1 // Copyright 2013, ARM Limited
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 #include "a64/macro-assembler-a64.h"
28 namespace vixl {
29
B(Label * label,BranchType type,Register reg,int bit)30 void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
31 VIXL_ASSERT((reg.Is(NoReg) || (type >= kBranchTypeFirstUsingReg)) &&
32 ((bit == -1) || (type >= kBranchTypeFirstUsingBit)));
33 if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
34 B(static_cast<Condition>(type), label);
35 } else {
36 switch (type) {
37 case always: B(label); break;
38 case never: break;
39 case reg_zero: Cbz(reg, label); break;
40 case reg_not_zero: Cbnz(reg, label); break;
41 case reg_bit_clear: Tbz(reg, bit, label); break;
42 case reg_bit_set: Tbnz(reg, bit, label); break;
43 default:
44 VIXL_UNREACHABLE();
45 }
46 }
47 }
48
And(const Register & rd,const Register & rn,const Operand & operand)49 void MacroAssembler::And(const Register& rd,
50 const Register& rn,
51 const Operand& operand) {
52 VIXL_ASSERT(allow_macro_instructions_);
53 LogicalMacro(rd, rn, operand, AND);
54 }
55
56
Ands(const Register & rd,const Register & rn,const Operand & operand)57 void MacroAssembler::Ands(const Register& rd,
58 const Register& rn,
59 const Operand& operand) {
60 VIXL_ASSERT(allow_macro_instructions_);
61 LogicalMacro(rd, rn, operand, ANDS);
62 }
63
64
Tst(const Register & rn,const Operand & operand)65 void MacroAssembler::Tst(const Register& rn,
66 const Operand& operand) {
67 VIXL_ASSERT(allow_macro_instructions_);
68 Ands(AppropriateZeroRegFor(rn), rn, operand);
69 }
70
71
Bic(const Register & rd,const Register & rn,const Operand & operand)72 void MacroAssembler::Bic(const Register& rd,
73 const Register& rn,
74 const Operand& operand) {
75 VIXL_ASSERT(allow_macro_instructions_);
76 LogicalMacro(rd, rn, operand, BIC);
77 }
78
79
Bics(const Register & rd,const Register & rn,const Operand & operand)80 void MacroAssembler::Bics(const Register& rd,
81 const Register& rn,
82 const Operand& operand) {
83 VIXL_ASSERT(allow_macro_instructions_);
84 LogicalMacro(rd, rn, operand, BICS);
85 }
86
87
Orr(const Register & rd,const Register & rn,const Operand & operand)88 void MacroAssembler::Orr(const Register& rd,
89 const Register& rn,
90 const Operand& operand) {
91 VIXL_ASSERT(allow_macro_instructions_);
92 LogicalMacro(rd, rn, operand, ORR);
93 }
94
95
Orn(const Register & rd,const Register & rn,const Operand & operand)96 void MacroAssembler::Orn(const Register& rd,
97 const Register& rn,
98 const Operand& operand) {
99 VIXL_ASSERT(allow_macro_instructions_);
100 LogicalMacro(rd, rn, operand, ORN);
101 }
102
103
Eor(const Register & rd,const Register & rn,const Operand & operand)104 void MacroAssembler::Eor(const Register& rd,
105 const Register& rn,
106 const Operand& operand) {
107 VIXL_ASSERT(allow_macro_instructions_);
108 LogicalMacro(rd, rn, operand, EOR);
109 }
110
111
Eon(const Register & rd,const Register & rn,const Operand & operand)112 void MacroAssembler::Eon(const Register& rd,
113 const Register& rn,
114 const Operand& operand) {
115 VIXL_ASSERT(allow_macro_instructions_);
116 LogicalMacro(rd, rn, operand, EON);
117 }
118
119
LogicalMacro(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)120 void MacroAssembler::LogicalMacro(const Register& rd,
121 const Register& rn,
122 const Operand& operand,
123 LogicalOp op) {
124 UseScratchRegisterScope temps(this);
125
126 if (operand.IsImmediate()) {
127 int64_t immediate = operand.immediate();
128 unsigned reg_size = rd.size();
129 VIXL_ASSERT(rd.Is64Bits() || is_uint32(immediate));
130
131 // If the operation is NOT, invert the operation and immediate.
132 if ((op & NOT) == NOT) {
133 op = static_cast<LogicalOp>(op & ~NOT);
134 immediate = ~immediate;
135 if (rd.Is32Bits()) {
136 immediate &= kWRegMask;
137 }
138 }
139
140 // Special cases for all set or all clear immediates.
141 if (immediate == 0) {
142 switch (op) {
143 case AND:
144 Mov(rd, 0);
145 return;
146 case ORR: // Fall through.
147 case EOR:
148 Mov(rd, rn);
149 return;
150 case ANDS: // Fall through.
151 case BICS:
152 break;
153 default:
154 VIXL_UNREACHABLE();
155 }
156 } else if ((rd.Is64Bits() && (immediate == -1)) ||
157 (rd.Is32Bits() && (immediate == 0xffffffff))) {
158 switch (op) {
159 case AND:
160 Mov(rd, rn);
161 return;
162 case ORR:
163 Mov(rd, immediate);
164 return;
165 case EOR:
166 Mvn(rd, rn);
167 return;
168 case ANDS: // Fall through.
169 case BICS:
170 break;
171 default:
172 VIXL_UNREACHABLE();
173 }
174 }
175
176 unsigned n, imm_s, imm_r;
177 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
178 // Immediate can be encoded in the instruction.
179 LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
180 } else {
181 // Immediate can't be encoded: synthesize using move immediate.
182 Register temp = temps.AcquireSameSizeAs(rn);
183 Mov(temp, immediate);
184 if (rd.Is(sp)) {
185 // If rd is the stack pointer we cannot use it as the destination
186 // register so we use the temp register as an intermediate again.
187 Logical(temp, rn, Operand(temp), op);
188 Mov(sp, temp);
189 } else {
190 Logical(rd, rn, Operand(temp), op);
191 }
192 }
193 } else if (operand.IsExtendedRegister()) {
194 VIXL_ASSERT(operand.reg().size() <= rd.size());
195 // Add/sub extended supports shift <= 4. We want to support exactly the
196 // same modes here.
197 VIXL_ASSERT(operand.shift_amount() <= 4);
198 VIXL_ASSERT(operand.reg().Is64Bits() ||
199 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
200
201 temps.Exclude(operand.reg());
202 Register temp = temps.AcquireSameSizeAs(rn);
203 EmitExtendShift(temp, operand.reg(), operand.extend(),
204 operand.shift_amount());
205 Logical(rd, rn, Operand(temp), op);
206 } else {
207 // The operand can be encoded in the instruction.
208 VIXL_ASSERT(operand.IsShiftedRegister());
209 Logical(rd, rn, operand, op);
210 }
211 }
212
213
Mov(const Register & rd,const Operand & operand,DiscardMoveMode discard_mode)214 void MacroAssembler::Mov(const Register& rd,
215 const Operand& operand,
216 DiscardMoveMode discard_mode) {
217 VIXL_ASSERT(allow_macro_instructions_);
218 if (operand.IsImmediate()) {
219 // Call the macro assembler for generic immediates.
220 Mov(rd, operand.immediate());
221 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
222 // Emit a shift instruction if moving a shifted register. This operation
223 // could also be achieved using an orr instruction (like orn used by Mvn),
224 // but using a shift instruction makes the disassembly clearer.
