1 //===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines specializations of GraphTraits that allow Function and
11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_IR_CFG_H
16 #define LLVM_IR_CFG_H
17
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/InstrTypes.h"
21
22 namespace llvm {
23
24 //===----------------------------------------------------------------------===//
25 // BasicBlock pred_iterator definition
26 //===----------------------------------------------------------------------===//
27
28 template <class Ptr, class USE_iterator> // Predecessor Iterator
29 class PredIterator : public std::iterator<std::forward_iterator_tag,
30 Ptr, ptrdiff_t, Ptr*, Ptr*> {
31 typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
32 Ptr*> super;
33 typedef PredIterator<Ptr, USE_iterator> Self;
34 USE_iterator It;
35
advancePastNonTerminators()36 inline void advancePastNonTerminators() {
37 // Loop to ignore non-terminator uses (for example BlockAddresses).
38 while (!It.atEnd() && !isa<TerminatorInst>(*It))
39 ++It;
40 }
41
42 public:
43 typedef typename super::pointer pointer;
44 typedef typename super::reference reference;
45
PredIterator()46 PredIterator() {}
PredIterator(Ptr * bb)47 explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
48 advancePastNonTerminators();
49 }
PredIterator(Ptr * bb,bool)50 inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
51
52 inline bool operator==(const Self& x) const { return It == x.It; }
53 inline bool operator!=(const Self& x) const { return !operator==(x); }
54
55 inline reference operator*() const {
56 assert(!It.atEnd() && "pred_iterator out of range!");
57 return cast<TerminatorInst>(*It)->getParent();
58 }
59 inline pointer *operator->() const { return &operator*(); }
60
61 inline Self& operator++() { // Preincrement
62 assert(!It.atEnd() && "pred_iterator out of range!");
63 ++It; advancePastNonTerminators();
64 return *this;
65 }
66
67 inline Self operator++(int) { // Postincrement
68 Self tmp = *this; ++*this; return tmp;
69 }
70
71 /// getOperandNo - Return the operand number in the predecessor's
72 /// terminator of the successor.
getOperandNo()73 unsigned getOperandNo() const {
74 return It.getOperandNo();
75 }
76
77 /// getUse - Return the operand Use in the predecessor's terminator
78 /// of the successor.
getUse()79 Use &getUse() const {
80 return It.getUse();
81 }
82 };
83
84 typedef PredIterator<BasicBlock, Value::user_iterator> pred_iterator;
85 typedef PredIterator<const BasicBlock,
86 Value::const_user_iterator> const_pred_iterator;
87
pred_begin(BasicBlock * BB)88 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
pred_begin(const BasicBlock * BB)89 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
90 return const_pred_iterator(BB);
91 }
pred_end(BasicBlock * BB)92 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
pred_end(const BasicBlock * BB)93 inline const_pred_iterator pred_end(const BasicBlock *BB) {
94 return const_pred_iterator(BB, true);
95 }
96
97
98
99 //===----------------------------------------------------------------------===//
100 // BasicBlock succ_iterator definition
101 //===----------------------------------------------------------------------===//
102
103 template <class Term_, class BB_> // Successor Iterator
104 class SuccIterator : public std::iterator<std::random_access_iterator_tag, BB_,
105 int, BB_ *, BB_ *> {
106 typedef std::iterator<std::random_access_iterator_tag, BB_, int, BB_ *, BB_ *>
107 super;
108
109 public:
110 typedef typename super::pointer pointer;
111 typedef typename super::reference reference;
112
113 private:
114 const Term_ Term;
115 unsigned idx;
116 typedef SuccIterator<Term_, BB_> Self;
117
index_is_valid(int idx)118 inline bool index_is_valid(int idx) {
119 return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
120 }
121
122 /// \brief Proxy object to allow write access in operator[]
123 class SuccessorProxy {
124 Self it;
125
126 public:
SuccessorProxy(const Self & it)127 explicit SuccessorProxy(const Self &it) : it(it) {}
128
129 SuccessorProxy &operator=(SuccessorProxy r) {
130 *this = reference(r);
131 return *this;
132 }
133
134 SuccessorProxy &operator=(reference r) {
135 it.Term->setSuccessor(it.idx, r);
136 return *this;
137 }
138
reference()139 operator reference() const { return *it; }
140 };
141
142 public:
SuccIterator(Term_ T)143 explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
144 }
SuccIterator(Term_ T,bool)145 inline SuccIterator(Term_ T, bool) // end iterator
146 : Term(T) {
147 if (Term)
148 idx = Term->getNumSuccessors();
149 else
150 // Term == NULL happens, if a basic block is not fully constructed and
151 // consequently getTerminator() returns NULL. In this case we construct a
152 // SuccIterator which describes a basic block that has zero successors.
