• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes.  Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_CODEGEN_LIVEINTERVAL_H
22 #define LLVM_CODEGEN_LIVEINTERVAL_H
23 
24 #include "llvm/ADT/IntEqClasses.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/Support/AlignOf.h"
27 #include "llvm/Support/Allocator.h"
28 #include <cassert>
29 #include <climits>
30 
31 namespace llvm {
32   class CoalescerPair;
33   class LiveIntervals;
34   class MachineInstr;
35   class MachineRegisterInfo;
36   class TargetRegisterInfo;
37   class raw_ostream;
38   template <typename T, unsigned Small> class SmallPtrSet;
39 
40   /// VNInfo - Value Number Information.
41   /// This class holds information about a machine level values, including
42   /// definition and use points.
43   ///
44   class VNInfo {
45   public:
46     typedef BumpPtrAllocator Allocator;
47 
48     /// The ID number of this value.
49     unsigned id;
50 
51     /// The index of the defining instruction.
52     SlotIndex def;
53 
54     /// VNInfo constructor.
VNInfo(unsigned i,SlotIndex d)55     VNInfo(unsigned i, SlotIndex d)
56       : id(i), def(d)
57     { }
58 
59     /// VNInfo construtor, copies values from orig, except for the value number.
VNInfo(unsigned i,const VNInfo & orig)60     VNInfo(unsigned i, const VNInfo &orig)
61       : id(i), def(orig.def)
62     { }
63 
64     /// Copy from the parameter into this VNInfo.
copyFrom(VNInfo & src)65     void copyFrom(VNInfo &src) {
66       def = src.def;
67     }
68 
69     /// Returns true if this value is defined by a PHI instruction (or was,
70     /// PHI instructions may have been eliminated).
71     /// PHI-defs begin at a block boundary, all other defs begin at register or
72     /// EC slots.
isPHIDef()73     bool isPHIDef() const { return def.isBlock(); }
74 
75     /// Returns true if this value is unused.
isUnused()76     bool isUnused() const { return !def.isValid(); }
77 
78     /// Mark this value as unused.
markUnused()79     void markUnused() { def = SlotIndex(); }
80   };
81 
82   /// Result of a LiveRange query. This class hides the implementation details
83   /// of live ranges, and it should be used as the primary interface for
84   /// examining live ranges around instructions.
85   class LiveQueryResult {
86     VNInfo *const EarlyVal;
87     VNInfo *const LateVal;
88     const SlotIndex EndPoint;
89     const bool Kill;
90 
91   public:
LiveQueryResult(VNInfo * EarlyVal,VNInfo * LateVal,SlotIndex EndPoint,bool Kill)92     LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
93                     bool Kill)
94       : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
95     {}
96 
97     /// Return the value that is live-in to the instruction. This is the value
98     /// that will be read by the instruction's use operands. Return NULL if no
99     /// value is live-in.
valueIn()100     VNInfo *valueIn() const {
101       return EarlyVal;
102     }
103 
104     /// Return true if the live-in value is killed by this instruction. This
105     /// means that either the live range ends at the instruction, or it changes
106     /// value.
isKill()107     bool isKill() const {
108       return Kill;
109     }
110 
111     /// Return true if this instruction has a dead def.
isDeadDef()112     bool isDeadDef() const {
113       return EndPoint.isDead();
114     }
115 
116     /// Return the value leaving the instruction, if any. This can be a
117     /// live-through value, or a live def. A dead def returns NULL.
valueOut()118     VNInfo *valueOut() const {
119       return isDeadDef() ? nullptr : LateVal;
120     }
121 
122     /// Return the value defined by this instruction, if any. This includes
123     /// dead defs, it is the value created by the instruction's def operands.
valueDefined()124     VNInfo *valueDefined() const {
125       return EarlyVal == LateVal ? nullptr : LateVal;
126     }
127 
128     /// Return the end point of the last live range segment to interact with
129     /// the instruction, if any.
130     ///
131     /// The end point is an invalid SlotIndex only if the live range doesn't
132     /// intersect the instruction at all.
