1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 // 5 // The original source code is from: 6 // https://code.google.com/p/libphonenumber/source/browse/trunk/cpp/src/phonenumbers/base/memory/scoped_ptr.h?r=621 7 8 #ifndef I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_ 9 #define I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_ 10 11 // This is an implementation designed to match the anticipated future TR2 12 // implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated). 13 14 #include <libaddressinput/util/basictypes.h> 15 #include <libaddressinput/util/template_util.h> 16 17 #include <algorithm> // For std::swap(). 18 #include <cassert> 19 #include <cstddef> 20 #include <cstdlib> 21 22 namespace i18n { 23 namespace addressinput { 24 25 // Function object which deletes its parameter, which must be a pointer. 26 // If C is an array type, invokes 'delete[]' on the parameter; otherwise, 27 // invokes 'delete'. The default deleter for scoped_ptr<T>. 28 template <class T> 29 struct DefaultDeleter { DefaultDeleterDefaultDeleter30 DefaultDeleter() {} DefaultDeleterDefaultDeleter31 template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) { 32 // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor 33 // if U* is implicitly convertible to T* and U is not an array type. 34 // 35 // Correct implementation should use SFINAE to disable this 36 // constructor. However, since there are no other 1-argument constructors, 37 // using a COMPILE_ASSERT() based on is_convertible<> and requiring 38 // complete types is simpler and will cause compile failures for equivalent 39 // misuses. 40 // 41 // Note, the is_convertible<U*, T*> check also ensures that U is not an 42 // array. T is guaranteed to be a non-array, so any U* where U is an array 43 // cannot convert to T*. 44 enum { T_must_be_complete = sizeof(T) }; 45 enum { U_must_be_complete = sizeof(U) }; 46 COMPILE_ASSERT((is_convertible<U*, T*>::value), 47 U_ptr_must_implicitly_convert_to_T_ptr); 48 } operatorDefaultDeleter49 inline void operator()(T* ptr) const { 50 enum { type_must_be_complete = sizeof(T) }; 51 delete ptr; 52 } 53 }; 54 55 // Specialization of DefaultDeleter for array types. 56 template <class T> 57 struct DefaultDeleter<T[]> { 58 inline void operator()(T* ptr) const { 59 enum { type_must_be_complete = sizeof(T) }; 60 delete[] ptr; 61 } 62 63 private: 64 // Disable this operator for any U != T because it is undefined to execute 65 // an array delete when the static type of the array mismatches the dynamic 66 // type. 67 // 68 // References: 69 // C++98 [expr.delete]p3 70 // http://cplusplus.github.com/LWG/lwg-defects.html#938 71 template <typename U> void operator()(U* array) const; 72 }; 73 74 template <class T, int n> 75 struct DefaultDeleter<T[n]> { 76 // Never allow someone to declare something like scoped_ptr<int[10]>. 77 COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type); 78 }; 79 80 // Function object which invokes 'free' on its parameter, which must be 81 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: 82 // 83 // scoped_ptr<int, base::FreeDeleter> foo_ptr( 84 // static_cast<int*>(malloc(sizeof(int)))); 85 struct FreeDeleter { 86 inline void operator()(void* ptr) const { 87 free(ptr); 88 } 89 }; 90 91 // Minimal implementation of the core logic of scoped_ptr, suitable for 92 // reuse in both scoped_ptr and its specializations. 93 template <class T, class D> 94 class scoped_ptr_impl { 95 public: 96 explicit scoped_ptr_impl(T* p) : data_(p) { } 97 98 // Initializer for deleters that have data parameters. 99 scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} 100 101 // Templated constructor that destructively takes the value from another 102 // scoped_ptr_impl. 103 template <typename U, typename V> 104 scoped_ptr_impl(scoped_ptr_impl<U, V>* other) 105 : data_(other->release(), other->get_deleter()) { 106 // We do not support move-only deleters. We could modify our move 107 // emulation to have base::subtle::move() and base::subtle::forward() 108 // functions that are imperfect emulations of their C++11 equivalents, 109 // but until there's a requirement, just assume deleters are copyable. 110 } 111 112 template <typename U, typename V> 113 void TakeState(scoped_ptr_impl<U, V>* other) { 114 // See comment in templated constructor above regarding lack of support 115 // for move-only deleters. 