1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/MC/MCAssembler.h"
11 #include "llvm/ADT/Statistic.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCAsmLayout.h"
16 #include "llvm/MC/MCCodeEmitter.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCDwarf.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCFixupKindInfo.h"
21 #include "llvm/MC/MCObjectWriter.h"
22 #include "llvm/MC/MCSection.h"
23 #include "llvm/MC/MCSymbol.h"
24 #include "llvm/MC/MCValue.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/LEB128.h"
28 #include "llvm/Support/TargetRegistry.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include <tuple>
32 using namespace llvm;
33
34 #define DEBUG_TYPE "assembler"
35
36 namespace {
37 namespace stats {
38 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
39 STATISTIC(EmittedRelaxableFragments,
40 "Number of emitted assembler fragments - relaxable");
41 STATISTIC(EmittedDataFragments,
42 "Number of emitted assembler fragments - data");
43 STATISTIC(EmittedCompactEncodedInstFragments,
44 "Number of emitted assembler fragments - compact encoded inst");
45 STATISTIC(EmittedAlignFragments,
46 "Number of emitted assembler fragments - align");
47 STATISTIC(EmittedFillFragments,
48 "Number of emitted assembler fragments - fill");
49 STATISTIC(EmittedOrgFragments,
50 "Number of emitted assembler fragments - org");
51 STATISTIC(evaluateFixup, "Number of evaluated fixups");
52 STATISTIC(FragmentLayouts, "Number of fragment layouts");
53 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
54 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
55 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
56 }
57 }
58
59 // FIXME FIXME FIXME: There are number of places in this file where we convert
60 // what is a 64-bit assembler value used for computation into a value in the
61 // object file, which may truncate it. We should detect that truncation where
62 // invalid and report errors back.
63
64 /* *** */
65
MCAsmLayout(MCAssembler & Asm)66 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
67 : Assembler(Asm), LastValidFragment()
68 {
69 // Compute the section layout order. Virtual sections must go last.
70 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
71 if (!it->getSection().isVirtualSection())
72 SectionOrder.push_back(&*it);
73 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
74 if (it->getSection().isVirtualSection())
75 SectionOrder.push_back(&*it);
76 }
77
isFragmentValid(const MCFragment * F) const78 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
79 const MCSectionData &SD = *F->getParent();
80 const MCFragment *LastValid = LastValidFragment.lookup(&SD);
81 if (!LastValid)
82 return false;
83 assert(LastValid->getParent() == F->getParent());
84 return F->getLayoutOrder() <= LastValid->getLayoutOrder();
85 }
86
invalidateFragmentsFrom(MCFragment * F)87 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
88 // If this fragment wasn't already valid, we don't need to do anything.
89 if (!isFragmentValid(F))
90 return;
91
92 // Otherwise, reset the last valid fragment to the previous fragment
93 // (if this is the first fragment, it will be NULL).
94 const MCSectionData &SD = *F->getParent();
95 LastValidFragment[&SD] = F->getPrevNode();
96 }
97
ensureValid(const MCFragment * F) const98 void MCAsmLayout::ensureValid(const MCFragment *F) const {
99 MCSectionData &SD = *F->getParent();
100
101 MCFragment *Cur = LastValidFragment[&SD];
102 if (!Cur)
103 Cur = &*SD.begin();
104 else
105 Cur = Cur->getNextNode();
106
107 // Advance the layout position until the fragment is valid.
108 while (!isFragmentValid(F)) {
109 assert(Cur && "Layout bookkeeping error");
110 const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
111 Cur = Cur->getNextNode();
112 }
113 }
114
getFragmentOffset(const MCFragment * F) const115 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
116 ensureValid(F);
117 assert(F->Offset != ~UINT64_C(0) && "Address not set!");
118 return F->Offset;
119 }
120
121 // Simple getSymbolOffset helper for the non-varibale case.
getLabelOffset(const MCAsmLayout & Layout,const MCSymbolData & SD,bool ReportError,uint64_t & Val)122 static bool getLabelOffset(const MCAsmLayout &Layout, const MCSymbolData &SD,
123 bool ReportError, uint64_t &Val) {
124 if (!SD.getFragment()) {
125 if (ReportError)
126 report_fatal_error("unable to evaluate offset to undefined symbol '" +
127 SD.getSymbol().getName() + "'");
128 return false;
129 }
130 Val = Layout.getFragmentOffset(SD.getFragment()) + SD.getOffset();
131 return true;
132 }
133
getSymbolOffsetImpl(const MCAsmLayout & Layout,const MCSymbolData * SD,bool ReportError,uint64_t & Val)134 static bool getSymbolOffsetImpl(const MCAsmLayout &Layout,
135 const MCSymbolData *SD, bool ReportError,
136 uint64_t &Val) {
137 const MCSymbol &S = SD->getSymbol();
138
139 if (!S.isVariable())
140 return getLabelOffset(Layout, *SD, ReportError, Val);
141
142 // If SD is a variable, evaluate it.
