1 //===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements integer type expansion and promotion for LegalizeTypes.
11 // Promotion is the act of changing a computation in an illegal type into a
12 // computation in a larger type. For example, implementing i8 arithmetic in an
13 // i32 register (often needed on powerpc).
14 // Expansion is the act of changing a computation in an illegal type into a
15 // computation in two identical registers of a smaller type. For example,
16 // implementing i64 arithmetic in two i32 registers (often needed on 32-bit
17 // targets).
18 //
19 //===----------------------------------------------------------------------===//
20
21 #include "LegalizeTypes.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 using namespace llvm;
26
27 #define DEBUG_TYPE "legalize-types"
28
29 //===----------------------------------------------------------------------===//
30 // Integer Result Promotion
31 //===----------------------------------------------------------------------===//
32
33 /// PromoteIntegerResult - This method is called when a result of a node is
34 /// found to be in need of promotion to a larger type. At this point, the node
35 /// may also have invalid operands or may have other results that need
36 /// expansion, we just know that (at least) one result needs promotion.
PromoteIntegerResult(SDNode * N,unsigned ResNo)37 void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
38 DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
39 SDValue Res = SDValue();
40
41 // See if the target wants to custom expand this node.
42 if (CustomLowerNode(N, N->getValueType(ResNo), true))
43 return;
44
45 switch (N->getOpcode()) {
46 default:
47 #ifndef NDEBUG
48 dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
49 N->dump(&DAG); dbgs() << "\n";
50 #endif
51 llvm_unreachable("Do not know how to promote this operator!");
52 case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
53 case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break;
54 case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break;
55 case ISD::BITCAST: Res = PromoteIntRes_BITCAST(N); break;
56 case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break;
57 case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break;
58 case ISD::Constant: Res = PromoteIntRes_Constant(N); break;
59 case ISD::CONVERT_RNDSAT:
60 Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
61 case ISD::CTLZ_ZERO_UNDEF:
62 case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break;
63 case ISD::CTPOP: Res = PromoteIntRes_CTPOP(N); break;
64 case ISD::CTTZ_ZERO_UNDEF:
65 case ISD::CTTZ: Res = PromoteIntRes_CTTZ(N); break;
66 case ISD::EXTRACT_VECTOR_ELT:
67 Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
68 case ISD::LOAD: Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
69 case ISD::SELECT: Res = PromoteIntRes_SELECT(N); break;
70 case ISD::VSELECT: Res = PromoteIntRes_VSELECT(N); break;
71 case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break;
72 case ISD::SETCC: Res = PromoteIntRes_SETCC(N); break;
73 case ISD::SHL: Res = PromoteIntRes_SHL(N); break;
74 case ISD::SIGN_EXTEND_INREG:
75 Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
76 case ISD::SRA: Res = PromoteIntRes_SRA(N); break;
77 case ISD::SRL: Res = PromoteIntRes_SRL(N); break;
78 case ISD::TRUNCATE: Res = PromoteIntRes_TRUNCATE(N); break;
79 case ISD::UNDEF: Res = PromoteIntRes_UNDEF(N); break;
80 case ISD::VAARG: Res = PromoteIntRes_VAARG(N); break;
81
82 case ISD::EXTRACT_SUBVECTOR:
83 Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
84 case ISD::VECTOR_SHUFFLE:
85 Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
86 case ISD::INSERT_VECTOR_ELT:
87 Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
88 case ISD::BUILD_VECTOR:
89 Res = PromoteIntRes_BUILD_VECTOR(N); break;
90 case ISD::SCALAR_TO_VECTOR:
91 Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
92 case ISD::CONCAT_VECTORS:
93 Res = PromoteIntRes_CONCAT_VECTORS(N); break;
94
95 case ISD::SIGN_EXTEND:
96 case ISD::ZERO_EXTEND:
97 case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break;
98
99 case ISD::FP_TO_SINT:
100 case ISD::FP_TO_UINT: Res = PromoteIntRes_FP_TO_XINT(N); break;
101
102 case ISD::FP32_TO_FP16:Res = PromoteIntRes_FP32_TO_FP16(N); break;
103
104 case ISD::AND:
105 case ISD::OR:
106 case ISD::XOR:
107 case ISD::ADD:
108 case ISD::SUB:
109 case ISD::MUL: Res = PromoteIntRes_SimpleIntBinOp(N); break;
110
111 case ISD::SDIV:
112 case ISD::SREM: Res = PromoteIntRes_SDIV(N); break;
113
114 case ISD::UDIV:
115 case ISD::UREM: Res = PromoteIntRes_UDIV(N); break;
116
117 case ISD::SADDO:
118 case ISD::SSUBO: Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
119 case ISD::UADDO:
120 case ISD::USUBO: Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
121 case ISD::SMULO:
122 case ISD::UMULO: Res = PromoteIntRes_XMULO(N, ResNo); break;
123
124 case ISD::ATOMIC_LOAD:
125 Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
126
127 case ISD::ATOMIC_LOAD_ADD:
128 case ISD::ATOMIC_LOAD_SUB:
129 case ISD::ATOMIC_LOAD_AND:
130 case ISD::ATOMIC_LOAD_OR:
131 case ISD::ATOMIC_LOAD_XOR:
132 case ISD::ATOMIC_LOAD_NAND:
133 case ISD::ATOMIC_LOAD_MIN:
134 case ISD::ATOMIC_LOAD_MAX:
135 case ISD::ATOMIC_LOAD_UMIN:
136 case ISD::ATOMIC_LOAD_UMAX:
137 case ISD::ATOMIC_SWAP:
138 Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
139
140 case ISD::ATOMIC_CMP_SWAP:
141 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
142 Res = PromoteIntRes_AtomicCmpSwap(cast<AtomicSDNode>(N), ResNo);
143 break;
144 }
145
146 // If the result is null then the sub-method took care of registering it.
147 if (Res.getNode())
148 SetPromotedInteger(SDValue(N, ResNo), Res);
149 }
150
PromoteIntRes_MERGE_VALUES(SDNode * N,unsigned ResNo)151 SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
152 unsigned ResNo) {
153 SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
154 return GetPromotedInteger(Op);
155 }
156
PromoteIntRes_AssertSext(SDNode * N)157 SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
158 // Sign-extend the new bits, and continue the assertion.
159 SDValue Op = SExtPromotedInteger(N->getOperand(0));
160 return DAG.getNode(ISD::AssertSext, SDLoc(N),
161 Op.getValueType(), Op, N->getOperand(1));
162 }
163
PromoteIntRes_AssertZext(SDNode * N)164 SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
165 // Zero the new bits, and continue the assertion.
166 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
167 return DAG.getNode(ISD::AssertZext, SDLoc(N),
168 Op.getValueType(), Op, N->getOperand(1));
169 }
170
PromoteIntRes_Atomic0(AtomicSDNode * N)171 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
172 EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
173 SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
174 N->getMemoryVT(), ResVT,
175 N->getChain(), N->getBasePtr(),
176 N->getMemOperand(), N->getOrdering(),
177 N->getSynchScope());
178 // Legalized the chain result - switch anything that used the old chain to
179 // use the new one.
180 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
181 return Res;
182 }
183
PromoteIntRes_Atomic1(AtomicSDNode * N)184 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
185 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
186 SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
187 N->getMemoryVT(),
188 N->getChain(), N->getBasePtr(),
189 Op2, N->getMemOperand(), N->getOrdering(),
190 N->getSynchScope());
191 // Legalized the chain result - switch anything that used the old chain to
192 // use the new one.
193 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
194 return Res;
195 }
196
PromoteIntRes_AtomicCmpSwap(AtomicSDNode * N,unsigned ResNo)197 SDValue DAGTypeLegalizer::PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N,
198 unsigned ResNo) {
199 if (ResNo == 1) {
200 assert(N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
201 EVT SVT = getSetCCResultType(N->getOperand(2).getValueType());
202 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
203
204 // Only use the result of getSetCCResultType if it is legal,
205 // otherwise just use the promoted result type (NVT).
206 if (!TLI.isTypeLegal(SVT))
207 SVT = NVT;
208
209 SDVTList VTs = DAG.getVTList(N->getValueType(0), SVT, MVT::Other);
210 SDValue Res = DAG.getAtomicCmpSwap(
211 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, SDLoc(N), N->getMemoryVT(), VTs,
212 N->getChain(), N->getBasePtr(), N->getOperand(2), N->getOperand(3),
213 N->getMemOperand(), N->getSuccessOrdering(), N->getFailureOrdering(),
214 N->getSynchScope());
215 ReplaceValueWith(SDValue(N, 0), Res.getValue(0));
216 ReplaceValueWith(SDValue(N, 2), Res.getValue(2));
217 return Res.getValue(1);
218 }
219
220 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
221 SDValue Op3 = GetPromotedInteger(N->getOperand(3));
222 SDVTList VTs =
223 DAG.getVTList(Op2.getValueType(), N->getValueType(1), MVT::Other);
224 SDValue Res = DAG.getAtomicCmpSwap(
225 N->getOpcode(), SDLoc(N), N->getMemoryVT(), VTs, N->getChain(),
226 N->getBasePtr(), Op2, Op3, N->getMemOperand(), N->getSuccessOrdering(),
227 N->getFailureOrdering(), N->getSynchScope());
228 // Legalized the chain result - switch anything that used the old chain to
229 // use the new one.
230 unsigned ChainOp = N->getNumValues() - 1;
231 ReplaceValueWith(SDValue(N, ChainOp), Res.getValue(ChainOp));
232 return Res;
233 }
234
PromoteIntRes_BITCAST(SDNode * N)235 SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
236 SDValue InOp = N->getOperand(0);
237 EVT InVT = InOp.getValueType();
238 EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
239 EVT OutVT = N->getValueType(0);
240 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
241 SDLoc dl(N);
242
243 switch (getTypeAction(InVT)) {
244 case TargetLowering::TypeLegal:
245 break;
246 case TargetLowering::TypePromoteInteger:
247 if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
248 // The input promotes to the same size. Convert the promoted value.
249 return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
250 break;
251 case TargetLowering::TypeSoftenFloat:
252 // Promote the integer operand by hand.
253 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
254 case TargetLowering::TypeExpandInteger:
255 case TargetLowering::TypeExpandFloat:
256 break;
257 case TargetLowering::TypeScalarizeVector:
258 // Convert the element to an integer and promote it by hand.
259 if (!NOutVT.isVector())
260 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
261 BitConvertToInteger(GetScalarizedVector(InOp)));
262 break;
263 case TargetLowering::TypeSplitVector: {
264 // For example, i32 = BITCAST v2i16 on alpha. Convert the split
265 // pieces of the input into integers and reassemble in the final type.
266 SDValue Lo, Hi;
267 GetSplitVector(N->getOperand(0), Lo, Hi);
268 Lo = BitConvertToInteger(Lo);
269 Hi = BitConvertToInteger(Hi);
270
271 if (TLI.isBigEndian())
272 std::swap(Lo, Hi);
273
274 InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
275 EVT::getIntegerVT(*DAG.getContext(),
276 NOutVT.getSizeInBits()),
277 JoinIntegers(Lo, Hi));
278 return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
279 }
280 case TargetLowering::TypeWidenVector:
281 // The input is widened to the same size. Convert to the widened value.
282 // Make sure that the outgoing value is not a vector, because this would
283 // make us bitcast between two vectors which are legalized in different ways.
284 if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector())
285 return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
286 }
287
288 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
289 CreateStackStoreLoad(InOp, OutVT));
290 }
291
PromoteIntRes_BSWAP(SDNode * N)292 SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
293 SDValue Op = GetPromotedInteger(N->getOperand(0));
294 EVT OVT = N->getValueType(0);
295 EVT NVT = Op.getValueType();
296 SDLoc dl(N);
297
298 unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits();
299 return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
300 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
301 }
302
PromoteIntRes_BUILD_PAIR(SDNode * N)303 SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
304 // The pair element type may be legal, or may not promote to the same type as
305 // the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases.
306 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N),
307 TLI.getTypeToTransformTo(*DAG.getContext(),
308 N->getValueType(0)), JoinIntegers(N->getOperand(0),
309 N->getOperand(1)));
310 }
311
PromoteIntRes_Constant(SDNode * N)312 SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
313 EVT VT = N->getValueType(0);
314 // FIXME there is no actual debug info here
315 SDLoc dl(N);
316 // Zero extend things like i1, sign extend everything else. It shouldn't
317 // matter in theory which one we pick, but this tends to give better code?
318 unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
319 SDValue Result = DAG.getNode(Opc, dl,
320 TLI.getTypeToTransformTo(*DAG.getContext(), VT),
321 SDValue(N, 0));
322 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
323 return Result;
324 }
325
PromoteIntRes_CONVERT_RNDSAT(SDNode * N)326 SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
327 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
328 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
329 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
330 CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
331 "can only promote integers");
332 EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
333 return DAG.getConvertRndSat(OutVT, SDLoc(N), N->getOperand(0),
334 N->getOperand(1), N->getOperand(2),
335 N->getOperand(3), N->getOperand(4), CvtCode);
336 }
337
PromoteIntRes_CTLZ(SDNode * N)338 SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
339 // Zero extend to the promoted type and do the count there.
340 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
341 SDLoc dl(N);
342 EVT OVT = N->getValueType(0);
343 EVT NVT = Op.getValueType();
344 Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
345 // Subtract off the extra leading bits in the bigger type.
346 return DAG.getNode(
347 ISD::SUB, dl, NVT, Op,
348 DAG.getConstant(NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(),
349 NVT));
350 }
351
PromoteIntRes_CTPOP(SDNode * N)352 SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
353 // Zero extend to the promoted type and do the count there.
354 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
355 return DAG.getNode(ISD::CTPOP, SDLoc(N), Op.getValueType(), Op);
356 }
357
PromoteIntRes_CTTZ(SDNode * N)358 SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
359 SDValue Op = GetPromotedInteger(N->getOperand(0));
360 EVT OVT = N->getValueType(0);
361 EVT NVT = Op.getValueType();
362 SDLoc dl(N);
363 if (N->getOpcode() == ISD::CTTZ) {
364 // The count is the same in the promoted type except if the original
365 // value was zero. This can be handled by setting the bit just off
366 // the top of the original type.