133     ///
134     /// The end point may be at or past the end of the instruction's basic
135     /// block. That means the value was live out of the block.
endPoint()136     SlotIndex endPoint() const {
137       return EndPoint;
138     }
139   };
140 
141   /// This class represents the liveness of a register, stack slot, etc.
142   /// It manages an ordered list of Segment objects.
143   /// The Segments are organized in a static single assignment form: At places
144   /// where a new value is defined or different values reach a CFG join a new
145   /// segment with a new value number is used.
146   class LiveRange {
147   public:
148 
149     /// This represents a simple continuous liveness interval for a value.
150     /// The start point is inclusive, the end point exclusive. These intervals
151     /// are rendered as [start,end).
152     struct Segment {
153       SlotIndex start;  // Start point of the interval (inclusive)
154       SlotIndex end;    // End point of the interval (exclusive)
155       VNInfo *valno;    // identifier for the value contained in this segment.
156 
SegmentSegment157       Segment() : valno(nullptr) {}
158 
SegmentSegment159       Segment(SlotIndex S, SlotIndex E, VNInfo *V)
160         : start(S), end(E), valno(V) {
161         assert(S < E && "Cannot create empty or backwards segment");
162       }
163 
164       /// Return true if the index is covered by this segment.
containsSegment165       bool contains(SlotIndex I) const {
166         return start <= I && I < end;
167       }
168 
169       /// Return true if the given interval, [S, E), is covered by this segment.
containsIntervalSegment170       bool containsInterval(SlotIndex S, SlotIndex E) const {
171         assert((S < E) && "Backwards interval?");
172         return (start <= S && S < end) && (start < E && E <= end);
173       }
174 
175       bool operator<(const Segment &Other) const {
176         return std::tie(start, end) < std::tie(Other.start, Other.end);
177       }
178       bool operator==(const Segment &Other) const {
179         return start == Other.start && end == Other.end;
180       }
181 
182       void dump() const;
183     };
184 
185     typedef SmallVector<Segment,4> Segments;
186     typedef SmallVector<VNInfo*,4> VNInfoList;
187 
188     Segments segments;   // the liveness segments
189     VNInfoList valnos;   // value#'s
190 
191     typedef Segments::iterator iterator;
begin()192     iterator begin() { return segments.begin(); }
end()193     iterator end()   { return segments.end(); }
194 
195     typedef Segments::const_iterator const_iterator;
begin()196     const_iterator begin() const { return segments.begin(); }
end()197     const_iterator end() const  { return segments.end(); }
198 
199     typedef VNInfoList::iterator vni_iterator;
vni_begin()200     vni_iterator vni_begin() { return valnos.begin(); }
vni_end()201     vni_iterator vni_end()   { return valnos.end(); }
202 
203     typedef VNInfoList::const_iterator const_vni_iterator;
vni_begin()204     const_vni_iterator vni_begin() const { return valnos.begin(); }
vni_end()205     const_vni_iterator vni_end() const   { return valnos.end(); }
206 
207     /// advanceTo - Advance the specified iterator to point to the Segment
208     /// containing the specified position, or end() if the position is past the
209     /// end of the range.  If no Segment contains this position, but the
210     /// position is in a hole, this method returns an iterator pointing to the
211     /// Segment immediately after the hole.
advanceTo(iterator I,SlotIndex Pos)212     iterator advanceTo(iterator I, SlotIndex Pos) {
213       assert(I != end());
214       if (Pos >= endIndex())
215         return end();
216       while (I->end <= Pos) ++I;
217       return I;
218     }
219 
220     /// find - Return an iterator pointing to the first segment that ends after
221     /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
222     /// when searching large ranges.
223     ///
224     /// If Pos is contained in a Segment, that segment is returned.
225     /// If Pos is in a hole, the following Segment is returned.
226     /// If Pos is beyond endIndex, end() is returned.
227     iterator find(SlotIndex Pos);
228 
find(SlotIndex Pos)229     const_iterator find(SlotIndex Pos) const {
230       return const_cast<LiveRange*>(this)->find(Pos);
231     }
232 
clear()233     void clear() {
234       valnos.clear();
235       segments.clear();
236     }
237 
size()238     size_t size() const {
239       return segments.size();
240     }
241 
hasAtLeastOneValue()242     bool hasAtLeastOneValue() const { return !valnos.empty(); }
243 
containsOneValue()244     bool containsOneValue() const { return valnos.size() == 1; }
245 
getNumValNums()246     unsigned getNumValNums() const { return (unsigned)valnos.size(); }
247 
248     /// getValNumInfo - Returns pointer to the specified val#.
