1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "media/base/container_names.h"
6
7 #include <cctype>
8 #include <limits>
9
10 #include "base/basictypes.h"
11 #include "base/logging.h"
12 #include "media/base/bit_reader.h"
13
14 namespace media {
15
16 namespace container_names {
17
18 #define TAG(a, b, c, d) \
19 ((static_cast<uint32>(static_cast<uint8>(a)) << 24) | \
20 (static_cast<uint32>(static_cast<uint8>(b)) << 16) | \
21 (static_cast<uint32>(static_cast<uint8>(c)) << 8) | \
22 (static_cast<uint32>(static_cast<uint8>(d))))
23
24 #define RCHECK(x) \
25 do { \
26 if (!(x)) \
27 return false; \
28 } while (0)
29
30 #define UTF8_BYTE_ORDER_MARK "\xef\xbb\xbf"
31
32 // Helper function to read 2 bytes (16 bits, big endian) from a buffer.
Read16(const uint8 * p)33 static int Read16(const uint8* p) {
34 return p[0] << 8 | p[1];
35 }
36
37 // Helper function to read 3 bytes (24 bits, big endian) from a buffer.
Read24(const uint8 * p)38 static uint32 Read24(const uint8* p) {
39 return p[0] << 16 | p[1] << 8 | p[2];
40 }
41
42 // Helper function to read 4 bytes (32 bits, big endian) from a buffer.
Read32(const uint8 * p)43 static uint32 Read32(const uint8* p) {
44 return p[0] << 24 | p[1] << 16 | p[2] << 8 | p[3];
45 }
46
47 // Helper function to read 4 bytes (32 bits, little endian) from a buffer.
Read32LE(const uint8 * p)48 static uint32 Read32LE(const uint8* p) {
49 return p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0];
50 }
51
52 // Helper function to do buffer comparisons with a string without going off the
53 // end of the buffer.
StartsWith(const uint8 * buffer,size_t buffer_size,const char * prefix)54 static bool StartsWith(const uint8* buffer,
55 size_t buffer_size,
56 const char* prefix) {
57 size_t prefix_size = strlen(prefix);
58 return (prefix_size <= buffer_size &&
59 memcmp(buffer, prefix, prefix_size) == 0);
60 }
61
62 // Helper function to do buffer comparisons with another buffer (to allow for
63 // embedded \0 in the comparison) without going off the end of the buffer.
StartsWith(const uint8 * buffer,size_t buffer_size,const uint8 * prefix,size_t prefix_size)64 static bool StartsWith(const uint8* buffer,
65 size_t buffer_size,
66 const uint8* prefix,
67 size_t prefix_size) {
68 return (prefix_size <= buffer_size &&
69 memcmp(buffer, prefix, prefix_size) == 0);
70 }
71
72 // Helper function to read up to 64 bits from a bit stream.
ReadBits(BitReader * reader,int num_bits)73 static uint64 ReadBits(BitReader* reader, int num_bits) {
74 DCHECK_GE(reader->bits_available(), num_bits);
75 DCHECK((num_bits > 0) && (num_bits <= 64));
76 uint64 value;
77 reader->ReadBits(num_bits, &value);
78 return value;
79 }
80
81 const int kAc3FrameSizeTable[38][3] = {
82 { 128, 138, 192 }, { 128, 140, 192 }, { 160, 174, 240 }, { 160, 176, 240 },
83 { 192, 208, 288 }, { 192, 210, 288 }, { 224, 242, 336 }, { 224, 244, 336 },
84 { 256, 278, 384 }, { 256, 280, 384 }, { 320, 348, 480 }, { 320, 350, 480 },
85 { 384, 416, 576 }, { 384, 418, 576 }, { 448, 486, 672 }, { 448, 488, 672 },
86 { 512, 556, 768 }, { 512, 558, 768 }, { 640, 696, 960 }, { 640, 698, 960 },
87 { 768, 834, 1152 }, { 768, 836, 1152 }, { 896, 974, 1344 },
88 { 896, 976, 1344 }, { 1024, 1114, 1536 }, { 1024, 1116, 1536 },
89 { 1280, 1392, 1920 }, { 1280, 1394, 1920 }, { 1536, 1670, 2304 },
90 { 1536, 1672, 2304 }, { 1792, 1950, 2688 }, { 1792, 1952, 2688 },
91 { 2048, 2228, 3072 }, { 2048, 2230, 3072 }, { 2304, 2506, 3456 },
92 { 2304, 2508, 3456 }, { 2560, 2768, 3840 }, { 2560, 2770, 3840 }
93 };
94
95 // Checks for an ADTS AAC container.
CheckAac(const uint8 * buffer,int buffer_size)96 static bool CheckAac(const uint8* buffer, int buffer_size) {
97 // Audio Data Transport Stream (ADTS) header is 7 or 9 bytes
98 // (from http://wiki.multimedia.cx/index.php?title=ADTS)
99 RCHECK(buffer_size > 6);
100
101 int offset = 0;
102 while (offset + 6 < buffer_size) {
103 BitReader reader(buffer + offset, 6);
104
105 // Syncword must be 0xfff.
106 RCHECK(ReadBits(&reader, 12) == 0xfff);
107
108 // Skip MPEG version.
109 reader.SkipBits(1);
110
111 // Layer is always 0.
112 RCHECK(ReadBits(&reader, 2) == 0);
113
114 // Skip protection + profile.
115 reader.SkipBits(1 + 2);
116
117 // Check sampling frequency index.
118 RCHECK(ReadBits(&reader, 4) != 15); // Forbidden.
119
120 // Skip private stream, channel configuration, originality, home,
121 // copyrighted stream, and copyright_start.
122 reader.SkipBits(1 + 3 + 1 + 1 + 1 + 1);
123
124 // Get frame length (includes header).
125 int size = ReadBits(&reader, 13);
126 RCHECK(size > 0);
127 offset += size;
128 }
129 return true;
130 }
131
132 const uint16 kAc3SyncWord = 0x0b77;
133
134 // Checks for an AC3 container.
CheckAc3(const uint8 * buffer,int buffer_size)135 static bool CheckAc3(const uint8* buffer, int buffer_size) {
136 // Reference: ATSC Standard: Digital Audio Compression (AC-3, E-AC-3)
137 // Doc. A/52:2012
138 // (http://www.atsc.org/cms/standards/A52-2012(12-17).pdf)
139
140 // AC3 container looks like syncinfo | bsi | audblk * 6 | aux | check.
141 RCHECK(buffer_size > 6);
142
143 int offset = 0;
144 while (offset + 6 < buffer_size) {
145 BitReader reader(buffer + offset, 6);
146
147 // Check syncinfo.
148 RCHECK(ReadBits(&reader, 16) == kAc3SyncWord);
149
150 // Skip crc1.
151 reader.SkipBits(16);
152
153 // Verify fscod.
154 int sample_rate_code = ReadBits(&reader, 2);
155 RCHECK(sample_rate_code != 3); // Reserved.
156
157 // Verify frmsizecod.
158 int frame_size_code = ReadBits(&reader, 6);
159 RCHECK(frame_size_code < 38); // Undefined.
160
161 // Verify bsid.
162 RCHECK(ReadBits(&reader, 5) < 10); // Normally 8 or 6, 16 used by EAC3.
163
164 offset += kAc3FrameSizeTable[frame_size_code][sample_rate_code];
165 }
166 return true;
167 }
168
169 // Checks for an EAC3 container (very similar to AC3)
CheckEac3(const uint8 * buffer,int buffer_size)170 static bool CheckEac3(const uint8* buffer, int buffer_size) {
171 // Reference: ATSC Standard: Digital Audio Compression (AC-3, E-AC-3)
172 // Doc. A/52:2012
173 // (http://www.atsc.org/cms/standards/A52-2012(12-17).pdf)
174
175 // EAC3 container looks like syncinfo | bsi | audfrm | audblk* | aux | check.
176 RCHECK(buffer_size > 6);
177
178 int offset = 0;
179 while (offset + 6 < buffer_size) {
180 BitReader reader(buffer + offset, 6);
181
182 // Check syncinfo.
183 RCHECK(ReadBits(&reader, 16) == kAc3SyncWord);
184
185 // Verify strmtyp.
186 RCHECK(ReadBits(&reader, 2) != 3);
187
188 // Skip substreamid.
189 reader.SkipBits(3);
190
191 // Get frmsize. Include syncinfo size and convert to bytes.
192 int frame_size = (ReadBits(&reader, 11) + 1) * 2;
193 RCHECK(frame_size >= 7);
194
195 // Skip fscod, fscod2, acmod, and lfeon.
196 reader.SkipBits(2 + 2 + 3 + 1);
197
198 // Verify bsid.