225 EmitShift(rd, operand.reg(), operand.shift(), operand.shift_amount());
226 } else if (operand.IsExtendedRegister()) {
227 // Emit an extend instruction if moving an extended register. This handles
228 // extend with post-shift operations, too.
229 EmitExtendShift(rd, operand.reg(), operand.extend(),
230 operand.shift_amount());
231 } else {
232 // Otherwise, emit a register move only if the registers are distinct, or
233 // if they are not X registers.
234 //
235 // Note that mov(w0, w0) is not a no-op because it clears the top word of
236 // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
237 // registers is not required to clear the top word of the X register. In
238 // this case, the instruction is discarded.
239 //
240 // If the sp is an operand, add #0 is emitted, otherwise, orr #0.
241 if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
242 (discard_mode == kDontDiscardForSameWReg))) {
243 mov(rd, operand.reg());
244 }
245 }
246 }
247
248
Mvn(const Register & rd,const Operand & operand)249 void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
250 VIXL_ASSERT(allow_macro_instructions_);
251 if (operand.IsImmediate()) {
252 // Call the macro assembler for generic immediates.
253 Mvn(rd, operand.immediate());
254 } else if (operand.IsExtendedRegister()) {
255 UseScratchRegisterScope temps(this);
256 temps.Exclude(operand.reg());
257
258 // Emit two instructions for the extend case. This differs from Mov, as
259 // the extend and invert can't be achieved in one instruction.
260 Register temp = temps.AcquireSameSizeAs(rd);
261 EmitExtendShift(temp, operand.reg(), operand.extend(),
262 operand.shift_amount());
263 mvn(rd, Operand(temp));
264 } else {
265 // Otherwise, register and shifted register cases can be handled by the
266 // assembler directly, using orn.
267 mvn(rd, operand);
268 }
269 }
270
271
Mov(const Register & rd,uint64_t imm)272 void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
273 VIXL_ASSERT(allow_macro_instructions_);
274 VIXL_ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
275
276 // Immediates on Aarch64 can be produced using an initial value, and zero to
277 // three move keep operations.
278 //
279 // Initial values can be generated with:
280 // 1. 64-bit move zero (movz).
281 // 2. 32-bit move inverted (movn).
282 // 3. 64-bit move inverted.
283 // 4. 32-bit orr immediate.
284 // 5. 64-bit orr immediate.
285 // Move-keep may then be used to modify each of the 16-bit half words.
286 //
287 // The code below supports all five initial value generators, and
288 // applying move-keep operations to move-zero and move-inverted initial
289 // values.
290
291 unsigned reg_size = rd.size();
292 unsigned n, imm_s, imm_r;
293 if (IsImmMovz(imm, reg_size) && !rd.IsSP()) {
294 // Immediate can be represented in a move zero instruction. Movz can't
295 // write to the stack pointer.
296 movz(rd, imm);
297 } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) {
298 // Immediate can be represented in a move negative instruction. Movn can't
299 // write to the stack pointer.
300 movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask));
301 } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
302 // Immediate can be represented in a logical orr instruction.
303 VIXL_ASSERT(!rd.IsZero());
304 LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR);
305 } else {
306 // Generic immediate case. Imm will be represented by
307 // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
308 // A move-zero or move-inverted is generated for the first non-zero or
309 // non-0xffff immX, and a move-keep for subsequent non-zero immX.
310
311 uint64_t ignored_halfword = 0;
312 bool invert_move = false;
313 // If the number of 0xffff halfwords is greater than the number of 0x0000
314 // halfwords, it's more efficient to use move-inverted.
315 if (CountClearHalfWords(~imm, reg_size) >
316 CountClearHalfWords(imm, reg_size)) {
317 ignored_halfword = 0xffff;
318 invert_move = true;
319 }
320
321 // Mov instructions can't move values into the stack pointer, so set up a
322 // temporary register, if needed.
323 UseScratchRegisterScope temps(this);
324 Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
325
326 // Iterate through the halfwords. Use movn/movz for the first non-ignored
327 // halfword, and movk for subsequent halfwords.
328 VIXL_ASSERT((reg_size % 16) == 0);
329 bool first_mov_done = false;
330 for (unsigned i = 0; i < (temp.size() / 16); i++) {
331 uint64_t imm16 = (imm >> (16 * i)) & 0xffff;
332 if (imm16 != ignored_halfword) {
333 if (!first_mov_done) {
334 if (invert_move) {
335 movn(temp, ~imm16 & 0xffff, 16 * i);
336 } else {
337 movz(temp, imm16, 16 * i);
338 }
339 first_mov_done = true;
340 } else {
341 // Construct a wider constant.
342 movk(temp, imm16, 16 * i);
343 }
344 }
345 }
346
347 VIXL_ASSERT(first_mov_done);
348
349 // Move the temporary if the original destination register was the stack
350 // pointer.
351 if (rd.IsSP()) {
352 mov(rd, temp);
353 }
354 }
355 }
356
357
CountClearHalfWords(uint64_t imm,unsigned reg_size)358 unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
359 VIXL_ASSERT((reg_size % 8) == 0);
360 int count = 0;
361 for (unsigned i = 0; i < (reg_size / 16); i++) {
362 if ((imm & 0xffff) == 0) {
363 count++;
364 }
365 imm >>= 16;
366 }
367 return count;
368 }
369
370
371 // The movn instruction can generate immediates containing an arbitrary 16-bit
372 // value, with remaining bits set, eg. 0x00001234, 0x0000123400000000.
IsImmMovz(uint64_t imm,unsigned reg_size)373 bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
374 VIXL_ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));
375 return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
376 }
377
378
379 // The movn instruction can generate immediates containing an arbitrary 16-bit
380 // value, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
IsImmMovn(uint64_t imm,unsigned reg_size)381 bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
382 return IsImmMovz(~imm, reg_size);
383 }
384
385
Ccmp(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)386 void MacroAssembler::Ccmp(const Register& rn,
387 const Operand& operand,
388 StatusFlags nzcv,
389 Condition cond) {
390 VIXL_ASSERT(allow_macro_instructions_);
391 if (operand.IsImmediate() && (operand.immediate() < 0)) {
392 ConditionalCompareMacro(rn, -operand.immediate(), nzcv, cond, CCMN);
393 } else {
394 ConditionalCompareMacro(rn, operand, nzcv, cond, CCMP);
395 }
396 }
397
398
Ccmn(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)399 void MacroAssembler::Ccmn(const Register& rn,
400 const Operand& operand,
401 StatusFlags nzcv,
402 Condition cond) {
403 VIXL_ASSERT(allow_macro_instructions_);
404 if (operand.IsImmediate() && (operand.immediate() < 0)) {
405 ConditionalCompareMacro(rn, -operand.immediate(), nzcv, cond, CCMP);
406 } else {
407 ConditionalCompareMacro(rn, operand, nzcv, cond, CCMN);
408 }
409 }
410
411
ConditionalCompareMacro(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)412 void MacroAssembler::ConditionalCompareMacro(const Register& rn,
413 const Operand& operand,
414 StatusFlags nzcv,
415 Condition cond,
416 ConditionalCompareOp op) {
417 VIXL_ASSERT((cond != al) && (cond != nv));
418 if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
419 (operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) {
420 // The immediate can be encoded in the instruction, or the operand is an
421 // unshifted register: call the assembler.
