• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <sys/stat.h>
18 #include <string.h>
19 #include <stdio.h>
20 
21 #ifdef HAVE_ANDROID_OS
22 #include <linux/capability.h>
23 #else
24 #include <private/android_filesystem_capability.h>
25 #endif
26 
27 #define XATTR_SELINUX_SUFFIX "selinux"
28 #define XATTR_CAPS_SUFFIX "capability"
29 
30 #include "ext4_utils.h"
31 #include "make_ext4fs.h"
32 #include "allocate.h"
33 #include "contents.h"
34 #include "extent.h"
35 #include "indirect.h"
36 
37 #ifdef USE_MINGW
38 #define S_IFLNK 0  /* used by make_link, not needed under mingw */
39 #endif
40 
dentry_size(u32 entries,struct dentry * dentries)41 static u32 dentry_size(u32 entries, struct dentry *dentries)
42 {
43 	u32 len = 24;
44 	unsigned int i;
45 	unsigned int dentry_len;
46 
47 	for (i = 0; i < entries; i++) {
48 		dentry_len = 8 + ALIGN(strlen(dentries[i].filename), 4);
49 		if (len % info.block_size + dentry_len > info.block_size)
50 			len += info.block_size - (len % info.block_size);
51 		len += dentry_len;
52 	}
53 
54 	return len;
55 }
56 
add_dentry(u8 * data,u32 * offset,struct ext4_dir_entry_2 * prev,u32 inode,const char * name,u8 file_type)57 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
58 		struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
59 		u8 file_type)
60 {
61 	u8 name_len = strlen(name);
62 	u16 rec_len = 8 + ALIGN(name_len, 4);
63 	struct ext4_dir_entry_2 *dentry;
64 
65 	u32 start_block = *offset / info.block_size;
66 	u32 end_block = (*offset + rec_len - 1) / info.block_size;
67 	if (start_block != end_block) {
68 		/* Adding this dentry will cross a block boundary, so pad the previous
69 		   dentry to the block boundary */
70 		if (!prev)
71 			critical_error("no prev");
72 		prev->rec_len += end_block * info.block_size - *offset;
73 		*offset = end_block * info.block_size;
74 	}
75 
76 	dentry = (struct ext4_dir_entry_2 *)(data + *offset);
77 	dentry->inode = inode;
78 	dentry->rec_len = rec_len;
79 	dentry->name_len = name_len;
80 	dentry->file_type = file_type;
81 	memcpy(dentry->name, name, name_len);
82 
83 	*offset += rec_len;
84 	return dentry;
85 }
86 
87 /* Creates a directory structure for an array of directory entries, dentries,
88    and stores the location of the structure in an inode.  The new inode's
89    .. link is set to dir_inode_num.  Stores the location of the inode number
90    of each directory entry into dentries[i].inode, to be filled in later
91    when the inode for the entry is allocated.  Returns the inode number of the
92    new directory */
make_directory(u32 dir_inode_num,u32 entries,struct dentry * dentries,u32 dirs)93 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
94 	u32 dirs)
95 {
96 	struct ext4_inode *inode;
97 	u32 blocks;
98 	u32 len;
99 	u32 offset = 0;
100 	u32 inode_num;
101 	u8 *data;
102 	unsigned int i;
103 	struct ext4_dir_entry_2 *dentry;
104 
105 	blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
106 	len = blocks * info.block_size;
107 
108 	if (dir_inode_num) {
109 		inode_num = allocate_inode(info);
110 	} else {
111 		dir_inode_num = EXT4_ROOT_INO;
112 		inode_num = EXT4_ROOT_INO;
113 	}
114 
115 	if (inode_num == EXT4_ALLOCATE_FAILED) {
116 		error("failed to allocate inode\n");
117 		return EXT4_ALLOCATE_FAILED;
118 	}
119 
120 	add_directory(inode_num);
121 
122 	inode = get_inode(inode_num);
123 	if (inode == NULL) {
124 		error("failed to get inode %u", inode_num);
125 		return EXT4_ALLOCATE_FAILED;
126 	}
127 
128 	data = inode_allocate_data_extents(inode, len, len);
129 	if (data == NULL) {
130 		error("failed to allocate %u extents", len);
131 		return EXT4_ALLOCATE_FAILED;
132 	}
133 
134 	inode->i_mode = S_IFDIR;
135 	inode->i_links_count = dirs + 2;
136 	inode->i_flags |= aux_info.default_i_flags;
137 
138 	dentry = NULL;
139 
140 	dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
141 	if (!dentry) {
142 		error("failed to add . directory");
143 		return EXT4_ALLOCATE_FAILED;
144 	}
145 
146 	dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
147 	if (!dentry) {
148 		error("failed to add .. directory");
149 		return EXT4_ALLOCATE_FAILED;
150 	}
151 
152 	for (i = 0; i < entries; i++) {
153 		dentry = add_dentry(data, &offset, dentry, 0,
154 				dentries[i].filename, dentries[i].file_type);
155 		if (offset > len || (offset == len && i != entries - 1))