143 MCValue Target;
144 if (!S.getVariableValue()->EvaluateAsValue(Target, &Layout))
145 report_fatal_error("unable to evaluate offset for variable '" +
146 S.getName() + "'");
147
148 uint64_t Offset = Target.getConstant();
149
150 const MCAssembler &Asm = Layout.getAssembler();
151
152 const MCSymbolRefExpr *A = Target.getSymA();
153 if (A) {
154 uint64_t ValA;
155 if (!getLabelOffset(Layout, Asm.getSymbolData(A->getSymbol()), ReportError,
156 ValA))
157 return false;
158 Offset += ValA;
159 }
160
161 const MCSymbolRefExpr *B = Target.getSymB();
162 if (B) {
163 uint64_t ValB;
164 if (!getLabelOffset(Layout, Asm.getSymbolData(B->getSymbol()), ReportError,
165 ValB))
166 return false;
167 Offset -= ValB;
168 }
169
170 Val = Offset;
171 return true;
172 }
173
getSymbolOffset(const MCSymbolData * SD,uint64_t & Val) const174 bool MCAsmLayout::getSymbolOffset(const MCSymbolData *SD, uint64_t &Val) const {
175 return getSymbolOffsetImpl(*this, SD, false, Val);
176 }
177
getSymbolOffset(const MCSymbolData * SD) const178 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
179 uint64_t Val;
180 getSymbolOffsetImpl(*this, SD, true, Val);
181 return Val;
182 }
183
getBaseSymbol(const MCSymbol & Symbol) const184 const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const {
185 if (!Symbol.isVariable())
186 return &Symbol;
187
188 const MCExpr *Expr = Symbol.getVariableValue();
189 MCValue Value;
190 if (!Expr->EvaluateAsValue(Value, this))
191 llvm_unreachable("Invalid Expression");
192
193 const MCSymbolRefExpr *RefB = Value.getSymB();
194 if (RefB)
195 Assembler.getContext().FatalError(
196 SMLoc(), Twine("symbol '") + RefB->getSymbol().getName() +
197 "' could not be evaluated in a subtraction expression");
198
199 const MCSymbolRefExpr *A = Value.getSymA();
200 if (!A)
201 return nullptr;
202
203 return &A->getSymbol();
204 }
205
getSectionAddressSize(const MCSectionData * SD) const206 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
207 // The size is the last fragment's end offset.
208 const MCFragment &F = SD->getFragmentList().back();
209 return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
210 }
211
getSectionFileSize(const MCSectionData * SD) const212 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
213 // Virtual sections have no file size.
214 if (SD->getSection().isVirtualSection())
215 return 0;
216
217 // Otherwise, the file size is the same as the address space size.
218 return getSectionAddressSize(SD);
219 }
220
computeBundlePadding(const MCFragment * F,uint64_t FOffset,uint64_t FSize)221 uint64_t MCAsmLayout::computeBundlePadding(const MCFragment *F,
222 uint64_t FOffset, uint64_t FSize) {
223 uint64_t BundleSize = Assembler.getBundleAlignSize();
224 assert(BundleSize > 0 &&
225 "computeBundlePadding should only be called if bundling is enabled");
226 uint64_t BundleMask = BundleSize - 1;
227 uint64_t OffsetInBundle = FOffset & BundleMask;
228 uint64_t EndOfFragment = OffsetInBundle + FSize;
229
230 // There are two kinds of bundling restrictions:
231 //
232 // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
233 // *end* on a bundle boundary.
234 // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
235 // would, add padding until the end of the bundle so that the fragment
236 // will start in a new one.
237 if (F->alignToBundleEnd()) {
238 // Three possibilities here:
239 //
240 // A) The fragment just happens to end at a bundle boundary, so we're good.
241 // B) The fragment ends before the current bundle boundary: pad it just
242 // enough to reach the boundary.
243 // C) The fragment ends after the current bundle boundary: pad it until it
244 // reaches the end of the next bundle boundary.
245 //
246 // Note: this code could be made shorter with some modulo trickery, but it's
247 // intentionally kept in its more explicit form for simplicity.
248 if (EndOfFragment == BundleSize)
249 return 0;
250 else if (EndOfFragment < BundleSize)
251 return BundleSize - EndOfFragment;
252 else { // EndOfFragment > BundleSize
253 return 2 * BundleSize - EndOfFragment;
254 }
255 } else if (EndOfFragment > BundleSize)
256 return BundleSize - OffsetInBundle;
257 else
258 return 0;
259 }
260
261 /* *** */
262
MCFragment()263 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
264 }
265
~MCFragment()266 MCFragment::~MCFragment() {
267 }
268
MCFragment(FragmentType _Kind,MCSectionData * _Parent)269 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
270 : Kind(_Kind), Parent(_Parent), Atom(nullptr), Offset(~UINT64_C(0))
271 {
272 if (Parent)
273 Parent->getFragmentList().push_back(this);
274 }
275
276 /* *** */
277
~MCEncodedFragment()278 MCEncodedFragment::~MCEncodedFragment() {
279 }
280
281 /* *** */
282
~MCEncodedFragmentWithFixups()283 MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
284 }
285
286 /* *** */
287
MCSectionData()288 MCSectionData::MCSectionData() : Section(nullptr) {}
289
MCSectionData(const MCSection & _Section,MCAssembler * A)290 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
291 : Section(&_Section),
292 Ordinal(~UINT32_C(0)),
293 Alignment(1),
294 BundleLockState(NotBundleLocked), BundleGroupBeforeFirstInst(false),
295 HasInstructions(false)
296 {
297 if (A)
298 A->getSectionList().push_back(this);
299 }
300
301 MCSectionData::iterator
getSubsectionInsertionPoint(unsigned Subsection)302 MCSectionData::getSubsectionInsertionPoint(unsigned Subsection) {
303 if (Subsection == 0 && SubsectionFragmentMap.empty())
304 return end();
305
306 SmallVectorImpl<std::pair<unsigned, MCFragment *> >::iterator MI =
307 std::lower_bound(SubsectionFragmentMap.begin(), SubsectionFragmentMap.end(),
308 std::make_pair(Subsection, (MCFragment *)nullptr));
309 bool ExactMatch = false;
310 if (MI != SubsectionFragmentMap.end()) {
311 ExactMatch = MI->first == Subsection;
312 if (ExactMatch)
313 ++MI;
314 }
315 iterator IP;
316 if (MI == SubsectionFragmentMap.end())
317 IP = end();
318 else
319 IP = MI->second;
320 if (!ExactMatch && Subsection != 0) {
321 // The GNU as documentation claims that subsections have an alignment of 4,
322 // although this appears not to be the case.