422 ConditionalCompare(rn, operand, nzcv, cond, op);
423 } else {
424 UseScratchRegisterScope temps(this);
425 // The operand isn't directly supported by the instruction: perform the
426 // operation on a temporary register.
427 Register temp = temps.AcquireSameSizeAs(rn);
428 Mov(temp, operand);
429 ConditionalCompare(rn, temp, nzcv, cond, op);
430 }
431 }
432
433
Csel(const Register & rd,const Register & rn,const Operand & operand,Condition cond)434 void MacroAssembler::Csel(const Register& rd,
435 const Register& rn,
436 const Operand& operand,
437 Condition cond) {
438 VIXL_ASSERT(allow_macro_instructions_);
439 VIXL_ASSERT(!rd.IsZero());
440 VIXL_ASSERT(!rn.IsZero());
441 VIXL_ASSERT((cond != al) && (cond != nv));
442 if (operand.IsImmediate()) {
443 // Immediate argument. Handle special cases of 0, 1 and -1 using zero
444 // register.
445 int64_t imm = operand.immediate();
446 Register zr = AppropriateZeroRegFor(rn);
447 if (imm == 0) {
448 csel(rd, rn, zr, cond);
449 } else if (imm == 1) {
450 csinc(rd, rn, zr, cond);
451 } else if (imm == -1) {
452 csinv(rd, rn, zr, cond);
453 } else {
454 UseScratchRegisterScope temps(this);
455 Register temp = temps.AcquireSameSizeAs(rn);
456 Mov(temp, operand.immediate());
457 csel(rd, rn, temp, cond);
458 }
459 } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
460 // Unshifted register argument.
461 csel(rd, rn, operand.reg(), cond);
462 } else {
463 // All other arguments.
464 UseScratchRegisterScope temps(this);
465 Register temp = temps.AcquireSameSizeAs(rn);
466 Mov(temp, operand);
467 csel(rd, rn, temp, cond);
468 }
469 }
470
471
Add(const Register & rd,const Register & rn,const Operand & operand)472 void MacroAssembler::Add(const Register& rd,
473 const Register& rn,
474 const Operand& operand) {
475 VIXL_ASSERT(allow_macro_instructions_);
476 if (operand.IsImmediate() && (operand.immediate() < 0)) {
477 AddSubMacro(rd, rn, -operand.immediate(), LeaveFlags, SUB);
478 } else {
479 AddSubMacro(rd, rn, operand, LeaveFlags, ADD);
480 }
481 }
482
483
Adds(const Register & rd,const Register & rn,const Operand & operand)484 void MacroAssembler::Adds(const Register& rd,
485 const Register& rn,
486 const Operand& operand) {
487 VIXL_ASSERT(allow_macro_instructions_);
488 if (operand.IsImmediate() && (operand.immediate() < 0)) {
489 AddSubMacro(rd, rn, -operand.immediate(), SetFlags, SUB);
490 } else {
491 AddSubMacro(rd, rn, operand, SetFlags, ADD);
492 }
493 }
494
495
Sub(const Register & rd,const Register & rn,const Operand & operand)496 void MacroAssembler::Sub(const Register& rd,
497 const Register& rn,
498 const Operand& operand) {
499 VIXL_ASSERT(allow_macro_instructions_);
500 if (operand.IsImmediate() && (operand.immediate() < 0)) {
501 AddSubMacro(rd, rn, -operand.immediate(), LeaveFlags, ADD);
502 } else {
503 AddSubMacro(rd, rn, operand, LeaveFlags, SUB);
504 }
505 }
506
507
Subs(const Register & rd,const Register & rn,const Operand & operand)508 void MacroAssembler::Subs(const Register& rd,
509 const Register& rn,
510 const Operand& operand) {
511 VIXL_ASSERT(allow_macro_instructions_);
512 if (operand.IsImmediate() && (operand.immediate() < 0)) {
513 AddSubMacro(rd, rn, -operand.immediate(), SetFlags, ADD);
514 } else {
515 AddSubMacro(rd, rn, operand, SetFlags, SUB);
516 }
517 }
518
519
Cmn(const Register & rn,const Operand & operand)520 void MacroAssembler::Cmn(const Register& rn, const Operand& operand) {
521 VIXL_ASSERT(allow_macro_instructions_);
522 Adds(AppropriateZeroRegFor(rn), rn, operand);
523 }
524
525
Cmp(const Register & rn,const Operand & operand)526 void MacroAssembler::Cmp(const Register& rn, const Operand& operand) {
527 VIXL_ASSERT(allow_macro_instructions_);
528 Subs(AppropriateZeroRegFor(rn), rn, operand);
529 }
530
531
Fcmp(const FPRegister & fn,double value)532 void MacroAssembler::Fcmp(const FPRegister& fn, double value) {
533 VIXL_ASSERT(allow_macro_instructions_);
534 if (value != 0.0) {
535 UseScratchRegisterScope temps(this);
536 FPRegister tmp = temps.AcquireSameSizeAs(fn);
537 Fmov(tmp, value);
538 fcmp(fn, tmp);
539 } else {
540 fcmp(fn, value);
541 }
542 }
543
544
Fmov(FPRegister fd,double imm)545 void MacroAssembler::Fmov(FPRegister fd, double imm) {
546 VIXL_ASSERT(allow_macro_instructions_);
547 if (fd.Is32Bits()) {
548 Fmov(fd, static_cast<float>(imm));
549 return;
550 }
551
552 VIXL_ASSERT(fd.Is64Bits());
553 if (IsImmFP64(imm)) {
554 fmov(fd, imm);
555 } else if ((imm == 0.0) && (copysign(1.0, imm) == 1.0)) {
556 fmov(fd, xzr);
557 } else {
558 ldr(fd, imm);
559 }
560 }
561
562
Fmov(FPRegister fd,float imm)563 void MacroAssembler::Fmov(FPRegister fd, float imm) {
564 VIXL_ASSERT(allow_macro_instructions_);
565 if (fd.Is64Bits()) {
566 Fmov(fd, static_cast<double>(imm));
567 return;
568 }
569
570 VIXL_ASSERT(fd.Is32Bits());
571 if (IsImmFP32(imm)) {
572 fmov(fd, imm);
573 } else if ((imm == 0.0) && (copysign(1.0, imm) == 1.0)) {
574 fmov(fd, wzr);
575 } else {
576 ldr(fd, imm);
577 }
578 }
579
580
581
Neg(const Register & rd,const Operand & operand)582 void MacroAssembler::Neg(const Register& rd,
583 const Operand& operand) {
584 VIXL_ASSERT(allow_macro_instructions_);
585 if (operand.IsImmediate()) {
586 Mov(rd, -operand.immediate());
587 } else {
588 Sub(rd, AppropriateZeroRegFor(rd), operand);
589 }
590 }
591
592
Negs(const Register & rd,const Operand & operand)593 void MacroAssembler::Negs(const Register& rd,
594 const Operand& operand) {
595 VIXL_ASSERT(allow_macro_instructions_);
596 Subs(rd, AppropriateZeroRegFor(rd), operand);
597 }
598
599
AddSubMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)600 void MacroAssembler::AddSubMacro(const Register& rd,
601 const Register& rn,
602 const Operand& operand,
603 FlagsUpdate S,
604 AddSubOp op) {
605 if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
606 (S == LeaveFlags)) {
607 // The instruction would be a nop. Avoid generating useless code.
