1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the SmallVector class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ADT_SMALLVECTOR_H
15 #define LLVM_ADT_SMALLVECTOR_H
16
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Support/AlignOf.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/type_traits.h"
22 #include <algorithm>
23 #include <cassert>
24 #include <cstddef>
25 #include <cstdlib>
26 #include <cstring>
27 #include <iterator>
28 #include <memory>
29
30 namespace llvm {
31
32 /// SmallVectorBase - This is all the non-templated stuff common to all
33 /// SmallVectors.
34 class SmallVectorBase {
35 protected:
36 void *BeginX, *EndX, *CapacityX;
37
38 protected:
SmallVectorBase(void * FirstEl,size_t Size)39 SmallVectorBase(void *FirstEl, size_t Size)
40 : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
41
42 /// grow_pod - This is an implementation of the grow() method which only works
43 /// on POD-like data types and is out of line to reduce code duplication.
44 void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
45
46 public:
47 /// size_in_bytes - This returns size()*sizeof(T).
size_in_bytes()48 size_t size_in_bytes() const {
49 return size_t((char*)EndX - (char*)BeginX);
50 }
51
52 /// capacity_in_bytes - This returns capacity()*sizeof(T).
capacity_in_bytes()53 size_t capacity_in_bytes() const {
54 return size_t((char*)CapacityX - (char*)BeginX);
55 }
56
empty()57 bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const { return BeginX == EndX; }
58 };
59
60 template <typename T, unsigned N> struct SmallVectorStorage;
61
62 /// SmallVectorTemplateCommon - This is the part of SmallVectorTemplateBase
63 /// which does not depend on whether the type T is a POD. The extra dummy
64 /// template argument is used by ArrayRef to avoid unnecessarily requiring T
65 /// to be complete.
66 template <typename T, typename = void>
67 class SmallVectorTemplateCommon : public SmallVectorBase {
68 private:
69 template <typename, unsigned> friend struct SmallVectorStorage;
70
71 // Allocate raw space for N elements of type T. If T has a ctor or dtor, we
72 // don't want it to be automatically run, so we need to represent the space as
73 // something else. Use an array of char of sufficient alignment.
74 typedef llvm::AlignedCharArrayUnion<T> U;
75 U FirstEl;
76 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
77
78 protected:
SmallVectorTemplateCommon(size_t Size)79 SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
80
grow_pod(size_t MinSizeInBytes,size_t TSize)81 void grow_pod(size_t MinSizeInBytes, size_t TSize) {
82 SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
83 }
84
85 /// isSmall - Return true if this is a smallvector which has not had dynamic
86 /// memory allocated for it.
isSmall()87 bool isSmall() const {
88 return BeginX == static_cast<const void*>(&FirstEl);
89 }
90
91 /// resetToSmall - Put this vector in a state of being small.
resetToSmall()92 void resetToSmall() {
93 BeginX = EndX = CapacityX = &FirstEl;
94 }
95
setEnd(T * P)96 void setEnd(T *P) { this->EndX = P; }
97 public:
98 typedef size_t size_type;
99 typedef ptrdiff_t difference_type;
100 typedef T value_type;
101 typedef T *iterator;
102 typedef const T *const_iterator;
103
104 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
105 typedef std::reverse_iterator<iterator> reverse_iterator;
106
107 typedef T &reference;
108 typedef const T &const_reference;
109 typedef T *pointer;
110 typedef const T *const_pointer;
111
112 // forward iterator creation methods.
begin()113 iterator begin() { return (iterator)this->BeginX; }
begin()114 const_iterator begin() const { return (const_iterator)this->BeginX; }
end()115 iterator end() { return (iterator)this->EndX; }
end()116 const_iterator end() const { return (const_iterator)this->EndX; }
117 protected:
capacity_ptr()118 iterator capacity_ptr() { return (iterator)this->CapacityX; }
capacity_ptr()119 const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
120 public:
121
122 // reverse iterator creation methods.
rbegin()123 reverse_iterator rbegin() { return reverse_iterator(end()); }
rbegin()124 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
rend()125 reverse_iterator rend() { return reverse_iterator(begin()); }
rend()126 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
127
size()128 size_type size() const { return end()-begin(); }
max_size()129 size_type max_size() const { return size_type(-1) / sizeof(T); }
130
131 /// capacity - Return the total number of elements in the currently allocated
132 /// buffer.
