• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2008 the V8 project authors. All rights reserved.
2// Copyright 1996 John Maloney and Mario Wolczko.
3
4// This program is free software; you can redistribute it and/or modify
5// it under the terms of the GNU General Public License as published by
6// the Free Software Foundation; either version 2 of the License, or
7// (at your option) any later version.
8//
9// This program is distributed in the hope that it will be useful,
10// but WITHOUT ANY WARRANTY; without even the implied warranty of
11// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12// GNU General Public License for more details.
13//
14// You should have received a copy of the GNU General Public License
15// along with this program; if not, write to the Free Software
16// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17
18
19// This implementation of the DeltaBlue benchmark is derived
20// from the Smalltalk implementation by John Maloney and Mario
21// Wolczko. Some parts have been translated directly, whereas
22// others have been modified more aggresively to make it feel
23// more like a JavaScript program.
24
25
26var DeltaBlue = new BenchmarkSuite('DeltaBlue', 66118, [
27  new Benchmark('DeltaBlue', deltaBlue)
28]);
29
30
31/**
32 * A JavaScript implementation of the DeltaBlue constraint-solving
33 * algorithm, as described in:
34 *
35 * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
36 *   Bjorn N. Freeman-Benson and John Maloney
37 *   January 1990 Communications of the ACM,
38 *   also available as University of Washington TR 89-08-06.
39 *
40 * Beware: this benchmark is written in a grotesque style where
41 * the constraint model is built by side-effects from constructors.
42 * I've kept it this way to avoid deviating too much from the original
43 * implementation.
44 */
45
46
47/* --- O b j e c t   M o d e l --- */
48
49Object.prototype.inheritsFrom = function (shuper) {
50  function Inheriter() { }
51  Inheriter.prototype = shuper.prototype;
52  this.prototype = new Inheriter();
53  this.superConstructor = shuper;
54}
55
56function OrderedCollection() {
57  this.elms = new Array();
58}
59
60OrderedCollection.prototype.add = function (elm) {
61  this.elms.push(elm);
62}
63
64OrderedCollection.prototype.at = function (index) {
65  return this.elms[index];
66}
67
68OrderedCollection.prototype.size = function () {
69  return this.elms.length;
70}
71
72OrderedCollection.prototype.removeFirst = function () {
73  return this.elms.pop();
74}
75
76OrderedCollection.prototype.remove = function (elm) {
77  var index = 0, skipped = 0;
78  for (var i = 0; i < this.elms.length; i++) {
79    var value = this.elms[i];
80    if (value != elm) {
81      this.elms[index] = value;
82      index++;
83    } else {
84      skipped++;
85    }
86  }
87  for (var i = 0; i < skipped; i++)
88    this.elms.pop();
89}
90
91/* --- *
92 * S t r e n g t h
93 * --- */
94
95/**
96 * Strengths are used to measure the relative importance of constraints.
97 * New strengths may be inserted in the strength hierarchy without
98 * disrupting current constraints.  Strengths cannot be created outside
99 * this class, so pointer comparison can be used for value comparison.
100 */
101function Strength(strengthValue, name) {
102  this.strengthValue = strengthValue;
103  this.name = name;
104}
105
106Strength.stronger = function (s1, s2) {
107  return s1.strengthValue < s2.strengthValue;
108}
109
110Strength.weaker = function (s1, s2) {
111  return s1.strengthValue > s2.strengthValue;
112}
113
114Strength.weakestOf = function (s1, s2) {
115  return this.weaker(s1, s2) ? s1 : s2;
116}
117
118Strength.strongest = function (s1, s2) {
119  return this.stronger(s1, s2) ? s1 : s2;
120}
121
122Strength.prototype.nextWeaker = function () {
123  switch (this.strengthValue) {
124    case 0: return Strength.STRONG_PREFERRED;
125    case 1: return Strength.PREFERRED;
126    case 2: return Strength.STRONG_DEFAULT;
127    case 3: return Strength.NORMAL;
128    case 4: return Strength.WEAK_DEFAULT;
129    case 5: return Strength.WEAKEST;
130  }
131}
132
133// Strength constants.