608 return;
609 }
610
611 if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) ||
612 (rn.IsZero() && !operand.IsShiftedRegister()) ||
613 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
614 UseScratchRegisterScope temps(this);
615 Register temp = temps.AcquireSameSizeAs(rn);
616 Mov(temp, operand);
617 AddSub(rd, rn, temp, S, op);
618 } else {
619 AddSub(rd, rn, operand, S, op);
620 }
621 }
622
623
Adc(const Register & rd,const Register & rn,const Operand & operand)624 void MacroAssembler::Adc(const Register& rd,
625 const Register& rn,
626 const Operand& operand) {
627 VIXL_ASSERT(allow_macro_instructions_);
628 AddSubWithCarryMacro(rd, rn, operand, LeaveFlags, ADC);
629 }
630
631
Adcs(const Register & rd,const Register & rn,const Operand & operand)632 void MacroAssembler::Adcs(const Register& rd,
633 const Register& rn,
634 const Operand& operand) {
635 VIXL_ASSERT(allow_macro_instructions_);
636 AddSubWithCarryMacro(rd, rn, operand, SetFlags, ADC);
637 }
638
639
Sbc(const Register & rd,const Register & rn,const Operand & operand)640 void MacroAssembler::Sbc(const Register& rd,
641 const Register& rn,
642 const Operand& operand) {
643 VIXL_ASSERT(allow_macro_instructions_);
644 AddSubWithCarryMacro(rd, rn, operand, LeaveFlags, SBC);
645 }
646
647
Sbcs(const Register & rd,const Register & rn,const Operand & operand)648 void MacroAssembler::Sbcs(const Register& rd,
649 const Register& rn,
650 const Operand& operand) {
651 VIXL_ASSERT(allow_macro_instructions_);
652 AddSubWithCarryMacro(rd, rn, operand, SetFlags, SBC);
653 }
654
655
Ngc(const Register & rd,const Operand & operand)656 void MacroAssembler::Ngc(const Register& rd,
657 const Operand& operand) {
658 VIXL_ASSERT(allow_macro_instructions_);
659 Register zr = AppropriateZeroRegFor(rd);
660 Sbc(rd, zr, operand);
661 }
662
663
Ngcs(const Register & rd,const Operand & operand)664 void MacroAssembler::Ngcs(const Register& rd,
665 const Operand& operand) {
666 VIXL_ASSERT(allow_macro_instructions_);
667 Register zr = AppropriateZeroRegFor(rd);
668 Sbcs(rd, zr, operand);
669 }
670
671
AddSubWithCarryMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)672 void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
673 const Register& rn,
674 const Operand& operand,
675 FlagsUpdate S,
676 AddSubWithCarryOp op) {
677 VIXL_ASSERT(rd.size() == rn.size());
678 UseScratchRegisterScope temps(this);
679
680 if (operand.IsImmediate() ||
681 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
682 // Add/sub with carry (immediate or ROR shifted register.)
683 Register temp = temps.AcquireSameSizeAs(rn);
684 Mov(temp, operand);
685 AddSubWithCarry(rd, rn, Operand(temp), S, op);
686 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
687 // Add/sub with carry (shifted register).
688 VIXL_ASSERT(operand.reg().size() == rd.size());
689 VIXL_ASSERT(operand.shift() != ROR);
690 VIXL_ASSERT(is_uintn(rd.size() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2,
691 operand.shift_amount()));
692 temps.Exclude(operand.reg());
693 Register temp = temps.AcquireSameSizeAs(rn);
694 EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
695 AddSubWithCarry(rd, rn, Operand(temp), S, op);
696 } else if (operand.IsExtendedRegister()) {
697 // Add/sub with carry (extended register).
698 VIXL_ASSERT(operand.reg().size() <= rd.size());
699 // Add/sub extended supports a shift <= 4. We want to support exactly the
700 // same modes.
701 VIXL_ASSERT(operand.shift_amount() <= 4);
702 VIXL_ASSERT(operand.reg().Is64Bits() ||
703 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
704 temps.Exclude(operand.reg());
705 Register temp = temps.AcquireSameSizeAs(rn);
706 EmitExtendShift(temp, operand.reg(), operand.extend(),
707 operand.shift_amount());
708 AddSubWithCarry(rd, rn, Operand(temp), S, op);
709 } else {
710 // The addressing mode is directly supported by the instruction.
711 AddSubWithCarry(rd, rn, operand, S, op);
712 }
713 }
714
715
716 #define DEFINE_FUNCTION(FN, REGTYPE, REG, OP) \
717 void MacroAssembler::FN(const REGTYPE REG, const MemOperand& addr) { \
718 LoadStoreMacro(REG, addr, OP); \
719 }
LS_MACRO_LIST(DEFINE_FUNCTION)720 LS_MACRO_LIST(DEFINE_FUNCTION)
721 #undef DEFINE_FUNCTION
722
723 void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
724 const MemOperand& addr,
725 LoadStoreOp op) {
726 int64_t offset = addr.offset();
727 LSDataSize size = CalcLSDataSize(op);
728
729 // Check if an immediate offset fits in the immediate field of the
730 // appropriate instruction. If not, emit two instructions to perform
731 // the operation.
732 if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
733 !IsImmLSUnscaled(offset)) {
734 // Immediate offset that can't be encoded using unsigned or unscaled
735 // addressing modes.
736 UseScratchRegisterScope temps(this);
737 Register temp = temps.AcquireSameSizeAs(addr.base());
738 Mov(temp, addr.offset());
739 LoadStore(rt, MemOperand(addr.base(), temp), op);
740 } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
741 // Post-index beyond unscaled addressing range.
742 LoadStore(rt, MemOperand(addr.base()), op);
743 Add(addr.base(), addr.base(), Operand(offset));
744 } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
745 // Pre-index beyond unscaled addressing range.
746 Add(addr.base(), addr.base(), Operand(offset));
747 LoadStore(rt, MemOperand(addr.base()), op);
748 } else {
749 // Encodable in one load/store instruction.
750 LoadStore(rt, addr, op);
751 }
752 }
753
754
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)755 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
756 const CPURegister& src2, const CPURegister& src3) {
757 VIXL_ASSERT(allow_macro_instructions_);
758 VIXL_ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
759 VIXL_ASSERT(src0.IsValid());
760
761 int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
762 int size = src0.SizeInBytes();
763
764 PrepareForPush(count, size);
765 PushHelper(count, size, src0, src1, src2, src3);
766 }
767
768
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)769 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
770 const CPURegister& dst2, const CPURegister& dst3) {
771 // It is not valid to pop into the same register more than once in one
772 // instruction, not even into the zero register.
773 VIXL_ASSERT(allow_macro_instructions_);
774 VIXL_ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
775 VIXL_ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
776 VIXL_ASSERT(dst0.IsValid());
777
778 int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
779 int size = dst0.SizeInBytes();
780
781 PrepareForPop(count, size);
782 PopHelper(count, size, dst0, dst1, dst2, dst3);
783 }
784
785
PushCPURegList(CPURegList registers)786 void MacroAssembler::PushCPURegList(CPURegList registers) {
787 int size = registers.RegisterSizeInBytes();
788
789 PrepareForPush(registers.Count(), size);
790 // Push up to four registers at a time because if the current stack pointer is
791 // sp and reg_size is 32, registers must be pushed in blocks of four in order
792 // to maintain the 16-byte alignment for sp.