capacity()133 size_t capacity() const { return capacity_ptr() - begin(); }
134
135 /// data - Return a pointer to the vector's buffer, even if empty().
data()136 pointer data() { return pointer(begin()); }
137 /// data - Return a pointer to the vector's buffer, even if empty().
data()138 const_pointer data() const { return const_pointer(begin()); }
139
140 reference operator[](unsigned idx) {
141 assert(begin() + idx < end());
142 return begin()[idx];
143 }
144 const_reference operator[](unsigned idx) const {
145 assert(begin() + idx < end());
146 return begin()[idx];
147 }
148
front()149 reference front() {
150 assert(!empty());
151 return begin()[0];
152 }
front()153 const_reference front() const {
154 assert(!empty());
155 return begin()[0];
156 }
157
back()158 reference back() {
159 assert(!empty());
160 return end()[-1];
161 }
back()162 const_reference back() const {
163 assert(!empty());
164 return end()[-1];
165 }
166 };
167
168 /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
169 /// implementations that are designed to work with non-POD-like T's.
170 template <typename T, bool isPodLike>
171 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
172 protected:
SmallVectorTemplateBase(size_t Size)173 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
174
destroy_range(T * S,T * E)175 static void destroy_range(T *S, T *E) {
176 while (S != E) {
177 --E;
178 E->~T();
179 }
180 }
181
182 /// move - Use move-assignment to move the range [I, E) onto the
183 /// objects starting with "Dest". This is just <memory>'s
184 /// std::move, but not all stdlibs actually provide that.
185 template<typename It1, typename It2>
move(It1 I,It1 E,It2 Dest)186 static It2 move(It1 I, It1 E, It2 Dest) {
187 for (; I != E; ++I, ++Dest)
188 *Dest = ::std::move(*I);
189 return Dest;
190 }
191
192 /// move_backward - Use move-assignment to move the range
193 /// [I, E) onto the objects ending at "Dest", moving objects
194 /// in reverse order. This is just <algorithm>'s
195 /// std::move_backward, but not all stdlibs actually provide that.
196 template<typename It1, typename It2>
move_backward(It1 I,It1 E,It2 Dest)197 static It2 move_backward(It1 I, It1 E, It2 Dest) {
198 while (I != E)
199 *--Dest = ::std::move(*--E);
200 return Dest;
201 }
202
203 /// uninitialized_move - Move the range [I, E) into the uninitialized
204 /// memory starting with "Dest", constructing elements as needed.
205 template<typename It1, typename It2>
uninitialized_move(It1 I,It1 E,It2 Dest)206 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
207 for (; I != E; ++I, ++Dest)
208 ::new ((void*) &*Dest) T(::std::move(*I));
209 }
210
211 /// uninitialized_copy - Copy the range [I, E) onto the uninitialized
212 /// memory starting with "Dest", constructing elements as needed.
213 template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)214 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
215 std::uninitialized_copy(I, E, Dest);
216 }
217
218 /// grow - Grow the allocated memory (without initializing new
219 /// elements), doubling the size of the allocated memory.
220 /// Guarantees space for at least one more element, or MinSize more
221 /// elements if specified.
222 void grow(size_t MinSize = 0);
223
224 public:
push_back(const T & Elt)225 void push_back(const T &Elt) {
226 if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
227 this->grow();
228 ::new ((void*) this->end()) T(Elt);
229 this->setEnd(this->end()+1);
230 }
231
push_back(T && Elt)232 void push_back(T &&Elt) {
233 if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
234 this->grow();
235 ::new ((void*) this->end()) T(::std::move(Elt));
236 this->setEnd(this->end()+1);
237 }
238
pop_back()239 void pop_back() {
240 this->setEnd(this->end()-1);
241 this->end()->~T();
242 }
243 };
244
245 // Define this out-of-line to dissuade the C++ compiler from inlining it.
246 template <typename T, bool isPodLike>
grow(size_t MinSize)247 void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
248 size_t CurCapacity = this->capacity();
249 size_t CurSize = this->size();
250 // Always grow, even from zero.
251 size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
252 if (NewCapacity < MinSize)
253 NewCapacity = MinSize;
254 T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
255
256 // Move the elements over.
257 this->uninitialized_move(this->begin(), this->end(), NewElts);
258
259 // Destroy the original elements.
260 destroy_range(this->begin(), this->end());
261
262 // If this wasn't grown from the inline copy, deallocate the old space.