156 			critical_error("internal error: dentry for %s ends at %d, past %d\n",
157 				dentries[i].filename, offset, len);
158 		dentries[i].inode = &dentry->inode;
159 		if (!dentry) {
160 			error("failed to add directory");
161 			return EXT4_ALLOCATE_FAILED;
162 		}
163 	}
164 
165 	/* pad the last dentry out to the end of the block */
166 	dentry->rec_len += len - offset;
167 
168 	return inode_num;
169 }
170 
171 /* Creates a file on disk.  Returns the inode number of the new file */
make_file(const char * filename,u64 len)172 u32 make_file(const char *filename, u64 len)
173 {
174 	struct ext4_inode *inode;
175 	u32 inode_num;
176 
177 	inode_num = allocate_inode(info);
178 	if (inode_num == EXT4_ALLOCATE_FAILED) {
179 		error("failed to allocate inode\n");
180 		return EXT4_ALLOCATE_FAILED;
181 	}
182 
183 	inode = get_inode(inode_num);
184 	if (inode == NULL) {
185 		error("failed to get inode %u", inode_num);
186 		return EXT4_ALLOCATE_FAILED;
187 	}
188 
189 	if (len > 0)
190 		inode_allocate_file_extents(inode, len, filename);
191 
192 	inode->i_mode = S_IFREG;
193 	inode->i_links_count = 1;
194 	inode->i_flags |= aux_info.default_i_flags;
195 
196 	return inode_num;
197 }
198 
199 /* Creates a file on disk.  Returns the inode number of the new file */
make_link(const char * link)200 u32 make_link(const char *link)
201 {
202 	struct ext4_inode *inode;
203 	u32 inode_num;
204 	u32 len = strlen(link);
205 
206 	inode_num = allocate_inode(info);
207 	if (inode_num == EXT4_ALLOCATE_FAILED) {
208 		error("failed to allocate inode\n");
209 		return EXT4_ALLOCATE_FAILED;
210 	}
211 
212 	inode = get_inode(inode_num);
213 	if (inode == NULL) {
214 		error("failed to get inode %u", inode_num);
215 		return EXT4_ALLOCATE_FAILED;
216 	}
217 
218 	inode->i_mode = S_IFLNK;
219 	inode->i_links_count = 1;
220 	inode->i_flags |= aux_info.default_i_flags;
221 	inode->i_size_lo = len;
222 
223 	if (len + 1 <= sizeof(inode->i_block)) {
224 		/* Fast symlink */
225 		memcpy((char*)inode->i_block, link, len);
226 	} else {
227 		u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
228 		memcpy(data, link, len);
229 		inode->i_blocks_lo = info.block_size / 512;
230 	}
231 
232 	return inode_num;
233 }
234 
inode_set_permissions(u32 inode_num,u16 mode,u16 uid,u16 gid,u32 mtime)235 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
236 {
237 	struct ext4_inode *inode = get_inode(inode_num);
238 
239 	if (!inode)
240 		return -1;
241 
242 	inode->i_mode |= mode;
243 	inode->i_uid = uid;
244 	inode->i_gid = gid;
245 	inode->i_mtime = mtime;
246 	inode->i_atime = mtime;
247 	inode->i_ctime = mtime;
248 
249 	return 0;
250 }
251 
252 /*
253  * Returns the amount of free space available in the specified
254  * xattr region
255  */
xattr_free_space(struct ext4_xattr_entry * entry,char * end)256 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
257 {
258 	while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
259 		end   -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
260 		entry  = EXT4_XATTR_NEXT(entry);
261 	}
262 
263 	if (((char *) entry) > end) {
264 		error("unexpected read beyond end of xattr space");
265 		return 0;
266 	}
267 
268 	return end - ((char *) entry);
269 }
270 
271 /*
272  * Returns a pointer to the free space immediately after the
273  * last xattr element
274  */
xattr_get_last(struct ext4_xattr_entry * entry)275 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
276 {
277 	for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
278 		// skip entry
279 	}
280 	return entry;
281 }
282 
283 /*
284  * assert that the elements in the ext4 xattr section are in sorted order
285  *
286  * The ext4 filesystem requires extended attributes to be sorted when
287  * they're not stored in the inode. The kernel ext4 code uses the following
288  * sorting algorithm:
289  *
290  * 1) First sort extended attributes by their name_index. For example,
291  *    EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
292  * 2) If the name_indexes are equal, then sorting is based on the length
293  *    of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
294  *    XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
295  * 3) If the name_index and name_length are equal, then memcmp() is used to determine
296  *    which name comes first. For example, "selinux" would come before "yelinux".