323 MCFragment *F = new MCDataFragment();
324 SubsectionFragmentMap.insert(MI, std::make_pair(Subsection, F));
325 getFragmentList().insert(IP, F);
326 F->setParent(this);
327 }
328 return IP;
329 }
330
331 /* *** */
332
MCSymbolData()333 MCSymbolData::MCSymbolData() : Symbol(nullptr) {}
334
MCSymbolData(const MCSymbol & _Symbol,MCFragment * _Fragment,uint64_t _Offset,MCAssembler * A)335 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
336 uint64_t _Offset, MCAssembler *A)
337 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
338 IsExternal(false), IsPrivateExtern(false),
339 CommonSize(0), SymbolSize(nullptr), CommonAlign(0),
340 Flags(0), Index(0)
341 {
342 if (A)
343 A->getSymbolList().push_back(this);
344 }
345
346 /* *** */
347
MCAssembler(MCContext & Context_,MCAsmBackend & Backend_,MCCodeEmitter & Emitter_,MCObjectWriter & Writer_,raw_ostream & OS_)348 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
349 MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
350 raw_ostream &OS_)
351 : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
352 OS(OS_), BundleAlignSize(0), RelaxAll(false), NoExecStack(false),
353 SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
354 VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
355 }
356
~MCAssembler()357 MCAssembler::~MCAssembler() {
358 }
359
reset()360 void MCAssembler::reset() {
361 Sections.clear();
362 Symbols.clear();
363 SectionMap.clear();
364 SymbolMap.clear();
365 IndirectSymbols.clear();
366 DataRegions.clear();
367 ThumbFuncs.clear();
368 RelaxAll = false;
369 NoExecStack = false;
370 SubsectionsViaSymbols = false;
371 ELFHeaderEFlags = 0;
372
373 // reset objects owned by us
374 getBackend().reset();
375 getEmitter().reset();
376 getWriter().reset();
377 getLOHContainer().reset();
378 }
379
isThumbFunc(const MCSymbol * Symbol) const380 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
381 if (ThumbFuncs.count(Symbol))
382 return true;
383
384 if (!Symbol->isVariable())
385 return false;
386
387 // FIXME: It looks like gas supports some cases of the form "foo + 2". It
388 // is not clear if that is a bug or a feature.
389 const MCExpr *Expr = Symbol->getVariableValue();
390 const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr);
391 if (!Ref)
392 return false;
393
394 if (Ref->getKind() != MCSymbolRefExpr::VK_None)
395 return false;
396
397 const MCSymbol &Sym = Ref->getSymbol();
398 if (!isThumbFunc(&Sym))
399 return false;
400
401 ThumbFuncs.insert(Symbol); // Cache it.
402 return true;
403 }
404
isSymbolLinkerVisible(const MCSymbol & Symbol) const405 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
406 // Non-temporary labels should always be visible to the linker.
407 if (!Symbol.isTemporary())
408 return true;
409
410 // Absolute temporary labels are never visible.
411 if (!Symbol.isInSection())
412 return false;
413
414 // Otherwise, check if the section requires symbols even for temporary labels.
415 return getBackend().doesSectionRequireSymbols(Symbol.getSection());
416 }
417
getAtom(const MCSymbolData * SD) const418 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
419 // Linker visible symbols define atoms.
420 if (isSymbolLinkerVisible(SD->getSymbol()))
421 return SD;
422
423 // Absolute and undefined symbols have no defining atom.
424 if (!SD->getFragment())
425 return nullptr;
426
427 // Non-linker visible symbols in sections which can't be atomized have no
428 // defining atom.
429 if (!getBackend().isSectionAtomizable(
430 SD->getFragment()->getParent()->getSection()))
431 return nullptr;
432
433 // Otherwise, return the atom for the containing fragment.
434 return SD->getFragment()->getAtom();
435 }
436
437 // Try to fully compute Expr to an absolute value and if that fails produce
438 // a relocatable expr.
439 // FIXME: Should this be the behavior of EvaluateAsRelocatable itself?
evaluate(const MCExpr & Expr,const MCAsmLayout & Layout,MCValue & Target)440 static bool evaluate(const MCExpr &Expr, const MCAsmLayout &Layout,
441 MCValue &Target) {
442 if (Expr.EvaluateAsValue(Target, &Layout))
443 if (Target.isAbsolute())
444 return true;
445 return Expr.EvaluateAsRelocatable(Target, &Layout);
446 }
447
evaluateFixup(const MCAsmLayout & Layout,const MCFixup & Fixup,const MCFragment * DF,MCValue & Target,uint64_t & Value) const448 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
449 const MCFixup &Fixup, const MCFragment *DF,
450 MCValue &Target, uint64_t &Value) const {
451 ++stats::evaluateFixup;
452
453 // FIXME: This code has some duplication with RecordRelocation. We should
454 // probably merge the two into a single callback that tries to evaluate a
455 // fixup and records a relocation if one is needed.
