• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements bookkeeping for "interesting" users of expressions
11 // computed from induction variables.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/IVUsers.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/LoopPass.h"
18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "iv-users"
32 
33 char IVUsers::ID = 0;
34 INITIALIZE_PASS_BEGIN(IVUsers, "iv-users",
35                       "Induction Variable Users", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)36 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
37 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
38 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
39 INITIALIZE_PASS_END(IVUsers, "iv-users",
40                       "Induction Variable Users", false, true)
41 
42 Pass *llvm::createIVUsersPass() {
43   return new IVUsers();
44 }
45 
46 /// isInteresting - Test whether the given expression is "interesting" when
47 /// used by the given expression, within the context of analyzing the
48 /// given loop.
isInteresting(const SCEV * S,const Instruction * I,const Loop * L,ScalarEvolution * SE,LoopInfo * LI)49 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
50                           ScalarEvolution *SE, LoopInfo *LI) {
51   // An addrec is interesting if it's affine or if it has an interesting start.
52   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
53     // Keep things simple. Don't touch loop-variant strides unless they're
54     // only used outside the loop and we can simplify them.
55     if (AR->getLoop() == L)
56       return AR->isAffine() ||
57              (!L->contains(I) &&
58               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
59     // Otherwise recurse to see if the start value is interesting, and that
60     // the step value is not interesting, since we don't yet know how to
61     // do effective SCEV expansions for addrecs with interesting steps.
62     return isInteresting(AR->getStart(), I, L, SE, LI) &&
63           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
64   }
65 
66   // An add is interesting if exactly one of its operands is interesting.
67   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
68     bool AnyInterestingYet = false;
69     for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
70          OI != OE; ++OI)
71       if (isInteresting(*OI, I, L, SE, LI)) {
72         if (AnyInterestingYet)
73           return false;
74         AnyInterestingYet = true;
75       }
76     return AnyInterestingYet;
77   }
78 
79   // Nothing else is interesting here.
80   return false;
81 }
82 
83 /// Return true if all loop headers that dominate this block are in simplified
84 /// form.
isSimplifiedLoopNest(BasicBlock * BB,const DominatorTree * DT,const LoopInfo * LI,SmallPtrSet<Loop *,16> & SimpleLoopNests)85 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
86                                  const LoopInfo *LI,
87                                  SmallPtrSet<Loop*,16> &SimpleLoopNests) {
88   Loop *NearestLoop = nullptr;
89   for (DomTreeNode *Rung = DT->getNode(BB);
90        Rung; Rung = Rung->getIDom()) {
91     BasicBlock *DomBB = Rung->getBlock();
92     Loop *DomLoop = LI->getLoopFor(DomBB);
93     if (DomLoop && DomLoop->getHeader() == DomBB) {
94       // If the domtree walk reaches a loop with no preheader, return false.
95       if (!DomLoop->isLoopSimplifyForm())
96         return false;
97       // If we have already checked this loop nest, stop checking.
98       if (SimpleLoopNests.count(DomLoop))
99         break;
100       // If we have not already checked this loop nest, remember the loop
101       // header nearest to BB. The nearest loop may not contain BB.
102       if (!NearestLoop)
103         NearestLoop = DomLoop;
104     }
105   }
106   if (NearestLoop)
107     SimpleLoopNests.insert(NearestLoop);
108   return true;
109 }
110 
111 /// AddUsersImpl - Inspect the specified instruction.  If it is a
112 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
113 /// return true.  Otherwise, return false.
AddUsersImpl(Instruction * I,SmallPtrSet<Loop *,16> & SimpleLoopNests)114 bool IVUsers::AddUsersImpl(Instruction *I,
115                            SmallPtrSet<Loop*,16> &SimpleLoopNests) {
116   // Add this IV user to the Processed set before returning false to ensure that
117   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
118   if (!Processed.insert(I))
119     return true;    // Instruction already handled.
120 
121   if (!SE->isSCEVable(I->getType()))
122     return false;   // Void and FP expressions cannot be reduced.
123 
124   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
125   // pass to SCEVExpander. Expressions are not safe to expand if they represent
126   // operations that are not safe to speculate, namely integer division.