793 VIXL_ASSERT(allow_macro_instructions_);
794 while (!registers.IsEmpty()) {
795 int count_before = registers.Count();
796 const CPURegister& src0 = registers.PopHighestIndex();
797 const CPURegister& src1 = registers.PopHighestIndex();
798 const CPURegister& src2 = registers.PopHighestIndex();
799 const CPURegister& src3 = registers.PopHighestIndex();
800 int count = count_before - registers.Count();
801 PushHelper(count, size, src0, src1, src2, src3);
802 }
803 }
804
805
PopCPURegList(CPURegList registers)806 void MacroAssembler::PopCPURegList(CPURegList registers) {
807 int size = registers.RegisterSizeInBytes();
808
809 PrepareForPop(registers.Count(), size);
810 // Pop up to four registers at a time because if the current stack pointer is
811 // sp and reg_size is 32, registers must be pushed in blocks of four in order
812 // to maintain the 16-byte alignment for sp.
813 VIXL_ASSERT(allow_macro_instructions_);
814 while (!registers.IsEmpty()) {
815 int count_before = registers.Count();
816 const CPURegister& dst0 = registers.PopLowestIndex();
817 const CPURegister& dst1 = registers.PopLowestIndex();
818 const CPURegister& dst2 = registers.PopLowestIndex();
819 const CPURegister& dst3 = registers.PopLowestIndex();
820 int count = count_before - registers.Count();
821 PopHelper(count, size, dst0, dst1, dst2, dst3);
822 }
823 }
824
825
PushMultipleTimes(int count,Register src)826 void MacroAssembler::PushMultipleTimes(int count, Register src) {
827 VIXL_ASSERT(allow_macro_instructions_);
828 int size = src.SizeInBytes();
829
830 PrepareForPush(count, size);
831 // Push up to four registers at a time if possible because if the current
832 // stack pointer is sp and the register size is 32, registers must be pushed
833 // in blocks of four in order to maintain the 16-byte alignment for sp.
834 while (count >= 4) {
835 PushHelper(4, size, src, src, src, src);
836 count -= 4;
837 }
838 if (count >= 2) {
839 PushHelper(2, size, src, src, NoReg, NoReg);
840 count -= 2;
841 }
842 if (count == 1) {
843 PushHelper(1, size, src, NoReg, NoReg, NoReg);
844 count -= 1;
845 }
846 VIXL_ASSERT(count == 0);
847 }
848
849
PushHelper(int count,int size,const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)850 void MacroAssembler::PushHelper(int count, int size,
851 const CPURegister& src0,
852 const CPURegister& src1,
853 const CPURegister& src2,
854 const CPURegister& src3) {
855 // Ensure that we don't unintentionally modify scratch or debug registers.
856 InstructionAccurateScope scope(this);
857
858 VIXL_ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
859 VIXL_ASSERT(size == src0.SizeInBytes());
860
861 // When pushing multiple registers, the store order is chosen such that
862 // Push(a, b) is equivalent to Push(a) followed by Push(b).
863 switch (count) {
864 case 1:
865 VIXL_ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
866 str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
867 break;
868 case 2:
869 VIXL_ASSERT(src2.IsNone() && src3.IsNone());
870 stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
871 break;
872 case 3:
873 VIXL_ASSERT(src3.IsNone());
874 stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
875 str(src0, MemOperand(StackPointer(), 2 * size));
876 break;
877 case 4:
878 // Skip over 4 * size, then fill in the gap. This allows four W registers
879 // to be pushed using sp, whilst maintaining 16-byte alignment for sp at
880 // all times.
881 stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
882 stp(src1, src0, MemOperand(StackPointer(), 2 * size));
883 break;
884 default:
885 VIXL_UNREACHABLE();
886 }
887 }
888
889
PopHelper(int count,int size,const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)890 void MacroAssembler::PopHelper(int count, int size,
891 const CPURegister& dst0,
892 const CPURegister& dst1,
893 const CPURegister& dst2,
894 const CPURegister& dst3) {
895 // Ensure that we don't unintentionally modify scratch or debug registers.
896 InstructionAccurateScope scope(this);
897
898 VIXL_ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
899 VIXL_ASSERT(size == dst0.SizeInBytes());
900
901 // When popping multiple registers, the load order is chosen such that
902 // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
903 switch (count) {
904 case 1:
905 VIXL_ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
906 ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
907 break;
908 case 2:
909 VIXL_ASSERT(dst2.IsNone() && dst3.IsNone());
910 ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
911 break;
912 case 3:
913 VIXL_ASSERT(dst3.IsNone());
914 ldr(dst2, MemOperand(StackPointer(), 2 * size));
915 ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
916 break;
917 case 4:
918 // Load the higher addresses first, then load the lower addresses and skip
919 // the whole block in the second instruction. This allows four W registers
920 // to be popped using sp, whilst maintaining 16-byte alignment for sp at
921 // all times.
922 ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
923 ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
924 break;
925 default:
926 VIXL_UNREACHABLE();
927 }
928 }
929
930
PrepareForPush(int count,int size)931 void MacroAssembler::PrepareForPush(int count, int size) {
932 if (sp.Is(StackPointer())) {
933 // If the current stack pointer is sp, then it must be aligned to 16 bytes
934 // on entry and the total size of the specified registers must also be a
935 // multiple of 16 bytes.
936 VIXL_ASSERT((count * size) % 16 == 0);
937 } else {
938 // Even if the current stack pointer is not the system stack pointer (sp),
939 // the system stack pointer will still be modified in order to comply with
940 // ABI rules about accessing memory below the system stack pointer.
941 BumpSystemStackPointer(count * size);
942 }
943 }
944
945
PrepareForPop(int count,int size)946 void MacroAssembler::PrepareForPop(int count, int size) {
947 USE(count);
948 USE(size);
949 if (sp.Is(StackPointer())) {
950 // If the current stack pointer is sp, then it must be aligned to 16 bytes
951 // on entry and the total size of the specified registers must also be a
952 // multiple of 16 bytes.
953 VIXL_ASSERT((count * size) % 16 == 0);
954 }
955 }
956
Poke(const Register & src,const Operand & offset)957 void MacroAssembler::Poke(const Register& src, const Operand& offset) {
958 VIXL_ASSERT(allow_macro_instructions_);
959 if (offset.IsImmediate()) {
960 VIXL_ASSERT(offset.immediate() >= 0);
961 }
962
963 Str(src, MemOperand(StackPointer(), offset));
964 }
965
966
Peek(const Register & dst,const Operand & offset)967 void MacroAssembler::Peek(const Register& dst, const Operand& offset) {
968 VIXL_ASSERT(allow_macro_instructions_);
969 if (offset.IsImmediate()) {
970 VIXL_ASSERT(offset.immediate() >= 0);
971 }
972
973 Ldr(dst, MemOperand(StackPointer(), offset));
974 }
975
976
Claim(const Operand & size)977 void MacroAssembler::Claim(const Operand& size) {
978 VIXL_ASSERT(allow_macro_instructions_);
979
980 if (size.IsZero()) {
981 return;
982 }
983
984 if (size.IsImmediate()) {
985 VIXL_ASSERT(size.immediate() > 0);
986 if (sp.Is(StackPointer())) {
987 VIXL_ASSERT((size.immediate() % 16) == 0);
988 }
989 }
990
991 if (!sp.Is(StackPointer())) {
992 BumpSystemStackPointer(size);
993 }
994
995 Sub(StackPointer(), StackPointer(), size);
996 }
997
998
Drop(const Operand & size)999 void MacroAssembler::Drop(const Operand& size) {
1000 VIXL_ASSERT(allow_macro_instructions_);
1001
1002 if (size.IsZero()) {
1003 return;
1004 }
1005
1006 if (size.IsImmediate()) {
1007 VIXL_ASSERT(size.immediate() > 0);
1008 if (sp.Is(StackPointer())) {
1009 VIXL_ASSERT((size.immediate() % 16) == 0);
1010 }
1011 }
1012
1013 Add(StackPointer(), StackPointer(), size);
1014 }
1015
1016
PushCalleeSavedRegisters()1017 void MacroAssembler::PushCalleeSavedRegisters() {
1018 // Ensure that the macro-assembler doesn't use any scratch registers.