367 auto TopBit = APInt::getOneBitSet(NVT.getScalarSizeInBits(),
368 OVT.getScalarSizeInBits());
369 Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
370 }
371 return DAG.getNode(N->getOpcode(), dl, NVT, Op);
372 }
373
PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode * N)374 SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
375 SDLoc dl(N);
376 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
377 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
378 N->getOperand(1));
379 }
380
PromoteIntRes_FP_TO_XINT(SDNode * N)381 SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
382 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
383 unsigned NewOpc = N->getOpcode();
384 SDLoc dl(N);
385
386 // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
387 // not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT
388 // and SINT conversions are Custom, there is no way to tell which is
389 // preferable. We choose SINT because that's the right thing on PPC.)
390 if (N->getOpcode() == ISD::FP_TO_UINT &&
391 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
392 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
393 NewOpc = ISD::FP_TO_SINT;
394
395 SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
396
397 // Assert that the converted value fits in the original type. If it doesn't
398 // (eg: because the value being converted is too big), then the result of the
399 // original operation was undefined anyway, so the assert is still correct.
400 return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
401 ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
402 DAG.getValueType(N->getValueType(0).getScalarType()));
403 }
404
PromoteIntRes_FP32_TO_FP16(SDNode * N)405 SDValue DAGTypeLegalizer::PromoteIntRes_FP32_TO_FP16(SDNode *N) {
406 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
407 SDLoc dl(N);
408
409 SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
410
411 return DAG.getNode(ISD::AssertZext, dl,
412 NVT, Res, DAG.getValueType(N->getValueType(0)));
413 }
414
PromoteIntRes_INT_EXTEND(SDNode * N)415 SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
416 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
417 SDLoc dl(N);
418
419 if (getTypeAction(N->getOperand(0).getValueType())
420 == TargetLowering::TypePromoteInteger) {
421 SDValue Res = GetPromotedInteger(N->getOperand(0));
422 assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
423
424 // If the result and operand types are the same after promotion, simplify
425 // to an in-register extension.
426 if (NVT == Res.getValueType()) {
427 // The high bits are not guaranteed to be anything. Insert an extend.
428 if (N->getOpcode() == ISD::SIGN_EXTEND)
429 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
430 DAG.getValueType(N->getOperand(0).getValueType()));
431 if (N->getOpcode() == ISD::ZERO_EXTEND)
432 return DAG.getZeroExtendInReg(Res, dl,
433 N->getOperand(0).getValueType().getScalarType());
434 assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
435 return Res;
436 }
437 }
438
439 // Otherwise, just extend the original operand all the way to the larger type.
440 return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
441 }
442
PromoteIntRes_LOAD(LoadSDNode * N)443 SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
444 assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
445 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
446 ISD::LoadExtType ExtType =
447 ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
448 SDLoc dl(N);
449 SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
450 N->getMemoryVT(), N->getMemOperand());
451
452 // Legalized the chain result - switch anything that used the old chain to
453 // use the new one.
454 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
455 return Res;
456 }
457
458 /// Promote the overflow flag of an overflowing arithmetic node.
PromoteIntRes_Overflow(SDNode * N)459 SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
460 // Simply change the return type of the boolean result.
461 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
462 EVT ValueVTs[] = { N->getValueType(0), NVT };
463 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
464 SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N),
465 DAG.getVTList(ValueVTs), Ops);
466
467 // Modified the sum result - switch anything that used the old sum to use
468 // the new one.
469 ReplaceValueWith(SDValue(N, 0), Res);
470
471 return SDValue(Res.getNode(), 1);
472 }
473
PromoteIntRes_SADDSUBO(SDNode * N,unsigned ResNo)474 SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
475 if (ResNo == 1)
476 return PromoteIntRes_Overflow(N);
477
478 // The operation overflowed iff the result in the larger type is not the
479 // sign extension of its truncation to the original type.
480 SDValue LHS = SExtPromotedInteger(N->getOperand(0));
481 SDValue RHS = SExtPromotedInteger(N->getOperand(1));
482 EVT OVT = N->getOperand(0).getValueType();
483 EVT NVT = LHS.getValueType();
484 SDLoc dl(N);
485
486 // Do the arithmetic in the larger type.
487 unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
488 SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
489
490 // Calculate the overflow flag: sign extend the arithmetic result from
491 // the original type.
492 SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
493 DAG.getValueType(OVT));
494 // Overflowed if and only if this is not equal to Res.
495 Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
496
497 // Use the calculated overflow everywhere.
498 ReplaceValueWith(SDValue(N, 1), Ofl);
499
500 return Res;
501 }
502
PromoteIntRes_SDIV(SDNode * N)503 SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
504 // Sign extend the input.
505 SDValue LHS = SExtPromotedInteger(N->getOperand(0));
506 SDValue RHS = SExtPromotedInteger(N->getOperand(1));
507 return DAG.getNode(N->getOpcode(), SDLoc(N),
508 LHS.getValueType(), LHS, RHS);
509 }
510
PromoteIntRes_SELECT(SDNode * N)511 SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
512 SDValue LHS = GetPromotedInteger(N->getOperand(1));
513 SDValue RHS = GetPromotedInteger(N->getOperand(2));
514 return DAG.getSelect(SDLoc(N),
515 LHS.getValueType(), N->getOperand(0), LHS, RHS);
516 }
517
PromoteIntRes_VSELECT(SDNode * N)518 SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
519 SDValue Mask = N->getOperand(0);
520 EVT OpTy = N->getOperand(1).getValueType();
521
522 // Promote all the way up to the canonical SetCC type.
523 Mask = PromoteTargetBoolean(Mask, OpTy);
524 SDValue LHS = GetPromotedInteger(N->getOperand(1));
525 SDValue RHS = GetPromotedInteger(N->getOperand(2));
526 return DAG.getNode(ISD::VSELECT, SDLoc(N),
527 LHS.getValueType(), Mask, LHS, RHS);
528 }
529
PromoteIntRes_SELECT_CC(SDNode * N)530 SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
531 SDValue LHS = GetPromotedInteger(N->getOperand(2));
532 SDValue RHS = GetPromotedInteger(N->getOperand(3));
533 return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
534 LHS.getValueType(), N->getOperand(0),
535 N->getOperand(1), LHS, RHS, N->getOperand(4));
536 }
537
PromoteIntRes_SETCC(SDNode * N)538 SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
539 EVT SVT = getSetCCResultType(N->getOperand(0).getValueType());
540
541 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
542
543 // Only use the result of getSetCCResultType if it is legal,
544 // otherwise just use the promoted result type (NVT).
545 if (!TLI.isTypeLegal(SVT))
546 SVT = NVT;
547
548 SDLoc dl(N);
549 assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
550 "Vector compare must return a vector result!");
551
552 SDValue LHS = N->getOperand(0);
553 SDValue RHS = N->getOperand(1);
554 if (LHS.getValueType() != RHS.getValueType()) {
555 if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger &&
556 !LHS.getValueType().isVector())
557 LHS = GetPromotedInteger(LHS);
558 if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger &&
559 !RHS.getValueType().isVector())
560 RHS = GetPromotedInteger(RHS);
561 }
562
563 // Get the SETCC result using the canonical SETCC type.
564 SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, LHS, RHS,
565 N->getOperand(2));
566
567 assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
568 // Convert to the expected type.
569 return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
570 }
571
PromoteIntRes_SHL(SDNode * N)572 SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
573 SDValue Res = GetPromotedInteger(N->getOperand(0));
574 SDValue Amt = N->getOperand(1);
575 Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
576 return DAG.getNode(ISD::SHL, SDLoc(N), Res.getValueType(), Res, Amt);
577 }
578
PromoteIntRes_SIGN_EXTEND_INREG(SDNode * N)579 SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
580 SDValue Op = GetPromotedInteger(N->getOperand(0));
581 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N),
582 Op.getValueType(), Op, N->getOperand(1));
583 }
584
PromoteIntRes_SimpleIntBinOp(SDNode * N)585 SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
586 // The input may have strange things in the top bits of the registers, but
587 // these operations don't care. They may have weird bits going out, but
588 // that too is okay if they are integer operations.
589 SDValue LHS = GetPromotedInteger(N->getOperand(0));
590 SDValue RHS = GetPromotedInteger(N->getOperand(1));
591 return DAG.getNode(N->getOpcode(), SDLoc(N),
592 LHS.getValueType(), LHS, RHS);
593 }
594
PromoteIntRes_SRA(SDNode * N)595 SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
596 // The input value must be properly sign extended.
597 SDValue Res = SExtPromotedInteger(N->getOperand(0));
598 SDValue Amt = N->getOperand(1);
599 Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
600 return DAG.getNode(ISD::SRA, SDLoc(N), Res.getValueType(), Res, Amt);
601 }
602
PromoteIntRes_SRL(SDNode * N)603 SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
604 // The input value must be properly zero extended.
605 SDValue Res = ZExtPromotedInteger(N->getOperand(0));
606 SDValue Amt = N->getOperand(1);
607 Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
608 return DAG.getNode(ISD::SRL, SDLoc(N), Res.getValueType(), Res, Amt);
609 }
610
PromoteIntRes_TRUNCATE(SDNode * N)611 SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
612 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
613 SDValue Res;
614 SDValue InOp = N->getOperand(0);
615 SDLoc dl(N);
616
617 switch (getTypeAction(InOp.getValueType())) {
618 default: llvm_unreachable("Unknown type action!");
619 case TargetLowering::TypeLegal:
620 case TargetLowering::TypeExpandInteger:
621 Res = InOp;
622 break;
623 case TargetLowering::TypePromoteInteger:
624 Res = GetPromotedInteger(InOp);
625 break;
626 case TargetLowering::TypeSplitVector:
627 EVT InVT = InOp.getValueType();
628 assert(InVT.isVector() && "Cannot split scalar types");
629 unsigned NumElts = InVT.getVectorNumElements();
630 assert(NumElts == NVT.getVectorNumElements() &&
631 "Dst and Src must have the same number of elements");
632 assert(isPowerOf2_32(NumElts) &&
633 "Promoted vector type must be a power of two");
634
635 SDValue EOp1, EOp2;
636 GetSplitVector(InOp, EOp1, EOp2);
637
638 EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
639 NumElts/2);
640 EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
641 EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
642
643 return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
644 }
645
646 // Truncate to NVT instead of VT
647 return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
648 }
649
PromoteIntRes_UADDSUBO(SDNode * N,unsigned ResNo)650 SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
651 if (ResNo == 1)
652 return PromoteIntRes_Overflow(N);
653
654 // The operation overflowed iff the result in the larger type is not the
655 // zero extension of its truncation to the original type.
656 SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
657 SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
658 EVT OVT = N->getOperand(0).getValueType();
659 EVT NVT = LHS.getValueType();
660 SDLoc dl(N);
661
662 // Do the arithmetic in the larger type.
663 unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
664 SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
665
666 // Calculate the overflow flag: zero extend the arithmetic result from
667 // the original type.
668 SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
669 // Overflowed if and only if this is not equal to Res.
670 Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
671
672 // Use the calculated overflow everywhere.
673 ReplaceValueWith(SDValue(N, 1), Ofl);
674
675 return Res;
676 }
677
PromoteIntRes_XMULO(SDNode * N,unsigned ResNo)678 SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
679 // Promote the overflow bit trivially.
680 if (ResNo == 1)
681 return PromoteIntRes_Overflow(N);
682
683 SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
684 SDLoc DL(N);
685 EVT SmallVT = LHS.getValueType();
686
687 // To determine if the result overflowed in a larger type, we extend the
688 // input to the larger type, do the multiply (checking if it overflows),
689 // then also check the high bits of the result to see if overflow happened
690 // there.
691 if (N->getOpcode() == ISD::SMULO) {
692 LHS = SExtPromotedInteger(LHS);
693 RHS = SExtPromotedInteger(RHS);
694 } else {
695 LHS = ZExtPromotedInteger(LHS);
696 RHS = ZExtPromotedInteger(RHS);
697 }
698 SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1));
699 SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS);
700
701 // Overflow occurred if it occurred in the larger type, or if the high part
702 // of the result does not zero/sign-extend the low part. Check this second
703 // possibility first.
704 SDValue Overflow;
705 if (N->getOpcode() == ISD::UMULO) {
706 // Unsigned overflow occurred if the high part is non-zero.
707 SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
708 DAG.getIntPtrConstant(SmallVT.getSizeInBits()));
709 Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
710 DAG.getConstant(0, Hi.getValueType()), ISD::SETNE);
711 } else {
712 // Signed overflow occurred if the high part does not sign extend the low.
713 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
714 Mul, DAG.getValueType(SmallVT));
715 Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
716 }
717
718 // The only other way for overflow to occur is if the multiplication in the
719 // larger type itself overflowed.
720 Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow,
721 SDValue(Mul.getNode(), 1));
722
723 // Use the calculated overflow everywhere.
724 ReplaceValueWith(SDValue(N, 1), Overflow);
725 return Mul;
726 }
727
PromoteIntRes_UDIV(SDNode * N)728 SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
729 // Zero extend the input.
730 SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
731 SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
732 return DAG.getNode(N->getOpcode(), SDLoc(N),
733 LHS.getValueType(), LHS, RHS);
734 }
735
PromoteIntRes_UNDEF(SDNode * N)736 SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
737 return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
738 N->getValueType(0)));
739 }
740
PromoteIntRes_VAARG(SDNode * N)741 SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
742 SDValue Chain = N->getOperand(0); // Get the chain.
743 SDValue Ptr = N->getOperand(1); // Get the pointer.
744 EVT VT = N->getValueType(0);
745 SDLoc dl(N);
746
747 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
748 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
749 // The argument is passed as NumRegs registers of type RegVT.
750
751 SmallVector<SDValue, 8> Parts(NumRegs);
752 for (unsigned i = 0; i < NumRegs; ++i) {
753 Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
754 N->getConstantOperandVal(3));
755 Chain = Parts[i].getValue(1);
756 }
757
758 // Handle endianness of the load.
759 if (TLI.isBigEndian())
760 std::reverse(Parts.begin(), Parts.end());
761
762 // Assemble the parts in the promoted type.
763 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
764 SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
765 for (unsigned i = 1; i < NumRegs; ++i) {
766 SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
767 // Shift it to the right position and "or" it in.
