1 //===- MCJITTest.cpp - Unit tests for the MCJIT ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This test suite verifies basic MCJIT functionality when invoked form the C
11 // API.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm-c/Analysis.h"
16 #include "MCJITTestAPICommon.h"
17 #include "llvm-c/Core.h"
18 #include "llvm-c/ExecutionEngine.h"
19 #include "llvm-c/Target.h"
20 #include "llvm-c/Transforms/PassManagerBuilder.h"
21 #include "llvm-c/Transforms/Scalar.h"
22 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Host.h"
25 #include "gtest/gtest.h"
26
27 using namespace llvm;
28
29 static bool didCallAllocateCodeSection;
30 static bool didAllocateCompactUnwindSection;
31 static bool didCallYield;
32
roundTripAllocateCodeSection(void * object,uintptr_t size,unsigned alignment,unsigned sectionID,const char * sectionName)33 static uint8_t *roundTripAllocateCodeSection(void *object, uintptr_t size,
34 unsigned alignment,
35 unsigned sectionID,
36 const char *sectionName) {
37 didCallAllocateCodeSection = true;
38 return static_cast<SectionMemoryManager*>(object)->allocateCodeSection(
39 size, alignment, sectionID, sectionName);
40 }
41
roundTripAllocateDataSection(void * object,uintptr_t size,unsigned alignment,unsigned sectionID,const char * sectionName,LLVMBool isReadOnly)42 static uint8_t *roundTripAllocateDataSection(void *object, uintptr_t size,
43 unsigned alignment,
44 unsigned sectionID,
45 const char *sectionName,
46 LLVMBool isReadOnly) {
47 if (!strcmp(sectionName, "__compact_unwind"))
48 didAllocateCompactUnwindSection = true;
49 return static_cast<SectionMemoryManager*>(object)->allocateDataSection(
50 size, alignment, sectionID, sectionName, isReadOnly);
51 }
52
roundTripFinalizeMemory(void * object,char ** errMsg)53 static LLVMBool roundTripFinalizeMemory(void *object, char **errMsg) {
54 std::string errMsgString;
55 bool result =
56 static_cast<SectionMemoryManager*>(object)->finalizeMemory(&errMsgString);
57 if (result) {
58 *errMsg = LLVMCreateMessage(errMsgString.c_str());
59 return 1;
60 }
61 return 0;
62 }
63
roundTripDestroy(void * object)64 static void roundTripDestroy(void *object) {
65 delete static_cast<SectionMemoryManager*>(object);
66 }
67
yield(LLVMContextRef,void *)68 static void yield(LLVMContextRef, void *) {
69 didCallYield = true;
70 }
71
72 namespace {
73
74 // memory manager to test reserve allocation space callback
75 class TestReserveAllocationSpaceMemoryManager: public SectionMemoryManager {
76 public:
77 uintptr_t ReservedCodeSize;
78 uintptr_t UsedCodeSize;
79 uintptr_t ReservedDataSizeRO;
80 uintptr_t UsedDataSizeRO;
81 uintptr_t ReservedDataSizeRW;
82 uintptr_t UsedDataSizeRW;
83
TestReserveAllocationSpaceMemoryManager()84 TestReserveAllocationSpaceMemoryManager() :
85 ReservedCodeSize(0), UsedCodeSize(0), ReservedDataSizeRO(0),
86 UsedDataSizeRO(0), ReservedDataSizeRW(0), UsedDataSizeRW(0) {
87 }
88
needsToReserveAllocationSpace()89 virtual bool needsToReserveAllocationSpace() {
90 return true;
91 }
92
reserveAllocationSpace(uintptr_t CodeSize,uintptr_t DataSizeRO,uintptr_t DataSizeRW)93 virtual void reserveAllocationSpace(
94 uintptr_t CodeSize, uintptr_t DataSizeRO, uintptr_t DataSizeRW) {
95 ReservedCodeSize = CodeSize;
96 ReservedDataSizeRO = DataSizeRO;