456 const MCExpr *Expr = Fixup.getValue();
457 if (!evaluate(*Expr, Layout, Target))
458 getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
459
460 bool IsPCRel = Backend.getFixupKindInfo(
461 Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
462
463 bool IsResolved;
464 if (IsPCRel) {
465 if (Target.getSymB()) {
466 IsResolved = false;
467 } else if (!Target.getSymA()) {
468 IsResolved = false;
469 } else {
470 const MCSymbolRefExpr *A = Target.getSymA();
471 const MCSymbol &SA = A->getSymbol();
472 if (A->getKind() != MCSymbolRefExpr::VK_None ||
473 SA.AliasedSymbol().isUndefined()) {
474 IsResolved = false;
475 } else {
476 const MCSymbolData &DataA = getSymbolData(SA);
477 IsResolved =
478 getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
479 *DF, false, true);
480 }
481 }
482 } else {
483 IsResolved = Target.isAbsolute();
484 }
485
486 Value = Target.getConstant();
487
488 if (const MCSymbolRefExpr *A = Target.getSymA()) {
489 const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
490 if (Sym.isDefined())
491 Value += Layout.getSymbolOffset(&getSymbolData(Sym));
492 }
493 if (const MCSymbolRefExpr *B = Target.getSymB()) {
494 const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
495 if (Sym.isDefined())
496 Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
497 }
498
499
500 bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
501 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
502 assert((ShouldAlignPC ? IsPCRel : true) &&
503 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
504
505 if (IsPCRel) {
506 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
507
508 // A number of ARM fixups in Thumb mode require that the effective PC
509 // address be determined as the 32-bit aligned version of the actual offset.
510 if (ShouldAlignPC) Offset &= ~0x3;
511 Value -= Offset;
512 }
513
514 // Let the backend adjust the fixup value if necessary, including whether
515 // we need a relocation.
516 Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
517 IsResolved);
518
519 return IsResolved;
520 }
521
computeFragmentSize(const MCAsmLayout & Layout,const MCFragment & F) const522 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
523 const MCFragment &F) const {
524 switch (F.getKind()) {
525 case MCFragment::FT_Data:
526 case MCFragment::FT_Relaxable:
527 case MCFragment::FT_CompactEncodedInst:
528 return cast<MCEncodedFragment>(F).getContents().size();
529 case MCFragment::FT_Fill:
530 return cast<MCFillFragment>(F).getSize();
531
532 case MCFragment::FT_LEB:
533 return cast<MCLEBFragment>(F).getContents().size();
534
535 case MCFragment::FT_Align: {
536 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
537 unsigned Offset = Layout.getFragmentOffset(&AF);
538 unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
539 // If we are padding with nops, force the padding to be larger than the
540 // minimum nop size.
541 if (Size > 0 && AF.hasEmitNops()) {
542 while (Size % getBackend().getMinimumNopSize())
543 Size += AF.getAlignment();
544 }
545 if (Size > AF.getMaxBytesToEmit())
546 return 0;
547 return Size;
548 }
549
550 case MCFragment::FT_Org: {
551 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
552 int64_t TargetLocation;
553 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
554 report_fatal_error("expected assembly-time absolute expression");
555
556 // FIXME: We need a way to communicate this error.
557 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
558 int64_t Size = TargetLocation - FragmentOffset;
559 if (Size < 0 || Size >= 0x40000000)
560 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
561 "' (at offset '" + Twine(FragmentOffset) + "')");
562 return Size;
563 }
564
565 case MCFragment::FT_Dwarf:
566 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
567 case MCFragment::FT_DwarfFrame:
568 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
569 }
570
571 llvm_unreachable("invalid fragment kind");
572 }
573
layoutFragment(MCFragment * F)574 void MCAsmLayout::layoutFragment(MCFragment *F) {
575 MCFragment *Prev = F->getPrevNode();
576
577 // We should never try to recompute something which is valid.
578 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
579 // We should never try to compute the fragment layout if its predecessor
580 // isn't valid.
581 assert((!Prev || isFragmentValid(Prev)) &&
582 "Attempt to compute fragment before its predecessor!");
583
584 ++stats::FragmentLayouts;
585
586 // Compute fragment offset and size.
587 if (Prev)
588 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
589 else
590 F->Offset = 0;
591 LastValidFragment[F->getParent()] = F;
592
593 // If bundling is enabled and this fragment has instructions in it, it has to
594 // obey the bundling restrictions. With padding, we'll have:
595 //
596 //
597 // BundlePadding
598 // |||
599 // -------------------------------------
600 // Prev |##########| F |
601 // -------------------------------------
602 // ^
603 // |
604 // F->Offset
605 //
606 // The fragment's offset will point to after the padding, and its computed
607 // size won't include the padding.
608 //
609 if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
610 assert(isa<MCEncodedFragment>(F) &&
611 "Only MCEncodedFragment implementations have instructions");
612 uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
613
614 if (FSize > Assembler.getBundleAlignSize())
615 report_fatal_error("Fragment can't be larger than a bundle size");
616
617 uint64_t RequiredBundlePadding = computeBundlePadding(F, F->Offset, FSize);
618 if (RequiredBundlePadding > UINT8_MAX)
619 report_fatal_error("Padding cannot exceed 255 bytes");
620 F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
621 F->Offset += RequiredBundlePadding;
622 }
623 }
624
625 /// \brief Write the contents of a fragment to the given object writer. Expects
626 /// a MCEncodedFragment.
writeFragmentContents(const MCFragment & F,MCObjectWriter * OW)627 static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
628 const MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
629 OW->WriteBytes(EF.getContents());
630 }
631
632 /// \brief Write the fragment \p F to the output file.
writeFragment(const MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment & F)633 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
634 const MCFragment &F) {
635 MCObjectWriter *OW = &Asm.getWriter();
636
637 // FIXME: Embed in fragments instead?
638 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
639
640 // Should NOP padding be written out before this fragment?
641 unsigned BundlePadding = F.getBundlePadding();
642 if (BundlePadding > 0) {
643 assert(Asm.isBundlingEnabled() &&
644 "Writing bundle padding with disabled bundling");
645 assert(F.hasInstructions() &&
646 "Writing bundle padding for a fragment without instructions");
647
648 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FragmentSize);
649 if (F.alignToBundleEnd() && TotalLength > Asm.getBundleAlignSize()) {
650 // If the padding itself crosses a bundle boundary, it must be emitted
651 // in 2 pieces, since even nop instructions must not cross boundaries.
