• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
6 #define BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
7 
8 #include "base/base_export.h"
9 #include "base/basictypes.h"
10 
11 #if defined(OS_WIN)
12 #include "base/win/scoped_handle.h"
13 #endif
14 
15 #if defined(OS_POSIX)
16 #include <list>
17 #include <utility>
18 #include "base/memory/ref_counted.h"
19 #include "base/synchronization/lock.h"
20 #endif
21 
22 namespace base {
23 
24 // This replaces INFINITE from Win32
25 static const int kNoTimeout = -1;
26 
27 class TimeDelta;
28 
29 // A WaitableEvent can be a useful thread synchronization tool when you want to
30 // allow one thread to wait for another thread to finish some work. For
31 // non-Windows systems, this can only be used from within a single address
32 // space.
33 //
34 // Use a WaitableEvent when you would otherwise use a Lock+ConditionVariable to
35 // protect a simple boolean value.  However, if you find yourself using a
36 // WaitableEvent in conjunction with a Lock to wait for a more complex state
37 // change (e.g., for an item to be added to a queue), then you should probably
38 // be using a ConditionVariable instead of a WaitableEvent.
39 //
40 // NOTE: On Windows, this class provides a subset of the functionality afforded
41 // by a Windows event object.  This is intentional.  If you are writing Windows
42 // specific code and you need other features of a Windows event, then you might
43 // be better off just using an Windows event directly.
44 class BASE_EXPORT WaitableEvent {
45  public:
46   // If manual_reset is true, then to set the event state to non-signaled, a
47   // consumer must call the Reset method.  If this parameter is false, then the
48   // system automatically resets the event state to non-signaled after a single
49   // waiting thread has been released.
50   WaitableEvent(bool manual_reset, bool initially_signaled);
51 
52 #if defined(OS_WIN)
53   // Create a WaitableEvent from an Event HANDLE which has already been
54   // created. This objects takes ownership of the HANDLE and will close it when
55   // deleted.
56   // TODO(rvargas): Pass ScopedHandle instead (and on Release).
57   explicit WaitableEvent(HANDLE event_handle);
58 
59   // Releases ownership of the handle from this object.
60   HANDLE Release();
61 #endif
62 
63   ~WaitableEvent();
64 
65   // Put the event in the un-signaled state.
66   void Reset();
67 
68   // Put the event in the signaled state.  Causing any thread blocked on Wait
69   // to be woken up.
70   void Signal();
71 
72   // Returns true if the event is in the signaled state, else false.  If this
73   // is not a manual reset event, then this test will cause a reset.
74   bool IsSignaled();
75 
76   // Wait indefinitely for the event to be signaled. Wait's return "happens
77   // after" |Signal| has completed. This means that it's safe for a
78   // WaitableEvent to synchronise its own destruction, like this:
79   //
80   //   WaitableEvent *e = new WaitableEvent;
81   //   SendToOtherThread(e);
82   //   e->Wait();
83   //   delete e;
84   void Wait();
85 
86   // Wait up until max_time has passed for the event to be signaled.  Returns
87   // true if the event was signaled.  If this method returns false, then it
88   // does not necessarily mean that max_time was exceeded.
89   //
90   // TimedWait can synchronise its own destruction like |Wait|.
91   bool TimedWait(const TimeDelta& max_time);
92 
93 #if defined(OS_WIN)
handle()94   HANDLE handle() const { return handle_.Get(); }
95 #endif
96 
97   // Wait, synchronously, on multiple events.
98   //   waitables: an array of WaitableEvent pointers
99   //   count: the number of elements in @waitables
100   //
101   // returns: the index of a WaitableEvent which has been signaled.
102   //
103   // You MUST NOT delete any of the WaitableEvent objects while this wait is
104   // happening, however WaitMany's return "happens after" the |Signal| call
105   // that caused it has completed, like |Wait|.
106   static size_t WaitMany(WaitableEvent** waitables, size_t count);
107 
108   // For asynchronous waiting, see WaitableEventWatcher
109 
110   // This is a private helper class. It's here because it's used by friends of
111   // this class (such as WaitableEventWatcher) to be able to enqueue elements
112   // of the wait-list
113   class Waiter {
114    public:
115     // Signal the waiter to wake up.
116     //
117     // Consider the case of a Waiter which is in multiple WaitableEvent's
118     // wait-lists. Each WaitableEvent is automatic-reset and two of them are
119     // signaled at the same time. Now, each will wake only the first waiter in
120     // the wake-list before resetting. However, if those two waiters happen to
121     // be the same object (as can happen if another thread didn't have a chance
122     // to dequeue the waiter from the other wait-list in time), two auto-resets
123     // will have happened, but only one waiter has been signaled!
124     //
125     // Because of this, a Waiter may "reject" a wake by returning false. In
126     // this case, the auto-reset WaitableEvent shouldn't act as if anything has
127     // been notified.
128     virtual bool Fire(WaitableEvent* signaling_event) = 0;
129 
130     // Waiters may implement this in order to provide an extra condition for
131     // two Waiters to be considered equal. In WaitableEvent::Dequeue, if the
132     // pointers match then this function is called as a final check. See the
133     // comments in ~Handle for why.
134     virtual bool Compare(void* tag) = 0;
135 
136    protected:
~Waiter()137     virtual ~Waiter() {}
138   };
139 
140  private:
141   friend class WaitableEventWatcher;
142 
143 #if defined(OS_WIN)
144   win::ScopedHandle handle_;
145 #else
146   // On Windows, one can close a HANDLE which is currently being waited on. The
147   // MSDN documentation says that the resulting behaviour is 'undefined', but
148   // it doesn't crash. However, if we were to include the following members
149   // directly then, on POSIX, one couldn't use WaitableEventWatcher to watch an
150   // event which gets deleted. This mismatch has bitten us several times now,
151   // so we have a kernel of the WaitableEvent, which is reference counted.
152   // WaitableEventWatchers may then take a reference and thus match the Windows
153   // behaviour.
154   struct WaitableEventKernel :
155       public RefCountedThreadSafe<WaitableEventKernel> {
156    public:
157     WaitableEventKernel(bool manual_reset, bool initially_signaled);
158 
159     bool Dequeue(Waiter* waiter, void* tag);
160 
161     base::Lock lock_;
162     const bool manual_reset_;
163     bool signaled_;
164     std::list<Waiter*> waiters_;
165 
166    private:
167     friend class RefCountedThreadSafe<WaitableEventKernel>;
168     ~WaitableEventKernel();
169   };
170 
171   typedef std::pair<WaitableEvent*, size_t> WaiterAndIndex;
172 
173   // When dealing with arrays of WaitableEvent*, we want to sort by the address
174   // of the WaitableEvent in order to have a globally consistent locking order.
175   // In that case we keep them, in sorted order, in an array of pairs where the
176   // second element is the index of the WaitableEvent in the original,
177   // unsorted, array.
178   static size_t EnqueueMany(WaiterAndIndex* waitables,
179                             size_t count, Waiter* waiter);
180 
181   bool SignalAll();
182   bool SignalOne();
183   void Enqueue(Waiter* waiter);
184 
185   scoped_refptr<WaitableEventKernel> kernel_;
186 #endif
187 
188   DISALLOW_COPY_AND_ASSIGN(WaitableEvent);
189 };
190 
191 }  // namespace base
192 
193 #endif  // BASE_SYNCHRONIZATION_WAITABLE_EVENT_H_
194