Bldr.takeNodes(*I);
973 ExplodedNodeSet Dst3;
974 evalStore(Dst3, U, U, *I, state, loc, Result);
975 Bldr.addNodes(Dst3);
976 }
977 Dst.insert(Dst2);
978 }
979