1019 InstructionAccurateScope scope(this);
1020
1021 // This method must not be called unless the current stack pointer is sp.
1022 VIXL_ASSERT(sp.Is(StackPointer()));
1023
1024 MemOperand tos(sp, -2 * kXRegSizeInBytes, PreIndex);
1025
1026 stp(x29, x30, tos);
1027 stp(x27, x28, tos);
1028 stp(x25, x26, tos);
1029 stp(x23, x24, tos);
1030 stp(x21, x22, tos);
1031 stp(x19, x20, tos);
1032
1033 stp(d14, d15, tos);
1034 stp(d12, d13, tos);
1035 stp(d10, d11, tos);
1036 stp(d8, d9, tos);
1037 }
1038
1039
PopCalleeSavedRegisters()1040 void MacroAssembler::PopCalleeSavedRegisters() {
1041 // Ensure that the macro-assembler doesn't use any scratch registers.
1042 InstructionAccurateScope scope(this);
1043
1044 // This method must not be called unless the current stack pointer is sp.
1045 VIXL_ASSERT(sp.Is(StackPointer()));
1046
1047 MemOperand tos(sp, 2 * kXRegSizeInBytes, PostIndex);
1048
1049 ldp(d8, d9, tos);
1050 ldp(d10, d11, tos);
1051 ldp(d12, d13, tos);
1052 ldp(d14, d15, tos);
1053
1054 ldp(x19, x20, tos);
1055 ldp(x21, x22, tos);
1056 ldp(x23, x24, tos);
1057 ldp(x25, x26, tos);
1058 ldp(x27, x28, tos);
1059 ldp(x29, x30, tos);
1060 }
1061
BumpSystemStackPointer(const Operand & space)1062 void MacroAssembler::BumpSystemStackPointer(const Operand& space) {
1063 VIXL_ASSERT(!sp.Is(StackPointer()));
1064 // TODO: Several callers rely on this not using scratch registers, so we use
1065 // the assembler directly here. However, this means that large immediate
1066 // values of 'space' cannot be handled.
1067 InstructionAccurateScope scope(this);
1068 sub(sp, StackPointer(), space);
1069 }
1070
1071
1072 // This is the main Printf implementation. All callee-saved registers are
1073 // preserved, but NZCV and the caller-saved registers may be clobbered.
PrintfNoPreserve(const char * format,const CPURegister & arg0,const CPURegister & arg1,const CPURegister & arg2,const CPURegister & arg3)1074 void MacroAssembler::PrintfNoPreserve(const char * format,
1075 const CPURegister& arg0,
1076 const CPURegister& arg1,
1077 const CPURegister& arg2,
1078 const CPURegister& arg3) {
1079 // We cannot handle a caller-saved stack pointer. It doesn't make much sense
1080 // in most cases anyway, so this restriction shouldn't be too serious.
1081 VIXL_ASSERT(!kCallerSaved.IncludesAliasOf(StackPointer()));
1082
1083 // The provided arguments, and their proper PCS registers.
1084 CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
1085 CPURegister pcs[kPrintfMaxArgCount];
1086
1087 int arg_count = kPrintfMaxArgCount;
1088
1089 // The PCS varargs registers for printf. Note that x0 is used for the printf
1090 // format string.
1091 static const CPURegList kPCSVarargs =
1092 CPURegList(CPURegister::kRegister, kXRegSize, 1, arg_count);
1093 static const CPURegList kPCSVarargsFP =
1094 CPURegList(CPURegister::kFPRegister, kDRegSize, 0, arg_count - 1);
1095
1096 // We can use caller-saved registers as scratch values, except for the
1097 // arguments and the PCS registers where they might need to go.
1098 UseScratchRegisterScope temps(this);
1099 temps.Include(kCallerSaved);
1100 temps.Include(kCallerSavedFP);
1101 temps.Exclude(kPCSVarargs);
1102 temps.Exclude(kPCSVarargsFP);
1103 temps.Exclude(arg0, arg1, arg2, arg3);
1104
1105 // Copies of the arg lists that we can iterate through.
1106 CPURegList pcs_varargs = kPCSVarargs;
1107 CPURegList pcs_varargs_fp = kPCSVarargsFP;
1108
1109 // Place the arguments. There are lots of clever tricks and optimizations we
1110 // could use here, but Printf is a debug tool so instead we just try to keep
1111 // it simple: Move each input that isn't already in the right place to a
1112 // scratch register, then move everything back.
1113 for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
1114 // Work out the proper PCS register for this argument.
1115 if (args[i].IsRegister()) {
1116 pcs[i] = pcs_varargs.PopLowestIndex().X();
1117 // We might only need a W register here. We need to know the size of the
1118 // argument so we can properly encode it for the simulator call.
1119 if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
1120 } else if (args[i].IsFPRegister()) {
1121 // In C, floats are always cast to doubles for varargs calls.
1122 pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
1123 } else {
1124 VIXL_ASSERT(args[i].IsNone());
1125 arg_count = i;
1126 break;
1127 }
1128
1129 // If the argument is already in the right place, leave it where it is.
1130 if (args[i].Aliases(pcs[i])) continue;
1131
1132 // Otherwise, if the argument is in a PCS argument register, allocate an
1133 // appropriate scratch register and then move it out of the way.
1134 if (kPCSVarargs.IncludesAliasOf(args[i]) ||
1135 kPCSVarargsFP.IncludesAliasOf(args[i])) {
1136 if (args[i].IsRegister()) {
1137 Register old_arg = Register(args[i]);
1138 Register new_arg = temps.AcquireSameSizeAs(old_arg);
1139 Mov(new_arg, old_arg);
1140 args[i] = new_arg;
1141 } else {
1142 FPRegister old_arg = FPRegister(args[i]);
1143 FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
1144 Fmov(new_arg, old_arg);
1145 args[i] = new_arg;
1146 }
1147 }
1148 }
1149
1150 // Do a second pass to move values into their final positions and perform any
1151 // conversions that may be required.
1152 for (int i = 0; i < arg_count; i++) {
1153 VIXL_ASSERT(pcs[i].type() == args[i].type());
1154 if (pcs[i].IsRegister()) {
1155 Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
1156 } else {
1157 VIXL_ASSERT(pcs[i].IsFPRegister());
1158 if (pcs[i].size() == args[i].size()) {
1159 Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
1160 } else {
1161 Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
1162 }
1163 }
1164 }
1165
1166 // Load the format string into x0, as per the procedure-call standard.
1167 //
1168 // To make the code as portable as possible, the format string is encoded
1169 // directly in the instruction stream. It might be cleaner to encode it in a
1170 // literal pool, but since Printf is usually used for debugging, it is
1171 // beneficial for it to be minimally dependent on other features.