116 reset(other->release()); 117 get_deleter() = other->get_deleter(); 118 } 119 120 ~scoped_ptr_impl() { 121 if (data_.ptr != NULL) { 122 // Not using get_deleter() saves one function call in non-optimized 123 // builds. 124 static_cast<D&>(data_)(data_.ptr); 125 } 126 } 127 128 void reset(T* p) { 129 // This is a self-reset, which is no longer allowed: http://crbug.com/162971 130 if (p != NULL && p == data_.ptr) 131 abort(); 132 133 // Note that running data_.ptr = p can lead to undefined behavior if 134 // get_deleter()(get()) deletes this. In order to pevent this, reset() 135 // should update the stored pointer before deleting its old value. 136 // 137 // However, changing reset() to use that behavior may cause current code to 138 // break in unexpected ways. If the destruction of the owned object 139 // dereferences the scoped_ptr when it is destroyed by a call to reset(), 140 // then it will incorrectly dispatch calls to |p| rather than the original 141 // value of |data_.ptr|. 142 // 143 // During the transition period, set the stored pointer to NULL while 144 // deleting the object. Eventually, this safety check will be removed to 145 // prevent the scenario initially described from occuring and 146 // http://crbug.com/176091 can be closed. 147 T* old = data_.ptr; 148 data_.ptr = NULL; 149 if (old != NULL) 150 static_cast<D&>(data_)(old); 151 data_.ptr = p; 152 } 153 154 T* get() const { return data_.ptr; } 155 156 D& get_deleter() { return data_; } 157 const D& get_deleter() const { return data_; } 158 159 void swap(scoped_ptr_impl& p2) { 160 // Standard swap idiom: 'using std::swap' ensures that std::swap is 161 // present in the overload set, but we call swap unqualified so that 162 // any more-specific overloads can be used, if available. 163 using std::swap; 164 swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); 165 swap(data_.ptr, p2.data_.ptr); 166 } 167 168 T* release() { 169 T* old_ptr = data_.ptr; 170 data_.ptr = NULL; 171 return old_ptr; 172 } 173 174 private: 175 // Needed to allow type-converting constructor. 176 template <typename U, typename V> friend class scoped_ptr_impl; 177 178 // Use the empty base class optimization to allow us to have a D 179 // member, while avoiding any space overhead for it when D is an 180 // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good 181 // discussion of this technique. 182 struct Data : public D { 183 explicit Data(T* ptr_in) : ptr(ptr_in) {} 184 Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} 185 T* ptr; 186 }; 187 188 Data data_; 189 190 DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); 191 }; 192 193 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> 194 // automatically deletes the pointer it holds (if any). 195 // That is, scoped_ptr<T> owns the T object that it points to. 196 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. 197 // Also like T*, scoped_ptr<T> is thread-compatible, and once you 198 // dereference it, you get the thread safety guarantees of T. 199 // 200 // The size of scoped_ptr is small. On most compilers, when using the 201 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will 202 // increase the size proportional to whatever state they need to have. See 203 // comments inside scoped_ptr_impl<> for details. 204 // 205 // Current implementation targets having a strict subset of C++11's 206 // unique_ptr<> features. Known deficiencies include not supporting move-only 207 // deleteres, function pointers as deleters, and deleters with reference 208 // types. 209 template <class T, class D = DefaultDeleter<T> > 210 class scoped_ptr { 211 public: 212 // The element and deleter types. 213 typedef T element_type; 214 typedef D deleter_type; 215 216 // Constructor. Defaults to initializing with NULL. 217 scoped_ptr() : impl_(NULL) { } 218 219 // Constructor. Takes ownership of p. 220 explicit scoped_ptr(element_type* p) : impl_(p) { } 221 222 // Constructor. Allows initialization of a stateful deleter. 223 scoped_ptr(element_type* p, const D& d) : impl_(p, d) { } 224 225 // Constructor. Allows construction from a scoped_ptr rvalue for a 226 // convertible type and deleter. 