134Strength.REQUIRED         = new Strength(0, "required");
135Strength.STRONG_PREFERRED = new Strength(1, "strongPreferred");
136Strength.PREFERRED        = new Strength(2, "preferred");
137Strength.STRONG_DEFAULT   = new Strength(3, "strongDefault");
138Strength.NORMAL           = new Strength(4, "normal");
139Strength.WEAK_DEFAULT     = new Strength(5, "weakDefault");
140Strength.WEAKEST          = new Strength(6, "weakest");
141
142/* --- *
143 * C o n s t r a i n t
144 * --- */
145
146/**
147 * An abstract class representing a system-maintainable relationship
148 * (or "constraint") between a set of variables. A constraint supplies
149 * a strength instance variable; concrete subclasses provide a means
150 * of storing the constrained variables and other information required
151 * to represent a constraint.
152 */
153function Constraint(strength) {
154  this.strength = strength;
155}
156
157/**
158 * Activate this constraint and attempt to satisfy it.
159 */
160Constraint.prototype.addConstraint = function () {
161  this.addToGraph();
162  planner.incrementalAdd(this);
163}
164
165/**
166 * Attempt to find a way to enforce this constraint. If successful,
167 * record the solution, perhaps modifying the current dataflow
168 * graph. Answer the constraint that this constraint overrides, if
169 * there is one, or nil, if there isn't.
170 * Assume: I am not already satisfied.
171 */
172Constraint.prototype.satisfy = function (mark) {
173  this.chooseMethod(mark);
174  if (!this.isSatisfied()) {
175    if (this.strength == Strength.REQUIRED)
176      alert("Could not satisfy a required constraint!");
177    return null;
178  }
179  this.markInputs(mark);
180  var out = this.output();
181  var overridden = out.determinedBy;
182  if (overridden != null) overridden.markUnsatisfied();
183  out.determinedBy = this;
184  if (!planner.addPropagate(this, mark))
185    alert("Cycle encountered");
186  out.mark = mark;
187  return overridden;
188}
189
190Constraint.prototype.destroyConstraint = function () {
191  if (this.isSatisfied()) planner.incrementalRemove(this);
192  else this.removeFromGraph();
193}
194
195/**
196 * Normal constraints are not input constraints.  An input constraint
197 * is one that depends on external state, such as the mouse, the
198 * keybord, a clock, or some arbitraty piece of imperative code.
199 */
200Constraint.prototype.isInput = function () {
201  return false;
202}
203
204/* --- *
205 * U n a r y   C o n s t r a i n t
206 * --- */
207
208/**
209 * Abstract superclass for constraints having a single possible output
210 * variable.
211 */
212function UnaryConstraint(v, strength) {
213  UnaryConstraint.superConstructor.call(this, strength);
214  this.myOutput = v;
215  this.satisfied = false;
216  this.addConstraint();
217}
218
219UnaryConstraint.inheritsFrom(Constraint);
220
221/**
222 * Adds this constraint to the constraint graph
223 */
224UnaryConstraint.prototype.addToGraph = function () {
225  this.myOutput.addConstraint(this);
226  this.satisfied = false;
227}
228
229/**
230 * Decides if this constraint can be satisfied and records that
231 * decision.
232 */
233UnaryConstraint.prototype.chooseMethod = function (mark) {
234  this.satisfied = (this.myOutput.mark != mark)
235    && Strength.stronger(this.strength, this.myOutput.walkStrength);
236}
237
238/**
239 * Returns true if this constraint is satisfied in the current solution.
240 */
241UnaryConstraint.prototype.isSatisfied = function () {
242  return this.satisfied;
243}
244
245UnaryConstraint.prototype.markInputs = function (mark) {
246  // has no inputs
247}
248
249/**
250 * Returns the current output variable.