263 if (!this->isSmall())
264 free(this->begin());
265
266 this->setEnd(NewElts+CurSize);
267 this->BeginX = NewElts;
268 this->CapacityX = this->begin()+NewCapacity;
269 }
270
271
272 /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
273 /// implementations that are designed to work with POD-like T's.
274 template <typename T>
275 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
276 protected:
SmallVectorTemplateBase(size_t Size)277 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
278
279 // No need to do a destroy loop for POD's.
destroy_range(T *,T *)280 static void destroy_range(T *, T *) {}
281
282 /// move - Use move-assignment to move the range [I, E) onto the
283 /// objects starting with "Dest". For PODs, this is just memcpy.
284 template<typename It1, typename It2>
move(It1 I,It1 E,It2 Dest)285 static It2 move(It1 I, It1 E, It2 Dest) {
286 return ::std::copy(I, E, Dest);
287 }
288
289 /// move_backward - Use move-assignment to move the range
290 /// [I, E) onto the objects ending at "Dest", moving objects
291 /// in reverse order.
292 template<typename It1, typename It2>
move_backward(It1 I,It1 E,It2 Dest)293 static It2 move_backward(It1 I, It1 E, It2 Dest) {
294 return ::std::copy_backward(I, E, Dest);
295 }
296
297 /// uninitialized_move - Move the range [I, E) onto the uninitialized memory
298 /// starting with "Dest", constructing elements into it as needed.
299 template<typename It1, typename It2>
uninitialized_move(It1 I,It1 E,It2 Dest)300 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
301 // Just do a copy.
302 uninitialized_copy(I, E, Dest);
303 }
304
305 /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
306 /// starting with "Dest", constructing elements into it as needed.
307 template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)308 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
309 // Arbitrary iterator types; just use the basic implementation.
310 std::uninitialized_copy(I, E, Dest);
311 }
312
313 /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
314 /// starting with "Dest", constructing elements into it as needed.
315 template<typename T1, typename T2>
uninitialized_copy(T1 * I,T1 * E,T2 * Dest)316 static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
317 // Use memcpy for PODs iterated by pointers (which includes SmallVector
318 // iterators): std::uninitialized_copy optimizes to memmove, but we can
319 // use memcpy here.
320 memcpy(Dest, I, (E-I)*sizeof(T));
321 }
322
323 /// grow - double the size of the allocated memory, guaranteeing space for at
324 /// least one more element or MinSize if specified.
325 void grow(size_t MinSize = 0) {
326 this->grow_pod(MinSize*sizeof(T), sizeof(T));
327 }
328 public:
push_back(const T & Elt)329 void push_back(const T &Elt) {
330 if (LLVM_UNLIKELY(this->EndX >= this->CapacityX))
331 this->grow();
332 memcpy(this->end(), &Elt, sizeof(T));
333 this->setEnd(this->end()+1);
334 }
335
pop_back()336 void pop_back() {
337 this->setEnd(this->end()-1);
338 }
339 };
340
341
342 /// SmallVectorImpl - This class consists of common code factored out of the
343 /// SmallVector class to reduce code duplication based on the SmallVector 'N'
344 /// template parameter.
345 template <typename T>
346 class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
347 typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
348
349 SmallVectorImpl(const SmallVectorImpl&) LLVM_DELETED_FUNCTION;
350 public:
351 typedef typename SuperClass::iterator iterator;
352 typedef typename SuperClass::size_type size_type;
353
354 protected:
355 // Default ctor - Initialize to empty.
SmallVectorImpl(unsigned N)356 explicit SmallVectorImpl(unsigned N)
357 : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
358 }
359
360 public:
~SmallVectorImpl()361 ~SmallVectorImpl() {
362 // Destroy the constructed elements in the vector.
363 this->destroy_range(this->begin(), this->end());
364
365 // If this wasn't grown from the inline copy, deallocate the old space.