768 Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
769 DAG.getConstant(i * RegVT.getSizeInBits(),
770 TLI.getPointerTy()));
771 Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
772 }
773
774 // Modified the chain result - switch anything that used the old chain to
775 // use the new one.
776 ReplaceValueWith(SDValue(N, 1), Chain);
777
778 return Res;
779 }
780
781 //===----------------------------------------------------------------------===//
782 // Integer Operand Promotion
783 //===----------------------------------------------------------------------===//
784
785 /// PromoteIntegerOperand - This method is called when the specified operand of
786 /// the specified node is found to need promotion. At this point, all of the
787 /// result types of the node are known to be legal, but other operands of the
788 /// node may need promotion or expansion as well as the specified one.
PromoteIntegerOperand(SDNode * N,unsigned OpNo)789 bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
790 DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
791 SDValue Res = SDValue();
792
793 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
794 return false;
795
796 switch (N->getOpcode()) {
797 default:
798 #ifndef NDEBUG
799 dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
800 N->dump(&DAG); dbgs() << "\n";
801 #endif
802 llvm_unreachable("Do not know how to promote this operator's operand!");
803
804 case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break;
805 case ISD::ATOMIC_STORE:
806 Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
807 break;
808 case ISD::BITCAST: Res = PromoteIntOp_BITCAST(N); break;
809 case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break;
810 case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break;
811 case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break;
812 case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
813 case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
814 case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
815 case ISD::CONVERT_RNDSAT:
816 Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
817 case ISD::INSERT_VECTOR_ELT:
818 Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
819 case ISD::SCALAR_TO_VECTOR:
820 Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
821 case ISD::VSELECT:
822 case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break;
823 case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
824 case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break;
825 case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break;
826 case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break;
827 case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
828 OpNo); break;
829 case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break;
830 case ISD::FP16_TO_FP32:
831 case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break;
832 case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break;
833
834 case ISD::SHL:
835 case ISD::SRA:
836 case ISD::SRL:
837 case ISD::ROTL:
838 case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
839 }
840
841 // If the result is null, the sub-method took care of registering results etc.
842 if (!Res.getNode()) return false;
843
844 // If the result is N, the sub-method updated N in place. Tell the legalizer
845 // core about this.
846 if (Res.getNode() == N)
847 return true;
848
849 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
850 "Invalid operand expansion");
851
852 ReplaceValueWith(SDValue(N, 0), Res);
853 return false;
854 }
855
856 /// PromoteSetCCOperands - Promote the operands of a comparison. This code is
857 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
PromoteSetCCOperands(SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode CCCode)858 void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
859 ISD::CondCode CCCode) {
860 // We have to insert explicit sign or zero extends. Note that we could
861 // insert sign extends for ALL conditions, but zero extend is cheaper on
862 // many machines (an AND instead of two shifts), so prefer it.
863 switch (CCCode) {
864 default: llvm_unreachable("Unknown integer comparison!");
865 case ISD::SETEQ:
866 case ISD::SETNE:
867 case ISD::SETUGE:
868 case ISD::SETUGT:
869 case ISD::SETULE:
870 case ISD::SETULT:
871 // ALL of these operations will work if we either sign or zero extend
872 // the operands (including the unsigned comparisons!). Zero extend is
873 // usually a simpler/cheaper operation, so prefer it.
874 NewLHS = ZExtPromotedInteger(NewLHS);
875 NewRHS = ZExtPromotedInteger(NewRHS);
876 break;
877 case ISD::SETGE:
878 case ISD::SETGT:
879 case ISD::SETLT:
880 case ISD::SETLE:
881 NewLHS = SExtPromotedInteger(NewLHS);
882 NewRHS = SExtPromotedInteger(NewRHS);
883 break;
884 }
885 }
886
PromoteIntOp_ANY_EXTEND(SDNode * N)887 SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
888 SDValue Op = GetPromotedInteger(N->getOperand(0));
889 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Op);
890 }
891
PromoteIntOp_ATOMIC_STORE(AtomicSDNode * N)892 SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
893 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
894 return DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(),
895 N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(),
896 N->getOrdering(), N->getSynchScope());
897 }
898
PromoteIntOp_BITCAST(SDNode * N)899 SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
900 // This should only occur in unusual situations like bitcasting to an
901 // x86_fp80, so just turn it into a store+load
902 return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
903 }
904
PromoteIntOp_BR_CC(SDNode * N,unsigned OpNo)905 SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
906 assert(OpNo == 2 && "Don't know how to promote this operand!");
907
908 SDValue LHS = N->getOperand(2);
909 SDValue RHS = N->getOperand(3);
910 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
911
912 // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
913 // legal types.
914 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
915 N->getOperand(1), LHS, RHS, N->getOperand(4)),
916 0);
917 }
918
PromoteIntOp_BRCOND(SDNode * N,unsigned OpNo)919 SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
920 assert(OpNo == 1 && "only know how to promote condition");
921
922 // Promote all the way up to the canonical SetCC type.
923 SDValue Cond = PromoteTargetBoolean(N->getOperand(1), MVT::Other);
924
925 // The chain (Op#0) and basic block destination (Op#2) are always legal types.
926 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
927 N->getOperand(2)), 0);
928 }
929
PromoteIntOp_BUILD_PAIR(SDNode * N)930 SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
931 // Since the result type is legal, the operands must promote to it.
932 EVT OVT = N->getOperand(0).getValueType();
933 SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
934 SDValue Hi = GetPromotedInteger(N->getOperand(1));
935 assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
936 SDLoc dl(N);
937
938 Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
939 DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy()));
940 return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
941 }
942
PromoteIntOp_BUILD_VECTOR(SDNode * N)943 SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
944 // The vector type is legal but the element type is not. This implies
945 // that the vector is a power-of-two in length and that the element
946 // type does not have a strange size (eg: it is not i1).
947 EVT VecVT = N->getValueType(0);
948 unsigned NumElts = VecVT.getVectorNumElements();
949 assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) &&
950 "Legal vector of one illegal element?");
951
952 // Promote the inserted value. The type does not need to match the
953 // vector element type. Check that any extra bits introduced will be
954 // truncated away.
955 assert(N->getOperand(0).getValueType().getSizeInBits() >=
956 N->getValueType(0).getVectorElementType().getSizeInBits() &&
957 "Type of inserted value narrower than vector element type!");
958
959 SmallVector<SDValue, 16> NewOps;
960 for (unsigned i = 0; i < NumElts; ++i)
961 NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
962
963 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
964 }
965
PromoteIntOp_CONVERT_RNDSAT(SDNode * N)966 SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
967 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
968 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
969 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
970 CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
971 "can only promote integer arguments");
972 SDValue InOp = GetPromotedInteger(N->getOperand(0));
973 return DAG.getConvertRndSat(N->getValueType(0), SDLoc(N), InOp,
974 N->getOperand(1), N->getOperand(2),
975 N->getOperand(3), N->getOperand(4), CvtCode);
976 }
977
PromoteIntOp_INSERT_VECTOR_ELT(SDNode * N,unsigned OpNo)978 SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
979 unsigned OpNo) {
980 if (OpNo == 1) {
981 // Promote the inserted value. This is valid because the type does not
982 // have to match the vector element type.
983
984 // Check that any extra bits introduced will be truncated away.
985 assert(N->getOperand(1).getValueType().getSizeInBits() >=
986 N->getValueType(0).getVectorElementType().getSizeInBits() &&
987 "Type of inserted value narrower than vector element type!");
988 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
989 GetPromotedInteger(N->getOperand(1)),
990 N->getOperand(2)),
991 0);
992 }
993
994 assert(OpNo == 2 && "Different operand and result vector types?");
995
996 // Promote the index.
997 SDValue Idx = DAG.getZExtOrTrunc(N->getOperand(2), SDLoc(N),
998 TLI.getVectorIdxTy());
999 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1000 N->getOperand(1), Idx), 0);
1001 }
1002
PromoteIntOp_SCALAR_TO_VECTOR(SDNode * N)1003 SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
1004 // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
1005 // the operand in place.
1006 return SDValue(DAG.UpdateNodeOperands(N,
1007 GetPromotedInteger(N->getOperand(0))), 0);
1008 }
1009
PromoteIntOp_SELECT(SDNode * N,unsigned OpNo)1010 SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
1011 assert(OpNo == 0 && "Only know how to promote the condition!");
1012 SDValue Cond = N->getOperand(0);
1013 EVT OpTy = N->getOperand(1).getValueType();
1014
1015 // Promote all the way up to the canonical SetCC type.
1016 EVT OpVT = N->getOpcode() == ISD::SELECT ? OpTy.getScalarType() : OpTy;
1017 Cond = PromoteTargetBoolean(Cond, OpVT);
1018
1019 return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
1020 N->getOperand(2)), 0);
1021 }
1022
PromoteIntOp_SELECT_CC(SDNode * N,unsigned OpNo)1023 SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
1024 assert(OpNo == 0 && "Don't know how to promote this operand!");
1025
1026 SDValue LHS = N->getOperand(0);
1027 SDValue RHS = N->getOperand(1);
1028 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
1029
1030 // The CC (#4) and the possible return values (#2 and #3) have legal types.
1031 return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
1032 N->getOperand(3), N->getOperand(4)), 0);
1033 }
1034
PromoteIntOp_SETCC(SDNode * N,unsigned OpNo)1035 SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
1036 assert(OpNo == 0 && "Don't know how to promote this operand!");
1037
1038 SDValue LHS = N->getOperand(0);
1039 SDValue RHS = N->getOperand(1);
1040 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
1041
1042 // The CC (#2) is always legal.
1043 return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
1044 }
1045
PromoteIntOp_Shift(SDNode * N)1046 SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
1047 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1048 ZExtPromotedInteger(N->getOperand(1))), 0);
1049 }
1050
PromoteIntOp_SIGN_EXTEND(SDNode * N)1051 SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
1052 SDValue Op = GetPromotedInteger(N->getOperand(0));
1053 SDLoc dl(N);
1054 Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1055 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
1056 Op, DAG.getValueType(N->getOperand(0).getValueType()));
1057 }
1058
PromoteIntOp_SINT_TO_FP(SDNode * N)1059 SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
1060 return SDValue(DAG.UpdateNodeOperands(N,
1061 SExtPromotedInteger(N->getOperand(0))), 0);
1062 }
1063
PromoteIntOp_STORE(StoreSDNode * N,unsigned OpNo)1064 SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
1065 assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
1066 SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
1067 SDLoc dl(N);
1068
1069 SDValue Val = GetPromotedInteger(N->getValue()); // Get promoted value.
1070
1071 // Truncate the value and store the result.
1072 return DAG.getTruncStore(Ch, dl, Val, Ptr,
1073 N->getMemoryVT(), N->getMemOperand());
1074 }
1075
PromoteIntOp_TRUNCATE(SDNode * N)1076 SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
1077 SDValue Op = GetPromotedInteger(N->getOperand(0));
1078 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op);
1079 }
1080
PromoteIntOp_UINT_TO_FP(SDNode * N)1081 SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
1082 return SDValue(DAG.UpdateNodeOperands(N,
1083 ZExtPromotedInteger(N->getOperand(0))), 0);
1084 }
1085
PromoteIntOp_ZERO_EXTEND(SDNode * N)1086 SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
1087 SDLoc dl(N);
1088 SDValue Op = GetPromotedInteger(N->getOperand(0));
1089 Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1090 return DAG.getZeroExtendInReg(Op, dl,
1091 N->getOperand(0).getValueType().getScalarType());
1092 }
1093
1094
1095 //===----------------------------------------------------------------------===//
1096 // Integer Result Expansion
1097 //===----------------------------------------------------------------------===//
1098
1099 /// ExpandIntegerResult - This method is called when the specified result of the
1100 /// specified node is found to need expansion. At this point, the node may also
1101 /// have invalid operands or may have other results that need promotion, we just
1102 /// know that (at least) one result needs expansion.
ExpandIntegerResult(SDNode * N,unsigned ResNo)1103 void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
1104 DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
1105 SDValue Lo, Hi;
1106 Lo = Hi = SDValue();
1107
1108 // See if the target wants to custom expand this node.
1109 if (CustomLowerNode(N, N->getValueType(ResNo), true))
1110 return;
1111
1112 switch (N->getOpcode()) {
1113 default:
1114 #ifndef NDEBUG
1115 dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1116 N->dump(&DAG); dbgs() << "\n";
1117 #endif
1118 llvm_unreachable("Do not know how to expand the result of this operator!");
1119
1120 case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
1121 case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
1122 case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
1123 case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
1124
1125 case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break;
1126 case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1127 case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1128 case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1129 case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break;
1130
1131 case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1132 case ISD::AssertSext: ExpandIntRes_AssertSext(N, Lo, Hi); break;
1133 case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break;
1134 case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break;
1135 case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break;
1136 case ISD::CTLZ_ZERO_UNDEF:
1137 case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break;
1138 case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break;
1139 case ISD::CTTZ_ZERO_UNDEF:
1140 case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break;
1141 case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1142 case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1143 case ISD::LOAD: ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1144 case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break;
1145 case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break;
1146 case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1147 case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1148 case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break;
1149 case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1150 case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break;
1151 case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break;
1152 case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1153 case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
1154
1155 case ISD::ATOMIC_LOAD_ADD:
1156 case ISD::ATOMIC_LOAD_SUB:
1157 case ISD::ATOMIC_LOAD_AND:
1158 case ISD::ATOMIC_LOAD_OR:
1159 case ISD::ATOMIC_LOAD_XOR:
1160 case ISD::ATOMIC_LOAD_NAND:
1161 case ISD::ATOMIC_LOAD_MIN:
1162 case ISD::ATOMIC_LOAD_MAX:
1163 case ISD::ATOMIC_LOAD_UMIN:
1164 case ISD::ATOMIC_LOAD_UMAX:
1165 case ISD::ATOMIC_SWAP:
1166 case ISD::ATOMIC_CMP_SWAP: {
1167 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1168 SplitInteger(Tmp.first, Lo, Hi);
1169 ReplaceValueWith(SDValue(N, 1), Tmp.second);
1170 break;
1171 }
1172 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
1173 AtomicSDNode *AN = cast<AtomicSDNode>(N);
1174 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::Other);
1175 SDValue Tmp = DAG.getAtomicCmpSwap(
1176 ISD::ATOMIC_CMP_SWAP, SDLoc(N), AN->getMemoryVT(), VTs,
1177 N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3),
1178 AN->getMemOperand(), AN->getSuccessOrdering(), AN->getFailureOrdering(),
1179 AN->getSynchScope());
1180
1181 // Expanding to the strong ATOMIC_CMP_SWAP node means we can determine
1182 // success simply by comparing the loaded value against the ingoing
1183 // comparison.