652 // v--------------v <- BundleAlignSize
653 // v---------v <- BundlePadding
654 // ----------------------------
655 // | Prev |####|####| F |
656 // ----------------------------
657 // ^-------------------^ <- TotalLength
658 unsigned DistanceToBoundary = TotalLength - Asm.getBundleAlignSize();
659 if (!Asm.getBackend().writeNopData(DistanceToBoundary, OW))
660 report_fatal_error("unable to write NOP sequence of " +
661 Twine(DistanceToBoundary) + " bytes");
662 BundlePadding -= DistanceToBoundary;
663 }
664 if (!Asm.getBackend().writeNopData(BundlePadding, OW))
665 report_fatal_error("unable to write NOP sequence of " +
666 Twine(BundlePadding) + " bytes");
667 }
668
669 // This variable (and its dummy usage) is to participate in the assert at
670 // the end of the function.
671 uint64_t Start = OW->getStream().tell();
672 (void) Start;
673
674 ++stats::EmittedFragments;
675
676 switch (F.getKind()) {
677 case MCFragment::FT_Align: {
678 ++stats::EmittedAlignFragments;
679 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
680 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
681
682 uint64_t Count = FragmentSize / AF.getValueSize();
683
684 // FIXME: This error shouldn't actually occur (the front end should emit
685 // multiple .align directives to enforce the semantics it wants), but is
686 // severe enough that we want to report it. How to handle this?
687 if (Count * AF.getValueSize() != FragmentSize)
688 report_fatal_error("undefined .align directive, value size '" +
689 Twine(AF.getValueSize()) +
690 "' is not a divisor of padding size '" +
691 Twine(FragmentSize) + "'");
692
693 // See if we are aligning with nops, and if so do that first to try to fill
694 // the Count bytes. Then if that did not fill any bytes or there are any
695 // bytes left to fill use the Value and ValueSize to fill the rest.
696 // If we are aligning with nops, ask that target to emit the right data.
697 if (AF.hasEmitNops()) {
698 if (!Asm.getBackend().writeNopData(Count, OW))
699 report_fatal_error("unable to write nop sequence of " +
700 Twine(Count) + " bytes");
701 break;
702 }
703
704 // Otherwise, write out in multiples of the value size.
705 for (uint64_t i = 0; i != Count; ++i) {
706 switch (AF.getValueSize()) {
707 default: llvm_unreachable("Invalid size!");
708 case 1: OW->Write8 (uint8_t (AF.getValue())); break;
709 case 2: OW->Write16(uint16_t(AF.getValue())); break;
710 case 4: OW->Write32(uint32_t(AF.getValue())); break;
711 case 8: OW->Write64(uint64_t(AF.getValue())); break;
712 }
713 }
714 break;
715 }
716
717 case MCFragment::FT_Data:
718 ++stats::EmittedDataFragments;
719 writeFragmentContents(F, OW);
720 break;
721
722 case MCFragment::FT_Relaxable:
723 ++stats::EmittedRelaxableFragments;
724 writeFragmentContents(F, OW);
725 break;
726
727 case MCFragment::FT_CompactEncodedInst:
728 ++stats::EmittedCompactEncodedInstFragments;
729 writeFragmentContents(F, OW);
730 break;
731
732 case MCFragment::FT_Fill: {
733 ++stats::EmittedFillFragments;
734 const MCFillFragment &FF = cast<MCFillFragment>(F);
735
736 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
737
738 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
739 switch (FF.getValueSize()) {
740 default: llvm_unreachable("Invalid size!");
741 case 1: OW->Write8 (uint8_t (FF.getValue())); break;
742 case 2: OW->Write16(uint16_t(FF.getValue())); break;
743 case 4: OW->Write32(uint32_t(FF.getValue())); break;
744 case 8: OW->Write64(uint64_t(FF.getValue())); break;
745 }
746 }
747 break;
748 }
749
750 case MCFragment::FT_LEB: {
751 const MCLEBFragment &LF = cast<MCLEBFragment>(F);
752 OW->WriteBytes(LF.getContents().str());
753 break;
754 }
755
756 case MCFragment::FT_Org: {
757 ++stats::EmittedOrgFragments;
758 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
759
760 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
761 OW->Write8(uint8_t(OF.getValue()));
762
763 break;
764 }
765
766 case MCFragment::FT_Dwarf: {
767 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
768 OW->WriteBytes(OF.getContents().str());
769 break;
770 }
771 case MCFragment::FT_DwarfFrame: {
772 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
773 OW->WriteBytes(CF.getContents().str());
774 break;
775 }
776 }
777
778 assert(OW->getStream().tell() - Start == FragmentSize &&
779 "The stream should advance by fragment size");
780 }
781
writeSectionData(const MCSectionData * SD,const MCAsmLayout & Layout) const782 void MCAssembler::writeSectionData(const MCSectionData *SD,
783 const MCAsmLayout &Layout) const {
784 // Ignore virtual sections.
785 if (SD->getSection().isVirtualSection()) {
786 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
787
788 // Check that contents are only things legal inside a virtual section.
789 for (MCSectionData::const_iterator it = SD->begin(),
790 ie = SD->end(); it != ie; ++it) {
791 switch (it->getKind()) {
792 default: llvm_unreachable("Invalid fragment in virtual section!");
793 case MCFragment::FT_Data: {
794 // Check that we aren't trying to write a non-zero contents (or fixups)
795 // into a virtual section. This is to support clients which use standard
796 // directives to fill the contents of virtual sections.