366 if (!this->isSmall())
367 free(this->begin());
368 }
369
370
clear()371 void clear() {
372 this->destroy_range(this->begin(), this->end());
373 this->EndX = this->BeginX;
374 }
375
resize(unsigned N)376 void resize(unsigned N) {
377 if (N < this->size()) {
378 this->destroy_range(this->begin()+N, this->end());
379 this->setEnd(this->begin()+N);
380 } else if (N > this->size()) {
381 if (this->capacity() < N)
382 this->grow(N);
383 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
384 new (&*I) T();
385 this->setEnd(this->begin()+N);
386 }
387 }
388
resize(unsigned N,const T & NV)389 void resize(unsigned N, const T &NV) {
390 if (N < this->size()) {
391 this->destroy_range(this->begin()+N, this->end());
392 this->setEnd(this->begin()+N);
393 } else if (N > this->size()) {
394 if (this->capacity() < N)
395 this->grow(N);
396 std::uninitialized_fill(this->end(), this->begin()+N, NV);
397 this->setEnd(this->begin()+N);
398 }
399 }
400
reserve(unsigned N)401 void reserve(unsigned N) {
402 if (this->capacity() < N)
403 this->grow(N);
404 }
405
pop_back_val()406 T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val() {
407 T Result = ::std::move(this->back());
408 this->pop_back();
409 return Result;
410 }
411
412 void swap(SmallVectorImpl &RHS);
413
414 /// append - Add the specified range to the end of the SmallVector.
415 ///
416 template<typename in_iter>
append(in_iter in_start,in_iter in_end)417 void append(in_iter in_start, in_iter in_end) {
418 size_type NumInputs = std::distance(in_start, in_end);
419 // Grow allocated space if needed.
420 if (NumInputs > size_type(this->capacity_ptr()-this->end()))
421 this->grow(this->size()+NumInputs);
422
423 // Copy the new elements over.
424 // TODO: NEED To compile time dispatch on whether in_iter is a random access
425 // iterator to use the fast uninitialized_copy.
426 std::uninitialized_copy(in_start, in_end, this->end());
427 this->setEnd(this->end() + NumInputs);
428 }
429
430 /// append - Add the specified range to the end of the SmallVector.
431 ///
append(size_type NumInputs,const T & Elt)432 void append(size_type NumInputs, const T &Elt) {
433 // Grow allocated space if needed.
434 if (NumInputs > size_type(this->capacity_ptr()-this->end()))
435 this->grow(this->size()+NumInputs);
436
437 // Copy the new elements over.
438 std::uninitialized_fill_n(this->end(), NumInputs, Elt);
439 this->setEnd(this->end() + NumInputs);
440 }
441
assign(unsigned NumElts,const T & Elt)442 void assign(unsigned NumElts, const T &Elt) {
443 clear();
444 if (this->capacity() < NumElts)
445 this->grow(NumElts);
446 this->setEnd(this->begin()+NumElts);
447 std::uninitialized_fill(this->begin(), this->end(), Elt);
448 }
449
erase(iterator I)450 iterator erase(iterator I) {
451 assert(I >= this->begin() && "Iterator to erase is out of bounds.");
452 assert(I < this->end() && "Erasing at past-the-end iterator.");
453
454 iterator N = I;
455 // Shift all elts down one.
456 this->move(I+1, this->end(), I);
457 // Drop the last elt.
458 this->pop_back();
459 return(N);
460 }
461
erase(iterator S,iterator E)462 iterator erase(iterator S, iterator E) {
463 assert(S >= this->begin() && "Range to erase is out of bounds.");
464 assert(S <= E && "Trying to erase invalid range.");
465 assert(E <= this->end() && "Trying to erase past the end.");
466
467 iterator N = S;
468 // Shift all elts down.
469 iterator I = this->move(E, this->end(), S);
470 // Drop the last elts.
471 this->destroy_range(I, this->end());
472 this->setEnd(I);
473 return(N);
474 }
475
insert(iterator I,T && Elt)476 iterator insert(iterator I, T &&Elt) {
477 if (I == this->end()) { // Important special case for empty vector.
478 this->push_back(::std::move(Elt));
479 return this->end()-1;
480 }
481
482 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
483 assert(I <= this->end() && "Inserting past the end of the vector.");
484
485 if (this->EndX >= this->CapacityX) {
486 size_t EltNo = I-this->begin();
487 this->grow();
488 I = this->begin()+EltNo;
489 }
490
491 ::new ((void*) this->end()) T(::std::move(this->back()));
492 // Push everything else over.
493 this->move_backward(I, this->end()-1, this->end());
494 this->setEnd(this->end()+1);
495
496 // If we just moved the element we're inserting, be sure to update
497 // the reference.
498 T *EltPtr = &Elt;
499 if (I <= EltPtr && EltPtr < this->EndX)
500 ++EltPtr;
501
502 *I = ::std::move(*EltPtr);
503 return I;
504 }
505
insert(iterator I,const T & Elt)506 iterator insert(iterator I, const T &Elt) {
507 if (I == this->end()) { // Important special case for empty vector.
