• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// Implements a lazy call graph analysis and related passes for the new pass
12 /// manager.
13 ///
14 /// NB: This is *not* a traditional call graph! It is a graph which models both
15 /// the current calls and potential calls. As a consequence there are many
16 /// edges in this call graph that do not correspond to a 'call' or 'invoke'
17 /// instruction.
18 ///
19 /// The primary use cases of this graph analysis is to facilitate iterating
20 /// across the functions of a module in ways that ensure all callees are
21 /// visited prior to a caller (given any SCC constraints), or vice versa. As
22 /// such is it particularly well suited to organizing CGSCC optimizations such
23 /// as inlining, outlining, argument promotion, etc. That is its primary use
24 /// case and motivates the design. It may not be appropriate for other
25 /// purposes. The use graph of functions or some other conservative analysis of
26 /// call instructions may be interesting for optimizations and subsequent
27 /// analyses which don't work in the context of an overly specified
28 /// potential-call-edge graph.
29 ///
30 /// To understand the specific rules and nature of this call graph analysis,
31 /// see the documentation of the \c LazyCallGraph below.
32 ///
33 //===----------------------------------------------------------------------===//
34 
35 #ifndef LLVM_ANALYSIS_LAZY_CALL_GRAPH
36 #define LLVM_ANALYSIS_LAZY_CALL_GRAPH
37 
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/PointerUnion.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SetVector.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/iterator.h"
45 #include "llvm/ADT/iterator_range.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/Allocator.h"
50 #include <iterator>
51 
52 namespace llvm {
53 class ModuleAnalysisManager;
54 class PreservedAnalyses;
55 class raw_ostream;
56 
57 /// \brief A lazily constructed view of the call graph of a module.
58 ///
59 /// With the edges of this graph, the motivating constraint that we are
60 /// attempting to maintain is that function-local optimization, CGSCC-local
61 /// optimizations, and optimizations transforming a pair of functions connected
62 /// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
63 /// DAG. That is, no optimizations will delete, remove, or add an edge such
64 /// that functions already visited in a bottom-up order of the SCC DAG are no
65 /// longer valid to have visited, or such that functions not yet visited in
66 /// a bottom-up order of the SCC DAG are not required to have already been
67 /// visited.
68 ///
69 /// Within this constraint, the desire is to minimize the merge points of the
70 /// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
71 /// in the SCC DAG, the more independence there is in optimizing within it.
72 /// There is a strong desire to enable parallelization of optimizations over
73 /// the call graph, and both limited fanout and merge points will (artificially
74 /// in some cases) limit the scaling of such an effort.
75 ///
76 /// To this end, graph represents both direct and any potential resolution to
77 /// an indirect call edge. Another way to think about it is that it represents
78 /// both the direct call edges and any direct call edges that might be formed
79 /// through static optimizations. Specifically, it considers taking the address
80 /// of a function to be an edge in the call graph because this might be
81 /// forwarded to become a direct call by some subsequent function-local
82 /// optimization. The result is that the graph closely follows the use-def
83 /// edges for functions. Walking "up" the graph can be done by looking at all
84 /// of the uses of a function.
85 ///
86 /// The roots of the call graph are the external functions and functions
87 /// escaped into global variables. Those functions can be called from outside
88 /// of the module or via unknowable means in the IR -- we may not be able to
89 /// form even a potential call edge from a function body which may dynamically
90 /// load the function and call it.
91 ///
92 /// This analysis still requires updates to remain valid after optimizations
93 /// which could potentially change the set of potential callees. The
94 /// constraints it operates under only make the traversal order remain valid.
95 ///
96 /// The entire analysis must be re-computed if full interprocedural
97 /// optimizations run at any point. For example, globalopt completely
98 /// invalidates the information in this analysis.
99 ///
100 /// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
101 /// it from the existing CallGraph. At some point, it is expected that this
102 /// will be the only call graph and it will be renamed accordingly.
103 class LazyCallGraph {
104 public:
105   class Node;
106   class SCC;
107   typedef SmallVector<PointerUnion<Function *, Node *>, 4> NodeVectorT;
108   typedef SmallVectorImpl<PointerUnion<Function *, Node *>> NodeVectorImplT;
109 
110   /// \brief A lazy iterator used for both the entry nodes and child nodes.
111   ///
112   /// When this iterator is dereferenced, if not yet available, a function will
113   /// be scanned for "calls" or uses of functions and its child information
114   /// will be constructed. All of these results are accumulated and cached in
115   /// the graph.