1184 SDValue Success = DAG.getSetCC(SDLoc(N), N->getValueType(1), Tmp,
1185 N->getOperand(2), ISD::SETEQ);
1186
1187 SplitInteger(Tmp, Lo, Hi);
1188 ReplaceValueWith(SDValue(N, 1), Success);
1189 ReplaceValueWith(SDValue(N, 2), Tmp.getValue(1));
1190 break;
1191 }
1192
1193 case ISD::AND:
1194 case ISD::OR:
1195 case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1196
1197 case ISD::ADD:
1198 case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1199
1200 case ISD::ADDC:
1201 case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1202
1203 case ISD::ADDE:
1204 case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1205
1206 case ISD::SHL:
1207 case ISD::SRA:
1208 case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1209
1210 case ISD::SADDO:
1211 case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1212 case ISD::UADDO:
1213 case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1214 case ISD::UMULO:
1215 case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1216 }
1217
1218 // If Lo/Hi is null, the sub-method took care of registering results etc.
1219 if (Lo.getNode())
1220 SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1221 }
1222
1223 /// Lower an atomic node to the appropriate builtin call.
ExpandAtomic(SDNode * Node)1224 std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1225 unsigned Opc = Node->getOpcode();
1226 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1227 RTLIB::Libcall LC;
1228
1229 switch (Opc) {
1230 default:
1231 llvm_unreachable("Unhandled atomic intrinsic Expand!");
1232 case ISD::ATOMIC_SWAP:
1233 switch (VT.SimpleTy) {
1234 default: llvm_unreachable("Unexpected value type for atomic!");
1235 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
1236 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
1237 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
1238 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
1239 case MVT::i128:LC = RTLIB::SYNC_LOCK_TEST_AND_SET_16;break;
1240 }
1241 break;
1242 case ISD::ATOMIC_CMP_SWAP:
1243 switch (VT.SimpleTy) {
1244 default: llvm_unreachable("Unexpected value type for atomic!");
1245 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
1246 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
1247 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
1248 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
1249 case MVT::i128:LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16;break;
1250 }
1251 break;
1252 case ISD::ATOMIC_LOAD_ADD:
1253 switch (VT.SimpleTy) {
1254 default: llvm_unreachable("Unexpected value type for atomic!");
1255 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
1256 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
1257 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
1258 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
1259 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_ADD_16;break;
1260 }
1261 break;
1262 case ISD::ATOMIC_LOAD_SUB:
1263 switch (VT.SimpleTy) {
1264 default: llvm_unreachable("Unexpected value type for atomic!");
1265 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
1266 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
1267 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
1268 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
1269 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_SUB_16;break;
1270 }
1271 break;
1272 case ISD::ATOMIC_LOAD_AND:
1273 switch (VT.SimpleTy) {
1274 default: llvm_unreachable("Unexpected value type for atomic!");
1275 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
1276 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
1277 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
1278 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
1279 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_AND_16;break;
1280 }
1281 break;
1282 case ISD::ATOMIC_LOAD_OR:
1283 switch (VT.SimpleTy) {
1284 default: llvm_unreachable("Unexpected value type for atomic!");
1285 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
1286 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
1287 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
1288 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
1289 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_OR_16;break;
1290 }
1291 break;
1292 case ISD::ATOMIC_LOAD_XOR:
1293 switch (VT.SimpleTy) {
1294 default: llvm_unreachable("Unexpected value type for atomic!");
1295 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
1296 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
1297 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
1298 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
1299 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_XOR_16;break;
1300 }
1301 break;
1302 case ISD::ATOMIC_LOAD_NAND:
1303 switch (VT.SimpleTy) {
1304 default: llvm_unreachable("Unexpected value type for atomic!");
1305 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
1306 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
1307 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
1308 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
1309 case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_NAND_16;break;
1310 }
1311 break;
1312 }
1313
1314 return ExpandChainLibCall(LC, Node, false);
1315 }
1316
1317 /// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1318 /// and the shift amount is a constant 'Amt'. Expand the operation.
ExpandShiftByConstant(SDNode * N,unsigned Amt,SDValue & Lo,SDValue & Hi)1319 void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
1320 SDValue &Lo, SDValue &Hi) {
1321 assert(Amt && "Expected zero shifts to be already optimized away.");
1322 SDLoc DL(N);
1323 // Expand the incoming operand to be shifted, so that we have its parts
1324 SDValue InL, InH;
1325 GetExpandedInteger(N->getOperand(0), InL, InH);
1326
1327 EVT NVT = InL.getValueType();
1328 unsigned VTBits = N->getValueType(0).getSizeInBits();
1329 unsigned NVTBits = NVT.getSizeInBits();
1330 EVT ShTy = N->getOperand(1).getValueType();
1331
1332 if (N->getOpcode() == ISD::SHL) {
1333 if (Amt > VTBits) {
1334 Lo = Hi = DAG.getConstant(0, NVT);
1335 } else if (Amt > NVTBits) {
1336 Lo = DAG.getConstant(0, NVT);
1337 Hi = DAG.getNode(ISD::SHL, DL,
1338 NVT, InL, DAG.getConstant(Amt-NVTBits, ShTy));
1339 } else if (Amt == NVTBits) {
1340 Lo = DAG.getConstant(0, NVT);
1341 Hi = InL;
1342 } else if (Amt == 1 &&
1343 TLI.isOperationLegalOrCustom(ISD::ADDC,
1344 TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
1345 // Emit this X << 1 as X+X.
1346 SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1347 SDValue LoOps[2] = { InL, InL };
1348 Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps);
1349 SDValue HiOps[3] = { InH, InH, Lo.getValue(1) };
1350 Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps);
1351 } else {
1352 Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, ShTy));
1353 Hi = DAG.getNode(ISD::OR, DL, NVT,
1354 DAG.getNode(ISD::SHL, DL, NVT, InH,
1355 DAG.getConstant(Amt, ShTy)),
1356 DAG.getNode(ISD::SRL, DL, NVT, InL,
1357 DAG.getConstant(NVTBits-Amt, ShTy)));
1358 }
1359 return;
1360 }
1361
1362 if (N->getOpcode() == ISD::SRL) {
1363 if (Amt > VTBits) {
1364 Lo = DAG.getConstant(0, NVT);
1365 Hi = DAG.getConstant(0, NVT);
1366 } else if (Amt > NVTBits) {
1367 Lo = DAG.getNode(ISD::SRL, DL,
1368 NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
1369 Hi = DAG.getConstant(0, NVT);
1370 } else if (Amt == NVTBits) {
1371 Lo = InH;
1372 Hi = DAG.getConstant(0, NVT);
1373 } else {
1374 Lo = DAG.getNode(ISD::OR, DL, NVT,
1375 DAG.getNode(ISD::SRL, DL, NVT, InL,
1376 DAG.getConstant(Amt, ShTy)),
1377 DAG.getNode(ISD::SHL, DL, NVT, InH,
1378 DAG.getConstant(NVTBits-Amt, ShTy)));
1379 Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1380 }
1381 return;
1382 }
1383
1384 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1385 if (Amt > VTBits) {
1386 Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1387 DAG.getConstant(NVTBits-1, ShTy));
1388 } else if (Amt > NVTBits) {
1389 Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1390 DAG.getConstant(Amt-NVTBits, ShTy));
1391 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1392 DAG.getConstant(NVTBits-1, ShTy));
1393 } else if (Amt == NVTBits) {
1394 Lo = InH;
1395 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1396 DAG.getConstant(NVTBits-1, ShTy));
1397 } else {
1398 Lo = DAG.getNode(ISD::OR, DL, NVT,
1399 DAG.getNode(ISD::SRL, DL, NVT, InL,
1400 DAG.getConstant(Amt, ShTy)),
1401 DAG.getNode(ISD::SHL, DL, NVT, InH,
1402 DAG.getConstant(NVTBits-Amt, ShTy)));
1403 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1404 }
1405 }
1406
1407 /// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1408 /// this shift based on knowledge of the high bit of the shift amount. If we
1409 /// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1410 /// shift amount.
1411 bool DAGTypeLegalizer::
ExpandShiftWithKnownAmountBit(SDNode * N,SDValue & Lo,SDValue & Hi)1412 ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1413 SDValue Amt = N->getOperand(1);
1414 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1415 EVT ShTy = Amt.getValueType();
1416 unsigned ShBits = ShTy.getScalarType().getSizeInBits();
1417 unsigned NVTBits = NVT.getScalarType().getSizeInBits();
1418 assert(isPowerOf2_32(NVTBits) &&
1419 "Expanded integer type size not a power of two!");
1420 SDLoc dl(N);
1421
1422 APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1423 APInt KnownZero, KnownOne;
1424 DAG.computeKnownBits(N->getOperand(1), KnownZero, KnownOne);
1425
1426 // If we don't know anything about the high bits, exit.
1427 if (((KnownZero|KnownOne) & HighBitMask) == 0)
1428 return false;
1429
1430 // Get the incoming operand to be shifted.
1431 SDValue InL, InH;
1432 GetExpandedInteger(N->getOperand(0), InL, InH);
1433
1434 // If we know that any of the high bits of the shift amount are one, then we
1435 // can do this as a couple of simple shifts.
1436 if (KnownOne.intersects(HighBitMask)) {
1437 // Mask out the high bit, which we know is set.
1438 Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1439 DAG.getConstant(~HighBitMask, ShTy));
1440
1441 switch (N->getOpcode()) {
1442 default: llvm_unreachable("Unknown shift");
1443 case ISD::SHL:
1444 Lo = DAG.getConstant(0, NVT); // Low part is zero.
1445 Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1446 return true;
1447 case ISD::SRL:
1448 Hi = DAG.getConstant(0, NVT); // Hi part is zero.
1449 Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1450 return true;
1451 case ISD::SRA:
1452 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part.
1453 DAG.getConstant(NVTBits-1, ShTy));
1454 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1455 return true;
1456 }
1457 }
1458
1459 // If we know that all of the high bits of the shift amount are zero, then we
1460 // can do this as a couple of simple shifts.
1461 if ((KnownZero & HighBitMask) == HighBitMask) {
1462 // Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined
1463 // shift if x is zero. We can use XOR here because x is known to be smaller
1464 // than 32.
1465 SDValue Amt2 = DAG.getNode(ISD::XOR, dl, ShTy, Amt,
1466 DAG.getConstant(NVTBits-1, ShTy));
1467
1468 unsigned Op1, Op2;
1469 switch (N->getOpcode()) {
1470 default: llvm_unreachable("Unknown shift");
1471 case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1472 case ISD::SRL:
1473 case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1474 }
1475
1476 // When shifting right the arithmetic for Lo and Hi is swapped.
1477 if (N->getOpcode() != ISD::SHL)
1478 std::swap(InL, InH);
1479
1480 // Use a little trick to get the bits that move from Lo to Hi. First
1481 // shift by one bit.
1482 SDValue Sh1 = DAG.getNode(Op2, dl, NVT, InL, DAG.getConstant(1, ShTy));
1483 // Then compute the remaining shift with amount-1.
1484 SDValue Sh2 = DAG.getNode(Op2, dl, NVT, Sh1, Amt2);
1485
1486 Lo = DAG.getNode(N->getOpcode(), dl, NVT, InL, Amt);
1487 Hi = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(Op1, dl, NVT, InH, Amt),Sh2);
1488
1489 if (N->getOpcode() != ISD::SHL)
1490 std::swap(Hi, Lo);
1491 return true;
1492 }
1493
1494 return false;
1495 }
1496
1497 /// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1498 /// of any size.
1499 bool DAGTypeLegalizer::
ExpandShiftWithUnknownAmountBit(SDNode * N,SDValue & Lo,SDValue & Hi)1500 ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1501 SDValue Amt = N->getOperand(1);
1502 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1503 EVT ShTy = Amt.getValueType();
1504 unsigned NVTBits = NVT.getSizeInBits();
1505 assert(isPowerOf2_32(NVTBits) &&
1506 "Expanded integer type size not a power of two!");
1507 SDLoc dl(N);
1508
1509 // Get the incoming operand to be shifted.
1510 SDValue InL, InH;
1511 GetExpandedInteger(N->getOperand(0), InL, InH);
1512
1513 SDValue NVBitsNode = DAG.getConstant(NVTBits, ShTy);
1514 SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1515 SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1516 SDValue isShort = DAG.getSetCC(dl, getSetCCResultType(ShTy),
1517 Amt, NVBitsNode, ISD::SETULT);
1518
1519 SDValue LoS, HiS, LoL, HiL;
1520 switch (N->getOpcode()) {
1521 default: llvm_unreachable("Unknown shift");
1522 case ISD::SHL:
1523 // Short: ShAmt < NVTBits
1524 LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1525 HiS = DAG.getNode(ISD::OR, dl, NVT,
1526 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1527 // FIXME: If Amt is zero, the following shift generates an undefined result
1528 // on some architectures.
1529 DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1530
1531 // Long: ShAmt >= NVTBits
1532 LoL = DAG.getConstant(0, NVT); // Lo part is zero.
1533 HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1534
1535 Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL);
1536 Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
1537 return true;
1538 case ISD::SRL:
1539 // Short: ShAmt < NVTBits
1540 HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1541 LoS = DAG.getNode(ISD::OR, dl, NVT,
1542 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1543 // FIXME: If Amt is zero, the following shift generates an undefined result
1544 // on some architectures.
1545 DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1546
1547 // Long: ShAmt >= NVTBits
1548 HiL = DAG.getConstant(0, NVT); // Hi part is zero.
1549 LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1550
1551 Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL);
1552 Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
1553 return true;
1554 case ISD::SRA:
1555 // Short: ShAmt < NVTBits
1556 HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1557 LoS = DAG.getNode(ISD::OR, dl, NVT,
1558 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1559 // FIXME: If Amt is zero, the following shift generates an undefined result
1560 // on some architectures.