797 const MCDataFragment &DF = cast<MCDataFragment>(*it);
798 assert(DF.fixup_begin() == DF.fixup_end() &&
799 "Cannot have fixups in virtual section!");
800 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
801 if (DF.getContents()[i]) {
802 if (auto *ELFSec = dyn_cast<const MCSectionELF>(&SD->getSection()))
803 report_fatal_error("non-zero initializer found in section '" +
804 ELFSec->getSectionName() + "'");
805 else
806 report_fatal_error("non-zero initializer found in virtual section");
807 }
808 break;
809 }
810 case MCFragment::FT_Align:
811 // Check that we aren't trying to write a non-zero value into a virtual
812 // section.
813 assert((cast<MCAlignFragment>(it)->getValueSize() == 0 ||
814 cast<MCAlignFragment>(it)->getValue() == 0) &&
815 "Invalid align in virtual section!");
816 break;
817 case MCFragment::FT_Fill:
818 assert((cast<MCFillFragment>(it)->getValueSize() == 0 ||
819 cast<MCFillFragment>(it)->getValue() == 0) &&
820 "Invalid fill in virtual section!");
821 break;
822 }
823 }
824
825 return;
826 }
827
828 uint64_t Start = getWriter().getStream().tell();
829 (void)Start;
830
831 for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
832 it != ie; ++it)
833 writeFragment(*this, Layout, *it);
834
835 assert(getWriter().getStream().tell() - Start ==
836 Layout.getSectionAddressSize(SD));
837 }
838
handleFixup(const MCAsmLayout & Layout,MCFragment & F,const MCFixup & Fixup)839 std::pair<uint64_t, bool> MCAssembler::handleFixup(const MCAsmLayout &Layout,
840 MCFragment &F,
841 const MCFixup &Fixup) {
842 // Evaluate the fixup.
843 MCValue Target;
844 uint64_t FixedValue;
845 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
846 MCFixupKindInfo::FKF_IsPCRel;
847 if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
848 // The fixup was unresolved, we need a relocation. Inform the object
849 // writer of the relocation, and give it an opportunity to adjust the
850 // fixup value if need be.
851 getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
852 FixedValue);
853 }
854 return std::make_pair(FixedValue, IsPCRel);
855 }
856
Finish()857 void MCAssembler::Finish() {
858 DEBUG_WITH_TYPE("mc-dump", {
859 llvm::errs() << "assembler backend - pre-layout\n--\n";
860 dump(); });
861
862 // Create the layout object.
863 MCAsmLayout Layout(*this);
864
865 // Create dummy fragments and assign section ordinals.
866 unsigned SectionIndex = 0;
867 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
868 // Create dummy fragments to eliminate any empty sections, this simplifies
869 // layout.
870 if (it->getFragmentList().empty())
871 new MCDataFragment(it);
872
873 it->setOrdinal(SectionIndex++);
874 }
875
876 // Assign layout order indices to sections and fragments.
877 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
878 MCSectionData *SD = Layout.getSectionOrder()[i];
879 SD->setLayoutOrder(i);
880
881 unsigned FragmentIndex = 0;
882 for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
883 iFrag != iFragEnd; ++iFrag)
884 iFrag->setLayoutOrder(FragmentIndex++);
885 }
886
887 // Layout until everything fits.
888 while (layoutOnce(Layout))
889 continue;
890
891 DEBUG_WITH_TYPE("mc-dump", {
892 llvm::errs() << "assembler backend - post-relaxation\n--\n";
893 dump(); });
894
895 // Finalize the layout, including fragment lowering.
896 finishLayout(Layout);
897
898 DEBUG_WITH_TYPE("mc-dump", {
899 llvm::errs() << "assembler backend - final-layout\n--\n";
900 dump(); });
901
902 uint64_t StartOffset = OS.tell();
903
904 // Allow the object writer a chance to perform post-layout binding (for
905 // example, to set the index fields in the symbol data).
906 getWriter().ExecutePostLayoutBinding(*this, Layout);
907
908 // Evaluate and apply the fixups, generating relocation entries as necessary.
909 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
910 for (MCSectionData::iterator it2 = it->begin(),
911 ie2 = it->end(); it2 != ie2; ++it2) {
912 MCEncodedFragmentWithFixups *F =
913 dyn_cast<MCEncodedFragmentWithFixups>(it2);
914 if (F) {
915 for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
916 ie3 = F->fixup_end(); it3 != ie3; ++it3) {
917 MCFixup &Fixup = *it3;
918 uint64_t FixedValue;
919 bool IsPCRel;
920 std::tie(FixedValue, IsPCRel) = handleFixup(Layout, *F, Fixup);
921 getBackend().applyFixup(Fixup, F->getContents().data(),
922 F->getContents().size(), FixedValue, IsPCRel);
923 }
924 }
925 }
926 }
927
928 // Write the object file.
929 getWriter().WriteObject(*this, Layout);
930
931 stats::ObjectBytes += OS.tell() - StartOffset;
932 }
933
fixupNeedsRelaxation(const MCFixup & Fixup,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const934 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
935 const MCRelaxableFragment *DF,
936 const MCAsmLayout &Layout) const {
937 // If we cannot resolve the fixup value, it requires relaxation.
938 MCValue Target;
939 uint64_t Value;
940 if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
941 return true;
942
943 return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
944 }
945
fragmentNeedsRelaxation(const MCRelaxableFragment * F,const MCAsmLayout & Layout) const946 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
947 const MCAsmLayout &Layout) const {
948 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
949 // are intentionally pushing out inst fragments, or because we relaxed a
950 // previous instruction to one that doesn't need relaxation.
951 if (!getBackend().mayNeedRelaxation(F->getInst()))
952 return false;
953
954 for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
955 ie = F->fixup_end(); it != ie; ++it)
956 if (fixupNeedsRelaxation(*it, F, Layout))
957 return true;
958
959 return false;
960 }
961
relaxInstruction(MCAsmLayout & Layout,MCRelaxableFragment & F)962 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
963 MCRelaxableFragment &F) {
964 if (!fragmentNeedsRelaxation(&F, Layout))
965 return false;
966
967 ++stats::RelaxedInstructions;
968
969 // FIXME-PERF: We could immediately lower out instructions if we can tell
970 // they are fully resolved, to avoid retesting on later passes.