508 this->push_back(Elt);
509 return this->end()-1;
510 }
511
512 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
513 assert(I <= this->end() && "Inserting past the end of the vector.");
514
515 if (this->EndX >= this->CapacityX) {
516 size_t EltNo = I-this->begin();
517 this->grow();
518 I = this->begin()+EltNo;
519 }
520 ::new ((void*) this->end()) T(std::move(this->back()));
521 // Push everything else over.
522 this->move_backward(I, this->end()-1, this->end());
523 this->setEnd(this->end()+1);
524
525 // If we just moved the element we're inserting, be sure to update
526 // the reference.
527 const T *EltPtr = &Elt;
528 if (I <= EltPtr && EltPtr < this->EndX)
529 ++EltPtr;
530
531 *I = *EltPtr;
532 return I;
533 }
534
insert(iterator I,size_type NumToInsert,const T & Elt)535 iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
536 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
537 size_t InsertElt = I - this->begin();
538
539 if (I == this->end()) { // Important special case for empty vector.
540 append(NumToInsert, Elt);
541 return this->begin()+InsertElt;
542 }
543
544 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
545 assert(I <= this->end() && "Inserting past the end of the vector.");
546
547 // Ensure there is enough space.
548 reserve(static_cast<unsigned>(this->size() + NumToInsert));
549
550 // Uninvalidate the iterator.
551 I = this->begin()+InsertElt;
552
553 // If there are more elements between the insertion point and the end of the
554 // range than there are being inserted, we can use a simple approach to
555 // insertion. Since we already reserved space, we know that this won't
556 // reallocate the vector.
557 if (size_t(this->end()-I) >= NumToInsert) {
558 T *OldEnd = this->end();
559 append(std::move_iterator<iterator>(this->end() - NumToInsert),
560 std::move_iterator<iterator>(this->end()));
561
562 // Copy the existing elements that get replaced.
563 this->move_backward(I, OldEnd-NumToInsert, OldEnd);
564
565 std::fill_n(I, NumToInsert, Elt);
566 return I;
567 }
568
569 // Otherwise, we're inserting more elements than exist already, and we're
570 // not inserting at the end.
571
572 // Move over the elements that we're about to overwrite.
573 T *OldEnd = this->end();
574 this->setEnd(this->end() + NumToInsert);
575 size_t NumOverwritten = OldEnd-I;
576 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
577
578 // Replace the overwritten part.
579 std::fill_n(I, NumOverwritten, Elt);
580
581 // Insert the non-overwritten middle part.
582 std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
583 return I;
584 }
585
586 template<typename ItTy>
insert(iterator I,ItTy From,ItTy To)587 iterator insert(iterator I, ItTy From, ItTy To) {
588 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
589 size_t InsertElt = I - this->begin();
590
591 if (I == this->end()) { // Important special case for empty vector.
592 append(From, To);
593 return this->begin()+InsertElt;
594 }
595
596 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
597 assert(I <= this->end() && "Inserting past the end of the vector.");
598
599 size_t NumToInsert = std::distance(From, To);
600
601 // Ensure there is enough space.
602 reserve(static_cast<unsigned>(this->size() + NumToInsert));
603
604 // Uninvalidate the iterator.
605 I = this->begin()+InsertElt;
606
607 // If there are more elements between the insertion point and the end of the
608 // range than there are being inserted, we can use a simple approach to
609 // insertion. Since we already reserved space, we know that this won't
610 // reallocate the vector.
611 if (size_t(this->end()-I) >= NumToInsert) {
612 T *OldEnd = this->end();
613 append(std::move_iterator<iterator>(this->end() - NumToInsert),
614 std::move_iterator<iterator>(this->end()));
615
616 // Copy the existing elements that get replaced.
617 this->move_backward(I, OldEnd-NumToInsert, OldEnd);
618
619 std::copy(From, To, I);
620 return I;
621 }
622
623 // Otherwise, we're inserting more elements than exist already, and we're
624 // not inserting at the end.
625
626 // Move over the elements that we're about to overwrite.
627 T *OldEnd = this->end();
628 this->setEnd(this->end() + NumToInsert);
629 size_t NumOverwritten = OldEnd-I;
630 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
631
632 // Replace the overwritten part.
633 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
634 *J = *From;
635 ++J; ++From;
636 }
637
638 // Insert the non-overwritten middle part.