1561 DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1562
1563 // Long: ShAmt >= NVTBits
1564 HiL = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign of Hi part.
1565 DAG.getConstant(NVTBits-1, ShTy));
1566 LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1567
1568 Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL);
1569 Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
1570 return true;
1571 }
1572 }
1573
ExpandIntRes_ADDSUB(SDNode * N,SDValue & Lo,SDValue & Hi)1574 void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
1575 SDValue &Lo, SDValue &Hi) {
1576 SDLoc dl(N);
1577 // Expand the subcomponents.
1578 SDValue LHSL, LHSH, RHSL, RHSH;
1579 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1580 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1581
1582 EVT NVT = LHSL.getValueType();
1583 SDValue LoOps[2] = { LHSL, RHSL };
1584 SDValue HiOps[3] = { LHSH, RHSH };
1585
1586 // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1587 // them. TODO: Teach operation legalization how to expand unsupported
1588 // ADDC/ADDE/SUBC/SUBE. The problem is that these operations generate
1589 // a carry of type MVT::Glue, but there doesn't seem to be any way to
1590 // generate a value of this type in the expanded code sequence.
1591 bool hasCarry =
1592 TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1593 ISD::ADDC : ISD::SUBC,
1594 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1595
1596 if (hasCarry) {
1597 SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1598 if (N->getOpcode() == ISD::ADD) {
1599 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps);
1600 HiOps[2] = Lo.getValue(1);
1601 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps);
1602 } else {
1603 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps);
1604 HiOps[2] = Lo.getValue(1);
1605 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps);
1606 }
1607 return;
1608 }
1609
1610 if (N->getOpcode() == ISD::ADD) {
1611 Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps);
1612 Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2));
1613 SDValue Cmp1 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[0],
1614 ISD::SETULT);
1615 SDValue Carry1 = DAG.getSelect(dl, NVT, Cmp1,
1616 DAG.getConstant(1, NVT),
1617 DAG.getConstant(0, NVT));
1618 SDValue Cmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[1],
1619 ISD::SETULT);
1620 SDValue Carry2 = DAG.getSelect(dl, NVT, Cmp2,
1621 DAG.getConstant(1, NVT), Carry1);
1622 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
1623 } else {
1624 Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps);
1625 Hi = DAG.getNode(ISD::SUB, dl, NVT, makeArrayRef(HiOps, 2));
1626 SDValue Cmp =
1627 DAG.getSetCC(dl, getSetCCResultType(LoOps[0].getValueType()),
1628 LoOps[0], LoOps[1], ISD::SETULT);
1629 SDValue Borrow = DAG.getSelect(dl, NVT, Cmp,
1630 DAG.getConstant(1, NVT),
1631 DAG.getConstant(0, NVT));
1632 Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
1633 }
1634 }
1635
ExpandIntRes_ADDSUBC(SDNode * N,SDValue & Lo,SDValue & Hi)1636 void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
1637 SDValue &Lo, SDValue &Hi) {
1638 // Expand the subcomponents.
1639 SDValue LHSL, LHSH, RHSL, RHSH;
1640 SDLoc dl(N);
1641 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1642 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1643 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1644 SDValue LoOps[2] = { LHSL, RHSL };
1645 SDValue HiOps[3] = { LHSH, RHSH };
1646
1647 if (N->getOpcode() == ISD::ADDC) {
1648 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps);
1649 HiOps[2] = Lo.getValue(1);
1650 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps);
1651 } else {
1652 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps);
1653 HiOps[2] = Lo.getValue(1);
1654 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps);
1655 }
1656
1657 // Legalized the flag result - switch anything that used the old flag to
1658 // use the new one.
1659 ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1660 }
1661
ExpandIntRes_ADDSUBE(SDNode * N,SDValue & Lo,SDValue & Hi)1662 void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
1663 SDValue &Lo, SDValue &Hi) {
1664 // Expand the subcomponents.
1665 SDValue LHSL, LHSH, RHSL, RHSH;
1666 SDLoc dl(N);
1667 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1668 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1669 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1670 SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1671 SDValue HiOps[3] = { LHSH, RHSH };
1672
1673 Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps);
1674 HiOps[2] = Lo.getValue(1);
1675 Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps);
1676
1677 // Legalized the flag result - switch anything that used the old flag to
1678 // use the new one.
1679 ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1680 }
1681
ExpandIntRes_MERGE_VALUES(SDNode * N,unsigned ResNo,SDValue & Lo,SDValue & Hi)1682 void DAGTypeLegalizer::ExpandIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1683 SDValue &Lo, SDValue &Hi) {
1684 SDValue Res = DisintegrateMERGE_VALUES(N, ResNo);
1685 SplitInteger(Res, Lo, Hi);
1686 }
1687
ExpandIntRes_ANY_EXTEND(SDNode * N,SDValue & Lo,SDValue & Hi)1688 void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
1689 SDValue &Lo, SDValue &Hi) {
1690 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1691 SDLoc dl(N);
1692 SDValue Op = N->getOperand(0);
1693 if (Op.getValueType().bitsLE(NVT)) {
1694 // The low part is any extension of the input (which degenerates to a copy).
1695 Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
1696 Hi = DAG.getUNDEF(NVT); // The high part is undefined.
1697 } else {
1698 // For example, extension of an i48 to an i64. The operand type necessarily
1699 // promotes to the result type, so will end up being expanded too.
1700 assert(getTypeAction(Op.getValueType()) ==
1701 TargetLowering::TypePromoteInteger &&
1702 "Only know how to promote this result!");
1703 SDValue Res = GetPromotedInteger(Op);
1704 assert(Res.getValueType() == N->getValueType(0) &&
1705 "Operand over promoted?");
1706 // Split the promoted operand. This will simplify when it is expanded.
1707 SplitInteger(Res, Lo, Hi);
1708 }
1709 }
1710
ExpandIntRes_AssertSext(SDNode * N,SDValue & Lo,SDValue & Hi)1711 void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
1712 SDValue &Lo, SDValue &Hi) {
1713 SDLoc dl(N);
1714 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1715 EVT NVT = Lo.getValueType();
1716 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1717 unsigned NVTBits = NVT.getSizeInBits();
1718 unsigned EVTBits = EVT.getSizeInBits();
1719
1720 if (NVTBits < EVTBits) {
1721 Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
1722 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1723 EVTBits - NVTBits)));
1724 } else {
1725 Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
1726 // The high part replicates the sign bit of Lo, make it explicit.
1727 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1728 DAG.getConstant(NVTBits-1, TLI.getPointerTy()));
1729 }
1730 }
1731
ExpandIntRes_AssertZext(SDNode * N,SDValue & Lo,SDValue & Hi)1732 void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
1733 SDValue &Lo, SDValue &Hi) {
1734 SDLoc dl(N);
1735 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1736 EVT NVT = Lo.getValueType();
1737 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1738 unsigned NVTBits = NVT.getSizeInBits();
1739 unsigned EVTBits = EVT.getSizeInBits();
1740
1741 if (NVTBits < EVTBits) {
1742 Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
1743 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1744 EVTBits - NVTBits)));
1745 } else {
1746 Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
1747 // The high part must be zero, make it explicit.
1748 Hi = DAG.getConstant(0, NVT);
1749 }
1750 }
1751
ExpandIntRes_BSWAP(SDNode * N,SDValue & Lo,SDValue & Hi)1752 void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
1753 SDValue &Lo, SDValue &Hi) {
1754 SDLoc dl(N);
1755 GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands.
1756 Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
1757 Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
1758 }
1759
ExpandIntRes_Constant(SDNode * N,SDValue & Lo,SDValue & Hi)1760 void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
1761 SDValue &Lo, SDValue &Hi) {
1762 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1763 unsigned NBitWidth = NVT.getSizeInBits();
1764 auto Constant = cast<ConstantSDNode>(N);
1765 const APInt &Cst = Constant->getAPIntValue();
1766 bool IsTarget = Constant->isTargetOpcode();
1767 bool IsOpaque = Constant->isOpaque();
1768 Lo = DAG.getConstant(Cst.trunc(NBitWidth), NVT, IsTarget, IsOpaque);
1769 Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT, IsTarget,
1770 IsOpaque);
1771 }
1772
ExpandIntRes_CTLZ(SDNode * N,SDValue & Lo,SDValue & Hi)1773 void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
1774 SDValue &Lo, SDValue &Hi) {
1775 SDLoc dl(N);
1776 // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1777 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1778 EVT NVT = Lo.getValueType();
1779
1780 SDValue HiNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Hi,
1781 DAG.getConstant(0, NVT), ISD::SETNE);
1782
1783 SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo);
1784 SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi);
1785
1786 Lo = DAG.getSelect(dl, NVT, HiNotZero, HiLZ,
1787 DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
1788 DAG.getConstant(NVT.getSizeInBits(), NVT)));
1789 Hi = DAG.getConstant(0, NVT);
1790 }
1791
ExpandIntRes_CTPOP(SDNode * N,SDValue & Lo,SDValue & Hi)1792 void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
1793 SDValue &Lo, SDValue &Hi) {
1794 SDLoc dl(N);
1795 // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1796 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1797 EVT NVT = Lo.getValueType();
1798 Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
1799 DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
1800 Hi = DAG.getConstant(0, NVT);
1801 }
1802
ExpandIntRes_CTTZ(SDNode * N,SDValue & Lo,SDValue & Hi)1803 void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
1804 SDValue &Lo, SDValue &Hi) {
1805 SDLoc dl(N);
1806 // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1807 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1808 EVT NVT = Lo.getValueType();
1809
1810 SDValue LoNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo,
1811 DAG.getConstant(0, NVT), ISD::SETNE);
1812
1813 SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo);
1814 SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi);
1815
1816 Lo = DAG.getSelect(dl, NVT, LoNotZero, LoLZ,
1817 DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
1818 DAG.getConstant(NVT.getSizeInBits(), NVT)));
1819 Hi = DAG.getConstant(0, NVT);
1820 }
1821
ExpandIntRes_FP_TO_SINT(SDNode * N,SDValue & Lo,SDValue & Hi)1822 void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
1823 SDValue &Hi) {
1824 SDLoc dl(N);
1825 EVT VT = N->getValueType(0);
1826 SDValue Op = N->getOperand(0);
1827 RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
1828 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
1829 SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, true/*irrelevant*/,
1830 dl).first,
1831 Lo, Hi);
1832 }
1833
ExpandIntRes_FP_TO_UINT(SDNode * N,SDValue & Lo,SDValue & Hi)1834 void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
1835 SDValue &Hi) {
1836 SDLoc dl(N);
1837 EVT VT = N->getValueType(0);
1838 SDValue Op = N->getOperand(0);
1839 RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
1840 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
1841 SplitInteger(TLI.makeLibCall(DAG, LC, VT, &Op, 1, false/*irrelevant*/,
1842 dl).first,
1843 Lo, Hi);
1844 }
1845
ExpandIntRes_LOAD(LoadSDNode * N,SDValue & Lo,SDValue & Hi)1846 void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
1847 SDValue &Lo, SDValue &Hi) {
1848 if (ISD::isNormalLoad(N)) {
1849 ExpandRes_NormalLoad(N, Lo, Hi);
1850 return;
1851 }
1852
1853 assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
1854
1855 EVT VT = N->getValueType(0);
1856 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1857 SDValue Ch = N->getChain();
1858 SDValue Ptr = N->getBasePtr();
1859 ISD::LoadExtType ExtType = N->getExtensionType();
1860 unsigned Alignment = N->getAlignment();
1861 bool isVolatile = N->isVolatile();
1862 bool isNonTemporal = N->isNonTemporal();
1863 bool isInvariant = N->isInvariant();
1864 const MDNode *TBAAInfo = N->getTBAAInfo();
1865 SDLoc dl(N);
1866
1867 assert(NVT.isByteSized() && "Expanded type not byte sized!");
1868
1869 if (N->getMemoryVT().bitsLE(NVT)) {
1870 EVT MemVT = N->getMemoryVT();
1871
1872 Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1873 MemVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
1874
1875 // Remember the chain.
1876 Ch = Lo.getValue(1);
1877
1878 if (ExtType == ISD::SEXTLOAD) {
1879 // The high part is obtained by SRA'ing all but one of the bits of the
1880 // lo part.
1881 unsigned LoSize = Lo.getValueType().getSizeInBits();
1882 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1883 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
1884 } else if (ExtType == ISD::ZEXTLOAD) {
1885 // The high part is just a zero.
1886 Hi = DAG.getConstant(0, NVT);
1887 } else {
1888 assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
1889 // The high part is undefined.
1890 Hi = DAG.getUNDEF(NVT);
1891 }
1892 } else if (TLI.isLittleEndian()) {
1893 // Little-endian - low bits are at low addresses.
1894 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
1895 isVolatile, isNonTemporal, isInvariant, Alignment,
1896 TBAAInfo);
1897
1898 unsigned ExcessBits =
1899 N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
1900 EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
1901
1902 // Increment the pointer to the other half.
1903 unsigned IncrementSize = NVT.getSizeInBits()/8;
1904 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1905 DAG.getConstant(IncrementSize, Ptr.getValueType()));
1906 Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
1907 N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
1908 isVolatile, isNonTemporal,
1909 MinAlign(Alignment, IncrementSize), TBAAInfo);
1910
1911 // Build a factor node to remember that this load is independent of the
1912 // other one.
1913 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1914 Hi.getValue(1));
1915 } else {
1916 // Big-endian - high bits are at low addresses. Favor aligned loads at
1917 // the cost of some bit-fiddling.
1918 EVT MemVT = N->getMemoryVT();
1919 unsigned EBytes = MemVT.getStoreSize();
1920 unsigned IncrementSize = NVT.getSizeInBits()/8;
1921 unsigned ExcessBits = (EBytes - IncrementSize)*8;
1922
1923 // Load both the high bits and maybe some of the low bits.
1924 Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1925 EVT::getIntegerVT(*DAG.getContext(),
1926 MemVT.getSizeInBits() - ExcessBits),
1927 isVolatile, isNonTemporal, Alignment, TBAAInfo);
1928
1929 // Increment the pointer to the other half.
1930 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1931 DAG.getConstant(IncrementSize, Ptr.getValueType()));
1932 // Load the rest of the low bits.
1933 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
1934 N->getPointerInfo().getWithOffset(IncrementSize),
1935 EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
1936 isVolatile, isNonTemporal,
1937 MinAlign(Alignment, IncrementSize), TBAAInfo);
1938
1939 // Build a factor node to remember that this load is independent of the
1940 // other one.