116   class iterator
117       : public iterator_adaptor_base<iterator, NodeVectorImplT::iterator,
118                                      std::forward_iterator_tag, Node> {
119     friend class LazyCallGraph;
120     friend class LazyCallGraph::Node;
121 
122     LazyCallGraph *G;
123     NodeVectorImplT::iterator E;
124 
125     // Build the iterator for a specific position in a node list.
iterator(LazyCallGraph & G,NodeVectorImplT::iterator NI,NodeVectorImplT::iterator E)126     iterator(LazyCallGraph &G, NodeVectorImplT::iterator NI,
127              NodeVectorImplT::iterator E)
128         : iterator_adaptor_base(NI), G(&G), E(E) {
129       while (I != E && I->isNull())
130         ++I;
131     }
132 
133   public:
iterator()134     iterator() {}
135 
136     using iterator_adaptor_base::operator++;
137     iterator &operator++() {
138       do {
139         ++I;
140       } while (I != E && I->isNull());
141       return *this;
142     }
143 
144     reference operator*() const {
145       if (I->is<Node *>())
146         return *I->get<Node *>();
147 
148       Function *F = I->get<Function *>();
149       Node &ChildN = G->get(*F);
150       *I = &ChildN;
151       return ChildN;
152     }
153   };
154 
155   /// \brief A node in the call graph.
156   ///
157   /// This represents a single node. It's primary roles are to cache the list of
158   /// callees, de-duplicate and provide fast testing of whether a function is
159   /// a callee, and facilitate iteration of child nodes in the graph.
160   class Node {
161     friend class LazyCallGraph;
162     friend class LazyCallGraph::SCC;
163 
164     LazyCallGraph *G;
165     Function &F;
166 
167     // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
168     // stored directly within the node.
169     int DFSNumber;
170     int LowLink;
171 
172     mutable NodeVectorT Callees;
173     DenseMap<Function *, size_t> CalleeIndexMap;
174 
175     /// \brief Basic constructor implements the scanning of F into Callees and
176     /// CalleeIndexMap.
177     Node(LazyCallGraph &G, Function &F);
178 
179     /// \brief Internal helper to insert a callee.
180     void insertEdgeInternal(Function &Callee);
181 
182     /// \brief Internal helper to insert a callee.
183     void insertEdgeInternal(Node &CalleeN);
184 
185     /// \brief Internal helper to remove a callee from this node.
186     void removeEdgeInternal(Function &Callee);
187 
188   public:
189     typedef LazyCallGraph::iterator iterator;
190 
getFunction()191     Function &getFunction() const {
192       return F;
193     };
194 
begin()195     iterator begin() const {
196       return iterator(*G, Callees.begin(), Callees.end());
197     }
end()198     iterator end() const { return iterator(*G, Callees.end(), Callees.end()); }
199 
200     /// Equality is defined as address equality.
201     bool operator==(const Node &N) const { return this == &N; }
202     bool operator!=(const Node &N) const { return !operator==(N); }
203   };
204 
205   /// \brief An SCC of the call graph.
206   ///
207   /// This represents a Strongly Connected Component of the call graph as
208   /// a collection of call graph nodes. While the order of nodes in the SCC is
209   /// stable, it is not any particular order.
210   class SCC {
211     friend class LazyCallGraph;
212     friend class LazyCallGraph::Node;
213 
214     LazyCallGraph *G;
215     SmallPtrSet<SCC *, 1> ParentSCCs;
216     SmallVector<Node *, 1> Nodes;
217 
SCC(LazyCallGraph & G)218     SCC(LazyCallGraph &G) : G(&G) {}
219 
220     void insert(Node &N);
221 
222     void
223     internalDFS(SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack,
224                 SmallVectorImpl<Node *> &PendingSCCStack, Node *N,
225                 SmallVectorImpl<SCC *> &ResultSCCs);
226 
227   public:
228     typedef SmallVectorImpl<Node *>::const_iterator iterator;
229     typedef pointee_iterator<SmallPtrSet<SCC *, 1>::const_iterator> parent_iterator;
230 
begin()231     iterator begin() const { return Nodes.begin(); }
end()232     iterator end() const { return Nodes.end(); }
233 
parent_begin()234     parent_iterator parent_begin() const { return ParentSCCs.begin(); }
parent_end()235     parent_iterator parent_end() const { return ParentSCCs.end(); }
236 
parents()237     iterator_range<parent_iterator> parents() const {
238       return iterator_range<parent_iterator>(parent_begin(), parent_end());
239     }
240 
241     /// \brief Test if this SCC is a parent of \a C.
isParentOf(const SCC & C)242     bool isParentOf(const SCC &C) const { return C.isChildOf(*this); }
243 
244     /// \brief Test if this SCC is an ancestor of \a C.
isAncestorOf(const SCC & C)245     bool isAncestorOf(const SCC &C) const { return C.isDescendantOf(*this); }
246 
247     /// \brief Test if this SCC is a child of \a C.
isChildOf(const SCC & C)248     bool isChildOf(const SCC &C) const {
249       return ParentSCCs.count(const_cast<SCC *>(&C));
250     }
251 
252     /// \brief Test if this SCC is a descendant of \a C.