249     ///
getValNumInfo(unsigned ValNo)250     inline VNInfo *getValNumInfo(unsigned ValNo) {
251       return valnos[ValNo];
252     }
getValNumInfo(unsigned ValNo)253     inline const VNInfo *getValNumInfo(unsigned ValNo) const {
254       return valnos[ValNo];
255     }
256 
257     /// containsValue - Returns true if VNI belongs to this range.
containsValue(const VNInfo * VNI)258     bool containsValue(const VNInfo *VNI) const {
259       return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
260     }
261 
262     /// getNextValue - Create a new value number and return it.  MIIdx specifies
263     /// the instruction that defines the value number.
getNextValue(SlotIndex def,VNInfo::Allocator & VNInfoAllocator)264     VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
265       VNInfo *VNI =
266         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
267       valnos.push_back(VNI);
268       return VNI;
269     }
270 
271     /// createDeadDef - Make sure the range has a value defined at Def.
272     /// If one already exists, return it. Otherwise allocate a new value and
273     /// add liveness for a dead def.
274     VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
275 
276     /// Create a copy of the given value. The new value will be identical except
277     /// for the Value number.
createValueCopy(const VNInfo * orig,VNInfo::Allocator & VNInfoAllocator)278     VNInfo *createValueCopy(const VNInfo *orig,
279                             VNInfo::Allocator &VNInfoAllocator) {
280       VNInfo *VNI =
281         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
282       valnos.push_back(VNI);
283       return VNI;
284     }
285 
286     /// RenumberValues - Renumber all values in order of appearance and remove
287     /// unused values.
288     void RenumberValues();
289 
290     /// MergeValueNumberInto - This method is called when two value numbers
291     /// are found to be equivalent.  This eliminates V1, replacing all
292     /// segments with the V1 value number with the V2 value number.  This can
293     /// cause merging of V1/V2 values numbers and compaction of the value space.
294     VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
295 
296     /// Merge all of the live segments of a specific val# in RHS into this live
297     /// range as the specified value number. The segments in RHS are allowed
298     /// to overlap with segments in the current range, it will replace the
299     /// value numbers of the overlaped live segments with the specified value
300     /// number.
301     void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
302 
303     /// MergeValueInAsValue - Merge all of the segments of a specific val#
304     /// in RHS into this live range as the specified value number.
305     /// The segments in RHS are allowed to overlap with segments in the
306     /// current range, but only if the overlapping segments have the
307     /// specified value number.
308     void MergeValueInAsValue(const LiveRange &RHS,
309                              const VNInfo *RHSValNo, VNInfo *LHSValNo);
310 
empty()311     bool empty() const { return segments.empty(); }
312 
313     /// beginIndex - Return the lowest numbered slot covered.
beginIndex()314     SlotIndex beginIndex() const {
315       assert(!empty() && "Call to beginIndex() on empty range.");
316       return segments.front().start;
317     }
318 
319     /// endNumber - return the maximum point of the range of the whole,
320     /// exclusive.
endIndex()321     SlotIndex endIndex() const {
322       assert(!empty() && "Call to endIndex() on empty range.");
323       return segments.back().end;
324     }
325 
expiredAt(SlotIndex index)326     bool expiredAt(SlotIndex index) const {
327       return index >= endIndex();
328     }
329 
liveAt(SlotIndex index)330     bool liveAt(SlotIndex index) const {
331       const_iterator r = find(index);
332       return r != end() && r->start <= index;
333     }
334 
335     /// Return the segment that contains the specified index, or null if there
336     /// is none.
getSegmentContaining(SlotIndex Idx)337     const Segment *getSegmentContaining(SlotIndex Idx) const {
338       const_iterator I = FindSegmentContaining(Idx);
339       return I == end() ? nullptr : &*I;
340     }
341 
342     /// Return the live segment that contains the specified index, or null if
343     /// there is none.