153 // Defining SuccIterator for incomplete and malformed CFGs is especially
154 // useful for debugging.
155 idx = 0;
156 }
157
158 inline const Self &operator=(const Self &I) {
159 assert(Term == I.Term &&"Cannot assign iterators to two different blocks!");
160 idx = I.idx;
161 return *this;
162 }
163
164 /// getSuccessorIndex - This is used to interface between code that wants to
165 /// operate on terminator instructions directly.
getSuccessorIndex()166 unsigned getSuccessorIndex() const { return idx; }
167
168 inline bool operator==(const Self& x) const { return idx == x.idx; }
169 inline bool operator!=(const Self& x) const { return !operator==(x); }
170
171 inline reference operator*() const { return Term->getSuccessor(idx); }
172 inline pointer operator->() const { return operator*(); }
173
174 inline Self& operator++() { ++idx; return *this; } // Preincrement
175
176 inline Self operator++(int) { // Postincrement
177 Self tmp = *this; ++*this; return tmp;
178 }
179
180 inline Self& operator--() { --idx; return *this; } // Predecrement
181 inline Self operator--(int) { // Postdecrement
182 Self tmp = *this; --*this; return tmp;
183 }
184
185 inline bool operator<(const Self& x) const {
186 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
187 return idx < x.idx;
188 }
189
190 inline bool operator<=(const Self& x) const {
191 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
192 return idx <= x.idx;
193 }
194 inline bool operator>=(const Self& x) const {
195 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
196 return idx >= x.idx;
197 }
198
199 inline bool operator>(const Self& x) const {
200 assert(Term == x.Term && "Cannot compare iterators of different blocks!");
201 return idx > x.idx;
202 }
203
204 inline Self& operator+=(int Right) {
205 unsigned new_idx = idx + Right;
206 assert(index_is_valid(new_idx) && "Iterator index out of bound");
207 idx = new_idx;
208 return *this;
209 }
210
211 inline Self operator+(int Right) const {
212 Self tmp = *this;
213 tmp += Right;
214 return tmp;
215 }
216
217 inline Self& operator-=(int Right) {
218 return operator+=(-Right);
219 }
220
221 inline Self operator-(int Right) const {
222 return operator+(-Right);
223 }
224
225 inline int operator-(const Self& x) const {
226 assert(Term == x.Term && "Cannot work on iterators of different blocks!");
227 int distance = idx - x.idx;
228 return distance;
229 }
230
231 inline SuccessorProxy operator[](int offset) {
232 Self tmp = *this;
233 tmp += offset;
234 return SuccessorProxy(tmp);
235 }
236
237 /// Get the source BB of this iterator.
getSource()238 inline BB_ *getSource() {
239 assert(Term && "Source not available, if basic block was malformed");
240 return Term->getParent();
241 }
242 };
243
244 typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
245 typedef SuccIterator<const TerminatorInst*,
246 const BasicBlock> succ_const_iterator;
247
succ_begin(BasicBlock * BB)248 inline succ_iterator succ_begin(BasicBlock *BB) {
249 return succ_iterator(BB->getTerminator());
250 }
succ_begin(const BasicBlock * BB)251 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
252 return succ_const_iterator(BB->getTerminator());
253 }
succ_end(BasicBlock * BB)254 inline succ_iterator succ_end(BasicBlock *BB) {
255 return succ_iterator(BB->getTerminator(), true);
256 }
succ_end(const BasicBlock * BB)257 inline succ_const_iterator succ_end(const BasicBlock *BB) {
258 return succ_const_iterator(BB->getTerminator(), true);
259 }
260
261 template <typename T, typename U> struct isPodLike<SuccIterator<T, U> > {
262 static const bool value = isPodLike<T>::value;
263 };
264
265
266
267 //===--------------------------------------------------------------------===//
268 // GraphTraits specializations for basic block graphs (CFGs)
269 //===--------------------------------------------------------------------===//
270
271 // Provide specializations of GraphTraits to be able to treat a function as a
272 // graph of basic blocks...