639 this->uninitialized_copy(From, To, OldEnd);
640 return I;
641 }
642
643 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
644
645 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
646
647 bool operator==(const SmallVectorImpl &RHS) const {
648 if (this->size() != RHS.size()) return false;
649 return std::equal(this->begin(), this->end(), RHS.begin());
650 }
651 bool operator!=(const SmallVectorImpl &RHS) const {
652 return !(*this == RHS);
653 }
654
655 bool operator<(const SmallVectorImpl &RHS) const {
656 return std::lexicographical_compare(this->begin(), this->end(),
657 RHS.begin(), RHS.end());
658 }
659
660 /// Set the array size to \p N, which the current array must have enough
661 /// capacity for.
662 ///
663 /// This does not construct or destroy any elements in the vector.
664 ///
665 /// Clients can use this in conjunction with capacity() to write past the end
666 /// of the buffer when they know that more elements are available, and only
667 /// update the size later. This avoids the cost of value initializing elements
668 /// which will only be overwritten.
set_size(unsigned N)669 void set_size(unsigned N) {
670 assert(N <= this->capacity());
671 this->setEnd(this->begin() + N);
672 }
673 };
674
675
676 template <typename T>
swap(SmallVectorImpl<T> & RHS)677 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
678 if (this == &RHS) return;
679
680 // We can only avoid copying elements if neither vector is small.
681 if (!this->isSmall() && !RHS.isSmall()) {
682 std::swap(this->BeginX, RHS.BeginX);
683 std::swap(this->EndX, RHS.EndX);
684 std::swap(this->CapacityX, RHS.CapacityX);
685 return;
686 }
687 if (RHS.size() > this->capacity())
688 this->grow(RHS.size());
689 if (this->size() > RHS.capacity())
690 RHS.grow(this->size());
691
692 // Swap the shared elements.
693 size_t NumShared = this->size();
694 if (NumShared > RHS.size()) NumShared = RHS.size();
695 for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
696 std::swap((*this)[i], RHS[i]);
697
698 // Copy over the extra elts.
699 if (this->size() > RHS.size()) {
700 size_t EltDiff = this->size() - RHS.size();
701 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
702 RHS.setEnd(RHS.end()+EltDiff);
703 this->destroy_range(this->begin()+NumShared, this->end());
704 this->setEnd(this->begin()+NumShared);
705 } else if (RHS.size() > this->size()) {
706 size_t EltDiff = RHS.size() - this->size();
707 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
708 this->setEnd(this->end() + EltDiff);
709 this->destroy_range(RHS.begin()+NumShared, RHS.end());
710 RHS.setEnd(RHS.begin()+NumShared);
711 }
712 }
713
714 template <typename T>
715 SmallVectorImpl<T> &SmallVectorImpl<T>::
716 operator=(const SmallVectorImpl<T> &RHS) {
717 // Avoid self-assignment.
718 if (this == &RHS) return *this;
719
720 // If we already have sufficient space, assign the common elements, then
721 // destroy any excess.
722 size_t RHSSize = RHS.size();
723 size_t CurSize = this->size();
724 if (CurSize >= RHSSize) {
725 // Assign common elements.
726 iterator NewEnd;
727 if (RHSSize)
728 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
729 else
730 NewEnd = this->begin();
731
732 // Destroy excess elements.
733 this->destroy_range(NewEnd, this->end());
734
735 // Trim.
736 this->setEnd(NewEnd);
737 return *this;
738 }
739
740 // If we have to grow to have enough elements, destroy the current elements.
741 // This allows us to avoid copying them during the grow.
742 // FIXME: don't do this if they're efficiently moveable.
743 if (this->capacity() < RHSSize) {
744 // Destroy current elements.
745 this->destroy_range(this->begin(), this->end());
746 this->setEnd(this->begin());
747 CurSize = 0;
748 this->grow(RHSSize);
749 } else if (CurSize) {
750 // Otherwise, use assignment for the already-constructed elements.
751 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
752 }
753
754 // Copy construct the new elements in place.
755 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
756 this->begin()+CurSize);
757
758 // Set end.
759 this->setEnd(this->begin()+RHSSize);
760 return *this;
761 }
762
763 template <typename T>
764 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
765 // Avoid self-assignment.
766 if (this == &RHS) return *this;
767
768 // If the RHS isn't small, clear this vector and then steal its buffer.
