1 // Copyright (c) 2006-2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef BASE_CASTS_H_
6 #define BASE_CASTS_H_
7
8 #include <assert.h> // for use with down_cast<>
9 #include <string.h> // for memcpy
10
11 #include "base/macros.h"
12
13
14 // Use implicit_cast as a safe version of static_cast or const_cast
15 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo
16 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to
17 // a const pointer to Foo).
18 // When you use implicit_cast, the compiler checks that the cast is safe.
19 // Such explicit implicit_casts are necessary in surprisingly many
20 // situations where C++ demands an exact type match instead of an
21 // argument type convertable to a target type.
22 //
23 // The From type can be inferred, so the preferred syntax for using
24 // implicit_cast is the same as for static_cast etc.:
25 //
26 // implicit_cast<ToType>(expr)
27 //
28 // implicit_cast would have been part of the C++ standard library,
29 // but the proposal was submitted too late. It will probably make
30 // its way into the language in the future.
31 template<typename To, typename From>
implicit_cast(From const & f)32 inline To implicit_cast(From const &f) {
33 return f;
34 }
35
36
37 // When you upcast (that is, cast a pointer from type Foo to type
38 // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts
39 // always succeed. When you downcast (that is, cast a pointer from
40 // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because
41 // how do you know the pointer is really of type SubclassOfFoo? It
42 // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus,
43 // when you downcast, you should use this macro. In debug mode, we
44 // use dynamic_cast<> to double-check the downcast is legal (we die
45 // if it's not). In normal mode, we do the efficient static_cast<>
46 // instead. Thus, it's important to test in debug mode to make sure
47 // the cast is legal!
48 // This is the only place in the code we should use dynamic_cast<>.
49 // In particular, you SHOULDN'T be using dynamic_cast<> in order to
50 // do RTTI (eg code like this:
51 // if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo);
52 // if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo);
53 // You should design the code some other way not to need this.
54
55 template<typename To, typename From> // use like this: down_cast<T*>(foo);
down_cast(From * f)56 inline To down_cast(From* f) { // so we only accept pointers
57 // Ensures that To is a sub-type of From *. This test is here only
58 // for compile-time type checking, and has no overhead in an
59 // optimized build at run-time, as it will be optimized away
60 // completely.
61 if (false) {
62 implicit_cast<From*, To>(0);
63 }
64
65 assert(f == NULL || dynamic_cast<To>(f) != NULL); // RTTI: debug mode only!
66 return static_cast<To>(f);
67 }
68
69 // Overload of down_cast for references. Use like this: down_cast<T&>(foo).
70 // The code is slightly convoluted because we're still using the pointer
71 // form of dynamic cast. (The reference form throws an exception if it
72 // fails.)
73 //
74 // There's no need for a special const overload either for the pointer
75 // or the reference form. If you call down_cast with a const T&, the
76 // compiler will just bind From to const T.
77 template<typename To, typename From>
down_cast(From & f)78 inline To down_cast(From& f) {
79 COMPILE_ASSERT(base::is_reference<To>::value, target_type_not_a_reference);
80 typedef typename base::remove_reference<To>::type* ToAsPointer;
81 if (false) {
82 // Compile-time check that To inherits from From. See above for details.
83 implicit_cast<From*, ToAsPointer>(0);
84 }
85
86 assert(dynamic_cast<ToAsPointer>(&f) != NULL); // RTTI: debug mode only
87 return static_cast<To>(f);
88 }
89
90 // bit_cast<Dest,Source> is a template function that implements the
91 // equivalent of "*reinterpret_cast<Dest*>(&source)". We need this in
92 // very low-level functions like the protobuf library and fast math
93 // support.
94 //
95 // float f = 3.14159265358979;
96 // int i = bit_cast<int32>(f);
97 // // i = 0x40490fdb
98 //
99 // The classical address-casting method is:
100 //
101 // // WRONG
102 // float f = 3.14159265358979; // WRONG
103 // int i = * reinterpret_cast<int*>(&f); // WRONG
104 //
105 // The address-casting method actually produces undefined behavior
106 // according to ISO C++ specification section 3.10 -15 -. Roughly, this
107 // section says: if an object in memory has one type, and a program
108 // accesses it with a different type, then the result is undefined
109 // behavior for most values of "different type".
110 //
111 // This is true for any cast syntax, either *(int*)&f or
112 // *reinterpret_cast<int*>(&f). And it is particularly true for
113 // conversions betweeen integral lvalues and floating-point lvalues.
114 //
115 // The purpose of 3.10 -15- is to allow optimizing compilers to assume
116 // that expressions with different types refer to different memory. gcc
117 // 4.0.1 has an optimizer that takes advantage of this. So a
118 // non-conforming program quietly produces wildly incorrect output.
119 //
120 // The problem is not the use of reinterpret_cast. The problem is type
121 // punning: holding an object in memory of one type and reading its bits
122 // back using a different type.
123 //
124 // The C++ standard is more subtle and complex than this, but that
125 // is the basic idea.
126 //
127 // Anyways ...
128 //
129 // bit_cast<> calls memcpy() which is blessed by the standard,
130 // especially by the example in section 3.9 . Also, of course,
131 // bit_cast<> wraps up the nasty logic in one place.
132 //
133 // Fortunately memcpy() is very fast. In optimized mode, with a
134 // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline
135 // code with the minimal amount of data movement. On a 32-bit system,
136 // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8)
137 // compiles to two loads and two stores.
138 //
139 // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1.
140 //
141 // WARNING: if Dest or Source is a non-POD type, the result of the memcpy
142 // is likely to surprise you.
143 //
144
145 template <class Dest, class Source>
bit_cast(const Source & source)146 inline Dest bit_cast(const Source& source) {
147 // Compile time assertion: sizeof(Dest) == sizeof(Source)
148 // A compile error here means your Dest and Source have different sizes.
149 typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1];
150
151 Dest dest;
152 memcpy(&dest, &source, sizeof(dest));
153 return dest;
154 }
155
156 #endif // BASE_CASTS_H_
157