getSegmentContaining(SlotIndex Idx)344     Segment *getSegmentContaining(SlotIndex Idx) {
345       iterator I = FindSegmentContaining(Idx);
346       return I == end() ? nullptr : &*I;
347     }
348 
349     /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
getVNInfoAt(SlotIndex Idx)350     VNInfo *getVNInfoAt(SlotIndex Idx) const {
351       const_iterator I = FindSegmentContaining(Idx);
352       return I == end() ? nullptr : I->valno;
353     }
354 
355     /// getVNInfoBefore - Return the VNInfo that is live up to but not
356     /// necessarilly including Idx, or NULL. Use this to find the reaching def
357     /// used by an instruction at this SlotIndex position.
getVNInfoBefore(SlotIndex Idx)358     VNInfo *getVNInfoBefore(SlotIndex Idx) const {
359       const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
360       return I == end() ? nullptr : I->valno;
361     }
362 
363     /// Return an iterator to the segment that contains the specified index, or
364     /// end() if there is none.
FindSegmentContaining(SlotIndex Idx)365     iterator FindSegmentContaining(SlotIndex Idx) {
366       iterator I = find(Idx);
367       return I != end() && I->start <= Idx ? I : end();
368     }
369 
FindSegmentContaining(SlotIndex Idx)370     const_iterator FindSegmentContaining(SlotIndex Idx) const {
371       const_iterator I = find(Idx);
372       return I != end() && I->start <= Idx ? I : end();
373     }
374 
375     /// overlaps - Return true if the intersection of the two live ranges is
376     /// not empty.
overlaps(const LiveRange & other)377     bool overlaps(const LiveRange &other) const {
378       if (other.empty())
379         return false;
380       return overlapsFrom(other, other.begin());
381     }
382 
383     /// overlaps - Return true if the two ranges have overlapping segments
384     /// that are not coalescable according to CP.
385     ///
386     /// Overlapping segments where one range is defined by a coalescable
387     /// copy are allowed.
388     bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
389                   const SlotIndexes&) const;
390 
391     /// overlaps - Return true if the live range overlaps an interval specified
392     /// by [Start, End).
393     bool overlaps(SlotIndex Start, SlotIndex End) const;
394 
395     /// overlapsFrom - Return true if the intersection of the two live ranges
396     /// is not empty.  The specified iterator is a hint that we can begin
397     /// scanning the Other range starting at I.
398     bool overlapsFrom(const LiveRange &Other, const_iterator I) const;
399 
400     /// Add the specified Segment to this range, merging segments as
401     /// appropriate.  This returns an iterator to the inserted segment (which
402     /// may have grown since it was inserted).
addSegment(Segment S)403     iterator addSegment(Segment S) {
404       return addSegmentFrom(S, segments.begin());
405     }
406 
407     /// extendInBlock - If this range is live before Kill in the basic block
408     /// that starts at StartIdx, extend it to be live up to Kill, and return
409     /// the value. If there is no segment before Kill, return NULL.
410     VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
411 
412     /// join - Join two live ranges (this, and other) together.  This applies
413     /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
414     /// the ranges are not joinable, this aborts.
415     void join(LiveRange &Other,
416               const int *ValNoAssignments,
417               const int *RHSValNoAssignments,
418               SmallVectorImpl<VNInfo *> &NewVNInfo);
419 
420     /// True iff this segment is a single segment that lies between the
421     /// specified boundaries, exclusively. Vregs live across a backedge are not
422     /// considered local. The boundaries are expected to lie within an extended
423     /// basic block, so vregs that are not live out should contain no holes.
isLocal(SlotIndex Start,SlotIndex End)424     bool isLocal(SlotIndex Start, SlotIndex End) const {
425       return beginIndex() > Start.getBaseIndex() &&
426         endIndex() < End.getBoundaryIndex();
427     }
428 
429     /// Remove the specified segment from this range.  Note that the segment
430     /// must be a single Segment in its entirety.
431     void removeSegment(SlotIndex Start, SlotIndex End,
432                        bool RemoveDeadValNo = false);
433 
434     void removeSegment(Segment S, bool RemoveDeadValNo = false) {
435       removeSegment(S.start, S.end, RemoveDeadValNo);
436     }
437 
438     /// Query Liveness at Idx.