251 */
252UnaryConstraint.prototype.output = function () {
253  return this.myOutput;
254}
255
256/**
257 * Calculate the walkabout strength, the stay flag, and, if it is
258 * 'stay', the value for the current output of this constraint. Assume
259 * this constraint is satisfied.
260 */
261UnaryConstraint.prototype.recalculate = function () {
262  this.myOutput.walkStrength = this.strength;
263  this.myOutput.stay = !this.isInput();
264  if (this.myOutput.stay) this.execute(); // Stay optimization
265}
266
267/**
268 * Records that this constraint is unsatisfied
269 */
270UnaryConstraint.prototype.markUnsatisfied = function () {
271  this.satisfied = false;
272}
273
274UnaryConstraint.prototype.inputsKnown = function () {
275  return true;
276}
277
278UnaryConstraint.prototype.removeFromGraph = function () {
279  if (this.myOutput != null) this.myOutput.removeConstraint(this);
280  this.satisfied = false;
281}
282
283/* --- *
284 * S t a y   C o n s t r a i n t
285 * --- */
286
287/**
288 * Variables that should, with some level of preference, stay the same.
289 * Planners may exploit the fact that instances, if satisfied, will not
290 * change their output during plan execution.  This is called "stay
291 * optimization".
292 */
293function StayConstraint(v, str) {
294  StayConstraint.superConstructor.call(this, v, str);
295}
296
297StayConstraint.inheritsFrom(UnaryConstraint);
298
299StayConstraint.prototype.execute = function () {
300  // Stay constraints do nothing
301}
302
303/* --- *
304 * E d i t   C o n s t r a i n t
305 * --- */
306
307/**
308 * A unary input constraint used to mark a variable that the client
309 * wishes to change.
310 */
311function EditConstraint(v, str) {
312  EditConstraint.superConstructor.call(this, v, str);
313}
314
315EditConstraint.inheritsFrom(UnaryConstraint);
316
317/**
318 * Edits indicate that a variable is to be changed by imperative code.
319 */
320EditConstraint.prototype.isInput = function () {
321  return true;
322}
323
324EditConstraint.prototype.execute = function () {
325  // Edit constraints do nothing
326}
327
328/* --- *
329 * B i n a r y   C o n s t r a i n t
330 * --- */
331
332var Direction = new Object();
333Direction.NONE     = 0;
334Direction.FORWARD  = 1;
335Direction.BACKWARD = -1;
336
337/**
338 * Abstract superclass for constraints having two possible output
339 * variables.
340 */
341function BinaryConstraint(var1, var2, strength) {
342  BinaryConstraint.superConstructor.call(this, strength);
343  this.v1 = var1;
344  this.v2 = var2;
345  this.direction = Direction.NONE;
346  this.addConstraint();
347}
348
349BinaryConstraint.inheritsFrom(Constraint);
350
351/**
352 * Decides if this constraint can be satisfied and which way it
353 * should flow based on the relative strength of the variables related,
354 * and record that decision.
355 */
356BinaryConstraint.prototype.chooseMethod = function (mark) {
357  if (this.v1.mark == mark) {
358    this.direction = (this.v2.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength))
359      ? Direction.FORWARD
360      : Direction.NONE;
361  }
362  if (this.v2.mark == mark) {
363    this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength))
364      ? Direction.BACKWARD
365      : Direction.NONE;
366  }
367  if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) {
368    this.direction = Strength.stronger(this.strength, this.v1.walkStrength)
369      ? Direction.BACKWARD
370      : Direction.NONE;
371  } else {
372    this.direction = Strength.stronger(this.strength, this.v2.walkStrength)
373      ? Direction.FORWARD
374      : Direction.BACKWARD
375  }
376}
377
378/**
379 * Add this constraint to the constraint graph
380 */
381BinaryConstraint.prototype.addToGraph = function () {
382  this.v1.addConstraint(this);
383  this.v2.addConstraint(this);
384  this.direction = Direction.NONE;
385}
386
387/**
388 * Answer true if this constraint is satisfied in the current solution.
389 */
390BinaryConstraint.prototype.isSatisfied = function () {
391  return this.direction != Direction.NONE;
392}
393
394/**
395 * Mark the input variable with the given mark.