1172 temps.Exclude(x0);
1173 Label format_address;
1174 Adr(x0, &format_address);
1175
1176 // Emit the format string directly in the instruction stream.
1177 { BlockLiteralPoolScope scope(this);
1178 Label after_data;
1179 B(&after_data);
1180 Bind(&format_address);
1181 EmitStringData(format);
1182 Unreachable();
1183 Bind(&after_data);
1184 }
1185
1186 // We don't pass any arguments on the stack, but we still need to align the C
1187 // stack pointer to a 16-byte boundary for PCS compliance.
1188 if (!sp.Is(StackPointer())) {
1189 Bic(sp, StackPointer(), 0xf);
1190 }
1191
1192 // Actually call printf. This part needs special handling for the simulator,
1193 // since the system printf function will use a different instruction set and
1194 // the procedure-call standard will not be compatible.
1195 #ifdef USE_SIMULATOR
1196 { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
1197 hlt(kPrintfOpcode);
1198 dc32(arg_count); // kPrintfArgCountOffset
1199
1200 // Determine the argument pattern.
1201 uint32_t arg_pattern_list = 0;
1202 for (int i = 0; i < arg_count; i++) {
1203 uint32_t arg_pattern;
1204 if (pcs[i].IsRegister()) {
1205 arg_pattern = pcs[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
1206 } else {
1207 VIXL_ASSERT(pcs[i].Is64Bits());
1208 arg_pattern = kPrintfArgD;
1209 }
1210 VIXL_ASSERT(arg_pattern < (1 << kPrintfArgPatternBits));
1211 arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
1212 }
1213 dc32(arg_pattern_list); // kPrintfArgPatternListOffset
1214 }
1215 #else
1216 Register tmp = temps.AcquireX();
1217 Mov(tmp, reinterpret_cast<uintptr_t>(printf));
1218 Blr(tmp);
1219 #endif
1220 }
1221
1222
Printf(const char * format,CPURegister arg0,CPURegister arg1,CPURegister arg2,CPURegister arg3)1223 void MacroAssembler::Printf(const char * format,
1224 CPURegister arg0,
1225 CPURegister arg1,
1226 CPURegister arg2,
1227 CPURegister arg3) {
1228 // We can only print sp if it is the current stack pointer.
1229 if (!sp.Is(StackPointer())) {
1230 VIXL_ASSERT(!sp.Aliases(arg0));
1231 VIXL_ASSERT(!sp.Aliases(arg1));
1232 VIXL_ASSERT(!sp.Aliases(arg2));
1233 VIXL_ASSERT(!sp.Aliases(arg3));
1234 }
1235
1236 // Make sure that the macro assembler doesn't try to use any of our arguments
1237 // as scratch registers.
1238 UseScratchRegisterScope exclude_all(this);
1239 exclude_all.ExcludeAll();
1240
1241 // Preserve all caller-saved registers as well as NZCV.
1242 // If sp is the stack pointer, PushCPURegList asserts that the size of each
1243 // list is a multiple of 16 bytes.
1244 PushCPURegList(kCallerSaved);
1245 PushCPURegList(kCallerSavedFP);
1246
1247 { UseScratchRegisterScope temps(this);
1248 // We can use caller-saved registers as scratch values (except for argN).
1249 temps.Include(kCallerSaved);
1250 temps.Include(kCallerSavedFP);
1251 temps.Exclude(arg0, arg1, arg2, arg3);
1252
1253 // If any of the arguments are the current stack pointer, allocate a new
1254 // register for them, and adjust the value to compensate for pushing the
1255 // caller-saved registers.
1256 bool arg0_sp = StackPointer().Aliases(arg0);
1257 bool arg1_sp = StackPointer().Aliases(arg1);
1258 bool arg2_sp = StackPointer().Aliases(arg2);
1259 bool arg3_sp = StackPointer().Aliases(arg3);
1260 if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
1261 // Allocate a register to hold the original stack pointer value, to pass
1262 // to PrintfNoPreserve as an argument.
1263 Register arg_sp = temps.AcquireX();
1264 Add(arg_sp, StackPointer(),
1265 kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes());
1266 if (arg0_sp) arg0 = Register(arg_sp.code(), arg0.size());
1267 if (arg1_sp) arg1 = Register(arg_sp.code(), arg1.size());
1268 if (arg2_sp) arg2 = Register(arg_sp.code(), arg2.size());
1269 if (arg3_sp) arg3 = Register(arg_sp.code(), arg3.size());
1270 }
1271
1272 // Preserve NZCV.
1273 Register tmp = temps.AcquireX();
1274 Mrs(tmp, NZCV);
1275 Push(tmp, xzr);
1276 temps.Release(tmp);
1277
1278 PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
1279
1280 // Restore NZCV.
1281 tmp = temps.AcquireX();
1282 Pop(xzr, tmp);
1283 Msr(NZCV, tmp);
1284 temps.Release(tmp);
1285 }
1286
1287 PopCPURegList(kCallerSavedFP);
1288 PopCPURegList(kCallerSaved);
1289 }
1290
Trace(TraceParameters parameters,TraceCommand command)1291 void MacroAssembler::Trace(TraceParameters parameters, TraceCommand command) {
1292 VIXL_ASSERT(allow_macro_instructions_);
1293
1294 #ifdef USE_SIMULATOR
1295 // The arguments to the trace pseudo instruction need to be contiguous in
1296 // memory, so make sure we don't try to emit a literal pool.
1297 InstructionAccurateScope scope(this, kTraceLength / kInstructionSize);
1298
1299 Label start;
1300 bind(&start);
1301
1302 // Refer to instructions-a64.h for a description of the marker and its
1303 // arguments.
1304 hlt(kTraceOpcode);
1305
1306 VIXL_ASSERT(SizeOfCodeGeneratedSince(&start) == kTraceParamsOffset);
1307 dc32(parameters);
1308
1309 VIXL_ASSERT(SizeOfCodeGeneratedSince(&start) == kTraceCommandOffset);
1310 dc32(command);
1311 #else
1312 // Emit nothing on real hardware.
1313 USE(parameters);
1314 USE(command);
1315 #endif
1316 }
1317
1318
Log(TraceParameters parameters)1319 void MacroAssembler::Log(TraceParameters parameters) {
1320 VIXL_ASSERT(allow_macro_instructions_);
1321
1322 #ifdef USE_SIMULATOR
1323 // The arguments to the log pseudo instruction need to be contiguous in
1324 // memory, so make sure we don't try to emit a literal pool.
1325 InstructionAccurateScope scope(this, kLogLength / kInstructionSize);
1326
1327 Label start;
1328 bind(&start);
1329
1330 // Refer to instructions-a64.h for a description of the marker and its
1331 // arguments.
1332 hlt(kLogOpcode);
1333
1334 VIXL_ASSERT(SizeOfCodeGeneratedSince(&start) == kLogParamsOffset);
1335 dc32(parameters);
1336 #else
1337 // Emit nothing on real hardware.