1941 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1942 Hi.getValue(1));
1943
1944 if (ExcessBits < NVT.getSizeInBits()) {
1945 // Transfer low bits from the bottom of Hi to the top of Lo.
1946 Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
1947 DAG.getNode(ISD::SHL, dl, NVT, Hi,
1948 DAG.getConstant(ExcessBits,
1949 TLI.getPointerTy())));
1950 // Move high bits to the right position in Hi.
1951 Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl,
1952 NVT, Hi,
1953 DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
1954 TLI.getPointerTy()));
1955 }
1956 }
1957
1958 // Legalized the chain result - switch anything that used the old chain to
1959 // use the new one.
1960 ReplaceValueWith(SDValue(N, 1), Ch);
1961 }
1962
ExpandIntRes_Logical(SDNode * N,SDValue & Lo,SDValue & Hi)1963 void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
1964 SDValue &Lo, SDValue &Hi) {
1965 SDLoc dl(N);
1966 SDValue LL, LH, RL, RH;
1967 GetExpandedInteger(N->getOperand(0), LL, LH);
1968 GetExpandedInteger(N->getOperand(1), RL, RH);
1969 Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
1970 Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
1971 }
1972
ExpandIntRes_MUL(SDNode * N,SDValue & Lo,SDValue & Hi)1973 void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
1974 SDValue &Lo, SDValue &Hi) {
1975 EVT VT = N->getValueType(0);
1976 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1977 SDLoc dl(N);
1978
1979 SDValue LL, LH, RL, RH;
1980 GetExpandedInteger(N->getOperand(0), LL, LH);
1981 GetExpandedInteger(N->getOperand(1), RL, RH);
1982
1983 if (TLI.expandMUL(N, Lo, Hi, NVT, DAG, LL, LH, RL, RH))
1984 return;
1985
1986 // If nothing else, we can make a libcall.
1987 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1988 if (VT == MVT::i16)
1989 LC = RTLIB::MUL_I16;
1990 else if (VT == MVT::i32)
1991 LC = RTLIB::MUL_I32;
1992 else if (VT == MVT::i64)
1993 LC = RTLIB::MUL_I64;
1994 else if (VT == MVT::i128)
1995 LC = RTLIB::MUL_I128;
1996 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
1997
1998 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1999 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true/*irrelevant*/,
2000 dl).first,
2001 Lo, Hi);
2002 }
2003
ExpandIntRes_SADDSUBO(SDNode * Node,SDValue & Lo,SDValue & Hi)2004 void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
2005 SDValue &Lo, SDValue &Hi) {
2006 SDValue LHS = Node->getOperand(0);
2007 SDValue RHS = Node->getOperand(1);
2008 SDLoc dl(Node);
2009
2010 // Expand the result by simply replacing it with the equivalent
2011 // non-overflow-checking operation.
2012 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2013 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2014 LHS, RHS);
2015 SplitInteger(Sum, Lo, Hi);
2016
2017 // Compute the overflow.
2018 //
2019 // LHSSign -> LHS >= 0
2020 // RHSSign -> RHS >= 0
2021 // SumSign -> Sum >= 0
2022 //
2023 // Add:
2024 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2025 // Sub:
2026 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2027 //
2028 EVT OType = Node->getValueType(1);
2029 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2030
2031 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2032 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2033 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2034 Node->getOpcode() == ISD::SADDO ?
2035 ISD::SETEQ : ISD::SETNE);
2036
2037 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2038 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2039
2040 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2041
2042 // Use the calculated overflow everywhere.
2043 ReplaceValueWith(SDValue(Node, 1), Cmp);
2044 }
2045
ExpandIntRes_SDIV(SDNode * N,SDValue & Lo,SDValue & Hi)2046 void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
2047 SDValue &Lo, SDValue &Hi) {
2048 EVT VT = N->getValueType(0);
2049 SDLoc dl(N);
2050
2051 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2052 if (VT == MVT::i16)
2053 LC = RTLIB::SDIV_I16;
2054 else if (VT == MVT::i32)
2055 LC = RTLIB::SDIV_I32;
2056 else if (VT == MVT::i64)
2057 LC = RTLIB::SDIV_I64;
2058 else if (VT == MVT::i128)
2059 LC = RTLIB::SDIV_I128;
2060 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
2061
2062 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2063 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl).first, Lo, Hi);
2064 }
2065
ExpandIntRes_Shift(SDNode * N,SDValue & Lo,SDValue & Hi)2066 void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
2067 SDValue &Lo, SDValue &Hi) {
2068 EVT VT = N->getValueType(0);
2069 SDLoc dl(N);
2070
2071 // If we can emit an efficient shift operation, do so now. Check to see if
2072 // the RHS is a constant.
2073 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2074 return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi);
2075
2076 // If we can determine that the high bit of the shift is zero or one, even if
2077 // the low bits are variable, emit this shift in an optimized form.
2078 if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
2079 return;
2080
2081 // If this target supports shift_PARTS, use it. First, map to the _PARTS opc.
2082 unsigned PartsOpc;
2083 if (N->getOpcode() == ISD::SHL) {
2084 PartsOpc = ISD::SHL_PARTS;
2085 } else if (N->getOpcode() == ISD::SRL) {
2086 PartsOpc = ISD::SRL_PARTS;
2087 } else {
2088 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2089 PartsOpc = ISD::SRA_PARTS;
2090 }
2091
2092 // Next check to see if the target supports this SHL_PARTS operation or if it
2093 // will custom expand it.
2094 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2095 TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
2096 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
2097 Action == TargetLowering::Custom) {
2098 // Expand the subcomponents.
2099 SDValue LHSL, LHSH;
2100 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2101 EVT VT = LHSL.getValueType();
2102
2103 // If the shift amount operand is coming from a vector legalization it may
2104 // have an illegal type. Fix that first by casting the operand, otherwise
2105 // the new SHL_PARTS operation would need further legalization.
2106 SDValue ShiftOp = N->getOperand(1);
2107 EVT ShiftTy = TLI.getShiftAmountTy(VT);
2108 assert(ShiftTy.getScalarType().getSizeInBits() >=
2109 Log2_32_Ceil(VT.getScalarType().getSizeInBits()) &&
2110 "ShiftAmountTy is too small to cover the range of this type!");
2111 if (ShiftOp.getValueType() != ShiftTy)
2112 ShiftOp = DAG.getZExtOrTrunc(ShiftOp, dl, ShiftTy);
2113
2114 SDValue Ops[] = { LHSL, LHSH, ShiftOp };
2115 Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops);
2116 Hi = Lo.getValue(1);
2117 return;
2118 }
2119
2120 // Otherwise, emit a libcall.
2121 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2122 bool isSigned;
2123 if (N->getOpcode() == ISD::SHL) {
2124 isSigned = false; /*sign irrelevant*/
2125 if (VT == MVT::i16)
2126 LC = RTLIB::SHL_I16;
2127 else if (VT == MVT::i32)
2128 LC = RTLIB::SHL_I32;
2129 else if (VT == MVT::i64)
2130 LC = RTLIB::SHL_I64;
2131 else if (VT == MVT::i128)
2132 LC = RTLIB::SHL_I128;
2133 } else if (N->getOpcode() == ISD::SRL) {
2134 isSigned = false;
2135 if (VT == MVT::i16)
2136 LC = RTLIB::SRL_I16;
2137 else if (VT == MVT::i32)
2138 LC = RTLIB::SRL_I32;
2139 else if (VT == MVT::i64)
2140 LC = RTLIB::SRL_I64;
2141 else if (VT == MVT::i128)
2142 LC = RTLIB::SRL_I128;
2143 } else {
2144 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2145 isSigned = true;
2146 if (VT == MVT::i16)
2147 LC = RTLIB::SRA_I16;
2148 else if (VT == MVT::i32)
2149 LC = RTLIB::SRA_I32;
2150 else if (VT == MVT::i64)
2151 LC = RTLIB::SRA_I64;
2152 else if (VT == MVT::i128)
2153 LC = RTLIB::SRA_I128;
2154 }
2155
2156 if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
2157 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2158 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, isSigned, dl).first, Lo,
2159 Hi);
2160 return;
2161 }
2162
2163 if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
2164 llvm_unreachable("Unsupported shift!");
2165 }
2166
ExpandIntRes_SIGN_EXTEND(SDNode * N,SDValue & Lo,SDValue & Hi)2167 void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
2168 SDValue &Lo, SDValue &Hi) {
2169 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2170 SDLoc dl(N);
2171 SDValue Op = N->getOperand(0);
2172 if (Op.getValueType().bitsLE(NVT)) {
2173 // The low part is sign extension of the input (degenerates to a copy).
2174 Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
2175 // The high part is obtained by SRA'ing all but one of the bits of low part.
2176 unsigned LoSize = NVT.getSizeInBits();
2177 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2178 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
2179 } else {
2180 // For example, extension of an i48 to an i64. The operand type necessarily
2181 // promotes to the result type, so will end up being expanded too.
2182 assert(getTypeAction(Op.getValueType()) ==
2183 TargetLowering::TypePromoteInteger &&
2184 "Only know how to promote this result!");
2185 SDValue Res = GetPromotedInteger(Op);
2186 assert(Res.getValueType() == N->getValueType(0) &&
2187 "Operand over promoted?");
2188 // Split the promoted operand. This will simplify when it is expanded.
2189 SplitInteger(Res, Lo, Hi);
2190 unsigned ExcessBits =
2191 Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2192 Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2193 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2194 ExcessBits)));
2195 }
2196 }
2197
2198 void DAGTypeLegalizer::
ExpandIntRes_SIGN_EXTEND_INREG(SDNode * N,SDValue & Lo,SDValue & Hi)2199 ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2200 SDLoc dl(N);
2201 GetExpandedInteger(N->getOperand(0), Lo, Hi);
2202 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2203
2204 if (EVT.bitsLE(Lo.getValueType())) {
2205 // sext_inreg the low part if needed.
2206 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
2207 N->getOperand(1));
2208
2209 // The high part gets the sign extension from the lo-part. This handles
2210 // things like sextinreg V:i64 from i8.
2211 Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
2212 DAG.getConstant(Hi.getValueType().getSizeInBits()-1,
2213 TLI.getPointerTy()));
2214 } else {
2215 // For example, extension of an i48 to an i64. Leave the low part alone,
2216 // sext_inreg the high part.
2217 unsigned ExcessBits =
2218 EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
2219 Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2220 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2221 ExcessBits)));
2222 }
2223 }
2224
ExpandIntRes_SREM(SDNode * N,SDValue & Lo,SDValue & Hi)2225 void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
2226 SDValue &Lo, SDValue &Hi) {
2227 EVT VT = N->getValueType(0);
2228 SDLoc dl(N);
2229
2230 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2231 if (VT == MVT::i16)
2232 LC = RTLIB::SREM_I16;
2233 else if (VT == MVT::i32)
2234 LC = RTLIB::SREM_I32;
2235 else if (VT == MVT::i64)
2236 LC = RTLIB::SREM_I64;
2237 else if (VT == MVT::i128)
2238 LC = RTLIB::SREM_I128;
2239 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
2240
2241 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2242 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, true, dl).first, Lo, Hi);
2243 }
2244
ExpandIntRes_TRUNCATE(SDNode * N,SDValue & Lo,SDValue & Hi)2245 void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
2246 SDValue &Lo, SDValue &Hi) {
2247 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2248 SDLoc dl(N);
2249 Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
2250 Hi = DAG.getNode(ISD::SRL, dl,
2251 N->getOperand(0).getValueType(), N->getOperand(0),
2252 DAG.getConstant(NVT.getSizeInBits(), TLI.getPointerTy()));
2253 Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
2254 }
2255
ExpandIntRes_UADDSUBO(SDNode * N,SDValue & Lo,SDValue & Hi)2256 void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2257 SDValue &Lo, SDValue &Hi) {
2258 SDValue LHS = N->getOperand(0);
2259 SDValue RHS = N->getOperand(1);
2260 SDLoc dl(N);
2261
2262 // Expand the result by simply replacing it with the equivalent
2263 // non-overflow-checking operation.
2264 SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ?
2265 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2266 LHS, RHS);
2267 SplitInteger(Sum, Lo, Hi);
2268
2269 // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2270 // overflows iff a - b > a.
2271 SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS,
2272 N->getOpcode () == ISD::UADDO ?
2273 ISD::SETULT : ISD::SETUGT);
2274
2275 // Use the calculated overflow everywhere.
2276 ReplaceValueWith(SDValue(N, 1), Ofl);
2277 }
2278
ExpandIntRes_XMULO(SDNode * N,SDValue & Lo,SDValue & Hi)2279 void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
2280 SDValue &Lo, SDValue &Hi) {
2281 EVT VT = N->getValueType(0);
2282 SDLoc dl(N);
2283
2284 // A divide for UMULO should be faster than a function call.
2285 if (N->getOpcode() == ISD::UMULO) {
2286 SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
2287
2288 SDValue MUL = DAG.getNode(ISD::MUL, dl, LHS.getValueType(), LHS, RHS);
2289 SplitInteger(MUL, Lo, Hi);
2290
2291 // A divide for UMULO will be faster than a function call. Select to
2292 // make sure we aren't using 0.
2293 SDValue isZero = DAG.getSetCC(dl, getSetCCResultType(VT),
2294 RHS, DAG.getConstant(0, VT), ISD::SETEQ);
2295 SDValue NotZero = DAG.getSelect(dl, VT, isZero,
2296 DAG.getConstant(1, VT), RHS);
2297 SDValue DIV = DAG.getNode(ISD::UDIV, dl, VT, MUL, NotZero);
2298 SDValue Overflow = DAG.getSetCC(dl, N->getValueType(1), DIV, LHS,
2299 ISD::SETNE);
2300 Overflow = DAG.getSelect(dl, N->getValueType(1), isZero,
2301 DAG.getConstant(0, N->getValueType(1)),
2302 Overflow);
2303 ReplaceValueWith(SDValue(N, 1), Overflow);
2304 return;
2305 }
2306
2307 Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
2308 EVT PtrVT = TLI.getPointerTy();
2309 Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
2310
2311 // Replace this with a libcall that will check overflow.