769 if (!RHS.isSmall()) {
770 this->destroy_range(this->begin(), this->end());
771 if (!this->isSmall()) free(this->begin());
772 this->BeginX = RHS.BeginX;
773 this->EndX = RHS.EndX;
774 this->CapacityX = RHS.CapacityX;
775 RHS.resetToSmall();
776 return *this;
777 }
778
779 // If we already have sufficient space, assign the common elements, then
780 // destroy any excess.
781 size_t RHSSize = RHS.size();
782 size_t CurSize = this->size();
783 if (CurSize >= RHSSize) {
784 // Assign common elements.
785 iterator NewEnd = this->begin();
786 if (RHSSize)
787 NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
788
789 // Destroy excess elements and trim the bounds.
790 this->destroy_range(NewEnd, this->end());
791 this->setEnd(NewEnd);
792
793 // Clear the RHS.
794 RHS.clear();
795
796 return *this;
797 }
798
799 // If we have to grow to have enough elements, destroy the current elements.
800 // This allows us to avoid copying them during the grow.
801 // FIXME: this may not actually make any sense if we can efficiently move
802 // elements.
803 if (this->capacity() < RHSSize) {
804 // Destroy current elements.
805 this->destroy_range(this->begin(), this->end());
806 this->setEnd(this->begin());
807 CurSize = 0;
808 this->grow(RHSSize);
809 } else if (CurSize) {
810 // Otherwise, use assignment for the already-constructed elements.
811 this->move(RHS.begin(), RHS.begin()+CurSize, this->begin());
812 }
813
814 // Move-construct the new elements in place.
815 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
816 this->begin()+CurSize);
817
818 // Set end.
819 this->setEnd(this->begin()+RHSSize);
820
821 RHS.clear();
822 return *this;
823 }
824
825 /// Storage for the SmallVector elements which aren't contained in
826 /// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
827 /// element is in the base class. This is specialized for the N=1 and N=0 cases
828 /// to avoid allocating unnecessary storage.
829 template <typename T, unsigned N>
830 struct SmallVectorStorage {
831 typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
832 };
833 template <typename T> struct SmallVectorStorage<T, 1> {};
834 template <typename T> struct SmallVectorStorage<T, 0> {};
835
836 /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
837 /// for the case when the array is small. It contains some number of elements
838 /// in-place, which allows it to avoid heap allocation when the actual number of
839 /// elements is below that threshold. This allows normal "small" cases to be
840 /// fast without losing generality for large inputs.
841 ///
842 /// Note that this does not attempt to be exception safe.
843 ///
844 template <typename T, unsigned N>
845 class SmallVector : public SmallVectorImpl<T> {
846 /// Storage - Inline space for elements which aren't stored in the base class.
847 SmallVectorStorage<T, N> Storage;
848 public:
849 SmallVector() : SmallVectorImpl<T>(N) {
850 }
851
852 explicit SmallVector(unsigned Size, const T &Value = T())
853 : SmallVectorImpl<T>(N) {
854 this->assign(Size, Value);
855 }
856
857 template<typename ItTy>
858 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
859 this->append(S, E);
860 }
861
862 template <typename RangeTy>
863 explicit SmallVector(const llvm::iterator_range<RangeTy> R)
864 : SmallVectorImpl<T>(N) {
865 this->append(R.begin(), R.end());
866 }
867
868 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
869 if (!RHS.empty())
870 SmallVectorImpl<T>::operator=(RHS);
871 }
872
873 const SmallVector &operator=(const SmallVector &RHS) {
874 SmallVectorImpl<T>::operator=(RHS);
875 return *this;
876 }
877
878 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
879 if (!RHS.empty())
880 SmallVectorImpl<T>::operator=(::std::move(RHS));
881 }
882
883 const SmallVector &operator=(SmallVector &&RHS) {
884 SmallVectorImpl<T>::operator=(::std::move(RHS));
885 return *this;
886 }
887 };
888
889 template<typename T, unsigned N>
890 static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
891 return X.capacity_in_bytes();
892 }
893
894 } // End llvm namespace
895
896 namespace std {
897 /// Implement std::swap in terms of SmallVector swap.
898 template<typename T>
899 inline void
900 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
901 LHS.swap(RHS);
902 }
903
904 /// Implement std::swap in terms of SmallVector swap.
905 template<typename T, unsigned N>
906 inline void
907 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
908 LHS.swap(RHS);
909 }
910 }
911
912 #endif
913