199 int bit_stream_id = ReadBits(&reader, 5);
200 RCHECK(bit_stream_id >= 11 && bit_stream_id <= 16);
201
202 offset += frame_size;
203 }
204 return true;
205 }
206
207 // Additional checks for a BINK container.
CheckBink(const uint8 * buffer,int buffer_size)208 static bool CheckBink(const uint8* buffer, int buffer_size) {
209 // Reference: http://wiki.multimedia.cx/index.php?title=Bink_Container
210 RCHECK(buffer_size >= 44);
211
212 // Verify number of frames specified.
213 RCHECK(Read32LE(buffer + 8) > 0);
214
215 // Verify width in range.
216 int width = Read32LE(buffer + 20);
217 RCHECK(width > 0 && width <= 32767);
218
219 // Verify height in range.
220 int height = Read32LE(buffer + 24);
221 RCHECK(height > 0 && height <= 32767);
222
223 // Verify frames per second specified.
224 RCHECK(Read32LE(buffer + 28) > 0);
225
226 // Verify video frames per second specified.
227 RCHECK(Read32LE(buffer + 32) > 0);
228
229 // Number of audio tracks must be 256 or less.
230 return (Read32LE(buffer + 40) <= 256);
231 }
232
233 // Additional checks for a CAF container.
CheckCaf(const uint8 * buffer,int buffer_size)234 static bool CheckCaf(const uint8* buffer, int buffer_size) {
235 // Reference: Apple Core Audio Format Specification 1.0
236 // (https://developer.apple.com/library/mac/#documentation/MusicAudio/Reference/CAFSpec/CAF_spec/CAF_spec.html)
237 RCHECK(buffer_size >= 52);
238 BitReader reader(buffer, buffer_size);
239
240 // mFileType should be "caff".
241 RCHECK(ReadBits(&reader, 32) == TAG('c', 'a', 'f', 'f'));
242
243 // mFileVersion should be 1.
244 RCHECK(ReadBits(&reader, 16) == 1);
245
246 // Skip mFileFlags.
247 reader.SkipBits(16);
248
249 // First chunk should be Audio Description chunk, size 32l.
250 RCHECK(ReadBits(&reader, 32) == TAG('d', 'e', 's', 'c'));
251 RCHECK(ReadBits(&reader, 64) == 32);
252
253 // CAFAudioFormat.mSampleRate(float64) not 0
254 RCHECK(ReadBits(&reader, 64) != 0);
255
256 // CAFAudioFormat.mFormatID not 0
257 RCHECK(ReadBits(&reader, 32) != 0);
258
259 // Skip CAFAudioFormat.mBytesPerPacket and mFramesPerPacket.
260 reader.SkipBits(32 + 32);
261
262 // CAFAudioFormat.mChannelsPerFrame not 0
263 RCHECK(ReadBits(&reader, 32) != 0);
264 return true;
265 }
266
267 static bool kSamplingFrequencyValid[16] = { false, true, true, true, false,
268 false, true, true, true, false,
269 false, true, true, true, false,
270 false };
271 static bool kExtAudioIdValid[8] = { true, false, true, false, false, false,
272 true, false };
273
274 // Additional checks for a DTS container.
CheckDts(const uint8 * buffer,int buffer_size)275 static bool CheckDts(const uint8* buffer, int buffer_size) {
276 // Reference: ETSI TS 102 114 V1.3.1 (2011-08)
277 // (http://www.etsi.org/deliver/etsi_ts/102100_102199/102114/01.03.01_60/ts_102114v010301p.pdf)
278 RCHECK(buffer_size > 11);
279
280 int offset = 0;
281 while (offset + 11 < buffer_size) {
282 BitReader reader(buffer + offset, 11);
283
284 // Verify sync word.
285 RCHECK(ReadBits(&reader, 32) == 0x7ffe8001);
286
287 // Skip frame type and deficit sample count.
288 reader.SkipBits(1 + 5);
289
290 // Verify CRC present flag.
291 RCHECK(ReadBits(&reader, 1) == 0); // CPF must be 0.
292
293 // Verify number of PCM sample blocks.
294 RCHECK(ReadBits(&reader, 7) >= 5);
295
296 // Verify primary frame byte size.
297 int frame_size = ReadBits(&reader, 14);
298 RCHECK(frame_size >= 95);
299
300 // Skip audio channel arrangement.
301 reader.SkipBits(6);
302
303 // Verify core audio sampling frequency is an allowed value.
304 RCHECK(kSamplingFrequencyValid[ReadBits(&reader, 4)]);
305
306 // Verify transmission bit rate is valid.
307 RCHECK(ReadBits(&reader, 5) <= 25);
308
309 // Verify reserved field is 0.
310 RCHECK(ReadBits(&reader, 1) == 0);
311
312 // Skip dynamic range flag, time stamp flag, auxiliary data flag, and HDCD.
313 reader.SkipBits(1 + 1 + 1 + 1);
314
315 // Verify extension audio descriptor flag is an allowed value.
316 RCHECK(kExtAudioIdValid[ReadBits(&reader, 3)]);
317
318 // Skip extended coding flag and audio sync word insertion flag.
319 reader.SkipBits(1 + 1);
320
321 // Verify low frequency effects flag is an allowed value.
322 RCHECK(ReadBits(&reader, 2) != 3);
323
324 offset += frame_size + 1;
325 }
326 return true;
327 }
328
329 // Checks for a DV container.
CheckDV(const uint8 * buffer,int buffer_size)330 static bool CheckDV(const uint8* buffer, int buffer_size) {
331 // Reference: SMPTE 314M (Annex A has differences with IEC 61834).
332 // (http://standards.smpte.org/content/978-1-61482-454-1/st-314-2005/SEC1.body.pdf)
333 RCHECK(buffer_size > 11);
334
335 int offset = 0;
336 int current_sequence_number = -1;
337 int last_block_number[6];
338 while (offset + 11 < buffer_size) {
339 BitReader reader(buffer + offset, 11);
340
341 // Decode ID data. Sections 5, 6, and 7 are reserved.
342 int section = ReadBits(&reader, 3);
343 RCHECK(section < 5);
344
345 // Next bit must be 1.
346 RCHECK(ReadBits(&reader, 1) == 1);
347
348 // Skip arbitrary bits.
349 reader.SkipBits(4);
350
351 int sequence_number = ReadBits(&reader, 4);
352
353 // Skip FSC.
354 reader.SkipBits(1);
355
356 // Next 3 bits must be 1.
357 RCHECK(ReadBits(&reader, 3) == 7);
358
359 int block_number = ReadBits(&reader, 8);
360
361 if (section == 0) { // Header.
362 // Validate the reserved bits in the next 8 bytes.
363 reader.SkipBits(1);
364 RCHECK(ReadBits(&reader, 1) == 0);
365 RCHECK(ReadBits(&reader, 11) == 0x7ff);
366 reader.SkipBits(4);
367 RCHECK(ReadBits(&reader, 4) == 0xf);
368 reader.SkipBits(4);
369 RCHECK(ReadBits(&reader, 4) == 0xf);
370 reader.SkipBits(4);
371 RCHECK(ReadBits(&reader, 4) == 0xf);
372 reader.SkipBits(3);
373 RCHECK(ReadBits(&reader, 24) == 0xffffff);
374 current_sequence_number = sequence_number;
375 for (size_t i = 0; i < arraysize(last_block_number); ++i)
376 last_block_number[i] = -1;
377 } else {
378 // Sequence number must match (this will also fail if no header seen).
379 RCHECK(sequence_number == current_sequence_number);
380 // Block number should be increasing.
381 RCHECK(block_number > last_block_number[section]);
382 last_block_number[section] = block_number;
383 }
384
385 // Move to next block.
386 offset += 80;
387 }
388 return true;
389 }
390
391
392 // Checks for a GSM container.
CheckGsm(const uint8 * buffer,int buffer_size)393 static bool CheckGsm(const uint8* buffer, int buffer_size) {
394 // Reference: ETSI EN 300 961 V8.1.1
395 // (http://www.etsi.org/deliver/etsi_en/300900_300999/300961/08.01.01_60/en_300961v080101p.pdf)
396 // also http://tools.ietf.org/html/rfc3551#page-24
397 // GSM files have a 33 byte block, only first 4 bits are fixed.
398 RCHECK(buffer_size >= 1024); // Need enough data to do a decent check.
399
400 int offset = 0;
401 while (offset < buffer_size) {
402 // First 4 bits of each block are xD.
403 RCHECK((buffer[offset] & 0xf0) == 0xd0);
404 offset += 33;
405 }
406 return true;
407 }
408
409 // Advance to the first set of |num_bits| bits that match |start_code|. |offset|
410 // is the current location in the buffer, and is updated. |bytes_needed| is the
411 // number of bytes that must remain in the buffer when |start_code| is found.
