• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // An implementation of the Canonical Views clustering algorithm from
32 // "Scene Summarization for Online Image Collections", Ian Simon, Noah
33 // Snavely, Steven M. Seitz, ICCV 2007.
34 //
35 // More details can be found at
36 // http://grail.cs.washington.edu/projects/canonview/
37 //
38 // Ceres uses this algorithm to perform view clustering for
39 // constructing visibility based preconditioners.
40 
41 #ifndef CERES_INTERNAL_CANONICAL_VIEWS_CLUSTERING_H_
42 #define CERES_INTERNAL_CANONICAL_VIEWS_CLUSTERING_H_
43 
44 // This include must come before any #ifndef check on Ceres compile options.
45 #include "ceres/internal/port.h"
46 
47 #ifndef CERES_NO_SUITESPARSE
48 
49 #include <vector>
50 
51 #include "ceres/collections_port.h"
52 #include "ceres/graph.h"
53 
54 namespace ceres {
55 namespace internal {
56 
57 struct CanonicalViewsClusteringOptions;
58 
59 // Compute a partitioning of the vertices of the graph using the
60 // canonical views clustering algorithm.
61 //
62 // In the following we will use the terms vertices and views
63 // interchangably.  Given a weighted Graph G(V,E), the canonical views
64 // of G are the the set of vertices that best "summarize" the content
65 // of the graph. If w_ij i s the weight connecting the vertex i to
66 // vertex j, and C is the set of canonical views. Then the objective
67 // of the canonical views algorithm is
68 //
69 //   E[C] = sum_[i in V] max_[j in C] w_ij
70 //          - size_penalty_weight * |C|
71 //          - similarity_penalty_weight * sum_[i in C, j in C, j > i] w_ij
72 //
73 // alpha is the size penalty that penalizes large number of canonical
74 // views.
75 //
76 // beta is the similarity penalty that penalizes canonical views that
77 // are too similar to other canonical views.
78 //
79 // Thus the canonical views algorithm tries to find a canonical view
80 // for each vertex in the graph which best explains it, while trying
81 // to minimize the number of canonical views and the overlap between
82 // them.
83 //
84 // We further augment the above objective function by allowing for per
85 // vertex weights, higher weights indicating a higher preference for
86 // being chosen as a canonical view. Thus if w_i is the vertex weight
87 // for vertex i, the objective function is then
88 //
89 //   E[C] = sum_[i in V] max_[j in C] w_ij
90 //          - size_penalty_weight * |C|
91 //          - similarity_penalty_weight * sum_[i in C, j in C, j > i] w_ij
92 //          + view_score_weight * sum_[i in C] w_i
93 //
94 // centers will contain the vertices that are the identified
95 // as the canonical views/cluster centers, and membership is a map
96 // from vertices to cluster_ids. The i^th cluster center corresponds
97 // to the i^th cluster.
98 //
99 // It is possible depending on the configuration of the clustering
100 // algorithm that some of the vertices may not be assigned to any
101 // cluster. In this case they are assigned to a cluster with id = -1;
102 void ComputeCanonicalViewsClustering(
103     const CanonicalViewsClusteringOptions& options,
104     const Graph<int>& graph,
105     vector<int>* centers,
106     HashMap<int, int>* membership);
107 
108 struct CanonicalViewsClusteringOptions {
CanonicalViewsClusteringOptionsCanonicalViewsClusteringOptions109   CanonicalViewsClusteringOptions()
110       : min_views(3),
111         size_penalty_weight(5.75),
112         similarity_penalty_weight(100.0),
113         view_score_weight(0.0) {
114   }
115   // The minimum number of canonical views to compute.
116   int min_views;
117 
118   // Penalty weight for the number of canonical views.  A higher
119   // number will result in fewer canonical views.
120   double size_penalty_weight;
121 
122   // Penalty weight for the diversity (orthogonality) of the
123   // canonical views.  A higher number will encourage less similar
124   // canonical views.
125   double similarity_penalty_weight;
126 
127   // Weight for per-view scores.  Lower weight places less
128   // confidence in the view scores.
129   double view_score_weight;
130 };
131 
132 }  // namespace internal
133 }  // namespace ceres
134 
135 #endif  // CERES_NO_SUITESPARSE
136 #endif  // CERES_INTERNAL_CANONICAL_VIEWS_CLUSTERING_H_
137