253     bool isDescendantOf(const SCC &C) const;
254 
255     ///@{
256     /// \name Mutation API
257     ///
258     /// These methods provide the core API for updating the call graph in the
259     /// presence of a (potentially still in-flight) DFS-found SCCs.
260     ///
261     /// Note that these methods sometimes have complex runtimes, so be careful
262     /// how you call them.
263 
264     /// \brief Insert an edge from one node in this SCC to another in this SCC.
265     ///
266     /// By the definition of an SCC, this does not change the nature or make-up
267     /// of any SCCs.
268     void insertIntraSCCEdge(Node &CallerN, Node &CalleeN);
269 
270     /// \brief Insert an edge whose tail is in this SCC and head is in some
271     /// child SCC.
272     ///
273     /// There must be an existing path from the caller to the callee. This
274     /// operation is inexpensive and does not change the set of SCCs in the
275     /// graph.
276     void insertOutgoingEdge(Node &CallerN, Node &CalleeN);
277 
278     /// \brief Insert an edge whose tail is in a descendant SCC and head is in
279     /// this SCC.
280     ///
281     /// There must be an existing path from the callee to the caller in this
282     /// case. NB! This is has the potential to be a very expensive function. It
283     /// inherently forms a cycle in the prior SCC DAG and we have to merge SCCs
284     /// to resolve that cycle. But finding all of the SCCs which participate in
285     /// the cycle can in the worst case require traversing every SCC in the
286     /// graph. Every attempt is made to avoid that, but passes must still
287     /// exercise caution calling this routine repeatedly.
288     ///
289     /// FIXME: We could possibly optimize this quite a bit for cases where the
290     /// caller and callee are very nearby in the graph. See comments in the
291     /// implementation for details, but that use case might impact users.
292     SmallVector<SCC *, 1> insertIncomingEdge(Node &CallerN, Node &CalleeN);
293 
294     /// \brief Remove an edge whose source is in this SCC and target is *not*.
295     ///
296     /// This removes an inter-SCC edge. All inter-SCC edges originating from
297     /// this SCC have been fully explored by any in-flight DFS SCC formation,
298     /// so this is always safe to call once you have the source SCC.
299     ///
300     /// This operation does not change the set of SCCs or the members of the
301     /// SCCs and so is very inexpensive. It may change the connectivity graph
302     /// of the SCCs though, so be careful calling this while iterating over
303     /// them.
304     void removeInterSCCEdge(Node &CallerN, Node &CalleeN);
305 
306     /// \brief Remove an edge which is entirely within this SCC.
307     ///
308     /// Both the \a Caller and the \a Callee must be within this SCC. Removing
309     /// such an edge make break cycles that form this SCC and thus this
310     /// operation may change the SCC graph significantly. In particular, this
311     /// operation will re-form new SCCs based on the remaining connectivity of
312     /// the graph. The following invariants are guaranteed to hold after
313     /// calling this method:
314     ///
315     /// 1) This SCC is still an SCC in the graph.
316     /// 2) This SCC will be the parent of any new SCCs. Thus, this SCC is
317     ///    preserved as the root of any new SCC directed graph formed.
318     /// 3) No SCC other than this SCC has its member set changed (this is
319     ///    inherent in the definition of removing such an edge).
320     /// 4) All of the parent links of the SCC graph will be updated to reflect
321     ///    the new SCC structure.
322     /// 5) All SCCs formed out of this SCC, excluding this SCC, will be
323     ///    returned in a vector.
324     /// 6) The order of the SCCs in the vector will be a valid postorder
325     ///    traversal of the new SCCs.
326     ///
327     /// These invariants are very important to ensure that we can build
328     /// optimization pipeliens on top of the CGSCC pass manager which
329     /// intelligently update the SCC graph without invalidating other parts of
330     /// the SCC graph.
331     ///
332     /// The runtime complexity of this method is, in the worst case, O(V+E)
333     /// where V is the number of nodes in this SCC and E is the number of edges
334     /// leaving the nodes in this SCC. Note that E includes both edges within
335     /// this SCC and edges from this SCC to child SCCs. Some effort has been
336     /// made to minimize the overhead of common cases such as self-edges and
337     /// edge removals which result in a spanning tree with no more cycles.