412 // Returns true if start_code found (and enough space in the buffer after it),
413 // false otherwise.
AdvanceToStartCode(const uint8 * buffer,int buffer_size,int * offset,int bytes_needed,int num_bits,uint32 start_code)414 static bool AdvanceToStartCode(const uint8* buffer,
415 int buffer_size,
416 int* offset,
417 int bytes_needed,
418 int num_bits,
419 uint32 start_code) {
420 DCHECK_GE(bytes_needed, 3);
421 DCHECK_LE(num_bits, 24); // Only supports up to 24 bits.
422
423 // Create a mask to isolate |num_bits| bits, once shifted over.
424 uint32 bits_to_shift = 24 - num_bits;
425 uint32 mask = (1 << num_bits) - 1;
426 while (*offset + bytes_needed < buffer_size) {
427 uint32 next = Read24(buffer + *offset);
428 if (((next >> bits_to_shift) & mask) == start_code)
429 return true;
430 ++(*offset);
431 }
432 return false;
433 }
434
435 // Checks for an H.261 container.
CheckH261(const uint8 * buffer,int buffer_size)436 static bool CheckH261(const uint8* buffer, int buffer_size) {
437 // Reference: ITU-T Recommendation H.261 (03/1993)
438 // (http://www.itu.int/rec/T-REC-H.261-199303-I/en)
439 RCHECK(buffer_size > 16);
440
441 int offset = 0;
442 bool seen_start_code = false;
443 while (true) {
444 // Advance to picture_start_code, if there is one.
445 if (!AdvanceToStartCode(buffer, buffer_size, &offset, 4, 20, 0x10)) {
446 // No start code found (or off end of buffer), so success if
447 // there was at least one valid header.
448 return seen_start_code;
449 }
450
451 // Now verify the block. AdvanceToStartCode() made sure that there are
452 // at least 4 bytes remaining in the buffer.
453 BitReader reader(buffer + offset, buffer_size - offset);
454 RCHECK(ReadBits(&reader, 20) == 0x10);
455
456 // Skip the temporal reference and PTYPE.
457 reader.SkipBits(5 + 6);
458
459 // Skip any extra insertion information. Since this is open-ended, if we run
460 // out of bits assume that the buffer is correctly formatted.
461 int extra = ReadBits(&reader, 1);
462 while (extra == 1) {
463 if (!reader.SkipBits(8))
464 return seen_start_code;
465 if (!reader.ReadBits(1, &extra))
466 return seen_start_code;
467 }
468
469 // Next should be a Group of Blocks start code. Again, if we run out of
470 // bits, then assume that the buffer up to here is correct, and the buffer
471 // just happened to end in the middle of a header.
472 int next;
473 if (!reader.ReadBits(16, &next))
474 return seen_start_code;
475 RCHECK(next == 1);
476
477 // Move to the next block.
478 seen_start_code = true;
479 offset += 4;
480 }
481 }
482
483 // Checks for an H.263 container.
CheckH263(const uint8 * buffer,int buffer_size)484 static bool CheckH263(const uint8* buffer, int buffer_size) {
485 // Reference: ITU-T Recommendation H.263 (01/2005)
486 // (http://www.itu.int/rec/T-REC-H.263-200501-I/en)
487 // header is PSC(22b) + TR(8b) + PTYPE(8+b).
488 RCHECK(buffer_size > 16);
489
490 int offset = 0;
491 bool seen_start_code = false;
492 while (true) {
493 // Advance to picture_start_code, if there is one.
494 if (!AdvanceToStartCode(buffer, buffer_size, &offset, 9, 22, 0x20)) {
495 // No start code found (or off end of buffer), so success if
496 // there was at least one valid header.
497 return seen_start_code;
498 }
499
500 // Now verify the block. AdvanceToStartCode() made sure that there are
501 // at least 9 bytes remaining in the buffer.
502 BitReader reader(buffer + offset, 9);
503 RCHECK(ReadBits(&reader, 22) == 0x20);
504
505 // Skip the temporal reference.
506 reader.SkipBits(8);
507
508 // Verify that the first 2 bits of PTYPE are 10b.
509 RCHECK(ReadBits(&reader, 2) == 2);
510
511 // Skip the split screen indicator, document camera indicator, and full
512 // picture freeze release.
513 reader.SkipBits(1 + 1 + 1);
514
515 // Verify Source Format.
516 int format = ReadBits(&reader, 3);
517 RCHECK(format != 0 && format != 6); // Forbidden or reserved.
518
519 if (format == 7) {
520 // Verify full extended PTYPE.
521 int ufep = ReadBits(&reader, 3);
522 if (ufep == 1) {
523 // Verify the optional part of PLUSPTYPE.
524 format = ReadBits(&reader, 3);
525 RCHECK(format != 0 && format != 7); // Reserved.
526 reader.SkipBits(11);
527 // Next 4 bits should be b1000.
528 RCHECK(ReadBits(&reader, 4) == 8); // Not allowed.
529 } else {
530 RCHECK(ufep == 0); // Only 0 and 1 allowed.
531 }
532
533 // Verify picture type code is not a reserved value.
534 int picture_type_code = ReadBits(&reader, 3);
535 RCHECK(picture_type_code != 6 && picture_type_code != 7); // Reserved.
536
537 // Skip picture resampling mode, reduced resolution mode,
538 // and rounding type.
539 reader.SkipBits(1 + 1 + 1);
540
541 // Next 3 bits should be b001.
542 RCHECK(ReadBits(&reader, 3) == 1); // Not allowed.
543 }
544
545 // Move to the next block.
546 seen_start_code = true;
547 offset += 9;
548 }
549 }
550
551 // Checks for an H.264 container.
CheckH264(const uint8 * buffer,int buffer_size)552 static bool CheckH264(const uint8* buffer, int buffer_size) {
553 // Reference: ITU-T Recommendation H.264 (01/2012)
554 // (http://www.itu.int/rec/T-REC-H.264)
555 // Section B.1: Byte stream NAL unit syntax and semantics.
556 RCHECK(buffer_size > 4);
557
558 int offset = 0;
559 int parameter_count = 0;
560 while (true) {
561 // Advance to picture_start_code, if there is one.
562 if (!AdvanceToStartCode(buffer, buffer_size, &offset, 4, 24, 1)) {
563 // No start code found (or off end of buffer), so success if
564 // there was at least one valid header.
565 return parameter_count > 0;
566 }
567
568 // Now verify the block. AdvanceToStartCode() made sure that there are
569 // at least 4 bytes remaining in the buffer.
570 BitReader reader(buffer + offset, 4);
571 RCHECK(ReadBits(&reader, 24) == 1);
572
573 // Verify forbidden_zero_bit.
574 RCHECK(ReadBits(&reader, 1) == 0);
575
576 // Extract nal_ref_idc and nal_unit_type.
577 int nal_ref_idc = ReadBits(&reader, 2);
578 int nal_unit_type = ReadBits(&reader, 5);
579
580 switch (nal_unit_type) {
581 case 5: // Coded slice of an IDR picture.
582 RCHECK(nal_ref_idc != 0);
583 break;
584 case 6: // Supplemental enhancement information (SEI).
585 case 9: // Access unit delimiter.
586 case 10: // End of sequence.
587 case 11: // End of stream.
588 case 12: // Filler data.
589 RCHECK(nal_ref_idc == 0);
590 break;
591 case 7: // Sequence parameter set.
592 case 8: // Picture parameter set.
593 ++parameter_count;
594 break;
595 }
596
597 // Skip the current start_code_prefix and move to the next.
598 offset += 4;
599 }
600 }
601
602 static const char kHlsSignature[] = "#EXTM3U";
603 static const char kHls1[] = "#EXT-X-STREAM-INF:";
604 static const char kHls2[] = "#EXT-X-TARGETDURATION:";
605 static const char kHls3[] = "#EXT-X-MEDIA-SEQUENCE:";
606
607 // Additional checks for a HLS container.
CheckHls(const uint8 * buffer,int buffer_size)608 static bool CheckHls(const uint8* buffer, int buffer_size) {
609 // HLS is simply a play list used for Apple HTTP Live Streaming.
610 // Reference: Apple HTTP Live Streaming Overview
611 // (http://goo.gl/MIwxj)
612
613 if (StartsWith(buffer, buffer_size, kHlsSignature)) {
614 // Need to find "#EXT-X-STREAM-INF:", "#EXT-X-TARGETDURATION:", or
615 // "#EXT-X-MEDIA-SEQUENCE:" somewhere in the buffer. Other playlists (like
616 // WinAmp) only have additional lines with #EXTINF
617 // (http://en.wikipedia.org/wiki/M3U).