227 // 228 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct 229 // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor 230 // has different post-conditions if D is a reference type. Since this 231 // implementation does not support deleters with reference type, 232 // we do not need a separate move constructor allowing us to avoid one 233 // use of SFINAE. You only need to care about this if you modify the 234 // implementation of scoped_ptr. 235 template <typename U, typename V> 236 scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) { 237 COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array); 238 } 239 240 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible 241 // type and deleter. 242 // 243 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from 244 // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated 245 // form has different requirements on for move-only Deleters. Since this 246 // implementation does not support move-only Deleters, we do not need a 247 // separate move assignment operator allowing us to avoid one use of SFINAE. 248 // You only need to care about this if you modify the implementation of 249 // scoped_ptr. 250 template <typename U, typename V> 251 scoped_ptr& operator=(scoped_ptr<U, V> rhs) { 252 COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array); 253 impl_.TakeState(&rhs.impl_); 254 return *this; 255 } 256 257 // Reset. Deletes the currently owned object, if any. 258 // Then takes ownership of a new object, if given. 259 void reset(element_type* p = NULL) { impl_.reset(p); } 260 261 // Accessors to get the owned object. 262 // operator* and operator-> will assert() if there is no current object. 263 element_type& operator*() const { 264 assert(impl_.get() != NULL); 265 return *impl_.get(); 266 } 267 element_type* operator->() const { 268 assert(impl_.get() != NULL); 269 return impl_.get(); 270 } 271 element_type* get() const { return impl_.get(); } 272 273 // Access to the deleter. 274 deleter_type& get_deleter() { return impl_.get_deleter(); } 275 const deleter_type& get_deleter() const { return impl_.get_deleter(); } 276 277 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not 278 // implicitly convertible to a real bool (which is dangerous). 279 private: 280 typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable; 281 282 public: 283 operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } 284 285 // Comparison operators. 286 // These return whether two scoped_ptr refer to the same object, not just to 287 // two different but equal objects. 288 bool operator==(const element_type* p) const { return impl_.get() == p; } 289 bool operator!=(const element_type* p) const { return impl_.get() != p; } 290 291 // Swap two scoped pointers. 292 void swap(scoped_ptr& p2) { 293 impl_.swap(p2.impl_); 294 } 295 296 // Release a pointer. 297 // The return value is the current pointer held by this object. 298 // If this object holds a NULL pointer, the return value is NULL. 299 // After this operation, this object will hold a NULL pointer, 300 // and will not own the object any more. 301 element_type* release() { 302 return impl_.release(); 303 } 304 305 private: 306 // Needed to reach into |impl_| in the constructor. 307 template <typename U, typename V> friend class scoped_ptr; 308 scoped_ptr_impl<element_type, deleter_type> impl_; 309 310 // Forbid comparison of scoped_ptr types. If U != T, it totally 311 // doesn't make sense, and if U == T, it still doesn't make sense 312 // because you should never have the same object owned by two different 313 // scoped_ptrs. 314 template <class U> bool operator==(scoped_ptr<U> const& p2) const; 315 template <class U> bool operator!=(scoped_ptr<U> const& p2) const; 316 }; 317 318 template <class T, class D> 319 class scoped_ptr<T[], D> { 320 public: 321 // The element and deleter types. 322 typedef T element_type; 323 typedef D deleter_type; 324 325 // Constructor. Defaults to initializing with NULL. 326 scoped_ptr() : impl_(NULL) { } 327 328 // Constructor. Stores the given array. Note that the argument's type 329 // must exactly match T*. In particular: 330 // - it cannot be a pointer to a type derived from T, because it is 331 // inherently unsafe in the general case to access an array through a 332 // pointer whose dynamic type does not match its static type (eg., if 333 // T and the derived types had different sizes access would be 334 // incorrectly calculated). Deletion is also always undefined 335 // (C++98 [expr.delete]p3). If you're doing this, fix your code. 336 // - it cannot be NULL, because NULL is an integral expression, not a 337 // pointer to T. Use the no-argument version instead of explicitly 338 // passing NULL. 339 // - it cannot be const-qualified differently from T per unique_ptr spec 340 // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting 341 // to work around this may use implicit_cast<const T*>(). 