338     SmallVector<SCC *, 1> removeIntraSCCEdge(Node &CallerN, Node &CalleeN);
339 
340     ///@}
341   };
342 
343   /// \brief A post-order depth-first SCC iterator over the call graph.
344   ///
345   /// This iterator triggers the Tarjan DFS-based formation of the SCC DAG for
346   /// the call graph, walking it lazily in depth-first post-order. That is, it
347   /// always visits SCCs for a callee prior to visiting the SCC for a caller
348   /// (when they are in different SCCs).
349   class postorder_scc_iterator
350       : public iterator_facade_base<postorder_scc_iterator,
351                                     std::forward_iterator_tag, SCC> {
352     friend class LazyCallGraph;
353     friend class LazyCallGraph::Node;
354 
355     /// \brief Nonce type to select the constructor for the end iterator.
356     struct IsAtEndT {};
357 
358     LazyCallGraph *G;
359     SCC *C;
360 
361     // Build the begin iterator for a node.
postorder_scc_iterator(LazyCallGraph & G)362     postorder_scc_iterator(LazyCallGraph &G) : G(&G) {
363       C = G.getNextSCCInPostOrder();
364     }
365 
366     // Build the end iterator for a node. This is selected purely by overload.
postorder_scc_iterator(LazyCallGraph & G,IsAtEndT)367     postorder_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/)
368         : G(&G), C(nullptr) {}
369 
370   public:
371     bool operator==(const postorder_scc_iterator &Arg) const {
372       return G == Arg.G && C == Arg.C;
373     }
374 
375     reference operator*() const { return *C; }
376 
377     using iterator_facade_base::operator++;
378     postorder_scc_iterator &operator++() {
379       C = G->getNextSCCInPostOrder();
380       return *this;
381     }
382   };
383 
384   /// \brief Construct a graph for the given module.
385   ///
386   /// This sets up the graph and computes all of the entry points of the graph.
387   /// No function definitions are scanned until their nodes in the graph are
388   /// requested during traversal.
389   LazyCallGraph(Module &M);
390 
391   LazyCallGraph(LazyCallGraph &&G);
392   LazyCallGraph &operator=(LazyCallGraph &&RHS);
393 
begin()394   iterator begin() {
395     return iterator(*this, EntryNodes.begin(), EntryNodes.end());
396   }
end()397   iterator end() { return iterator(*this, EntryNodes.end(), EntryNodes.end()); }
398 
postorder_scc_begin()399   postorder_scc_iterator postorder_scc_begin() {
400     return postorder_scc_iterator(*this);
401   }
postorder_scc_end()402   postorder_scc_iterator postorder_scc_end() {
403     return postorder_scc_iterator(*this, postorder_scc_iterator::IsAtEndT());
404   }
405 
postorder_sccs()406   iterator_range<postorder_scc_iterator> postorder_sccs() {
407     return iterator_range<postorder_scc_iterator>(postorder_scc_begin(),
408                                                   postorder_scc_end());
409   }
410 
411   /// \brief Lookup a function in the graph which has already been scanned and
412   /// added.
lookup(const Function & F)413   Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
414 
415   /// \brief Lookup a function's SCC in the graph.
416   ///
417   /// \returns null if the function hasn't been assigned an SCC via the SCC
418   /// iterator walk.
lookupSCC(Node & N)419   SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
420 
421   /// \brief Get a graph node for a given function, scanning it to populate the
422   /// graph data as necessary.
get(Function & F)423   Node &get(Function &F) {
424     Node *&N = NodeMap[&F];
425     if (N)
426       return *N;
427 
428     return insertInto(F, N);
429   }
430 
431   ///@{
432   /// \name Pre-SCC Mutation API
433   ///
434   /// These methods are only valid to call prior to forming any SCCs for this
435   /// call graph. They can be used to update the core node-graph during
436   /// a node-based inorder traversal that precedes any SCC-based traversal.
437   ///
438   /// Once you begin manipulating a call graph's SCCs, you must perform all
439   /// mutation of the graph via the SCC methods.
440 
441   /// \brief Update the call graph after inserting a new edge.
442   void insertEdge(Node &Caller, Function &Callee);
443 
444   /// \brief Update the call graph after inserting a new edge.
insertEdge(Function & Caller,Function & Callee)445   void insertEdge(Function &Caller, Function &Callee) {
446     return insertEdge(get(Caller), Callee);
447   }
448 
449   /// \brief Update the call graph after deleting an edge.