618 int offset = strlen(kHlsSignature);
619 while (offset < buffer_size) {
620 if (buffer[offset] == '#') {
621 if (StartsWith(buffer + offset, buffer_size - offset, kHls1) ||
622 StartsWith(buffer + offset, buffer_size - offset, kHls2) ||
623 StartsWith(buffer + offset, buffer_size - offset, kHls3)) {
624 return true;
625 }
626 }
627 ++offset;
628 }
629 }
630 return false;
631 }
632
633 // Checks for a MJPEG stream.
CheckMJpeg(const uint8 * buffer,int buffer_size)634 static bool CheckMJpeg(const uint8* buffer, int buffer_size) {
635 // Reference: ISO/IEC 10918-1 : 1993(E), Annex B
636 // (http://www.w3.org/Graphics/JPEG/itu-t81.pdf)
637 RCHECK(buffer_size >= 16);
638
639 int offset = 0;
640 int last_restart = -1;
641 int num_codes = 0;
642 while (offset + 5 < buffer_size) {
643 // Marker codes are always a two byte code with the first byte xFF.
644 RCHECK(buffer[offset] == 0xff);
645 uint8 code = buffer[offset + 1];
646 RCHECK(code >= 0xc0 || code == 1);
647
648 // Skip sequences of xFF.
649 if (code == 0xff) {
650 ++offset;
651 continue;
652 }
653
654 // Success if the next marker code is EOI (end of image)
655 if (code == 0xd9)
656 return true;
657
658 // Check remaining codes.
659 if (code == 0xd8 || code == 1) {
660 // SOI (start of image) / TEM (private use). No other data with header.
661 offset += 2;
662 } else if (code >= 0xd0 && code <= 0xd7) {
663 // RST (restart) codes must be in sequence. No other data with header.
664 int restart = code & 0x07;
665 if (last_restart >= 0)
666 RCHECK(restart == (last_restart + 1) % 8);
667 last_restart = restart;
668 offset += 2;
669 } else {
670 // All remaining marker codes are followed by a length of the header.
671 int length = Read16(buffer + offset + 2) + 2;
672
673 // Special handling of SOS (start of scan) marker since the entropy
674 // coded data follows the SOS. Any xFF byte in the data block must be
675 // followed by x00 in the data.
676 if (code == 0xda) {
677 int number_components = buffer[offset + 4];
678 RCHECK(length == 8 + 2 * number_components);
679
680 // Advance to the next marker.
681 offset += length;
682 while (offset + 2 < buffer_size) {
683 if (buffer[offset] == 0xff && buffer[offset + 1] != 0)
684 break;
685 ++offset;
686 }
687 } else {
688 // Skip over the marker data for the other marker codes.
689 offset += length;
690 }
691 }
692 ++num_codes;
693 }
694 return (num_codes > 1);
695 }
696
697 enum Mpeg2StartCodes {
698 PROGRAM_END_CODE = 0xb9,
699 PACK_START_CODE = 0xba
700 };
701
702 // Checks for a MPEG2 Program Stream.
CheckMpeg2ProgramStream(const uint8 * buffer,int buffer_size)703 static bool CheckMpeg2ProgramStream(const uint8* buffer, int buffer_size) {
704 // Reference: ISO/IEC 13818-1 : 2000 (E) / ITU-T Rec. H.222.0 (2000 E).
705 RCHECK(buffer_size > 14);
706
707 int offset = 0;
708 while (offset + 14 < buffer_size) {
709 BitReader reader(buffer + offset, 14);
710
711 // Must start with pack_start_code.
712 RCHECK(ReadBits(&reader, 24) == 1);
713 RCHECK(ReadBits(&reader, 8) == PACK_START_CODE);
714
715 // Determine MPEG version (MPEG1 has b0010, while MPEG2 has b01).
716 int mpeg_version = ReadBits(&reader, 2);
717 if (mpeg_version == 0) {
718 // MPEG1, 10 byte header
719 // Validate rest of version code
720 RCHECK(ReadBits(&reader, 2) == 2);
721 } else {
722 RCHECK(mpeg_version == 1);
723 }
724
725 // Skip system_clock_reference_base [32..30].
726 reader.SkipBits(3);
727
728 // Verify marker bit.
729 RCHECK(ReadBits(&reader, 1) == 1);
730
731 // Skip system_clock_reference_base [29..15].
732 reader.SkipBits(15);
733
734 // Verify next marker bit.
735 RCHECK(ReadBits(&reader, 1) == 1);
736
737 // Skip system_clock_reference_base [14..0].
738 reader.SkipBits(15);
739
740 // Verify next marker bit.
741 RCHECK(ReadBits(&reader, 1) == 1);
742
743 if (mpeg_version == 0) {
744 // Verify second marker bit.
745 RCHECK(ReadBits(&reader, 1) == 1);
746
747 // Skip mux_rate.
748 reader.SkipBits(22);
749
750 // Verify next marker bit.
751 RCHECK(ReadBits(&reader, 1) == 1);
752
753 // Update offset to be after this header.
754 offset += 12;
755 } else {
756 // Must be MPEG2.
757 // Skip program_mux_rate.
758 reader.SkipBits(22);
759
760 // Verify pair of marker bits.
761 RCHECK(ReadBits(&reader, 2) == 3);
762
763 // Skip reserved.
764 reader.SkipBits(5);
765
766 // Update offset to be after this header.
767 int pack_stuffing_length = ReadBits(&reader, 3);
768 offset += 14 + pack_stuffing_length;
769 }
770
771 // Check for system headers and PES_packets.
772 while (offset + 6 < buffer_size && Read24(buffer + offset) == 1) {
773 // Next 8 bits determine stream type.
774 int stream_id = buffer[offset + 3];
775
776 // Some stream types are reserved and shouldn't occur.
777 if (mpeg_version == 0)
778 RCHECK(stream_id != 0xbc && stream_id < 0xf0);
779 else
780 RCHECK(stream_id != 0xfc && stream_id != 0xfd && stream_id != 0xfe);
781
782 // Some stream types are used for pack headers.
783 if (stream_id == PACK_START_CODE) // back to outer loop.
784 break;
785 if (stream_id == PROGRAM_END_CODE) // end of stream.
786 return true;
787
788 int pes_length = Read16(buffer + offset + 4);
789 RCHECK(pes_length > 0);
790 offset = offset + 6 + pes_length;
791 }
792 }
793 // Success as we are off the end of the buffer and liked everything
794 // in the buffer.
795 return true;
796 }
797
798 const uint8 kMpeg2SyncWord = 0x47;
799
800 // Checks for a MPEG2 Transport Stream.
CheckMpeg2TransportStream(const uint8 * buffer,int buffer_size)801 static bool CheckMpeg2TransportStream(const uint8* buffer, int buffer_size) {
802 // Spec: ISO/IEC 13818-1 : 2000 (E) / ITU-T Rec. H.222.0 (2000 E).
803 // Normal packet size is 188 bytes. However, some systems add various error
804 // correction data at the end, resulting in packet of length 192/204/208
805 // (https://en.wikipedia.org/wiki/MPEG_transport_stream). Determine the
806 // length with the first packet.
807 RCHECK(buffer_size >= 250); // Want more than 1 packet to check.
808
809 int offset = 0;
810 int packet_length = -1;
811 while (buffer[offset] != kMpeg2SyncWord && offset < 20) {
812 // Skip over any header in the first 20 bytes.
813 ++offset;
814 }
815
816 while (offset + 6 < buffer_size) {
817 BitReader reader(buffer + offset, 6);
818
819 // Must start with sync byte.
820 RCHECK(ReadBits(&reader, 8) == kMpeg2SyncWord);
821
822 // Skip transport_error_indicator, payload_unit_start_indicator, and
823 // transport_priority.
824 reader.SkipBits(1 + 1 + 1);
825
826 // Verify the pid is not a reserved value.
827 int pid = ReadBits(&reader, 13);
828 RCHECK(pid < 3 || pid > 15);
829
830 // Skip transport_scrambling_control.
831 reader.SkipBits(2);
832
833 // Adaptation_field_control can not be 0.
834 int adaptation_field_control = ReadBits(&reader, 2);
835 RCHECK(adaptation_field_control != 0);
836
837 // If there is an adaptation_field, verify it.
838 if (adaptation_field_control >= 2) {
839 // Skip continuity_counter.
840 reader.SkipBits(4);
841
842 // Get adaptation_field_length and verify it.
843 int adaptation_field_length = ReadBits(&reader, 8);
844 if (adaptation_field_control == 2)
845 RCHECK(adaptation_field_length == 183);
846 else
847 RCHECK(adaptation_field_length <= 182);
848 }
849
850 // Attempt to determine the packet length on the first packet.