97 ReservedDataSizeRW = DataSizeRW;
98 }
99
useSpace(uintptr_t * UsedSize,uintptr_t Size,unsigned Alignment)100 void useSpace(uintptr_t* UsedSize, uintptr_t Size, unsigned Alignment) {
101 uintptr_t AlignedSize = (Size + Alignment - 1) / Alignment * Alignment;
102 uintptr_t AlignedBegin = (*UsedSize + Alignment - 1) / Alignment * Alignment;
103 *UsedSize = AlignedBegin + AlignedSize;
104 }
105
allocateDataSection(uintptr_t Size,unsigned Alignment,unsigned SectionID,StringRef SectionName,bool IsReadOnly)106 virtual uint8_t* allocateDataSection(uintptr_t Size, unsigned Alignment,
107 unsigned SectionID, StringRef SectionName, bool IsReadOnly) {
108 useSpace(IsReadOnly ? &UsedDataSizeRO : &UsedDataSizeRW, Size, Alignment);
109 return SectionMemoryManager::allocateDataSection(Size, Alignment,
110 SectionID, SectionName, IsReadOnly);
111 }
112
allocateCodeSection(uintptr_t Size,unsigned Alignment,unsigned SectionID,StringRef SectionName)113 uint8_t* allocateCodeSection(uintptr_t Size, unsigned Alignment,
114 unsigned SectionID, StringRef SectionName) {
115 useSpace(&UsedCodeSize, Size, Alignment);
116 return SectionMemoryManager::allocateCodeSection(Size, Alignment,
117 SectionID, SectionName);
118 }
119 };
120
121 class MCJITCAPITest : public testing::Test, public MCJITTestAPICommon {
122 protected:
MCJITCAPITest()123 MCJITCAPITest() {
124 // The architectures below are known to be compatible with MCJIT as they
125 // are copied from test/ExecutionEngine/MCJIT/lit.local.cfg and should be
126 // kept in sync.
127 SupportedArchs.push_back(Triple::aarch64);
128 SupportedArchs.push_back(Triple::arm);
129 SupportedArchs.push_back(Triple::mips);
130 SupportedArchs.push_back(Triple::x86);
131 SupportedArchs.push_back(Triple::x86_64);
132
133 // Some architectures have sub-architectures in which tests will fail, like
134 // ARM. These two vectors will define if they do have sub-archs (to avoid
135 // extra work for those who don't), and if so, if they are listed to work
136 HasSubArchs.push_back(Triple::arm);
137 SupportedSubArchs.push_back("armv6");
138 SupportedSubArchs.push_back("armv7");
139
140 // The operating systems below are known to be sufficiently incompatible
141 // that they will fail the MCJIT C API tests.
142 UnsupportedOSs.push_back(Triple::Cygwin);
143
144 UnsupportedEnvironments.push_back(Triple::Cygnus);
145 }
146
SetUp()147 virtual void SetUp() {
148 didCallAllocateCodeSection = false;
149 didAllocateCompactUnwindSection = false;
150 didCallYield = false;
151 Module = nullptr;
152 Function = nullptr;
153 Engine = nullptr;
154 Error = nullptr;
155 }
156
TearDown()157 virtual void TearDown() {
158 if (Engine)
159 LLVMDisposeExecutionEngine(Engine);
160 else if (Module)
161 LLVMDisposeModule(Module);
162 }
163
buildSimpleFunction()164 void buildSimpleFunction() {
165 Module = LLVMModuleCreateWithName("simple_module");
166
167 LLVMSetTarget(Module, HostTriple.c_str());
168
169 Function = LLVMAddFunction(Module, "simple_function",
170 LLVMFunctionType(LLVMInt32Type(), nullptr,0, 0));
171 LLVMSetFunctionCallConv(Function, LLVMCCallConv);
172
173 LLVMBasicBlockRef entry = LLVMAppendBasicBlock(Function, "entry");
174 LLVMBuilderRef builder = LLVMCreateBuilder();
175 LLVMPositionBuilderAtEnd(builder, entry);