1338 USE(parameters);
1339 #endif
1340 }
1341
1342
EnableInstrumentation()1343 void MacroAssembler::EnableInstrumentation() {
1344 VIXL_ASSERT(!isprint(InstrumentStateEnable));
1345 InstructionAccurateScope scope(this, 1);
1346 movn(xzr, InstrumentStateEnable);
1347 }
1348
1349
DisableInstrumentation()1350 void MacroAssembler::DisableInstrumentation() {
1351 VIXL_ASSERT(!isprint(InstrumentStateDisable));
1352 InstructionAccurateScope scope(this, 1);
1353 movn(xzr, InstrumentStateDisable);
1354 }
1355
1356
AnnotateInstrumentation(const char * marker_name)1357 void MacroAssembler::AnnotateInstrumentation(const char* marker_name) {
1358 VIXL_ASSERT(strlen(marker_name) == 2);
1359
1360 // We allow only printable characters in the marker names. Unprintable
1361 // characters are reserved for controlling features of the instrumentation.
1362 VIXL_ASSERT(isprint(marker_name[0]) && isprint(marker_name[1]));
1363
1364 InstructionAccurateScope scope(this, 1);
1365 movn(xzr, (marker_name[1] << 8) | marker_name[0]);
1366 }
1367
1368
~UseScratchRegisterScope()1369 UseScratchRegisterScope::~UseScratchRegisterScope() {
1370 available_->set_list(old_available_);
1371 availablefp_->set_list(old_availablefp_);
1372 }
1373
1374
IsAvailable(const CPURegister & reg) const1375 bool UseScratchRegisterScope::IsAvailable(const CPURegister& reg) const {
1376 return available_->IncludesAliasOf(reg) || availablefp_->IncludesAliasOf(reg);
1377 }
1378
1379
AcquireSameSizeAs(const Register & reg)1380 Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
1381 int code = AcquireNextAvailable(available_).code();
1382 return Register(code, reg.SizeInBits());
1383 }
1384
1385
AcquireSameSizeAs(const FPRegister & reg)1386 FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
1387 int code = AcquireNextAvailable(availablefp_).code();
1388 return FPRegister(code, reg.SizeInBits());
1389 }
1390
1391
Release(const CPURegister & reg)1392 void UseScratchRegisterScope::Release(const CPURegister& reg) {
1393 if (reg.IsRegister()) {
1394 ReleaseByCode(available_, reg.code());
1395 } else if (reg.IsFPRegister()) {
1396 ReleaseByCode(availablefp_, reg.code());
1397 } else {
1398 VIXL_ASSERT(reg.IsNone());
1399 }
1400 }
1401
1402
Include(const CPURegList & list)1403 void UseScratchRegisterScope::Include(const CPURegList& list) {
1404 if (list.type() == CPURegister::kRegister) {
1405 // Make sure that neither sp nor xzr are included the list.
1406 IncludeByRegList(available_, list.list() & ~(xzr.Bit() | sp.Bit()));
1407 } else {
1408 VIXL_ASSERT(list.type() == CPURegister::kFPRegister);
1409 IncludeByRegList(availablefp_, list.list());
1410 }
1411 }
1412
1413
Include(const Register & reg1,const Register & reg2,const Register & reg3,const Register & reg4)1414 void UseScratchRegisterScope::Include(const Register& reg1,
1415 const Register& reg2,
1416 const Register& reg3,
1417 const Register& reg4) {
1418 RegList include = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
1419 // Make sure that neither sp nor xzr are included the list.
1420 include &= ~(xzr.Bit() | sp.Bit());
1421
1422 IncludeByRegList(available_, include);
1423 }
1424
1425
Include(const FPRegister & reg1,const FPRegister & reg2,const FPRegister & reg3,const FPRegister & reg4)1426 void UseScratchRegisterScope::Include(const FPRegister& reg1,
1427 const FPRegister& reg2,
1428 const FPRegister& reg3,
1429 const FPRegister& reg4) {
1430 RegList include = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
1431 IncludeByRegList(availablefp_, include);
1432 }
1433
1434
Exclude(const CPURegList & list)1435 void UseScratchRegisterScope::Exclude(const CPURegList& list) {
1436 if (list.type() == CPURegister::kRegister) {
1437 ExcludeByRegList(available_, list.list());
1438 } else {
1439 VIXL_ASSERT(list.type() == CPURegister::kFPRegister);
1440 ExcludeByRegList(availablefp_, list.list());
1441 }
1442 }
1443
1444
Exclude(const Register & reg1,const Register & reg2,const Register & reg3,const Register & reg4)1445 void UseScratchRegisterScope::Exclude(const Register& reg1,
1446 const Register& reg2,
1447 const Register& reg3,
1448 const Register& reg4) {
1449 RegList exclude = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
1450 ExcludeByRegList(available_, exclude);
1451 }
1452
1453
Exclude(const FPRegister & reg1,const FPRegister & reg2,const FPRegister & reg3,const FPRegister & reg4)1454 void UseScratchRegisterScope::Exclude(const FPRegister& reg1,
1455 const FPRegister& reg2,
1456 const FPRegister& reg3,
1457 const FPRegister& reg4) {
1458 RegList excludefp = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
1459 ExcludeByRegList(availablefp_, excludefp);
1460 }
1461
1462
Exclude(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4)1463 void UseScratchRegisterScope::Exclude(const CPURegister& reg1,
1464 const CPURegister& reg2,
1465 const CPURegister& reg3,
1466 const CPURegister& reg4) {
1467 RegList exclude = 0;
1468 RegList excludefp = 0;
1469
1470 const CPURegister regs[] = {reg1, reg2, reg3, reg4};
1471
1472 for (unsigned i = 0; i < (sizeof(regs) / sizeof(regs[0])); i++) {
1473 if (regs[i].IsRegister()) {
1474 exclude |= regs[i].Bit();
1475 } else if (regs[i].IsFPRegister()) {
1476 excludefp |= regs[i].Bit();
1477 } else {
1478 VIXL_ASSERT(regs[i].IsNone());
1479 }
1480 }
1481
1482 ExcludeByRegList(available_, exclude);
1483 ExcludeByRegList(availablefp_, excludefp);
1484 }
1485
1486
ExcludeAll()1487 void UseScratchRegisterScope::ExcludeAll() {
1488 ExcludeByRegList(available_, available_->list());
1489 ExcludeByRegList(availablefp_, availablefp_->list());
1490 }
1491
1492
AcquireNextAvailable(CPURegList * available)1493 CPURegister UseScratchRegisterScope::AcquireNextAvailable(
1494 CPURegList* available) {
1495 VIXL_CHECK(!available->IsEmpty());
1496 CPURegister result = available->PopLowestIndex();
1497 VIXL_ASSERT(!AreAliased(result, xzr, sp));
1498 return result;
1499 }
1500
1501
ReleaseByCode(CPURegList * available,int code)1502 void UseScratchRegisterScope::ReleaseByCode(CPURegList* available, int code) {
1503 ReleaseByRegList(available, static_cast<RegList>(1) << code);
1504 }
1505
1506
ReleaseByRegList(CPURegList * available,RegList regs)1507 void UseScratchRegisterScope::ReleaseByRegList(CPURegList* available,
1508 RegList regs) {
1509 available->set_list(available->list() | regs);
1510 }
1511
1512
IncludeByRegList(CPURegList * available,RegList regs)1513 void UseScratchRegisterScope::IncludeByRegList(CPURegList* available,
1514 RegList regs) {
1515 available->set_list(available->list() | regs);
1516 }
1517
1518
ExcludeByRegList(CPURegList * available,RegList exclude)1519 void UseScratchRegisterScope::ExcludeByRegList(CPURegList* available,
1520 RegList exclude) {
1521 available->set_list(available->list() & ~exclude);
1522 }
1523
1524 } // namespace vixl
1525