851 if (packet_length < 0) {
852 if (buffer[offset + 188] == kMpeg2SyncWord)
853 packet_length = 188;
854 else if (buffer[offset + 192] == kMpeg2SyncWord)
855 packet_length = 192;
856 else if (buffer[offset + 204] == kMpeg2SyncWord)
857 packet_length = 204;
858 else
859 packet_length = 208;
860 }
861 offset += packet_length;
862 }
863 return true;
864 }
865
866 enum Mpeg4StartCodes {
867 VISUAL_OBJECT_SEQUENCE_START_CODE = 0xb0,
868 VISUAL_OBJECT_SEQUENCE_END_CODE = 0xb1,
869 VISUAL_OBJECT_START_CODE = 0xb5,
870 VOP_START_CODE = 0xb6
871 };
872
873 // Checks for a raw MPEG4 bitstream container.
CheckMpeg4BitStream(const uint8 * buffer,int buffer_size)874 static bool CheckMpeg4BitStream(const uint8* buffer, int buffer_size) {
875 // Defined in ISO/IEC 14496-2:2001.
876 // However, no length ... simply scan for start code values.
877 // Note tags are very similar to H.264.
878 RCHECK(buffer_size > 4);
879
880 int offset = 0;
881 int sequence_start_count = 0;
882 int sequence_end_count = 0;
883 int visual_object_count = 0;
884 int vop_count = 0;
885 while (true) {
886 // Advance to start_code, if there is one.
887 if (!AdvanceToStartCode(buffer, buffer_size, &offset, 6, 24, 1)) {
888 // Not a complete sequence in memory, so return true if we've seen a
889 // visual_object_sequence_start_code and a visual_object_start_code.
890 return (sequence_start_count > 0 && visual_object_count > 0);
891 }
892
893 // Now verify the block. AdvanceToStartCode() made sure that there are
894 // at least 6 bytes remaining in the buffer.
895 BitReader reader(buffer + offset, 6);
896 RCHECK(ReadBits(&reader, 24) == 1);
897
898 int start_code = ReadBits(&reader, 8);
899 RCHECK(start_code < 0x30 || start_code > 0xaf); // 30..AF and
900 RCHECK(start_code < 0xb7 || start_code > 0xb9); // B7..B9 reserved
901
902 switch (start_code) {
903 case VISUAL_OBJECT_SEQUENCE_START_CODE: {
904 ++sequence_start_count;
905 // Verify profile in not one of many reserved values.
906 int profile = ReadBits(&reader, 8);
907 RCHECK(profile > 0);
908 RCHECK(profile < 0x04 || profile > 0x10);
909 RCHECK(profile < 0x13 || profile > 0x20);
910 RCHECK(profile < 0x23 || profile > 0x31);
911 RCHECK(profile < 0x35 || profile > 0x41);
912 RCHECK(profile < 0x43 || profile > 0x60);
913 RCHECK(profile < 0x65 || profile > 0x70);
914 RCHECK(profile < 0x73 || profile > 0x80);
915 RCHECK(profile < 0x83 || profile > 0x90);
916 RCHECK(profile < 0x95 || profile > 0xa0);
917 RCHECK(profile < 0xa4 || profile > 0xb0);
918 RCHECK(profile < 0xb5 || profile > 0xc0);
919 RCHECK(profile < 0xc3 || profile > 0xd0);
920 RCHECK(profile < 0xe4);
921 break;
922 }
923
924 case VISUAL_OBJECT_SEQUENCE_END_CODE:
925 RCHECK(++sequence_end_count == sequence_start_count);
926 break;
927
928 case VISUAL_OBJECT_START_CODE: {
929 ++visual_object_count;
930 if (ReadBits(&reader, 1) == 1) {
931 int visual_object_verid = ReadBits(&reader, 4);
932 RCHECK(visual_object_verid > 0 && visual_object_verid < 3);
933 RCHECK(ReadBits(&reader, 3) != 0);
934 }
935 int visual_object_type = ReadBits(&reader, 4);
936 RCHECK(visual_object_type > 0 && visual_object_type < 6);
937 break;
938 }
939
940 case VOP_START_CODE:
941 RCHECK(++vop_count <= visual_object_count);
942 break;
943 }
944 // Skip this block.
945 offset += 6;
946 }
947 }
948
949 // Additional checks for a MOV/QuickTime/MPEG4 container.
CheckMov(const uint8 * buffer,int buffer_size)950 static bool CheckMov(const uint8* buffer, int buffer_size) {
951 // Reference: ISO/IEC 14496-12:2005(E).
952 // (http://standards.iso.org/ittf/PubliclyAvailableStandards/c061988_ISO_IEC_14496-12_2012.zip)
953 RCHECK(buffer_size > 8);
954
955 int offset = 0;
956 while (offset + 8 < buffer_size) {
957 uint32 atomsize = Read32(buffer + offset);
958 uint32 atomtype = Read32(buffer + offset + 4);
959 // Only need to check for ones that are valid at the top level.
960 switch (atomtype) {
961 case TAG('f','t','y','p'):
962 case TAG('p','d','i','n'):
963 case TAG('m','o','o','v'):
964 case TAG('m','o','o','f'):
965 case TAG('m','f','r','a'):
966 case TAG('m','d','a','t'):
967 case TAG('f','r','e','e'):
968 case TAG('s','k','i','p'):
969 case TAG('m','e','t','a'):
970 case TAG('m','e','c','o'):
971 case TAG('s','t','y','p'):
972 case TAG('s','i','d','x'):
973 case TAG('s','s','i','x'):
974 case TAG('p','r','f','t'):
975 case TAG('b','l','o','c'):
976 break;
977 default:
978 return false;
979 }
980 if (atomsize == 1) {
981 // Indicates that the length is the next 64bits.
982 if (offset + 16 > buffer_size)
983 break;
984 if (Read32(buffer + offset + 8) != 0)
985 break; // Offset is way past buffer size.
986 atomsize = Read32(buffer + offset + 12);
987 }
988 if (atomsize == 0 || atomsize > static_cast<size_t>(buffer_size))
989 break; // Indicates the last atom or length too big.
990 offset += atomsize;
991 }
992 return true;
993 }
994
995 enum MPEGVersion {
996 VERSION_25 = 0,
997 VERSION_RESERVED,
998 VERSION_2,
999 VERSION_1
1000 };
1001 enum MPEGLayer {
1002 L_RESERVED = 0,
1003 LAYER_3,
1004 LAYER_2,
1005 LAYER_1
1006 };
1007
1008 static int kSampleRateTable[4][4] = { { 11025, 12000, 8000, 0 }, // v2.5
1009 { 0, 0, 0, 0 }, // not used
1010 { 22050, 24000, 16000, 0 }, // v2
1011 { 44100, 48000, 32000, 0 } // v1
1012 };
1013
1014 static int kBitRateTableV1L1[16] = { 0, 32, 64, 96, 128, 160, 192, 224, 256,
1015 288, 320, 352, 384, 416, 448, 0 };
1016 static int kBitRateTableV1L2[16] = { 0, 32, 48, 56, 64, 80, 96, 112, 128, 160,
1017 192, 224, 256, 320, 384, 0 };
1018 static int kBitRateTableV1L3[16] = { 0, 32, 40, 48, 56, 64, 80, 96, 112, 128,
1019 160, 192, 224, 256, 320, 0 };
1020 static int kBitRateTableV2L1[16] = { 0, 32, 48, 56, 64, 80, 96, 112, 128, 144,
1021 160, 176, 192, 224, 256, 0 };
1022 static int kBitRateTableV2L23[16] = { 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96,
1023 112, 128, 144, 160, 0 };
1024
ValidMpegAudioFrameHeader(const uint8 * header,int header_size,int * framesize)1025 static bool ValidMpegAudioFrameHeader(const uint8* header,
1026 int header_size,
1027 int* framesize) {
1028 // Reference: http://mpgedit.org/mpgedit/mpeg_format/mpeghdr.htm.
1029 DCHECK_GE(header_size, 4);
1030 *framesize = 0;
1031 BitReader reader(header, 4); // Header can only be 4 bytes long.
1032
1033 // Verify frame sync (11 bits) are all set.
1034 RCHECK(ReadBits(&reader, 11) == 0x7ff);
1035
1036 // Verify MPEG audio version id.
1037 int version = ReadBits(&reader, 2);
1038 RCHECK(version != 1); // Reserved.
1039
1040 // Verify layer.
1041 int layer = ReadBits(&reader, 2);
1042 RCHECK(layer != 0);
1043
1044 // Skip protection bit.
1045 reader.SkipBits(1);
1046
1047 // Verify bitrate index.
1048 int bitrate_index = ReadBits(&reader, 4);
1049 RCHECK(bitrate_index != 0xf);
1050
1051 // Verify sampling rate frequency index.