176 LLVMBuildRet(builder, LLVMConstInt(LLVMInt32Type(), 42, 0));
177
178 LLVMVerifyModule(Module, LLVMAbortProcessAction, &Error);
179 LLVMDisposeMessage(Error);
180
181 LLVMDisposeBuilder(builder);
182 }
183
buildFunctionThatUsesStackmap()184 void buildFunctionThatUsesStackmap() {
185 Module = LLVMModuleCreateWithName("simple_module");
186
187 LLVMSetTarget(Module, HostTriple.c_str());
188
189 LLVMTypeRef stackmapParamTypes[] = { LLVMInt64Type(), LLVMInt32Type() };
190 LLVMValueRef stackmap = LLVMAddFunction(
191 Module, "llvm.experimental.stackmap",
192 LLVMFunctionType(LLVMVoidType(), stackmapParamTypes, 2, 1));
193 LLVMSetLinkage(stackmap, LLVMExternalLinkage);
194
195 Function = LLVMAddFunction(Module, "simple_function",
196 LLVMFunctionType(LLVMInt32Type(), nullptr, 0, 0));
197
198 LLVMBasicBlockRef entry = LLVMAppendBasicBlock(Function, "entry");
199 LLVMBuilderRef builder = LLVMCreateBuilder();
200 LLVMPositionBuilderAtEnd(builder, entry);
201 LLVMValueRef stackmapArgs[] = {
202 LLVMConstInt(LLVMInt64Type(), 0, 0), LLVMConstInt(LLVMInt32Type(), 5, 0),
203 LLVMConstInt(LLVMInt32Type(), 42, 0)
204 };
205 LLVMBuildCall(builder, stackmap, stackmapArgs, 3, "");
206 LLVMBuildRet(builder, LLVMConstInt(LLVMInt32Type(), 42, 0));
207
208 LLVMVerifyModule(Module, LLVMAbortProcessAction, &Error);
209 LLVMDisposeMessage(Error);
210
211 LLVMDisposeBuilder(builder);
212 }
213
buildModuleWithCodeAndData()214 void buildModuleWithCodeAndData() {
215 Module = LLVMModuleCreateWithName("simple_module");
216
217 LLVMSetTarget(Module, HostTriple.c_str());
218
219 // build a global int32 variable initialized to 42.
220 LLVMValueRef GlobalVar = LLVMAddGlobal(Module, LLVMInt32Type(), "intVal");
221 LLVMSetInitializer(GlobalVar, LLVMConstInt(LLVMInt32Type(), 42, 0));
222
223 {
224 Function = LLVMAddFunction(Module, "getGlobal",
225 LLVMFunctionType(LLVMInt32Type(), nullptr, 0, 0));
226 LLVMSetFunctionCallConv(Function, LLVMCCallConv);
227
228 LLVMBasicBlockRef Entry = LLVMAppendBasicBlock(Function, "entry");
229 LLVMBuilderRef Builder = LLVMCreateBuilder();
230 LLVMPositionBuilderAtEnd(Builder, Entry);
231
232 LLVMValueRef IntVal = LLVMBuildLoad(Builder, GlobalVar, "intVal");
233 LLVMBuildRet(Builder, IntVal);
234
235 LLVMVerifyModule(Module, LLVMAbortProcessAction, &Error);
236 LLVMDisposeMessage(Error);
237
238 LLVMDisposeBuilder(Builder);
239 }
240
241 {
242 LLVMTypeRef ParamTypes[] = { LLVMInt32Type() };
243 Function2 = LLVMAddFunction(
244 Module, "setGlobal", LLVMFunctionType(LLVMVoidType(), ParamTypes, 1, 0));
245 LLVMSetFunctionCallConv(Function2, LLVMCCallConv);
246
247 LLVMBasicBlockRef Entry = LLVMAppendBasicBlock(Function2, "entry");
248 LLVMBuilderRef Builder = LLVMCreateBuilder();
249 LLVMPositionBuilderAtEnd(Builder, Entry);
250
251 LLVMValueRef Arg = LLVMGetParam(Function2, 0);
252 LLVMBuildStore(Builder, Arg, GlobalVar);
253 LLVMBuildRetVoid(Builder);
254
255 LLVMVerifyModule(Module, LLVMAbortProcessAction, &Error);
256 LLVMDisposeMessage(Error);
257
258 LLVMDisposeBuilder(Builder);
259 }
260 }
261
buildMCJITOptions()262 void buildMCJITOptions() {
263 LLVMInitializeMCJITCompilerOptions(&Options, sizeof(Options));
264 Options.OptLevel = 2;
265
266 // Just ensure that this field still exists.