971
972 // Relax the fragment.
973
974 MCInst Relaxed;
975 getBackend().relaxInstruction(F.getInst(), Relaxed);
976
977 // Encode the new instruction.
978 //
979 // FIXME-PERF: If it matters, we could let the target do this. It can
980 // probably do so more efficiently in many cases.
981 SmallVector<MCFixup, 4> Fixups;
982 SmallString<256> Code;
983 raw_svector_ostream VecOS(Code);
984 getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
985 VecOS.flush();
986
987 // Update the fragment.
988 F.setInst(Relaxed);
989 F.getContents() = Code;
990 F.getFixups() = Fixups;
991
992 return true;
993 }
994
relaxLEB(MCAsmLayout & Layout,MCLEBFragment & LF)995 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
996 int64_t Value = 0;
997 uint64_t OldSize = LF.getContents().size();
998 bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
999 (void)IsAbs;
1000 assert(IsAbs);
1001 SmallString<8> &Data = LF.getContents();
1002 Data.clear();
1003 raw_svector_ostream OSE(Data);
1004 if (LF.isSigned())
1005 encodeSLEB128(Value, OSE);
1006 else
1007 encodeULEB128(Value, OSE);
1008 OSE.flush();
1009 return OldSize != LF.getContents().size();
1010 }
1011
relaxDwarfLineAddr(MCAsmLayout & Layout,MCDwarfLineAddrFragment & DF)1012 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
1013 MCDwarfLineAddrFragment &DF) {
1014 MCContext &Context = Layout.getAssembler().getContext();
1015 int64_t AddrDelta = 0;
1016 uint64_t OldSize = DF.getContents().size();
1017 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
1018 (void)IsAbs;
1019 assert(IsAbs);
1020 int64_t LineDelta;
1021 LineDelta = DF.getLineDelta();
1022 SmallString<8> &Data = DF.getContents();
1023 Data.clear();
1024 raw_svector_ostream OSE(Data);
1025 MCDwarfLineAddr::Encode(Context, LineDelta, AddrDelta, OSE);
1026 OSE.flush();
1027 return OldSize != Data.size();
1028 }
1029
relaxDwarfCallFrameFragment(MCAsmLayout & Layout,MCDwarfCallFrameFragment & DF)1030 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1031 MCDwarfCallFrameFragment &DF) {
1032 MCContext &Context = Layout.getAssembler().getContext();
1033 int64_t AddrDelta = 0;
1034 uint64_t OldSize = DF.getContents().size();
1035 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
1036 (void)IsAbs;
1037 assert(IsAbs);
1038 SmallString<8> &Data = DF.getContents();
1039 Data.clear();
1040 raw_svector_ostream OSE(Data);
1041 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1042 OSE.flush();
1043 return OldSize != Data.size();
1044 }
1045
layoutSectionOnce(MCAsmLayout & Layout,MCSectionData & SD)1046 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
1047 // Holds the first fragment which needed relaxing during this layout. It will
1048 // remain NULL if none were relaxed.
1049 // When a fragment is relaxed, all the fragments following it should get
1050 // invalidated because their offset is going to change.
1051 MCFragment *FirstRelaxedFragment = nullptr;
1052
1053 // Attempt to relax all the fragments in the section.
1054 for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
1055 // Check if this is a fragment that needs relaxation.
1056 bool RelaxedFrag = false;
1057 switch(I->getKind()) {
1058 default:
1059 break;
1060 case MCFragment::FT_Relaxable:
1061 assert(!getRelaxAll() &&
1062 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1063 RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1064 break;
1065 case MCFragment::FT_Dwarf:
1066 RelaxedFrag = relaxDwarfLineAddr(Layout,
1067 *cast<MCDwarfLineAddrFragment>(I));
1068 break;
1069 case MCFragment::FT_DwarfFrame:
1070 RelaxedFrag =
1071 relaxDwarfCallFrameFragment(Layout,
1072 *cast<MCDwarfCallFrameFragment>(I));
1073 break;
1074 case MCFragment::FT_LEB:
1075 RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1076 break;
1077 }
1078 if (RelaxedFrag && !FirstRelaxedFragment)
1079 FirstRelaxedFragment = I;
1080 }
1081 if (FirstRelaxedFragment) {
1082 Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1083 return true;
1084 }
1085 return false;
1086 }
1087
layoutOnce(MCAsmLayout & Layout)1088 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1089 ++stats::RelaxationSteps;
1090
1091 bool WasRelaxed = false;
1092 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1093 MCSectionData &SD = *it;
1094 while (layoutSectionOnce(Layout, SD))
1095 WasRelaxed = true;
1096 }
1097
1098 return WasRelaxed;
1099 }
1100
finishLayout(MCAsmLayout & Layout)1101 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1102 // The layout is done. Mark every fragment as valid.