1052 int sampling_index = ReadBits(&reader, 2);
1053 RCHECK(sampling_index != 3);
1054
1055 // Get padding bit.
1056 int padding = ReadBits(&reader, 1);
1057
1058 // Frame size:
1059 // For Layer I files = (12 * BitRate / SampleRate + Padding) * 4
1060 // For others = 144 * BitRate / SampleRate + Padding
1061 // Unfortunately, BitRate and SampleRate are coded.
1062 int sampling_rate = kSampleRateTable[version][sampling_index];
1063 int bitrate;
1064 if (version == VERSION_1) {
1065 if (layer == LAYER_1)
1066 bitrate = kBitRateTableV1L1[bitrate_index];
1067 else if (layer == LAYER_2)
1068 bitrate = kBitRateTableV1L2[bitrate_index];
1069 else
1070 bitrate = kBitRateTableV1L3[bitrate_index];
1071 } else {
1072 if (layer == LAYER_1)
1073 bitrate = kBitRateTableV2L1[bitrate_index];
1074 else
1075 bitrate = kBitRateTableV2L23[bitrate_index];
1076 }
1077 if (layer == LAYER_1)
1078 *framesize = ((12000 * bitrate) / sampling_rate + padding) * 4;
1079 else
1080 *framesize = (144000 * bitrate) / sampling_rate + padding;
1081 return (bitrate > 0 && sampling_rate > 0);
1082 }
1083
1084 // Extract a size encoded the MP3 way.
GetMp3HeaderSize(const uint8 * buffer,int buffer_size)1085 static int GetMp3HeaderSize(const uint8* buffer, int buffer_size) {
1086 DCHECK_GE(buffer_size, 9);
1087 int size = ((buffer[6] & 0x7f) << 21) + ((buffer[7] & 0x7f) << 14) +
1088 ((buffer[8] & 0x7f) << 7) + (buffer[9] & 0x7f) + 10;
1089 if (buffer[5] & 0x10) // Footer added?
1090 size += 10;
1091 return size;
1092 }
1093
1094 // Additional checks for a MP3 container.
CheckMp3(const uint8 * buffer,int buffer_size,bool seenHeader)1095 static bool CheckMp3(const uint8* buffer, int buffer_size, bool seenHeader) {
1096 RCHECK(buffer_size >= 10); // Must be enough to read the initial header.
1097
1098 int framesize;
1099 int numSeen = 0;
1100 int offset = 0;
1101 if (seenHeader) {
1102 offset = GetMp3HeaderSize(buffer, buffer_size);
1103 } else {
1104 // Skip over leading 0's.
1105 while (offset < buffer_size && buffer[offset] == 0)
1106 ++offset;
1107 }
1108
1109 while (offset + 3 < buffer_size) {
1110 RCHECK(ValidMpegAudioFrameHeader(
1111 buffer + offset, buffer_size - offset, &framesize));
1112
1113 // Have we seen enough valid headers?
1114 if (++numSeen > 10)
1115 return true;
1116 offset += framesize;
1117 }
1118 // Off the end of the buffer, return success if a few valid headers seen.
1119 return numSeen > 2;
1120 }
1121
1122 // Check that the next characters in |buffer| represent a number. The format
1123 // accepted is optional whitespace followed by 1 or more digits. |max_digits|
1124 // specifies the maximum number of digits to process. Returns true if a valid
1125 // number is found, false otherwise.
VerifyNumber(const uint8 * buffer,int buffer_size,int * offset,int max_digits)1126 static bool VerifyNumber(const uint8* buffer,
1127 int buffer_size,
1128 int* offset,
1129 int max_digits) {
1130 RCHECK(*offset < buffer_size);
1131
1132 // Skip over any leading space.
1133 while (isspace(buffer[*offset])) {
1134 ++(*offset);
1135 RCHECK(*offset < buffer_size);
1136 }
1137
1138 // Need to process up to max_digits digits.
1139 int numSeen = 0;
1140 while (--max_digits >= 0 && isdigit(buffer[*offset])) {
1141 ++numSeen;
1142 ++(*offset);
1143 if (*offset >= buffer_size)
1144 return true; // Out of space but seen a digit.
1145 }
1146
1147 // Success if at least one digit seen.
1148 return (numSeen > 0);
1149 }
1150
1151 // Check that the next character in |buffer| is one of |c1| or |c2|. |c2| is
1152 // optional. Returns true if there is a match, false if no match or out of
1153 // space.
VerifyCharacters(const uint8 * buffer,int buffer_size,int * offset,char c1,char c2)1154 static inline bool VerifyCharacters(const uint8* buffer,
1155 int buffer_size,
1156 int* offset,
1157 char c1,
1158 char c2) {
1159 RCHECK(*offset < buffer_size);
1160 char c = static_cast<char>(buffer[(*offset)++]);
1161 return (c == c1 || (c == c2 && c2 != 0));
1162 }
1163
1164 // Checks for a SRT container.
CheckSrt(const uint8 * buffer,int buffer_size)1165 static bool CheckSrt(const uint8* buffer, int buffer_size) {
1166 // Reference: http://en.wikipedia.org/wiki/SubRip
1167 RCHECK(buffer_size > 20);
1168
1169 // First line should just be the subtitle sequence number.
1170 int offset = StartsWith(buffer, buffer_size, UTF8_BYTE_ORDER_MARK) ? 3 : 0;
1171 RCHECK(VerifyNumber(buffer, buffer_size, &offset, 100));
1172 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, '\n', '\r'));
1173
1174 // Skip any additional \n\r.
1175 while (VerifyCharacters(buffer, buffer_size, &offset, '\n', '\r')) {}
1176 --offset; // Since VerifyCharacters() gobbled up the next non-CR/LF.
1177
1178 // Second line should look like the following:
1179 // 00:00:10,500 --> 00:00:13,000
1180 // Units separator can be , or .
1181 RCHECK(VerifyNumber(buffer, buffer_size, &offset, 100));
1182 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ':', 0));
1183 RCHECK(VerifyNumber(buffer, buffer_size, &offset, 2));
1184 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ':', 0));
1185 RCHECK(VerifyNumber(buffer, buffer_size, &offset, 2));
1186 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ',', '.'));
1187 RCHECK(VerifyNumber(buffer, buffer_size, &offset, 3));
1188 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ' ', 0));
1189 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, '-', 0));
1190 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, '-', 0));
1191 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, '>', 0));
1192 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ' ', 0));
1193 RCHECK(VerifyNumber(buffer, buffer_size, &offset, 100));
1194 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ':', 0));
1195 RCHECK(VerifyNumber(buffer, buffer_size, &offset, 2));
1196 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ':', 0));
1197 RCHECK(VerifyNumber(buffer, buffer_size, &offset, 2));
1198 RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ',', '.'));
1199 RCHECK(VerifyNumber(buffer, buffer_size, &offset, 3));
1200 return true;
1201 }
1202
1203 // Read a Matroska Element Id.
GetElementId(BitReader * reader)1204 static int GetElementId(BitReader* reader) {
1205 // Element ID is coded with the leading zero bits (max 3) determining size.
1206 // If it is an invalid encoding or the end of the buffer is reached,
1207 // return -1 as a tag that won't be expected.
1208 if (reader->bits_available() >= 8) {
1209 int num_bits_to_read = 0;
1210 static int prefix[] = { 0x80, 0x4000, 0x200000, 0x10000000 };
1211 for (int i = 0; i < 4; ++i) {
1212 num_bits_to_read += 7;
1213 if (ReadBits(reader, 1) == 1) {
1214 if (reader->bits_available() < num_bits_to_read)
1215 break;
1216 // prefix[] adds back the bits read individually.
1217 return ReadBits(reader, num_bits_to_read) | prefix[i];
1218 }
1219 }
1220 }
1221 // Invalid encoding, return something not expected.
1222 return -1;
1223 }
1224
1225 // Read a Matroska Unsigned Integer (VINT).
GetVint(BitReader * reader)1226 static uint64 GetVint(BitReader* reader) {
1227 // Values are coded with the leading zero bits (max 7) determining size.
1228 // If it is an invalid coding or the end of the buffer is reached,
1229 // return something that will go off the end of the buffer.
1230 if (reader->bits_available() >= 8) {
1231 int num_bits_to_read = 0;
1232 for (int i = 0; i < 8; ++i) {
1233 num_bits_to_read += 7;
1234 if (ReadBits(reader, 1) == 1) {
1235 if (reader->bits_available() < num_bits_to_read)
1236 break;
1237 return ReadBits(reader, num_bits_to_read);
1238 }
1239 }
1240 }
1241 // Incorrect format (more than 7 leading 0's) or off the end of the buffer.
1242 // Since the return value is used as a byte size, return a value that will
1243 // cause a failure when used.