342 // However, because of the first bullet in this comment, users MUST 343 // NOT use implicit_cast<Base*>() to upcast the static type of the array. 344 explicit scoped_ptr(element_type* array) : impl_(array) { } 345 346 // Reset. Deletes the currently owned array, if any. 347 // Then takes ownership of a new object, if given. 348 void reset(element_type* array = NULL) { impl_.reset(array); } 349 350 // Accessors to get the owned array. 351 element_type& operator[](size_t i) const { 352 assert(impl_.get() != NULL); 353 return impl_.get()[i]; 354 } 355 element_type* get() const { return impl_.get(); } 356 357 // Access to the deleter. 358 deleter_type& get_deleter() { return impl_.get_deleter(); } 359 const deleter_type& get_deleter() const { return impl_.get_deleter(); } 360 361 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not 362 // implicitly convertible to a real bool (which is dangerous). 363 private: 364 typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable; 365 366 public: 367 operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } 368 369 // Comparison operators. 370 // These return whether two scoped_ptr refer to the same object, not just to 371 // two different but equal objects. 372 bool operator==(element_type* array) const { return impl_.get() == array; } 373 bool operator!=(element_type* array) const { return impl_.get() != array; } 374 375 // Swap two scoped pointers. 376 void swap(scoped_ptr& p2) { 377 impl_.swap(p2.impl_); 378 } 379 380 // Release a pointer. 381 // The return value is the current pointer held by this object. 382 // If this object holds a NULL pointer, the return value is NULL. 383 // After this operation, this object will hold a NULL pointer, 384 // and will not own the object any more. 385 element_type* release() { 386 return impl_.release(); 387 } 388 389 private: 390 // Force element_type to be a complete type. 391 enum { type_must_be_complete = sizeof(element_type) }; 392 393 // Actually hold the data. 394 scoped_ptr_impl<element_type, deleter_type> impl_; 395 396 // Disable initialization from any type other than element_type*, by 397 // providing a constructor that matches such an initialization, but is 398 // private and has no definition. This is disabled because it is not safe to 399 // call delete[] on an array whose static type does not match its dynamic 400 // type. 401 template <typename U> explicit scoped_ptr(U* array); 402 explicit scoped_ptr(int disallow_construction_from_null); 403 404 // Disable reset() from any type other than element_type*, for the same 405 // reasons as the constructor above. 406 template <typename U> void reset(U* array); 407 void reset(int disallow_reset_from_null); 408 409 // Forbid comparison of scoped_ptr types. If U != T, it totally 410 // doesn't make sense, and if U == T, it still doesn't make sense 411 // because you should never have the same object owned by two different 412 // scoped_ptrs. 413 template <class U> bool operator==(scoped_ptr<U> const& p2) const; 414 template <class U> bool operator!=(scoped_ptr<U> const& p2) const; 415 }; 416 417 // Free functions 418 template <class T, class D> 419 void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { 420 p1.swap(p2); 421 } 422 423 template <class T, class D> 424 bool operator==(T* p1, const scoped_ptr<T, D>& p2) { 425 return p1 == p2.get(); 426 } 427 428 template <class T, class D> 429 bool operator!=(T* p1, const scoped_ptr<T, D>& p2) { 430 return p1 != p2.get(); 431 } 432 433 // A function to convert T* into scoped_ptr<T> 434 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation 435 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) 436 template <typename T> 437 scoped_ptr<T> make_scoped_ptr(T* ptr) { 438 return scoped_ptr<T>(ptr); 439 } 440 441 } // namespace addressinput 442 } // namespace i18n 443 444 #endif // I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_ 445