267 Options.NoFramePointerElim = false;
268 }
269
useRoundTripSectionMemoryManager()270 void useRoundTripSectionMemoryManager() {
271 Options.MCJMM = LLVMCreateSimpleMCJITMemoryManager(
272 new SectionMemoryManager(),
273 roundTripAllocateCodeSection,
274 roundTripAllocateDataSection,
275 roundTripFinalizeMemory,
276 roundTripDestroy);
277 }
278
buildMCJITEngine()279 void buildMCJITEngine() {
280 ASSERT_EQ(
281 0, LLVMCreateMCJITCompilerForModule(&Engine, Module, &Options,
282 sizeof(Options), &Error));
283 }
284
buildAndRunPasses()285 void buildAndRunPasses() {
286 LLVMPassManagerRef pass = LLVMCreatePassManager();
287 LLVMAddTargetData(LLVMGetExecutionEngineTargetData(Engine), pass);
288 LLVMAddConstantPropagationPass(pass);
289 LLVMAddInstructionCombiningPass(pass);
290 LLVMRunPassManager(pass, Module);
291 LLVMDisposePassManager(pass);
292 }
293
buildAndRunOptPasses()294 void buildAndRunOptPasses() {
295 LLVMPassManagerBuilderRef passBuilder;
296
297 passBuilder = LLVMPassManagerBuilderCreate();
298 LLVMPassManagerBuilderSetOptLevel(passBuilder, 2);
299 LLVMPassManagerBuilderSetSizeLevel(passBuilder, 0);
300
301 LLVMPassManagerRef functionPasses =
302 LLVMCreateFunctionPassManagerForModule(Module);
303 LLVMPassManagerRef modulePasses =
304 LLVMCreatePassManager();
305
306 LLVMAddTargetData(LLVMGetExecutionEngineTargetData(Engine), modulePasses);
307
308 LLVMPassManagerBuilderPopulateFunctionPassManager(passBuilder,
309 functionPasses);
310 LLVMPassManagerBuilderPopulateModulePassManager(passBuilder, modulePasses);
311
312 LLVMPassManagerBuilderDispose(passBuilder);
313
314 LLVMInitializeFunctionPassManager(functionPasses);
315 for (LLVMValueRef value = LLVMGetFirstFunction(Module);
316 value; value = LLVMGetNextFunction(value))
317 LLVMRunFunctionPassManager(functionPasses, value);
318 LLVMFinalizeFunctionPassManager(functionPasses);
319
320 LLVMRunPassManager(modulePasses, Module);
321
322 LLVMDisposePassManager(functionPasses);
323 LLVMDisposePassManager(modulePasses);
324 }
325
326 LLVMModuleRef Module;
327 LLVMValueRef Function;
328 LLVMValueRef Function2;
329 LLVMMCJITCompilerOptions Options;
330 LLVMExecutionEngineRef Engine;
331 char *Error;
332 };
333 } // end anonymous namespace
334
TEST_F(MCJITCAPITest,simple_function)335 TEST_F(MCJITCAPITest, simple_function) {
336 SKIP_UNSUPPORTED_PLATFORM;
337
338 buildSimpleFunction();
339 buildMCJITOptions();
340 buildMCJITEngine();
341 buildAndRunPasses();
342
343 union {
344 void *raw;
345 int (*usable)();
346 } functionPointer;
347 functionPointer.raw = LLVMGetPointerToGlobal(Engine, Function);
348
349 EXPECT_EQ(42, functionPointer.usable());
350 }
351
TEST_F(MCJITCAPITest,custom_memory_manager)352 TEST_F(MCJITCAPITest, custom_memory_manager) {
353 SKIP_UNSUPPORTED_PLATFORM;
354
355 buildSimpleFunction();
356 buildMCJITOptions();
357 useRoundTripSectionMemoryManager();
358 buildMCJITEngine();
359 buildAndRunPasses();
360
361 union {
362 void *raw;
363 int (*usable)();
364 } functionPointer;
365 functionPointer.raw = LLVMGetPointerToGlobal(Engine, Function);
366
367 EXPECT_EQ(42, functionPointer.usable());
368 EXPECT_TRUE(didCallAllocateCodeSection);
369 }
370
TEST_F(MCJITCAPITest,stackmap_creates_compact_unwind_on_darwin)371 TEST_F(MCJITCAPITest, stackmap_creates_compact_unwind_on_darwin) {
372 SKIP_UNSUPPORTED_PLATFORM;
373
374 // This test is also not supported on non-x86 platforms.