1244 return (reader->bits_available() / 8) + 2;
1245 }
1246
1247 // Additional checks for a WEBM container.
CheckWebm(const uint8 * buffer,int buffer_size)1248 static bool CheckWebm(const uint8* buffer, int buffer_size) {
1249 // Reference: http://www.matroska.org/technical/specs/index.html
1250 RCHECK(buffer_size > 12);
1251
1252 BitReader reader(buffer, buffer_size);
1253
1254 // Verify starting Element Id.
1255 RCHECK(GetElementId(&reader) == 0x1a45dfa3);
1256
1257 // Get the header size, and ensure there are enough bits to check.
1258 int header_size = GetVint(&reader);
1259 RCHECK(reader.bits_available() / 8 >= header_size);
1260
1261 // Loop through the header.
1262 while (reader.bits_available() > 0) {
1263 int tag = GetElementId(&reader);
1264 int tagsize = GetVint(&reader);
1265 switch (tag) {
1266 case 0x4286: // EBMLVersion
1267 case 0x42f7: // EBMLReadVersion
1268 case 0x42f2: // EBMLMaxIdLength
1269 case 0x42f3: // EBMLMaxSizeLength
1270 case 0x4287: // DocTypeVersion
1271 case 0x4285: // DocTypeReadVersion
1272 case 0xec: // void
1273 case 0xbf: // CRC32
1274 RCHECK(reader.SkipBits(tagsize * 8));
1275 break;
1276
1277 case 0x4282: // EBMLDocType
1278 // Need to see "webm" or "matroska" next.
1279 switch (ReadBits(&reader, 32)) {
1280 case TAG('w', 'e', 'b', 'm') :
1281 return true;
1282 case TAG('m', 'a', 't', 'r') :
1283 return (ReadBits(&reader, 32) == TAG('o', 's', 'k', 'a'));
1284 }
1285 return false;
1286
1287 default: // Unrecognized tag
1288 return false;
1289 }
1290 }
1291 return false;
1292 }
1293
1294 enum VC1StartCodes {
1295 VC1_FRAME_START_CODE = 0x0d,
1296 VC1_ENTRY_POINT_START_CODE = 0x0e,
1297 VC1_SEQUENCE_START_CODE = 0x0f
1298 };
1299
1300 // Checks for a VC1 bitstream container.
CheckVC1(const uint8 * buffer,int buffer_size)1301 static bool CheckVC1(const uint8* buffer, int buffer_size) {
1302 // Reference: SMPTE 421M
1303 // (http://standards.smpte.org/content/978-1-61482-555-5/st-421-2006/SEC1.body.pdf)
1304 // However, no length ... simply scan for start code values.
1305 // Expect to see SEQ | [ [ ENTRY ] PIC* ]*
1306 // Note tags are very similar to H.264.
1307
1308 RCHECK(buffer_size >= 24);
1309
1310 // First check for Bitstream Metadata Serialization (Annex L)
1311 if (buffer[0] == 0xc5 &&
1312 Read32(buffer + 4) == 0x04 &&
1313 Read32(buffer + 20) == 0x0c) {
1314 // Verify settings in STRUCT_C and STRUCT_A
1315 BitReader reader(buffer + 8, 12);
1316
1317 int profile = ReadBits(&reader, 4);
1318 if (profile == 0 || profile == 4) { // simple or main
1319 // Skip FRMRTQ_POSTPROC, BITRTQ_POSTPROC, and LOOPFILTER.
1320 reader.SkipBits(3 + 5 + 1);
1321
1322 // Next bit must be 0.
1323 RCHECK(ReadBits(&reader, 1) == 0);
1324
1325 // Skip MULTIRES.
1326 reader.SkipBits(1);
1327
1328 // Next bit must be 1.
1329 RCHECK(ReadBits(&reader, 1) == 1);
1330
1331 // Skip FASTUVMC, EXTENDED_MV, DQUANT, and VSTRANSFORM.
1332 reader.SkipBits(1 + 1 + 2 + 1);
1333
1334 // Next bit must be 0.
1335 RCHECK(ReadBits(&reader, 1) == 0);
1336
1337 // Skip OVERLAP, SYNCMARKER, RANGERED, MAXBFRAMES, QUANTIZER, and
1338 // FINTERPFLAG.
1339 reader.SkipBits(1 + 1 + 1 + 3 + 2 + 1);
1340
1341 // Next bit must be 1.
1342 RCHECK(ReadBits(&reader, 1) == 1);
1343
1344 } else {
1345 RCHECK(profile == 12); // Other profile values not allowed.
1346 RCHECK(ReadBits(&reader, 28) == 0);
1347 }
1348
1349 // Now check HORIZ_SIZE and VERT_SIZE, which must be 8192 or less.
1350 RCHECK(ReadBits(&reader, 32) <= 8192);
1351 RCHECK(ReadBits(&reader, 32) <= 8192);
1352 return true;
1353 }
1354
1355 // Buffer isn't Bitstream Metadata, so scan for start codes.
1356 int offset = 0;
1357 int sequence_start_code = 0;
1358 int frame_start_code = 0;
1359 while (true) {
1360 // Advance to start_code, if there is one.
1361 if (!AdvanceToStartCode(buffer, buffer_size, &offset, 5, 24, 1)) {
1362 // Not a complete sequence in memory, so return true if we've seen a
1363 // sequence start and a frame start (not checking entry points since
1364 // they only occur in advanced profiles).
1365 return (sequence_start_code > 0 && frame_start_code > 0);
1366 }
1367
1368 // Now verify the block. AdvanceToStartCode() made sure that there are
1369 // at least 5 bytes remaining in the buffer.
1370 BitReader reader(buffer + offset, 5);
1371 RCHECK(ReadBits(&reader, 24) == 1);
1372
1373 // Keep track of the number of certain types received.
1374 switch (ReadBits(&reader, 8)) {
1375 case VC1_SEQUENCE_START_CODE: {
1376 ++sequence_start_code;
1377 switch (ReadBits(&reader, 2)) {
1378 case 0: // simple
1379 case 1: // main
1380 RCHECK(ReadBits(&reader, 2) == 0);
1381 break;
1382 case 2: // complex
1383 return false;
1384 case 3: // advanced
1385 RCHECK(ReadBits(&reader, 3) <= 4); // Verify level = 0..4
1386 RCHECK(ReadBits(&reader, 2) == 1); // Verify colordiff_format = 1
1387 break;
1388 }
1389 break;
1390 }
1391
1392 case VC1_ENTRY_POINT_START_CODE:
1393 // No fields in entry data to check. However, it must occur after
1394 // sequence header.
1395 RCHECK(sequence_start_code > 0);
1396 break;
1397
1398 case VC1_FRAME_START_CODE:
1399 ++frame_start_code;
1400 break;
1401 }
1402 offset += 5;
1403 }
1404 }
1405
1406 // For some formats the signature is a bunch of characters. They are defined
1407 // below. Note that the first 4 characters of the string may be used as a TAG
1408 // in LookupContainerByFirst4. For signatures that contain embedded \0, use
1409 // uint8[].
1410 static const char kAmrSignature[] = "#!AMR";
1411 static const uint8 kAsfSignature[] = { 0x30, 0x26, 0xb2, 0x75, 0x8e, 0x66, 0xcf,
1412 0x11, 0xa6, 0xd9, 0x00, 0xaa, 0x00, 0x62,
1413 0xce, 0x6c };
1414 static const char kAssSignature[] = "[Script Info]";
1415 static const char kAssBomSignature[] = UTF8_BYTE_ORDER_MARK "[Script Info]";
1416 static const uint8 kWtvSignature[] = { 0xb7, 0xd8, 0x00, 0x20, 0x37, 0x49, 0xda,
1417 0x11, 0xa6, 0x4e, 0x00, 0x07, 0xe9, 0x5e,
1418 0xad, 0x8d };
1419
1420 // Attempt to determine the container type from the buffer provided. This is
1421 // a simple pass, that uses the first 4 bytes of the buffer as an index to get
1422 // a rough idea of the container format.
LookupContainerByFirst4(const uint8 * buffer,int buffer_size)1423 static MediaContainerName LookupContainerByFirst4(const uint8* buffer,
1424 int buffer_size) {
1425 // Minimum size that the code expects to exist without checking size.