273
274 template <> struct GraphTraits<BasicBlock*> {
275 typedef BasicBlock NodeType;
276 typedef succ_iterator ChildIteratorType;
277
278 static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
279 static inline ChildIteratorType child_begin(NodeType *N) {
280 return succ_begin(N);
281 }
282 static inline ChildIteratorType child_end(NodeType *N) {
283 return succ_end(N);
284 }
285 };
286
287 template <> struct GraphTraits<const BasicBlock*> {
288 typedef const BasicBlock NodeType;
289 typedef succ_const_iterator ChildIteratorType;
290
291 static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
292
293 static inline ChildIteratorType child_begin(NodeType *N) {
294 return succ_begin(N);
295 }
296 static inline ChildIteratorType child_end(NodeType *N) {
297 return succ_end(N);
298 }
299 };
300
301 // Provide specializations of GraphTraits to be able to treat a function as a
302 // graph of basic blocks... and to walk it in inverse order. Inverse order for
303 // a function is considered to be when traversing the predecessor edges of a BB
304 // instead of the successor edges.
305 //
306 template <> struct GraphTraits<Inverse<BasicBlock*> > {
307 typedef BasicBlock NodeType;
308 typedef pred_iterator ChildIteratorType;
309 static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
310 static inline ChildIteratorType child_begin(NodeType *N) {
311 return pred_begin(N);
312 }
313 static inline ChildIteratorType child_end(NodeType *N) {
314 return pred_end(N);
315 }
316 };
317
318 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
319 typedef const BasicBlock NodeType;
320 typedef const_pred_iterator ChildIteratorType;
321 static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
322 return G.Graph;
323 }
324 static inline ChildIteratorType child_begin(NodeType *N) {
325 return pred_begin(N);
326 }
327 static inline ChildIteratorType child_end(NodeType *N) {
328 return pred_end(N);
329 }
330 };
331
332
333
334 //===--------------------------------------------------------------------===//
335 // GraphTraits specializations for function basic block graphs (CFGs)
336 //===--------------------------------------------------------------------===//
337
338 // Provide specializations of GraphTraits to be able to treat a function as a
339 // graph of basic blocks... these are the same as the basic block iterators,
340 // except that the root node is implicitly the first node of the function.
341 //
342 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
343 static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
344
345 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
346 typedef Function::iterator nodes_iterator;
347 static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
348 static nodes_iterator nodes_end (Function *F) { return F->end(); }
349 static size_t size (Function *F) { return F->size(); }
350 };
351 template <> struct GraphTraits<const Function*> :
352 public GraphTraits<const BasicBlock*> {
353 static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
354
355 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
356 typedef Function::const_iterator nodes_iterator;
357 static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
358 static nodes_iterator nodes_end (const Function *F) { return F->end(); }
359 static size_t size (const Function *F) { return F->size(); }
360 };
361
362
363 // Provide specializations of GraphTraits to be able to treat a function as a
364 // graph of basic blocks... and to walk it in inverse order. Inverse order for
365 // a function is considered to be when traversing the predecessor edges of a BB
366 // instead of the successor edges.
367 //
368 template <> struct GraphTraits<Inverse<Function*> > :
369 public GraphTraits<Inverse<BasicBlock*> > {
370 static NodeType *getEntryNode(Inverse<Function*> G) {
371 return &G.Graph->getEntryBlock();
372 }
373 };
374 template <> struct GraphTraits<Inverse<const Function*> > :
375 public GraphTraits<Inverse<const BasicBlock*> > {
376 static NodeType *getEntryNode(Inverse<const Function *> G) {
377 return &G.Graph->getEntryBlock();
378 }
379 };
380
381 } // End llvm namespace
382
383 #endif
384