439     /// The sub-instruction slot of Idx doesn't matter, only the instruction
440     /// it refers to is considered.
Query(SlotIndex Idx)441     LiveQueryResult Query(SlotIndex Idx) const {
442       // Find the segment that enters the instruction.
443       const_iterator I = find(Idx.getBaseIndex());
444       const_iterator E = end();
445       if (I == E)
446         return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
447 
448       // Is this an instruction live-in segment?
449       // If Idx is the start index of a basic block, include live-in segments
450       // that start at Idx.getBaseIndex().
451       VNInfo *EarlyVal = nullptr;
452       VNInfo *LateVal  = nullptr;
453       SlotIndex EndPoint;
454       bool Kill = false;
455       if (I->start <= Idx.getBaseIndex()) {
456         EarlyVal = I->valno;
457         EndPoint = I->end;
458         // Move to the potentially live-out segment.
459         if (SlotIndex::isSameInstr(Idx, I->end)) {
460           Kill = true;
461           if (++I == E)
462             return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
463         }
464         // Special case: A PHIDef value can have its def in the middle of a
465         // segment if the value happens to be live out of the layout
466         // predecessor.
467         // Such a value is not live-in.
468         if (EarlyVal->def == Idx.getBaseIndex())
469           EarlyVal = nullptr;
470       }
471       // I now points to the segment that may be live-through, or defined by
472       // this instr. Ignore segments starting after the current instr.
473       if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
474         LateVal = I->valno;
475         EndPoint = I->end;
476       }
477       return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
478     }
479 
480     /// removeValNo - Remove all the segments defined by the specified value#.
481     /// Also remove the value# from value# list.
482     void removeValNo(VNInfo *ValNo);
483 
484     /// Returns true if the live range is zero length, i.e. no live segments
485     /// span instructions. It doesn't pay to spill such a range.
isZeroLength(SlotIndexes * Indexes)486     bool isZeroLength(SlotIndexes *Indexes) const {
487       for (const_iterator i = begin(), e = end(); i != e; ++i)
488         if (Indexes->getNextNonNullIndex(i->start).getBaseIndex() <
489             i->end.getBaseIndex())
490           return false;
491       return true;
492     }
493 
494     bool operator<(const LiveRange& other) const {
495       const SlotIndex &thisIndex = beginIndex();
496       const SlotIndex &otherIndex = other.beginIndex();
497       return thisIndex < otherIndex;
498     }
499 
500     void print(raw_ostream &OS) const;
501     void dump() const;
502 
503     /// \brief Walk the range and assert if any invariants fail to hold.
504     ///
505     /// Note that this is a no-op when asserts are disabled.
506 #ifdef NDEBUG
verify()507     void verify() const {}
508 #else
509     void verify() const;
510 #endif
511 
512   private:
513 
514     iterator addSegmentFrom(Segment S, iterator From);
515     void extendSegmentEndTo(iterator I, SlotIndex NewEnd);
516     iterator extendSegmentStartTo(iterator I, SlotIndex NewStr);
517     void markValNoForDeletion(VNInfo *V);
518 
519   };
520 
521   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
522     LR.print(OS);
523     return OS;
524   }
525 
526   /// LiveInterval - This class represents the liveness of a register,
527   /// or stack slot.
528   class LiveInterval : public LiveRange {
529   public:
530     typedef LiveRange super;
531 
532     const unsigned reg;  // the register or stack slot of this interval.
533     float weight;        // weight of this interval
534 
LiveInterval(unsigned Reg,float Weight)535     LiveInterval(unsigned Reg, float Weight)
536       : reg(Reg), weight(Weight) {}
537 
538     /// getSize - Returns the sum of sizes of all the LiveRange's.