2312 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2313 if (VT == MVT::i32)
2314 LC = RTLIB::MULO_I32;
2315 else if (VT == MVT::i64)
2316 LC = RTLIB::MULO_I64;
2317 else if (VT == MVT::i128)
2318 LC = RTLIB::MULO_I128;
2319 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
2320
2321 SDValue Temp = DAG.CreateStackTemporary(PtrVT);
2322 // Temporary for the overflow value, default it to zero.
2323 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl,
2324 DAG.getConstant(0, PtrVT), Temp,
2325 MachinePointerInfo(), false, false, 0);
2326
2327 TargetLowering::ArgListTy Args;
2328 TargetLowering::ArgListEntry Entry;
2329 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2330 EVT ArgVT = N->getOperand(i).getValueType();
2331 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2332 Entry.Node = N->getOperand(i);
2333 Entry.Ty = ArgTy;
2334 Entry.isSExt = true;
2335 Entry.isZExt = false;
2336 Args.push_back(Entry);
2337 }
2338
2339 // Also pass the address of the overflow check.
2340 Entry.Node = Temp;
2341 Entry.Ty = PtrTy->getPointerTo();
2342 Entry.isSExt = true;
2343 Entry.isZExt = false;
2344 Args.push_back(Entry);
2345
2346 SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
2347
2348 TargetLowering::CallLoweringInfo CLI(DAG);
2349 CLI.setDebugLoc(dl).setChain(Chain)
2350 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Func, std::move(Args), 0)
2351 .setSExtResult();
2352
2353 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2354
2355 SplitInteger(CallInfo.first, Lo, Hi);
2356 SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp,
2357 MachinePointerInfo(), false, false, false, 0);
2358 SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
2359 DAG.getConstant(0, PtrVT),
2360 ISD::SETNE);
2361 // Use the overflow from the libcall everywhere.
2362 ReplaceValueWith(SDValue(N, 1), Ofl);
2363 }
2364
ExpandIntRes_UDIV(SDNode * N,SDValue & Lo,SDValue & Hi)2365 void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
2366 SDValue &Lo, SDValue &Hi) {
2367 EVT VT = N->getValueType(0);
2368 SDLoc dl(N);
2369
2370 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2371 if (VT == MVT::i16)
2372 LC = RTLIB::UDIV_I16;
2373 else if (VT == MVT::i32)
2374 LC = RTLIB::UDIV_I32;
2375 else if (VT == MVT::i64)
2376 LC = RTLIB::UDIV_I64;
2377 else if (VT == MVT::i128)
2378 LC = RTLIB::UDIV_I128;
2379 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
2380
2381 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2382 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl).first, Lo, Hi);
2383 }
2384
ExpandIntRes_UREM(SDNode * N,SDValue & Lo,SDValue & Hi)2385 void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
2386 SDValue &Lo, SDValue &Hi) {
2387 EVT VT = N->getValueType(0);
2388 SDLoc dl(N);
2389
2390 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2391 if (VT == MVT::i16)
2392 LC = RTLIB::UREM_I16;
2393 else if (VT == MVT::i32)
2394 LC = RTLIB::UREM_I32;
2395 else if (VT == MVT::i64)
2396 LC = RTLIB::UREM_I64;
2397 else if (VT == MVT::i128)
2398 LC = RTLIB::UREM_I128;
2399 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
2400
2401 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2402 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, 2, false, dl).first, Lo, Hi);
2403 }
2404
ExpandIntRes_ZERO_EXTEND(SDNode * N,SDValue & Lo,SDValue & Hi)2405 void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
2406 SDValue &Lo, SDValue &Hi) {
2407 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2408 SDLoc dl(N);
2409 SDValue Op = N->getOperand(0);
2410 if (Op.getValueType().bitsLE(NVT)) {
2411 // The low part is zero extension of the input (degenerates to a copy).
2412 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
2413 Hi = DAG.getConstant(0, NVT); // The high part is just a zero.
2414 } else {
2415 // For example, extension of an i48 to an i64. The operand type necessarily
2416 // promotes to the result type, so will end up being expanded too.
2417 assert(getTypeAction(Op.getValueType()) ==
2418 TargetLowering::TypePromoteInteger &&
2419 "Only know how to promote this result!");
2420 SDValue Res = GetPromotedInteger(Op);
2421 assert(Res.getValueType() == N->getValueType(0) &&
2422 "Operand over promoted?");
2423 // Split the promoted operand. This will simplify when it is expanded.
2424 SplitInteger(Res, Lo, Hi);
2425 unsigned ExcessBits =
2426 Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2427 Hi = DAG.getZeroExtendInReg(Hi, dl,
2428 EVT::getIntegerVT(*DAG.getContext(),
2429 ExcessBits));
2430 }
2431 }
2432
ExpandIntRes_ATOMIC_LOAD(SDNode * N,SDValue & Lo,SDValue & Hi)2433 void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
2434 SDValue &Lo, SDValue &Hi) {
2435 SDLoc dl(N);
2436 EVT VT = cast<AtomicSDNode>(N)->getMemoryVT();
2437 SDVTList VTs = DAG.getVTList(VT, MVT::i1, MVT::Other);
2438 SDValue Zero = DAG.getConstant(0, VT);
2439 SDValue Swap = DAG.getAtomicCmpSwap(
2440 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl,
2441 cast<AtomicSDNode>(N)->getMemoryVT(), VTs, N->getOperand(0),
2442 N->getOperand(1), Zero, Zero, cast<AtomicSDNode>(N)->getMemOperand(),
2443 cast<AtomicSDNode>(N)->getOrdering(),
2444 cast<AtomicSDNode>(N)->getOrdering(),
2445 cast<AtomicSDNode>(N)->getSynchScope());
2446
2447 ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
2448 ReplaceValueWith(SDValue(N, 1), Swap.getValue(2));
2449 }
2450
2451 //===----------------------------------------------------------------------===//
2452 // Integer Operand Expansion
2453 //===----------------------------------------------------------------------===//
2454
2455 /// ExpandIntegerOperand - This method is called when the specified operand of
2456 /// the specified node is found to need expansion. At this point, all of the
2457 /// result types of the node are known to be legal, but other operands of the
2458 /// node may need promotion or expansion as well as the specified one.
ExpandIntegerOperand(SDNode * N,unsigned OpNo)2459 bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
2460 DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
2461 SDValue Res = SDValue();
2462
2463 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2464 return false;
2465
2466 switch (N->getOpcode()) {
2467 default:
2468 #ifndef NDEBUG
2469 dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
2470 N->dump(&DAG); dbgs() << "\n";
2471 #endif
2472 llvm_unreachable("Do not know how to expand this operator's operand!");
2473
2474 case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break;
2475 case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break;
2476 case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break;
2477 case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break;
2478 case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
2479 case ISD::SCALAR_TO_VECTOR: Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
2480 case ISD::SELECT_CC: Res = ExpandIntOp_SELECT_CC(N); break;
2481 case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break;
2482 case ISD::SINT_TO_FP: Res = ExpandIntOp_SINT_TO_FP(N); break;
2483 case ISD::STORE: Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
2484 case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break;
2485 case ISD::UINT_TO_FP: Res = ExpandIntOp_UINT_TO_FP(N); break;
2486
2487 case ISD::SHL:
2488 case ISD::SRA:
2489 case ISD::SRL:
2490 case ISD::ROTL:
2491 case ISD::ROTR: Res = ExpandIntOp_Shift(N); break;
2492 case ISD::RETURNADDR:
2493 case ISD::FRAMEADDR: Res = ExpandIntOp_RETURNADDR(N); break;
2494
2495 case ISD::ATOMIC_STORE: Res = ExpandIntOp_ATOMIC_STORE(N); break;
2496 }
2497
2498 // If the result is null, the sub-method took care of registering results etc.
2499 if (!Res.getNode()) return false;
2500
2501 // If the result is N, the sub-method updated N in place. Tell the legalizer
2502 // core about this.
2503 if (Res.getNode() == N)
2504 return true;
2505
2506 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2507 "Invalid operand expansion");
2508
2509 ReplaceValueWith(SDValue(N, 0), Res);
2510 return false;
2511 }
2512
2513 /// IntegerExpandSetCCOperands - Expand the operands of a comparison. This code
2514 /// is shared among BR_CC, SELECT_CC, and SETCC handlers.
IntegerExpandSetCCOperands(SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,SDLoc dl)2515 void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
2516 SDValue &NewRHS,
2517 ISD::CondCode &CCCode,
2518 SDLoc dl) {
2519 SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2520 GetExpandedInteger(NewLHS, LHSLo, LHSHi);
2521 GetExpandedInteger(NewRHS, RHSLo, RHSHi);
2522
2523 if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
2524 if (RHSLo == RHSHi) {
2525 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
2526 if (RHSCST->isAllOnesValue()) {
2527 // Equality comparison to -1.
2528 NewLHS = DAG.getNode(ISD::AND, dl,
2529 LHSLo.getValueType(), LHSLo, LHSHi);
2530 NewRHS = RHSLo;
2531 return;
2532 }
2533 }
2534 }
2535
2536 NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
2537 NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
2538 NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
2539 NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2540 return;
2541 }
2542
2543 // If this is a comparison of the sign bit, just look at the top part.
2544 // X > -1, x < 0
2545 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
2546 if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0
2547 (CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1
2548 NewLHS = LHSHi;
2549 NewRHS = RHSHi;
2550 return;
2551 }
2552
2553 // FIXME: This generated code sucks.
2554 ISD::CondCode LowCC;
2555 switch (CCCode) {
2556 default: llvm_unreachable("Unknown integer setcc!");
2557 case ISD::SETLT:
2558 case ISD::SETULT: LowCC = ISD::SETULT; break;
2559 case ISD::SETGT:
2560 case ISD::SETUGT: LowCC = ISD::SETUGT; break;
2561 case ISD::SETLE:
2562 case ISD::SETULE: LowCC = ISD::SETULE; break;
2563 case ISD::SETGE:
2564 case ISD::SETUGE: LowCC = ISD::SETUGE; break;
2565 }
2566
2567 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
2568 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
2569 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2570
2571 // NOTE: on targets without efficient SELECT of bools, we can always use
2572 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2573 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, AfterLegalizeTypes, true,
2574 nullptr);
2575 SDValue Tmp1, Tmp2;
2576 if (TLI.isTypeLegal(LHSLo.getValueType()) &&
2577 TLI.isTypeLegal(RHSLo.getValueType()))
2578 Tmp1 = TLI.SimplifySetCC(getSetCCResultType(LHSLo.getValueType()),
2579 LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
2580 if (!Tmp1.getNode())
2581 Tmp1 = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()),
2582 LHSLo, RHSLo, LowCC);
2583 if (TLI.isTypeLegal(LHSHi.getValueType()) &&
2584 TLI.isTypeLegal(RHSHi.getValueType()))
2585 Tmp2 = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()),
2586 LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
2587 if (!Tmp2.getNode())
2588 Tmp2 = DAG.getNode(ISD::SETCC, dl,
2589 getSetCCResultType(LHSHi.getValueType()),
2590 LHSHi, RHSHi, DAG.getCondCode(CCCode));
2591
2592 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
2593 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
2594 if ((Tmp1C && Tmp1C->isNullValue()) ||
2595 (Tmp2C && Tmp2C->isNullValue() &&
2596 (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
2597 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
2598 (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
2599 (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
2600 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
2601 // low part is known false, returns high part.
2602 // For LE / GE, if high part is known false, ignore the low part.
2603 // For LT / GT, if high part is known true, ignore the low part.
2604 NewLHS = Tmp2;
2605 NewRHS = SDValue();
2606 return;
2607 }
2608
2609 NewLHS = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()),
2610 LHSHi, RHSHi, ISD::SETEQ, false,
2611 DagCombineInfo, dl);
2612 if (!NewLHS.getNode())
2613 NewLHS = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()),
2614 LHSHi, RHSHi, ISD::SETEQ);
2615 NewLHS = DAG.getSelect(dl, Tmp1.getValueType(),
2616 NewLHS, Tmp1, Tmp2);
2617 NewRHS = SDValue();
2618 }
2619
ExpandIntOp_BR_CC(SDNode * N)2620 SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
2621 SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
2622 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
2623 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
2624
2625 // If ExpandSetCCOperands returned a scalar, we need to compare the result
2626 // against zero to select between true and false values.
2627 if (!NewRHS.getNode()) {
2628 NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2629 CCCode = ISD::SETNE;
2630 }
2631
2632 // Update N to have the operands specified.
2633 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
2634 DAG.getCondCode(CCCode), NewLHS, NewRHS,
2635 N->getOperand(4)), 0);
2636 }
2637
ExpandIntOp_SELECT_CC(SDNode * N)2638 SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
2639 SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2640 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
2641 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
2642
2643 // If ExpandSetCCOperands returned a scalar, we need to compare the result
2644 // against zero to select between true and false values.
2645 if (!NewRHS.getNode()) {
2646 NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2647 CCCode = ISD::SETNE;
2648 }
2649
2650 // Update N to have the operands specified.
2651 return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2652 N->getOperand(2), N->getOperand(3),
2653 DAG.getCondCode(CCCode)), 0);
2654 }
2655
ExpandIntOp_SETCC(SDNode * N)2656 SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
2657 SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2658 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
2659 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
2660
2661 // If ExpandSetCCOperands returned a scalar, use it.
2662 if (!NewRHS.getNode()) {
2663 assert(NewLHS.getValueType() == N->getValueType(0) &&
2664 "Unexpected setcc expansion!");
2665 return NewLHS;
2666 }
2667
2668 // Otherwise, update N to have the operands specified.
2669 return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2670 DAG.getCondCode(CCCode)), 0);
2671 }
2672
ExpandIntOp_Shift(SDNode * N)2673 SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
2674 // The value being shifted is legal, but the shift amount is too big.
2675 // It follows that either the result of the shift is undefined, or the
2676 // upper half of the shift amount is zero. Just use the lower half.
2677 SDValue Lo, Hi;
2678 GetExpandedInteger(N->getOperand(1), Lo, Hi);
2679 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
2680 }
2681
ExpandIntOp_RETURNADDR(SDNode * N)2682 SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
2683 // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant. This
2684 // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
2685 // constant to valid type.