396 */
397BinaryConstraint.prototype.markInputs = function (mark) {
398  this.input().mark = mark;
399}
400
401/**
402 * Returns the current input variable
403 */
404BinaryConstraint.prototype.input = function () {
405  return (this.direction == Direction.FORWARD) ? this.v1 : this.v2;
406}
407
408/**
409 * Returns the current output variable
410 */
411BinaryConstraint.prototype.output = function () {
412  return (this.direction == Direction.FORWARD) ? this.v2 : this.v1;
413}
414
415/**
416 * Calculate the walkabout strength, the stay flag, and, if it is
417 * 'stay', the value for the current output of this
418 * constraint. Assume this constraint is satisfied.
419 */
420BinaryConstraint.prototype.recalculate = function () {
421  var ihn = this.input(), out = this.output();
422  out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
423  out.stay = ihn.stay;
424  if (out.stay) this.execute();
425}
426
427/**
428 * Record the fact that this constraint is unsatisfied.
429 */
430BinaryConstraint.prototype.markUnsatisfied = function () {
431  this.direction = Direction.NONE;
432}
433
434BinaryConstraint.prototype.inputsKnown = function (mark) {
435  var i = this.input();
436  return i.mark == mark || i.stay || i.determinedBy == null;
437}
438
439BinaryConstraint.prototype.removeFromGraph = function () {
440  if (this.v1 != null) this.v1.removeConstraint(this);
441  if (this.v2 != null) this.v2.removeConstraint(this);
442  this.direction = Direction.NONE;
443}
444
445/* --- *
446 * S c a l e   C o n s t r a i n t
447 * --- */
448
449/**
450 * Relates two variables by the linear scaling relationship: "v2 =
451 * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
452 * this relationship but the scale factor and offset are considered
453 * read-only.
454 */
455function ScaleConstraint(src, scale, offset, dest, strength) {
456  this.direction = Direction.NONE;
457  this.scale = scale;
458  this.offset = offset;
459  ScaleConstraint.superConstructor.call(this, src, dest, strength);
460}
461
462ScaleConstraint.inheritsFrom(BinaryConstraint);
463
464/**
465 * Adds this constraint to the constraint graph.
466 */
467ScaleConstraint.prototype.addToGraph = function () {
468  ScaleConstraint.superConstructor.prototype.addToGraph.call(this);
469  this.scale.addConstraint(this);
470  this.offset.addConstraint(this);
471}
472
473ScaleConstraint.prototype.removeFromGraph = function () {
474  ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);
475  if (this.scale != null) this.scale.removeConstraint(this);
476  if (this.offset != null) this.offset.removeConstraint(this);
477}
478
479ScaleConstraint.prototype.markInputs = function (mark) {
480  ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);
481  this.scale.mark = this.offset.mark = mark;
482}
483
484/**
485 * Enforce this constraint. Assume that it is satisfied.
486 */
487ScaleConstraint.prototype.execute = function () {
488  if (this.direction == Direction.FORWARD) {
489    this.v2.value = this.v1.value * this.scale.value + this.offset.value;
490  } else {
491    this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;
492  }
493}
494
495/**
496 * Calculate the walkabout strength, the stay flag, and, if it is
497 * 'stay', the value for the current output of this constraint. Assume
498 * this constraint is satisfied.
499 */
500ScaleConstraint.prototype.recalculate = function () {
501  var ihn = this.input(), out = this.output();
502  out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
503  out.stay = ihn.stay && this.scale.stay && this.offset.stay;
504  if (out.stay) this.execute();
505}
506
507/* --- *
508 * E q u a l i t  y   C o n s t r a i n t
509 * --- */
510
511/**
512 * Constrains two variables to have the same value.
513 */
514function EqualityConstraint(var1, var2, strength) {
515  EqualityConstraint.superConstructor.call(this, var1, var2, strength);
516}
517
518EqualityConstraint.inheritsFrom(BinaryConstraint);
519
520/**
521 * Enforce this constraint. Assume that it is satisfied.