1426 if (buffer_size < 12)
1427 return CONTAINER_UNKNOWN;
1428
1429 uint32 first4 = Read32(buffer);
1430 switch (first4) {
1431 case 0x1a45dfa3:
1432 if (CheckWebm(buffer, buffer_size))
1433 return CONTAINER_WEBM;
1434 break;
1435
1436 case 0x3026b275:
1437 if (StartsWith(buffer,
1438 buffer_size,
1439 kAsfSignature,
1440 sizeof(kAsfSignature))) {
1441 return CONTAINER_ASF;
1442 }
1443 break;
1444
1445 case TAG('#','!','A','M'):
1446 if (StartsWith(buffer, buffer_size, kAmrSignature))
1447 return CONTAINER_AMR;
1448 break;
1449
1450 case TAG('#','E','X','T'):
1451 if (CheckHls(buffer, buffer_size))
1452 return CONTAINER_HLS;
1453 break;
1454
1455 case TAG('.','R','M','F'):
1456 if (buffer[4] == 0 && buffer[5] == 0)
1457 return CONTAINER_RM;
1458 break;
1459
1460 case TAG('.','r','a','\xfd'):
1461 return CONTAINER_RM;
1462
1463 case TAG('B','I','K','b'):
1464 case TAG('B','I','K','d'):
1465 case TAG('B','I','K','f'):
1466 case TAG('B','I','K','g'):
1467 case TAG('B','I','K','h'):
1468 case TAG('B','I','K','i'):
1469 if (CheckBink(buffer, buffer_size))
1470 return CONTAINER_BINK;
1471 break;
1472
1473 case TAG('c','a','f','f'):
1474 if (CheckCaf(buffer, buffer_size))
1475 return CONTAINER_CAF;
1476 break;
1477
1478 case TAG('D','E','X','A'):
1479 if (buffer_size > 15 &&
1480 Read16(buffer + 11) <= 2048 &&
1481 Read16(buffer + 13) <= 2048) {
1482 return CONTAINER_DXA;
1483 }
1484 break;
1485
1486 case TAG('D','T','S','H'):
1487 if (Read32(buffer + 4) == TAG('D','H','D','R'))
1488 return CONTAINER_DTSHD;
1489 break;
1490
1491 case 0x64a30100:
1492 case 0x64a30200:
1493 case 0x64a30300:
1494 case 0x64a30400:
1495 case 0x0001a364:
1496 case 0x0002a364:
1497 case 0x0003a364:
1498 if (Read32(buffer + 4) != 0 && Read32(buffer + 8) != 0)
1499 return CONTAINER_IRCAM;
1500 break;
1501
1502 case TAG('f','L','a','C'):
1503 return CONTAINER_FLAC;
1504
1505 case TAG('F','L','V',0):
1506 case TAG('F','L','V',1):
1507 case TAG('F','L','V',2):
1508 case TAG('F','L','V',3):
1509 case TAG('F','L','V',4):
1510 if (buffer[5] == 0 && Read32(buffer + 5) > 8)
1511 return CONTAINER_FLV;
1512 break;
1513
1514 case TAG('F','O','R','M'):
1515 switch (Read32(buffer + 8)) {
1516 case TAG('A','I','F','F'):
1517 case TAG('A','I','F','C'):
1518 return CONTAINER_AIFF;
1519 }
1520 break;
1521
1522 case TAG('M','A','C',' '):
1523 return CONTAINER_APE;
1524
1525 case TAG('O','N','2',' '):
1526 if (Read32(buffer + 8) == TAG('O','N','2','f'))
1527 return CONTAINER_AVI;
1528 break;
1529
1530 case TAG('O','g','g','S'):
1531 if (buffer[5] <= 7)
1532 return CONTAINER_OGG;
1533 break;
1534
1535 case TAG('R','F','6','4'):
1536 if (buffer_size > 16 && Read32(buffer + 12) == TAG('d','s','6','4'))
1537 return CONTAINER_WAV;
1538 break;
1539
1540 case TAG('R','I','F','F'):
1541 switch (Read32(buffer + 8)) {
1542 case TAG('A','V','I',' '):
1543 case TAG('A','V','I','X'):
1544 case TAG('A','V','I','\x19'):
1545 case TAG('A','M','V',' '):
1546 return CONTAINER_AVI;
1547 case TAG('W','A','V','E'):
1548 return CONTAINER_WAV;
1549 }
1550 break;
1551
1552 case TAG('[','S','c','r'):
1553 if (StartsWith(buffer, buffer_size, kAssSignature))
1554 return CONTAINER_ASS;
1555 break;
1556
1557 case TAG('\xef','\xbb','\xbf','['):
1558 if (StartsWith(buffer, buffer_size, kAssBomSignature))
1559 return CONTAINER_ASS;
1560 break;
1561
1562 case 0x7ffe8001:
1563 case 0xfe7f0180:
1564 case 0x1fffe800:
1565 case 0xff1f00e8:
1566 if (CheckDts(buffer, buffer_size))
1567 return CONTAINER_DTS;
1568 break;
1569
1570 case 0xb7d80020:
1571 if (StartsWith(buffer,
1572 buffer_size,
1573 kWtvSignature,
1574 sizeof(kWtvSignature))) {
1575 return CONTAINER_WTV;
1576 }
1577 break;
1578 }
1579
1580 // Now try a few different ones that look at something other
1581 // than the first 4 bytes.
1582 uint32 first3 = first4 & 0xffffff00;
1583 switch (first3) {
1584 case TAG('C','W','S',0):
1585 case TAG('F','W','S',0):
1586 return CONTAINER_SWF;
1587
1588 case TAG('I','D','3',0):
1589 if (CheckMp3(buffer, buffer_size, true))
1590 return CONTAINER_MP3;
1591 break;
1592 }
1593
1594 // Maybe the first 2 characters are something we can use.
1595 uint32 first2 = Read16(buffer);
1596 switch (first2) {
1597 case kAc3SyncWord:
1598 if (CheckAc3(buffer, buffer_size))
1599 return CONTAINER_AC3;
1600 if (CheckEac3(buffer, buffer_size))
1601 return CONTAINER_EAC3;
1602 break;
1603
1604 case 0xfff0:
1605 case 0xfff1:
1606 case 0xfff8:
1607 case 0xfff9:
1608 if (CheckAac(buffer, buffer_size))
1609 return CONTAINER_AAC;
1610 break;
1611 }
1612
1613 // Check if the file is in MP3 format without the header.
1614 if (CheckMp3(buffer, buffer_size, false))
1615 return CONTAINER_MP3;
1616
1617 return CONTAINER_UNKNOWN;
1618 }
1619
1620 // Attempt to determine the container name from the buffer provided.
DetermineContainer(const uint8 * buffer,int buffer_size)1621 MediaContainerName DetermineContainer(const uint8* buffer, int buffer_size) {
1622 DCHECK(buffer);
1623
1624 // Since MOV/QuickTime/MPEG4 streams are common, check for them first.
1625 if (CheckMov(buffer, buffer_size))
1626 return CONTAINER_MOV;
1627
1628 // Next attempt the simple checks, that typically look at just the
1629 // first few bytes of the file.
1630 MediaContainerName result = LookupContainerByFirst4(buffer, buffer_size);
1631 if (result != CONTAINER_UNKNOWN)
1632 return result;
1633
1634 // Additional checks that may scan a portion of the buffer.
1635 if (CheckMpeg2ProgramStream(buffer, buffer_size))
1636 return CONTAINER_MPEG2PS;
1637 if (CheckMpeg2TransportStream(buffer, buffer_size))
1638 return CONTAINER_MPEG2TS;
1639 if (CheckMJpeg(buffer, buffer_size))
1640 return CONTAINER_MJPEG;
1641 if (CheckDV(buffer, buffer_size))
1642 return CONTAINER_DV;
1643 if (CheckH261(buffer, buffer_size))
1644 return CONTAINER_H261;
1645 if (CheckH263(buffer, buffer_size))
1646 return CONTAINER_H263;
1647 if (CheckH264(buffer, buffer_size))
1648 return CONTAINER_H264;
1649 if (CheckMpeg4BitStream(buffer, buffer_size))
1650 return CONTAINER_MPEG4BS;
1651 if (CheckVC1(buffer, buffer_size))
1652 return CONTAINER_VC1;
1653 if (CheckSrt(buffer, buffer_size))
1654 return CONTAINER_SRT;
1655 if (CheckGsm(buffer, buffer_size))
1656 return CONTAINER_GSM;
1657
1658 // AC3/EAC3 might not start at the beginning of the stream,
1659 // so scan for a start code.
1660 int offset = 1; // No need to start at byte 0 due to First4 check.
1661 if (AdvanceToStartCode(buffer, buffer_size, &offset, 4, 16, kAc3SyncWord)) {
1662 if (CheckAc3(buffer + offset, buffer_size - offset))
1663 return CONTAINER_AC3;
1664 if (CheckEac3(buffer + offset, buffer_size - offset))
1665 return CONTAINER_EAC3;
1666 }
1667
1668 return CONTAINER_UNKNOWN;
1669 }
1670
1671 } // namespace container_names
1672
1673 } // namespace media
1674