450   void removeEdge(Node &Caller, Function &Callee);
451 
452   /// \brief Update the call graph after deleting an edge.
removeEdge(Function & Caller,Function & Callee)453   void removeEdge(Function &Caller, Function &Callee) {
454     return removeEdge(get(Caller), Callee);
455   }
456 
457   ///@}
458 
459 private:
460   /// \brief Allocator that holds all the call graph nodes.
461   SpecificBumpPtrAllocator<Node> BPA;
462 
463   /// \brief Maps function->node for fast lookup.
464   DenseMap<const Function *, Node *> NodeMap;
465 
466   /// \brief The entry nodes to the graph.
467   ///
468   /// These nodes are reachable through "external" means. Put another way, they
469   /// escape at the module scope.
470   NodeVectorT EntryNodes;
471 
472   /// \brief Map of the entry nodes in the graph to their indices in
473   /// \c EntryNodes.
474   DenseMap<Function *, size_t> EntryIndexMap;
475 
476   /// \brief Allocator that holds all the call graph SCCs.
477   SpecificBumpPtrAllocator<SCC> SCCBPA;
478 
479   /// \brief Maps Function -> SCC for fast lookup.
480   DenseMap<Node *, SCC *> SCCMap;
481 
482   /// \brief The leaf SCCs of the graph.
483   ///
484   /// These are all of the SCCs which have no children.
485   SmallVector<SCC *, 4> LeafSCCs;
486 
487   /// \brief Stack of nodes in the DFS walk.
488   SmallVector<std::pair<Node *, iterator>, 4> DFSStack;
489 
490   /// \brief Set of entry nodes not-yet-processed into SCCs.
491   SmallVector<Function *, 4> SCCEntryNodes;
492 
493   /// \brief Stack of nodes the DFS has walked but not yet put into a SCC.
494   SmallVector<Node *, 4> PendingSCCStack;
495 
496   /// \brief Counter for the next DFS number to assign.
497   int NextDFSNumber;
498 
499   /// \brief Helper to insert a new function, with an already looked-up entry in
500   /// the NodeMap.
501   Node &insertInto(Function &F, Node *&MappedN);
502 
503   /// \brief Helper to update pointers back to the graph object during moves.
504   void updateGraphPtrs();
505 
506   /// \brief Helper to form a new SCC out of the top of a DFSStack-like
507   /// structure.
508   SCC *formSCC(Node *RootN, SmallVectorImpl<Node *> &NodeStack);
509 
510   /// \brief Retrieve the next node in the post-order SCC walk of the call graph.
511   SCC *getNextSCCInPostOrder();
512 };
513 
514 // Provide GraphTraits specializations for call graphs.
515 template <> struct GraphTraits<LazyCallGraph::Node *> {
516   typedef LazyCallGraph::Node NodeType;
517   typedef LazyCallGraph::iterator ChildIteratorType;
518 
519   static NodeType *getEntryNode(NodeType *N) { return N; }
520   static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
521   static ChildIteratorType child_end(NodeType *N) { return N->end(); }
522 };
523 template <> struct GraphTraits<LazyCallGraph *> {
524   typedef LazyCallGraph::Node NodeType;
525   typedef LazyCallGraph::iterator ChildIteratorType;
526 
527   static NodeType *getEntryNode(NodeType *N) { return N; }
528   static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
529   static ChildIteratorType child_end(NodeType *N) { return N->end(); }
530 };
531 
532 /// \brief An analysis pass which computes the call graph for a module.
533 class LazyCallGraphAnalysis {
534 public:
535   /// \brief Inform generic clients of the result type.
536   typedef LazyCallGraph Result;
537 
538   static void *ID() { return (void *)&PassID; }
539 
540   /// \brief Compute the \c LazyCallGraph for a the module \c M.
541   ///
542   /// This just builds the set of entry points to the call graph. The rest is
543   /// built lazily as it is walked.
544   LazyCallGraph run(Module *M) { return LazyCallGraph(*M); }
545 
546 private:
547   static char PassID;
548 };
549 
550 /// \brief A pass which prints the call graph to a \c raw_ostream.
551 ///
552 /// This is primarily useful for testing the analysis.
553 class LazyCallGraphPrinterPass {
554   raw_ostream &OS;
555 
556 public:
557   explicit LazyCallGraphPrinterPass(raw_ostream &OS);
558 
559   PreservedAnalyses run(Module *M, ModuleAnalysisManager *AM);
560 
561   static StringRef name() { return "LazyCallGraphPrinterPass"; }
562 };
563 
564 }
565 
566 #endif
567