522 */
523EqualityConstraint.prototype.execute = function () {
524  this.output().value = this.input().value;
525}
526
527/* --- *
528 * V a r i a b l e
529 * --- */
530
531/**
532 * A constrained variable. In addition to its value, it maintain the
533 * structure of the constraint graph, the current dataflow graph, and
534 * various parameters of interest to the DeltaBlue incremental
535 * constraint solver.
536 **/
537function Variable(name, initialValue) {
538  this.value = initialValue || 0;
539  this.constraints = new OrderedCollection();
540  this.determinedBy = null;
541  this.mark = 0;
542  this.walkStrength = Strength.WEAKEST;
543  this.stay = true;
544  this.name = name;
545}
546
547/**
548 * Add the given constraint to the set of all constraints that refer
549 * this variable.
550 */
551Variable.prototype.addConstraint = function (c) {
552  this.constraints.add(c);
553}
554
555/**
556 * Removes all traces of c from this variable.
557 */
558Variable.prototype.removeConstraint = function (c) {
559  this.constraints.remove(c);
560  if (this.determinedBy == c) this.determinedBy = null;
561}
562
563/* --- *
564 * P l a n n e r
565 * --- */
566
567/**
568 * The DeltaBlue planner
569 */
570function Planner() {
571  this.currentMark = 0;
572}
573
574/**
575 * Attempt to satisfy the given constraint and, if successful,
576 * incrementally update the dataflow graph.  Details: If satifying
577 * the constraint is successful, it may override a weaker constraint
578 * on its output. The algorithm attempts to resatisfy that
579 * constraint using some other method. This process is repeated
580 * until either a) it reaches a variable that was not previously
581 * determined by any constraint or b) it reaches a constraint that
582 * is too weak to be satisfied using any of its methods. The
583 * variables of constraints that have been processed are marked with
584 * a unique mark value so that we know where we've been. This allows
585 * the algorithm to avoid getting into an infinite loop even if the
586 * constraint graph has an inadvertent cycle.
587 */
588Planner.prototype.incrementalAdd = function (c) {
589  var mark = this.newMark();
590  var overridden = c.satisfy(mark);
591  while (overridden != null)
592    overridden = overridden.satisfy(mark);
593}
594
595/**
596 * Entry point for retracting a constraint. Remove the given
597 * constraint and incrementally update the dataflow graph.
598 * Details: Retracting the given constraint may allow some currently
599 * unsatisfiable downstream constraint to be satisfied. We therefore collect
600 * a list of unsatisfied downstream constraints and attempt to
601 * satisfy each one in turn. This list is traversed by constraint
602 * strength, strongest first, as a heuristic for avoiding
603 * unnecessarily adding and then overriding weak constraints.
604 * Assume: c is satisfied.
605 */
606Planner.prototype.incrementalRemove = function (c) {
607  var out = c.output();
608  c.markUnsatisfied();
609  c.removeFromGraph();
610  var unsatisfied = this.removePropagateFrom(out);
611  var strength = Strength.REQUIRED;
612  do {
613    for (var i = 0; i < unsatisfied.size(); i++) {
614      var u = unsatisfied.at(i);
615      if (u.strength == strength)
616        this.incrementalAdd(u);
617    }
618    strength = strength.nextWeaker();
619  } while (strength != Strength.WEAKEST);
620}
621
622/**
623 * Select a previously unused mark value.
624 */
625Planner.prototype.newMark = function () {
626  return ++this.currentMark;
627}
628
629/**
630 * Extract a plan for resatisfaction starting from the given source
631 * constraints, usually a set of input constraints. This method
632 * assumes that stay optimization is desired; the plan will contain
633 * only constraints whose output variables are not stay. Constraints
634 * that do no computation, such as stay and edit constraints, are
635 * not included in the plan.