1103 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1104 Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
1105 }
1106 }
1107
1108 // Debugging methods
1109
1110 namespace llvm {
1111
operator <<(raw_ostream & OS,const MCFixup & AF)1112 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
1113 OS << "<MCFixup" << " Offset:" << AF.getOffset()
1114 << " Value:" << *AF.getValue()
1115 << " Kind:" << AF.getKind() << ">";
1116 return OS;
1117 }
1118
1119 }
1120
1121 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump()1122 void MCFragment::dump() {
1123 raw_ostream &OS = llvm::errs();
1124
1125 OS << "<";
1126 switch (getKind()) {
1127 case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
1128 case MCFragment::FT_Data: OS << "MCDataFragment"; break;
1129 case MCFragment::FT_CompactEncodedInst:
1130 OS << "MCCompactEncodedInstFragment"; break;
1131 case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
1132 case MCFragment::FT_Relaxable: OS << "MCRelaxableFragment"; break;
1133 case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
1134 case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
1135 case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
1136 case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
1137 }
1138
1139 OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
1140 << " Offset:" << Offset
1141 << " HasInstructions:" << hasInstructions()
1142 << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
1143
1144 switch (getKind()) {
1145 case MCFragment::FT_Align: {
1146 const MCAlignFragment *AF = cast<MCAlignFragment>(this);
1147 if (AF->hasEmitNops())
1148 OS << " (emit nops)";
1149 OS << "\n ";
1150 OS << " Alignment:" << AF->getAlignment()
1151 << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
1152 << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
1153 break;
1154 }
1155 case MCFragment::FT_Data: {
1156 const MCDataFragment *DF = cast<MCDataFragment>(this);
1157 OS << "\n ";
1158 OS << " Contents:[";
1159 const SmallVectorImpl<char> &Contents = DF->getContents();
1160 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1161 if (i) OS << ",";
1162 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1163 }
1164 OS << "] (" << Contents.size() << " bytes)";
1165
1166 if (DF->fixup_begin() != DF->fixup_end()) {
1167 OS << ",\n ";
1168 OS << " Fixups:[";
1169 for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
1170 ie = DF->fixup_end(); it != ie; ++it) {
1171 if (it != DF->fixup_begin()) OS << ",\n ";
1172 OS << *it;
1173 }
1174 OS << "]";
1175 }
1176 break;
1177 }
1178 case MCFragment::FT_CompactEncodedInst: {
1179 const MCCompactEncodedInstFragment *CEIF =
1180 cast<MCCompactEncodedInstFragment>(this);
1181 OS << "\n ";
1182 OS << " Contents:[";
1183 const SmallVectorImpl<char> &Contents = CEIF->getContents();
1184 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1185 if (i) OS << ",";
1186 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1187 }
1188 OS << "] (" << Contents.size() << " bytes)";
1189 break;
1190 }
1191 case MCFragment::FT_Fill: {
1192 const MCFillFragment *FF = cast<MCFillFragment>(this);
1193 OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
1194 << " Size:" << FF->getSize();
1195 break;
1196 }
1197 case MCFragment::FT_Relaxable: {
1198 const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
1199 OS << "\n ";
1200 OS << " Inst:";
1201 F->getInst().dump_pretty(OS);
1202 break;
1203 }
1204 case MCFragment::FT_Org: {
1205 const MCOrgFragment *OF = cast<MCOrgFragment>(this);
1206 OS << "\n ";
1207 OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
1208 break;
1209 }
1210 case MCFragment::FT_Dwarf: {
1211 const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
1212 OS << "\n ";
1213 OS << " AddrDelta:" << OF->getAddrDelta()
1214 << " LineDelta:" << OF->getLineDelta();
1215 break;
1216 }
1217 case MCFragment::FT_DwarfFrame: {
1218 const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
1219 OS << "\n ";
1220 OS << " AddrDelta:" << CF->getAddrDelta();
1221 break;
1222 }
1223 case MCFragment::FT_LEB: {
1224 const MCLEBFragment *LF = cast<MCLEBFragment>(this);
1225 OS << "\n ";
1226 OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
1227 break;
1228 }
1229 }
1230 OS << ">";
1231 }
1232
dump()1233 void MCSectionData::dump() {
1234 raw_ostream &OS = llvm::errs();
1235
1236 OS << "<MCSectionData";
1237 OS << " Alignment:" << getAlignment()
1238 << " Fragments:[\n ";
1239 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1240 if (it != begin()) OS << ",\n ";
1241 it->dump();
1242 }
1243 OS << "]>";
1244 }
1245
dump() const1246 void MCSymbolData::dump() const {
1247 raw_ostream &OS = llvm::errs();
1248
1249 OS << "<MCSymbolData Symbol:" << getSymbol()
1250 << " Fragment:" << getFragment() << " Offset:" << getOffset()
1251 << " Flags:" << getFlags() << " Index:" << getIndex();
1252 if (isCommon())
1253 OS << " (common, size:" << getCommonSize()
1254 << " align: " << getCommonAlignment() << ")";
1255 if (isExternal())
1256 OS << " (external)";
1257 if (isPrivateExtern())
1258 OS << " (private extern)";
1259 OS << ">";
1260 }
1261
dump()1262 void MCAssembler::dump() {
1263 raw_ostream &OS = llvm::errs();
1264
1265 OS << "<MCAssembler\n";
1266 OS << " Sections:[\n ";
1267 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1268 if (it != begin()) OS << ",\n ";
1269 it->dump();
1270 }
1271 OS << "],\n";
1272 OS << " Symbols:[";
1273
1274 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1275 if (it != symbol_begin()) OS << ",\n ";
1276 it->dump();
1277 }
1278 OS << "]>\n";
1279 }
1280 #endif
1281
1282 // anchors for MC*Fragment vtables
anchor()1283 void MCEncodedFragment::anchor() { }
anchor()1284 void MCEncodedFragmentWithFixups::anchor() { }
anchor()1285 void MCDataFragment::anchor() { }
anchor()1286 void MCCompactEncodedInstFragment::anchor() { }
anchor()1287 void MCRelaxableFragment::anchor() { }
anchor()1288 void MCAlignFragment::anchor() { }
anchor()1289 void MCFillFragment::anchor() { }
anchor()1290 void MCOrgFragment::anchor() { }
anchor()1291 void MCLEBFragment::anchor() { }
anchor()1292 void MCDwarfLineAddrFragment::anchor() { }
anchor()1293 void MCDwarfCallFrameFragment::anchor() { }
1294