375 if (Triple(HostTriple).getArch() != Triple::x86_64)
376 return;
377
378 buildFunctionThatUsesStackmap();
379 buildMCJITOptions();
380 useRoundTripSectionMemoryManager();
381 buildMCJITEngine();
382 buildAndRunOptPasses();
383
384 union {
385 void *raw;
386 int (*usable)();
387 } functionPointer;
388 functionPointer.raw = LLVMGetPointerToGlobal(Engine, Function);
389
390 EXPECT_EQ(42, functionPointer.usable());
391 EXPECT_TRUE(didCallAllocateCodeSection);
392
393 // Up to this point, the test is specific only to X86-64. But this next
394 // expectation is only valid on Darwin because it assumes that unwind
395 // data is made available only through compact_unwind. It would be
396 // worthwhile to extend this to handle non-Darwin platforms, in which
397 // case you'd want to look for an eh_frame or something.
398 //
399 // FIXME: Currently, MCJIT relies on a configure-time check to determine which
400 // sections to emit. The JIT client should have runtime control over this.
401 EXPECT_TRUE(
402 Triple(HostTriple).getOS() != Triple::Darwin ||
403 Triple(HostTriple).isMacOSXVersionLT(10, 7) ||
404 didAllocateCompactUnwindSection);
405 }
406
TEST_F(MCJITCAPITest,reserve_allocation_space)407 TEST_F(MCJITCAPITest, reserve_allocation_space) {
408 SKIP_UNSUPPORTED_PLATFORM;
409
410 TestReserveAllocationSpaceMemoryManager* MM = new TestReserveAllocationSpaceMemoryManager();
411
412 buildModuleWithCodeAndData();
413 buildMCJITOptions();
414 Options.MCJMM = wrap(MM);
415 buildMCJITEngine();
416 buildAndRunPasses();
417
418 union {
419 void *raw;
420 int (*usable)();
421 } GetGlobalFct;
422 GetGlobalFct.raw = LLVMGetPointerToGlobal(Engine, Function);
423
424 union {
425 void *raw;
426 void (*usable)(int);
427 } SetGlobalFct;
428 SetGlobalFct.raw = LLVMGetPointerToGlobal(Engine, Function2);
429
430 SetGlobalFct.usable(789);
431 EXPECT_EQ(789, GetGlobalFct.usable());
432 EXPECT_LE(MM->UsedCodeSize, MM->ReservedCodeSize);
433 EXPECT_LE(MM->UsedDataSizeRO, MM->ReservedDataSizeRO);
434 EXPECT_LE(MM->UsedDataSizeRW, MM->ReservedDataSizeRW);
435 EXPECT_TRUE(MM->UsedCodeSize > 0);
436 EXPECT_TRUE(MM->UsedDataSizeRW > 0);
437 }
438
TEST_F(MCJITCAPITest,yield)439 TEST_F(MCJITCAPITest, yield) {
440 SKIP_UNSUPPORTED_PLATFORM;
441
442 buildSimpleFunction();
443 buildMCJITOptions();
444 buildMCJITEngine();
445 LLVMContextRef C = LLVMGetGlobalContext();
446 LLVMContextSetYieldCallback(C, yield, nullptr);
447 buildAndRunPasses();
448
449 union {
450 void *raw;
451 int (*usable)();
452 } functionPointer;
453 functionPointer.raw = LLVMGetPointerToGlobal(Engine, Function);
454
455 EXPECT_EQ(42, functionPointer.usable());
456 EXPECT_TRUE(didCallYield);
457 }
458
459