636 * Details: The outputs of a constraint are marked when it is added
637 * to the plan under construction. A constraint may be appended to
638 * the plan when all its input variables are known. A variable is
639 * known if either a) the variable is marked (indicating that has
640 * been computed by a constraint appearing earlier in the plan), b)
641 * the variable is 'stay' (i.e. it is a constant at plan execution
642 * time), or c) the variable is not determined by any
643 * constraint. The last provision is for past states of history
644 * variables, which are not stay but which are also not computed by
645 * any constraint.
646 * Assume: sources are all satisfied.
647 */
648Planner.prototype.makePlan = function (sources) {
649  var mark = this.newMark();
650  var plan = new Plan();
651  var todo = sources;
652  while (todo.size() > 0) {
653    var c = todo.removeFirst();
654    if (c.output().mark != mark && c.inputsKnown(mark)) {
655      plan.addConstraint(c);
656      c.output().mark = mark;
657      this.addConstraintsConsumingTo(c.output(), todo);
658    }
659  }
660  return plan;
661}
662
663/**
664 * Extract a plan for resatisfying starting from the output of the
665 * given constraints, usually a set of input constraints.
666 */
667Planner.prototype.extractPlanFromConstraints = function (constraints) {
668  var sources = new OrderedCollection();
669  for (var i = 0; i < constraints.size(); i++) {
670    var c = constraints.at(i);
671    if (c.isInput() && c.isSatisfied())
672      // not in plan already and eligible for inclusion
673      sources.add(c);
674  }
675  return this.makePlan(sources);
676}
677
678/**
679 * Recompute the walkabout strengths and stay flags of all variables
680 * downstream of the given constraint and recompute the actual
681 * values of all variables whose stay flag is true. If a cycle is
682 * detected, remove the given constraint and answer
683 * false. Otherwise, answer true.
684 * Details: Cycles are detected when a marked variable is
685 * encountered downstream of the given constraint. The sender is
686 * assumed to have marked the inputs of the given constraint with
687 * the given mark. Thus, encountering a marked node downstream of
688 * the output constraint means that there is a path from the
689 * constraint's output to one of its inputs.
690 */
691Planner.prototype.addPropagate = function (c, mark) {
692  var todo = new OrderedCollection();
693  todo.add(c);
694  while (todo.size() > 0) {
695    var d = todo.removeFirst();
696    if (d.output().mark == mark) {
697      this.incrementalRemove(c);
698      return false;
699    }
700    d.recalculate();
701    this.addConstraintsConsumingTo(d.output(), todo);
702  }
703  return true;
704}
705
706
707/**
708 * Update the walkabout strengths and stay flags of all variables
709 * downstream of the given constraint. Answer a collection of
710 * unsatisfied constraints sorted in order of decreasing strength.
711 */
712Planner.prototype.removePropagateFrom = function (out) {
713  out.determinedBy = null;
714  out.walkStrength = Strength.WEAKEST;
715  out.stay = true;
716  var unsatisfied = new OrderedCollection();
717  var todo = new OrderedCollection();
718  todo.add(out);
719  while (todo.size() > 0) {
720    var v = todo.removeFirst();
721    for (var i = 0; i < v.constraints.size(); i++) {
722      var c = v.constraints.at(i);
723      if (!c.isSatisfied())
724        unsatisfied.add(c);
725    }
726    var determining = v.determinedBy;
727    for (var i = 0; i < v.constraints.size(); i++) {
728      var next = v.constraints.at(i);
729      if (next != determining && next.isSatisfied()) {
730        next.recalculate();
731        todo.add(next.output());
732      }
733    }
734  }
735  return unsatisfied;
736}
737
738Planner.prototype.addConstraintsConsumingTo = function (v, coll) {
739  var determining = v.determinedBy;
740  var cc = v.constraints;
741  for (var i = 0; i < cc.size(); i++) {
742    var c = cc.at(i);
743    if (c != determining && c.isSatisfied())
744      coll.add(c);
745  }
746}
747
748/* --- *
749 * P l a n
750 * --- */
751
752/**
753 * A Plan is an ordered list of constraints to be executed in sequence
754 * to resatisfy all currently satisfiable constraints in the face of
755 * one or more changing inputs.