127   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I, DL))
128     return false;
129 
130   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
131   // Also avoid creating IVs of non-native types. For example, we don't want a
132   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
133   uint64_t Width = SE->getTypeSizeInBits(I->getType());
134   if (Width > 64 || (DL && !DL->isLegalInteger(Width)))
135     return false;
136 
137   // Get the symbolic expression for this instruction.
138   const SCEV *ISE = SE->getSCEV(I);
139 
140   // If we've come to an uninteresting expression, stop the traversal and
141   // call this a user.
142   if (!isInteresting(ISE, I, L, SE, LI))
143     return false;
144 
145   SmallPtrSet<Instruction *, 4> UniqueUsers;
146   for (Use &U : I->uses()) {
147     Instruction *User = cast<Instruction>(U.getUser());
148     if (!UniqueUsers.insert(User))
149       continue;
150 
151     // Do not infinitely recurse on PHI nodes.
152     if (isa<PHINode>(User) && Processed.count(User))
153       continue;
154 
155     // Only consider IVUsers that are dominated by simplified loop
156     // headers. Otherwise, SCEVExpander will crash.
157     BasicBlock *UseBB = User->getParent();
158     // A phi's use is live out of its predecessor block.
159     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
160       unsigned OperandNo = U.getOperandNo();
161       unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
162       UseBB = PHI->getIncomingBlock(ValNo);
163     }
164     if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
165       return false;
166 
167     // Descend recursively, but not into PHI nodes outside the current loop.
168     // It's important to see the entire expression outside the loop to get
169     // choices that depend on addressing mode use right, although we won't
170     // consider references outside the loop in all cases.
171     // If User is already in Processed, we don't want to recurse into it again,
172     // but do want to record a second reference in the same instruction.
173     bool AddUserToIVUsers = false;
174     if (LI->getLoopFor(User->getParent()) != L) {
175       if (isa<PHINode>(User) || Processed.count(User) ||
176           !AddUsersImpl(User, SimpleLoopNests)) {
177         DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
178                      << "   OF SCEV: " << *ISE << '\n');
179         AddUserToIVUsers = true;
180       }
181     } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
182       DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
183                    << "   OF SCEV: " << *ISE << '\n');
184       AddUserToIVUsers = true;
185     }
186 
187     if (AddUserToIVUsers) {
188       // Okay, we found a user that we cannot reduce.
189       IVStrideUse &NewUse = AddUser(User, I);
190       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
191       // The regular return value here is discarded; instead of recording
192       // it, we just recompute it when we need it.
193       const SCEV *OriginalISE = ISE;
194       ISE = TransformForPostIncUse(NormalizeAutodetect,
195                                    ISE, User, I,
196                                    NewUse.PostIncLoops,
197                                    *SE, *DT);
198 
199       // PostIncNormalization effectively simplifies the expression under
200       // pre-increment assumptions. Those assumptions (no wrapping) might not
201       // hold for the post-inc value. Catch such cases by making sure the
202       // transformation is invertible.
203       if (OriginalISE != ISE) {
204         const SCEV *DenormalizedISE =
205           TransformForPostIncUse(Denormalize, ISE, User, I,
206               NewUse.PostIncLoops, *SE, *DT);
207 
208         // If we normalized the expression, but denormalization doesn't give the
209         // original one, discard this user.
210         if (OriginalISE != DenormalizedISE) {
211           DEBUG(dbgs() << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
212                        << *ISE << '\n');
213           IVUses.pop_back();
214           return false;
215         }
216       }
217       DEBUG(if (SE->getSCEV(I) != ISE)
218               dbgs() << "   NORMALIZED TO: " << *ISE << '\n');
219     }
220   }
221   return true;
222 }
223 
AddUsersIfInteresting(Instruction * I)224 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
225   // SCEVExpander can only handle users that are dominated by simplified loop
226   // entries. Keep track of all loops that are only dominated by other simple
227   // loops so we don't traverse the domtree for each user.