2686 SDValue Lo, Hi;
2687 GetExpandedInteger(N->getOperand(0), Lo, Hi);
2688 return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
2689 }
2690
ExpandIntOp_SINT_TO_FP(SDNode * N)2691 SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
2692 SDValue Op = N->getOperand(0);
2693 EVT DstVT = N->getValueType(0);
2694 RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
2695 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2696 "Don't know how to expand this SINT_TO_FP!");
2697 return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, SDLoc(N)).first;
2698 }
2699
ExpandIntOp_STORE(StoreSDNode * N,unsigned OpNo)2700 SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
2701 if (ISD::isNormalStore(N))
2702 return ExpandOp_NormalStore(N, OpNo);
2703
2704 assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
2705 assert(OpNo == 1 && "Can only expand the stored value so far");
2706
2707 EVT VT = N->getOperand(1).getValueType();
2708 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2709 SDValue Ch = N->getChain();
2710 SDValue Ptr = N->getBasePtr();
2711 unsigned Alignment = N->getAlignment();
2712 bool isVolatile = N->isVolatile();
2713 bool isNonTemporal = N->isNonTemporal();
2714 const MDNode *TBAAInfo = N->getTBAAInfo();
2715 SDLoc dl(N);
2716 SDValue Lo, Hi;
2717
2718 assert(NVT.isByteSized() && "Expanded type not byte sized!");
2719
2720 if (N->getMemoryVT().bitsLE(NVT)) {
2721 GetExpandedInteger(N->getValue(), Lo, Hi);
2722 return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2723 N->getMemoryVT(), isVolatile, isNonTemporal,
2724 Alignment, TBAAInfo);
2725 }
2726
2727 if (TLI.isLittleEndian()) {
2728 // Little-endian - low bits are at low addresses.
2729 GetExpandedInteger(N->getValue(), Lo, Hi);
2730
2731 Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2732 isVolatile, isNonTemporal, Alignment, TBAAInfo);
2733
2734 unsigned ExcessBits =
2735 N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2736 EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2737
2738 // Increment the pointer to the other half.
2739 unsigned IncrementSize = NVT.getSizeInBits()/8;
2740 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2741 DAG.getConstant(IncrementSize, Ptr.getValueType()));
2742 Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
2743 N->getPointerInfo().getWithOffset(IncrementSize),
2744 NEVT, isVolatile, isNonTemporal,
2745 MinAlign(Alignment, IncrementSize), TBAAInfo);
2746 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2747 }
2748
2749 // Big-endian - high bits are at low addresses. Favor aligned stores at
2750 // the cost of some bit-fiddling.
2751 GetExpandedInteger(N->getValue(), Lo, Hi);
2752
2753 EVT ExtVT = N->getMemoryVT();
2754 unsigned EBytes = ExtVT.getStoreSize();
2755 unsigned IncrementSize = NVT.getSizeInBits()/8;
2756 unsigned ExcessBits = (EBytes - IncrementSize)*8;
2757 EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
2758 ExtVT.getSizeInBits() - ExcessBits);
2759
2760 if (ExcessBits < NVT.getSizeInBits()) {
2761 // Transfer high bits from the top of Lo to the bottom of Hi.
2762 Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
2763 DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
2764 TLI.getPointerTy()));
2765 Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2766 DAG.getNode(ISD::SRL, dl, NVT, Lo,
2767 DAG.getConstant(ExcessBits,
2768 TLI.getPointerTy())));
2769 }
2770
2771 // Store both the high bits and maybe some of the low bits.
2772 Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
2773 HiVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
2774
2775 // Increment the pointer to the other half.
2776 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2777 DAG.getConstant(IncrementSize, Ptr.getValueType()));
2778 // Store the lowest ExcessBits bits in the second half.
2779 Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
2780 N->getPointerInfo().getWithOffset(IncrementSize),
2781 EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2782 isVolatile, isNonTemporal,
2783 MinAlign(Alignment, IncrementSize), TBAAInfo);
2784 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2785 }
2786
ExpandIntOp_TRUNCATE(SDNode * N)2787 SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
2788 SDValue InL, InH;
2789 GetExpandedInteger(N->getOperand(0), InL, InH);
2790 // Just truncate the low part of the source.
2791 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), InL);
2792 }
2793
ExpandIntOp_UINT_TO_FP(SDNode * N)2794 SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
2795 SDValue Op = N->getOperand(0);
2796 EVT SrcVT = Op.getValueType();
2797 EVT DstVT = N->getValueType(0);
2798 SDLoc dl(N);
2799
2800 // The following optimization is valid only if every value in SrcVT (when
2801 // treated as signed) is representable in DstVT. Check that the mantissa
2802 // size of DstVT is >= than the number of bits in SrcVT -1.
2803 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(DstVT);
2804 if (APFloat::semanticsPrecision(sem) >= SrcVT.getSizeInBits()-1 &&
2805 TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
2806 // Do a signed conversion then adjust the result.
2807 SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
2808 SignedConv = TLI.LowerOperation(SignedConv, DAG);
2809
2810 // The result of the signed conversion needs adjusting if the 'sign bit' of
2811 // the incoming integer was set. To handle this, we dynamically test to see
2812 // if it is set, and, if so, add a fudge factor.
2813
2814 const uint64_t F32TwoE32 = 0x4F800000ULL;
2815 const uint64_t F32TwoE64 = 0x5F800000ULL;
2816 const uint64_t F32TwoE128 = 0x7F800000ULL;
2817
2818 APInt FF(32, 0);
2819 if (SrcVT == MVT::i32)
2820 FF = APInt(32, F32TwoE32);
2821 else if (SrcVT == MVT::i64)
2822 FF = APInt(32, F32TwoE64);
2823 else if (SrcVT == MVT::i128)
2824 FF = APInt(32, F32TwoE128);
2825 else
2826 llvm_unreachable("Unsupported UINT_TO_FP!");
2827
2828 // Check whether the sign bit is set.
2829 SDValue Lo, Hi;
2830 GetExpandedInteger(Op, Lo, Hi);
2831 SDValue SignSet = DAG.getSetCC(dl,
2832 getSetCCResultType(Hi.getValueType()),
2833 Hi, DAG.getConstant(0, Hi.getValueType()),
2834 ISD::SETLT);
2835
2836 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
2837 SDValue FudgePtr = DAG.getConstantPool(
2838 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
2839 TLI.getPointerTy());
2840
2841 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
2842 SDValue Zero = DAG.getIntPtrConstant(0);
2843 SDValue Four = DAG.getIntPtrConstant(4);
2844 if (TLI.isBigEndian()) std::swap(Zero, Four);
2845 SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet,
2846 Zero, Four);
2847 unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
2848 FudgePtr = DAG.getNode(ISD::ADD, dl, FudgePtr.getValueType(),
2849 FudgePtr, Offset);
2850 Alignment = std::min(Alignment, 4u);
2851
2852 // Load the value out, extending it from f32 to the destination float type.
2853 // FIXME: Avoid the extend by constructing the right constant pool?
2854 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(),
2855 FudgePtr,
2856 MachinePointerInfo::getConstantPool(),
2857 MVT::f32,
2858 false, false, Alignment);
2859 return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
2860 }
2861
2862 // Otherwise, use a libcall.
2863 RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
2864 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2865 "Don't know how to expand this UINT_TO_FP!");
2866 return TLI.makeLibCall(DAG, LC, DstVT, &Op, 1, true, dl).first;
2867 }
2868
ExpandIntOp_ATOMIC_STORE(SDNode * N)2869 SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
2870 SDLoc dl(N);
2871 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2872 cast<AtomicSDNode>(N)->getMemoryVT(),
2873 N->getOperand(0),
2874 N->getOperand(1), N->getOperand(2),
2875 cast<AtomicSDNode>(N)->getMemOperand(),
2876 cast<AtomicSDNode>(N)->getOrdering(),
2877 cast<AtomicSDNode>(N)->getSynchScope());
2878 return Swap.getValue(1);
2879 }
2880
2881
PromoteIntRes_EXTRACT_SUBVECTOR(SDNode * N)2882 SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
2883 SDValue InOp0 = N->getOperand(0);
2884 EVT InVT = InOp0.getValueType();
2885
2886 EVT OutVT = N->getValueType(0);
2887 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2888 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2889 unsigned OutNumElems = OutVT.getVectorNumElements();
2890 EVT NOutVTElem = NOutVT.getVectorElementType();
2891
2892 SDLoc dl(N);
2893 SDValue BaseIdx = N->getOperand(1);
2894
2895 SmallVector<SDValue, 8> Ops;
2896 Ops.reserve(OutNumElems);
2897 for (unsigned i = 0; i != OutNumElems; ++i) {
2898
2899 // Extract the element from the original vector.
2900 SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
2901 BaseIdx, DAG.getConstant(i, BaseIdx.getValueType()));
2902 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2903 InVT.getVectorElementType(), N->getOperand(0), Index);
2904
2905 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext);
2906 // Insert the converted element to the new vector.
2907 Ops.push_back(Op);
2908 }
2909
2910 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, Ops);
2911 }
2912
2913
PromoteIntRes_VECTOR_SHUFFLE(SDNode * N)2914 SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
2915 ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
2916 EVT VT = N->getValueType(0);
2917 SDLoc dl(N);
2918
2919 unsigned NumElts = VT.getVectorNumElements();
2920 SmallVector<int, 8> NewMask;
2921 for (unsigned i = 0; i != NumElts; ++i) {
2922 NewMask.push_back(SV->getMaskElt(i));
2923 }
2924
2925 SDValue V0 = GetPromotedInteger(N->getOperand(0));
2926 SDValue V1 = GetPromotedInteger(N->getOperand(1));
2927 EVT OutVT = V0.getValueType();
2928
2929 return DAG.getVectorShuffle(OutVT, dl, V0, V1, &NewMask[0]);
2930 }
2931
2932
PromoteIntRes_BUILD_VECTOR(SDNode * N)2933 SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
2934 EVT OutVT = N->getValueType(0);
2935 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2936 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2937 unsigned NumElems = N->getNumOperands();
2938 EVT NOutVTElem = NOutVT.getVectorElementType();
2939
2940 SDLoc dl(N);
2941
2942 SmallVector<SDValue, 8> Ops;
2943 Ops.reserve(NumElems);
2944 for (unsigned i = 0; i != NumElems; ++i) {
2945 SDValue Op;
2946 // BUILD_VECTOR integer operand types are allowed to be larger than the
2947 // result's element type. This may still be true after the promotion. For
2948 // example, we might be promoting (<v?i1> = BV <i32>, <i32>, ...) to
2949 // (v?i16 = BV <i32>, <i32>, ...), and we can't any_extend <i32> to <i16>.
2950 if (N->getOperand(i).getValueType().bitsLT(NOutVTElem))
2951 Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
2952 else
2953 Op = N->getOperand(i);
2954 Ops.push_back(Op);
2955 }
2956
2957 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, Ops);
2958 }
2959
PromoteIntRes_SCALAR_TO_VECTOR(SDNode * N)2960 SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
2961
2962 SDLoc dl(N);
2963
2964 assert(!N->getOperand(0).getValueType().isVector() &&
2965 "Input must be a scalar");
2966
2967 EVT OutVT = N->getValueType(0);
2968 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2969 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2970 EVT NOutVTElem = NOutVT.getVectorElementType();
2971
2972 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
2973
2974 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
2975 }
2976
PromoteIntRes_CONCAT_VECTORS(SDNode * N)2977 SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
2978 SDLoc dl(N);
2979
2980 EVT OutVT = N->getValueType(0);
2981 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2982 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2983
2984 EVT InElemTy = OutVT.getVectorElementType();
2985 EVT OutElemTy = NOutVT.getVectorElementType();
2986
2987 unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements();
2988 unsigned NumOutElem = NOutVT.getVectorNumElements();
2989 unsigned NumOperands = N->getNumOperands();
2990 assert(NumElem * NumOperands == NumOutElem &&
2991 "Unexpected number of elements");
2992
2993 // Take the elements from the first vector.
2994 SmallVector<SDValue, 8> Ops(NumOutElem);
2995 for (unsigned i = 0; i < NumOperands; ++i) {
2996 SDValue Op = N->getOperand(i);
2997 for (unsigned j = 0; j < NumElem; ++j) {
2998 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2999 InElemTy, Op, DAG.getConstant(j,
3000 TLI.getVectorIdxTy()));
3001 Ops[i * NumElem + j] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext);
3002 }
3003 }
3004
3005 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, Ops);
3006 }
3007
PromoteIntRes_INSERT_VECTOR_ELT(SDNode * N)3008 SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
3009 EVT OutVT = N->getValueType(0);
3010 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
3011 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
3012
3013 EVT NOutVTElem = NOutVT.getVectorElementType();
3014
3015 SDLoc dl(N);
3016 SDValue V0 = GetPromotedInteger(N->getOperand(0));
3017
3018 SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
3019 NOutVTElem, N->getOperand(1));
3020 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT,
3021 V0, ConvElem, N->getOperand(2));
3022 }
3023
PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode * N)3024 SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
3025 SDLoc dl(N);
3026 SDValue V0 = GetPromotedInteger(N->getOperand(0));
3027 SDValue V1 = DAG.getZExtOrTrunc(N->getOperand(1), dl, TLI.getVectorIdxTy());
3028 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3029 V0->getValueType(0).getScalarType(), V0, V1);
3030
3031 // EXTRACT_VECTOR_ELT can return types which are wider than the incoming
3032 // element types. If this is the case then we need to expand the outgoing
3033 // value and not truncate it.
3034 return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0));
3035 }
3036
PromoteIntOp_CONCAT_VECTORS(SDNode * N)3037 SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
3038 SDLoc dl(N);
3039 unsigned NumElems = N->getNumOperands();
3040
3041 EVT RetSclrTy = N->getValueType(0).getVectorElementType();
3042
3043 SmallVector<SDValue, 8> NewOps;
3044 NewOps.reserve(NumElems);
3045
3046 // For each incoming vector
3047 for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) {
3048 SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
3049 EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
3050 unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
3051
3052 for (unsigned i=0; i<NumElem; ++i) {
3053 // Extract element from incoming vector
3054 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SclrTy,
3055 Incoming, DAG.getConstant(i, TLI.getVectorIdxTy()));
3056 SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
3057 NewOps.push_back(Tr);
3058 }
3059 }
3060
3061 return DAG.getNode(ISD::BUILD_VECTOR, dl, N->getValueType(0), NewOps);
3062 }
3063