756 */
757function Plan() {
758  this.v = new OrderedCollection();
759}
760
761Plan.prototype.addConstraint = function (c) {
762  this.v.add(c);
763}
764
765Plan.prototype.size = function () {
766  return this.v.size();
767}
768
769Plan.prototype.constraintAt = function (index) {
770  return this.v.at(index);
771}
772
773Plan.prototype.execute = function () {
774  for (var i = 0; i < this.size(); i++) {
775    var c = this.constraintAt(i);
776    c.execute();
777  }
778}
779
780/* --- *
781 * M a i n
782 * --- */
783
784/**
785 * This is the standard DeltaBlue benchmark. A long chain of equality
786 * constraints is constructed with a stay constraint on one end. An
787 * edit constraint is then added to the opposite end and the time is
788 * measured for adding and removing this constraint, and extracting
789 * and executing a constraint satisfaction plan. There are two cases.
790 * In case 1, the added constraint is stronger than the stay
791 * constraint and values must propagate down the entire length of the
792 * chain. In case 2, the added constraint is weaker than the stay
793 * constraint so it cannot be accomodated. The cost in this case is,
794 * of course, very low. Typical situations lie somewhere between these
795 * two extremes.
796 */
797function chainTest(n) {
798  planner = new Planner();
799  var prev = null, first = null, last = null;
800
801  // Build chain of n equality constraints
802  for (var i = 0; i <= n; i++) {
803    var name = "v" + i;
804    var v = new Variable(name);
805    if (prev != null)
806      new EqualityConstraint(prev, v, Strength.REQUIRED);
807    if (i == 0) first = v;
808    if (i == n) last = v;
809    prev = v;
810  }
811
812  new StayConstraint(last, Strength.STRONG_DEFAULT);
813  var edit = new EditConstraint(first, Strength.PREFERRED);
814  var edits = new OrderedCollection();
815  edits.add(edit);
816  var plan = planner.extractPlanFromConstraints(edits);
817  for (var i = 0; i < 100; i++) {
818    first.value = i;
819    plan.execute();
820    if (last.value != i)
821      alert("Chain test failed.");
822  }
823}
824
825/**
826 * This test constructs a two sets of variables related to each
827 * other by a simple linear transformation (scale and offset). The
828 * time is measured to change a variable on either side of the
829 * mapping and to change the scale and offset factors.
830 */
831function projectionTest(n) {
832  planner = new Planner();
833  var scale = new Variable("scale", 10);
834  var offset = new Variable("offset", 1000);
835  var src = null, dst = null;
836
837  var dests = new OrderedCollection();
838  for (var i = 0; i < n; i++) {
839    src = new Variable("src" + i, i);
840    dst = new Variable("dst" + i, i);
841    dests.add(dst);
842    new StayConstraint(src, Strength.NORMAL);
843    new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);
844  }
845
846  change(src, 17);
847  if (dst.value != 1170) alert("Projection 1 failed");
848  change(dst, 1050);
849  if (src.value != 5) alert("Projection 2 failed");
850  change(scale, 5);
851  for (var i = 0; i < n - 1; i++) {
852    if (dests.at(i).value != i * 5 + 1000)
853      alert("Projection 3 failed");
854  }
855  change(offset, 2000);
856  for (var i = 0; i < n - 1; i++) {
857    if (dests.at(i).value != i * 5 + 2000)
858      alert("Projection 4 failed");
859  }
860}
861
862function change(v, newValue) {
863  var edit = new EditConstraint(v, Strength.PREFERRED);
864  var edits = new OrderedCollection();
865  edits.add(edit);
866  var plan = planner.extractPlanFromConstraints(edits);
867  for (var i = 0; i < 10; i++) {
868    v.value = newValue;
869    plan.execute();
870  }
871  edit.destroyConstraint();
872}
873
874// Global variable holding the current planner.
875var planner = null;
876
877function deltaBlue() {
878  chainTest(100);
879  projectionTest(100);
880}
881