297  *
298  * This method is intended to implement the sorting function defined in
299  * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
300  */
xattr_assert_sane(struct ext4_xattr_entry * entry)301 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
302 {
303 	for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
304 		struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
305 		if (IS_LAST_ENTRY(next)) {
306 			return;
307 		}
308 
309 		int cmp = next->e_name_index - entry->e_name_index;
310 		if (cmp == 0)
311 			cmp = next->e_name_len - entry->e_name_len;
312 		if (cmp == 0)
313 			cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
314 		if (cmp < 0) {
315 			error("BUG: extended attributes are not sorted\n");
316 			return;
317 		}
318 		if (cmp == 0) {
319 			error("BUG: duplicate extended attributes detected\n");
320 			return;
321 		}
322 	}
323 }
324 
325 #define NAME_HASH_SHIFT 5
326 #define VALUE_HASH_SHIFT 16
327 
ext4_xattr_hash_entry(struct ext4_xattr_header * header,struct ext4_xattr_entry * entry)328 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
329 		struct ext4_xattr_entry *entry)
330 {
331 	u32 hash = 0;
332 	char *name = entry->e_name;
333 	int n;
334 
335 	for (n = 0; n < entry->e_name_len; n++) {
336 		hash = (hash << NAME_HASH_SHIFT) ^
337 			(hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
338 			*name++;
339 	}
340 
341 	if (entry->e_value_block == 0 && entry->e_value_size != 0) {
342 		u32 *value = (u32 *)((char *)header +
343 			le16_to_cpu(entry->e_value_offs));
344 		for (n = (le32_to_cpu(entry->e_value_size) +
345 			EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
346 			hash = (hash << VALUE_HASH_SHIFT) ^
347 				(hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
348 				le32_to_cpu(*value++);
349 		}
350 	}
351 	entry->e_hash = cpu_to_le32(hash);
352 }
353 
354 #undef NAME_HASH_SHIFT
355 #undef VALUE_HASH_SHIFT
356 
xattr_addto_range(void * block_start,void * block_end,struct ext4_xattr_entry * first,int name_index,const char * name,const void * value,size_t value_len)357 static struct ext4_xattr_entry* xattr_addto_range(
358 		void *block_start,
359 		void *block_end,
360 		struct ext4_xattr_entry *first,
361 		int name_index,
362 		const char *name,
363 		const void *value,
364 		size_t value_len)
365 {
366 	size_t name_len = strlen(name);
367 	if (name_len > 255)
368 		return NULL;
369 
370 	size_t available_size = xattr_free_space(first, block_end);
371 	size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
372 
373 	if (needed_size > available_size)
374 		return NULL;
375 
376 	struct ext4_xattr_entry *new_entry = xattr_get_last(first);
377 	memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
378 
379 	new_entry->e_name_len = name_len;
380 	new_entry->e_name_index = name_index;
381 	memcpy(new_entry->e_name, name, name_len);
382 	new_entry->e_value_block = 0;
383 	new_entry->e_value_size = cpu_to_le32(value_len);
384 
385 	char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
386 	size_t e_value_offs = val - (char *) block_start;
387 
388 	new_entry->e_value_offs = cpu_to_le16(e_value_offs);
389 	memset(val, 0, EXT4_XATTR_SIZE(value_len));
390 	memcpy(val, value, value_len);
391 
392 	xattr_assert_sane(first);
393 	return new_entry;
394 }
395 
xattr_addto_inode(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)396 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
397 		const char *name, const void *value, size_t value_len)
398 {
399 	struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
400 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
401 	char *block_end = ((char *) inode) + info.inode_size;
402 
403 	struct ext4_xattr_entry *result =
404 		xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
405 
406 	if (result == NULL)
407 		return -1;
408 
409 	hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
410 	inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
411 
412 	return 0;
413 }
414 
xattr_addto_block(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)415 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
416 		const char *name, const void *value, size_t value_len)
417 {
418 	struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
419 	if (!header)
420 		return -1;
421 
422 	struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
423 	char *block_end = ((char *) header) + info.block_size;
424 
425 	struct ext4_xattr_entry *result =
426 		xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
427 
428 	if (result == NULL)
429 		return -1;
430 
431 	ext4_xattr_hash_entry(header, result);
432 	return 0;
433 }
434 
435 
xattr_add(u32 inode_num,int name_index,const char * name,const void * value,size_t value_len)436 static int xattr_add(u32 inode_num, int name_index, const char *name,
437 		const void *value, size_t value_len)
438 {
439 	if (!value)
440 		return 0;
441 
442 	struct ext4_inode *inode = get_inode(inode_num);
443 
444 	if (!inode)
445 		return -1;
446 
447 	int result = xattr_addto_inode(inode, name_index, name, value, value_len);
448 	if (result != 0) {
449 		result = xattr_addto_block(inode, name_index, name, value, value_len);
450 	}
451 	return result;
452 }
453 
inode_set_selinux(u32 inode_num,const char * secon)454 int inode_set_selinux(u32 inode_num, const char *secon)
455 {
456 	if (!secon)
457 		return 0;
458 
459 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
460 		XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
461 }
462 
inode_set_capabilities(u32 inode_num,uint64_t capabilities)463 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
464 	if (capabilities == 0)
465 		return 0;
466 
467 	struct vfs_cap_data cap_data;
468 	memset(&cap_data, 0, sizeof(cap_data));
469 
470 	cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
471 	cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
472 	cap_data.data[0].inheritable = 0;
473 	cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
474 	cap_data.data[1].inheritable = 0;
475 
476 	return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
477 		XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
478 }
479 
480