228   SmallPtrSet<Loop*,16> SimpleLoopNests;
229 
230   return AddUsersImpl(I, SimpleLoopNests);
231 }
232 
AddUser(Instruction * User,Value * Operand)233 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
234   IVUses.push_back(new IVStrideUse(this, User, Operand));
235   return IVUses.back();
236 }
237 
IVUsers()238 IVUsers::IVUsers()
239     : LoopPass(ID) {
240   initializeIVUsersPass(*PassRegistry::getPassRegistry());
241 }
242 
getAnalysisUsage(AnalysisUsage & AU) const243 void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
244   AU.addRequired<LoopInfo>();
245   AU.addRequired<DominatorTreeWrapperPass>();
246   AU.addRequired<ScalarEvolution>();
247   AU.setPreservesAll();
248 }
249 
runOnLoop(Loop * l,LPPassManager & LPM)250 bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
251 
252   L = l;
253   LI = &getAnalysis<LoopInfo>();
254   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
255   SE = &getAnalysis<ScalarEvolution>();
256   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
257   DL = DLP ? &DLP->getDataLayout() : nullptr;
258 
259   // Find all uses of induction variables in this loop, and categorize
260   // them by stride.  Start by finding all of the PHI nodes in the header for
261   // this loop.  If they are induction variables, inspect their uses.
262   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
263     (void)AddUsersIfInteresting(I);
264 
265   return false;
266 }
267 
print(raw_ostream & OS,const Module * M) const268 void IVUsers::print(raw_ostream &OS, const Module *M) const {
269   OS << "IV Users for loop ";
270   L->getHeader()->printAsOperand(OS, false);
271   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
272     OS << " with backedge-taken count "
273        << *SE->getBackedgeTakenCount(L);
274   }
275   OS << ":\n";
276 
277   for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(),
278        E = IVUses.end(); UI != E; ++UI) {
279     OS << "  ";
280     UI->getOperandValToReplace()->printAsOperand(OS, false);
281     OS << " = " << *getReplacementExpr(*UI);
282     for (PostIncLoopSet::const_iterator
283          I = UI->PostIncLoops.begin(),
284          E = UI->PostIncLoops.end(); I != E; ++I) {
285       OS << " (post-inc with loop ";
286       (*I)->getHeader()->printAsOperand(OS, false);
287       OS << ")";
288     }
289     OS << " in  ";
290     if (UI->getUser())
291       UI->getUser()->print(OS);
292     else
293       OS << "Printing <null> User";
294     OS << '\n';
295   }
296 }
297 
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const299 void IVUsers::dump() const {
300   print(dbgs());
301 }
302 #endif
303 
releaseMemory()304 void IVUsers::releaseMemory() {
305   Processed.clear();
306   IVUses.clear();
307 }
308 
309 /// getReplacementExpr - Return a SCEV expression which computes the
310 /// value of the OperandValToReplace.
getReplacementExpr(const IVStrideUse & IU) const311 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
312   return SE->getSCEV(IU.getOperandValToReplace());
313 }
314 
315 /// getExpr - Return the expression for the use.
getExpr(const IVStrideUse & IU) const316 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
317   return
318     TransformForPostIncUse(Normalize, getReplacementExpr(IU),
319                            IU.getUser(), IU.getOperandValToReplace(),
320                            const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
321                            *SE, *DT);
322 }
323 
findAddRecForLoop(const SCEV * S,const Loop * L)324 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
325   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
326     if (AR->getLoop() == L)
327       return AR;
328     return findAddRecForLoop(AR->getStart(), L);
329   }
330 
331   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
332     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
333          I != E; ++I)
334       if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
335         return AR;
336     return nullptr;
337   }
338 
339   return nullptr;
340 }
341 
getStride(const IVStrideUse & IU,const Loop * L) const342 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
343   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
344     return AR->getStepRecurrence(*SE);
345   return nullptr;
346 }
347 
transformToPostInc(const Loop * L)348 void IVStrideUse::transformToPostInc(const Loop *L) {
349   PostIncLoops.insert(L);
350 }
351 
deleted()352 void IVStrideUse::deleted() {
353   // Remove this user from the list.
354   Parent->Processed.erase(this->getUser());
355   Parent->IVUses.erase(this);
356   // this now dangles!
357 }
358