539     ///
540     unsigned getSize() const;
541 
542     /// isSpillable - Can this interval be spilled?
isSpillable()543     bool isSpillable() const {
544       return weight != llvm::huge_valf;
545     }
546 
547     /// markNotSpillable - Mark interval as not spillable
markNotSpillable()548     void markNotSpillable() {
549       weight = llvm::huge_valf;
550     }
551 
552     bool operator<(const LiveInterval& other) const {
553       const SlotIndex &thisIndex = beginIndex();
554       const SlotIndex &otherIndex = other.beginIndex();
555       return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg);
556     }
557 
558     void print(raw_ostream &OS) const;
559     void dump() const;
560 
561   private:
562     LiveInterval& operator=(const LiveInterval& rhs) LLVM_DELETED_FUNCTION;
563 
564   };
565 
566   inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
567     LI.print(OS);
568     return OS;
569   }
570 
571   raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
572 
573   inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
574     return V < S.start;
575   }
576 
577   inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
578     return S.start < V;
579   }
580 
581   /// Helper class for performant LiveRange bulk updates.
582   ///
583   /// Calling LiveRange::addSegment() repeatedly can be expensive on large
584   /// live ranges because segments after the insertion point may need to be
585   /// shifted. The LiveRangeUpdater class can defer the shifting when adding
586   /// many segments in order.
587   ///
588   /// The LiveRange will be in an invalid state until flush() is called.
589   class LiveRangeUpdater {
590     LiveRange *LR;
591     SlotIndex LastStart;
592     LiveRange::iterator WriteI;
593     LiveRange::iterator ReadI;
594     SmallVector<LiveRange::Segment, 16> Spills;
595     void mergeSpills();
596 
597   public:
598     /// Create a LiveRangeUpdater for adding segments to LR.
599     /// LR will temporarily be in an invalid state until flush() is called.
LR(lr)600     LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
601 
~LiveRangeUpdater()602     ~LiveRangeUpdater() { flush(); }
603 
604     /// Add a segment to LR and coalesce when possible, just like
605     /// LR.addSegment(). Segments should be added in increasing start order for
606     /// best performance.
607     void add(LiveRange::Segment);
608 
add(SlotIndex Start,SlotIndex End,VNInfo * VNI)609     void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
610       add(LiveRange::Segment(Start, End, VNI));
611     }
612 
613     /// Return true if the LR is currently in an invalid state, and flush()
614     /// needs to be called.
isDirty()615     bool isDirty() const { return LastStart.isValid(); }
616 
617     /// Flush the updater state to LR so it is valid and contains all added
618     /// segments.
619     void flush();
620 
621     /// Select a different destination live range.
setDest(LiveRange * lr)622     void setDest(LiveRange *lr) {
623       if (LR != lr && isDirty())
624         flush();
625       LR = lr;
626     }
627 
628     /// Get the current destination live range.
getDest()629     LiveRange *getDest() const { return LR; }
630 
631     void dump() const;
632     void print(raw_ostream&) const;
633   };
634 
635   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
636     X.print(OS);
637     return OS;
638   }
639 
640   /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
641   /// LiveInterval into equivalence clases of connected components. A
642   /// LiveInterval that has multiple connected components can be broken into
643   /// multiple LiveIntervals.
644   ///
645   /// Given a LiveInterval that may have multiple connected components, run:
646   ///
647   ///   unsigned numComps = ConEQ.Classify(LI);
648   ///   if (numComps > 1) {
649   ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
650   ///     ConEQ.Distribute(LIS);
651   /// }
652 
653   class ConnectedVNInfoEqClasses {
654     LiveIntervals &LIS;
655     IntEqClasses EqClass;
656 
657     // Note that values a and b are connected.
658     void Connect(unsigned a, unsigned b);
659 
660     unsigned Renumber();
661 
662   public:
ConnectedVNInfoEqClasses(LiveIntervals & lis)663     explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
664 
665     /// Classify - Classify the values in LI into connected components.
666     /// Return the number of connected components.
667     unsigned Classify(const LiveInterval *LI);
668 
669     /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
670     /// the equivalence class assigned the VNI.
getEqClass(const VNInfo * VNI)671     unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
672 
673     /// Distribute - Distribute values in LIV[0] into a separate LiveInterval
674     /// for each connected component. LIV must have a LiveInterval for each
675     /// connected component. The LiveIntervals in Liv[1..] must be empty.
676     /// Instructions using LIV[0] are rewritten.
677     void Distribute(LiveInterval *LIV[], MachineRegisterInfo &MRI);
678 
679   };
680 
681 }
682 #endif
683