1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <sys/stat.h>
18 #include <string.h>
19 #include <stdio.h>
20
21 #ifdef HAVE_ANDROID_OS
22 #include <linux/capability.h>
23 #else
24 #include <private/android_filesystem_capability.h>
25 #endif
26
27 #define XATTR_SELINUX_SUFFIX "selinux"
28 #define XATTR_CAPS_SUFFIX "capability"
29
30 #include "ext4_utils.h"
31 #include "make_ext4fs.h"
32 #include "allocate.h"
33 #include "contents.h"
34 #include "extent.h"
35 #include "indirect.h"
36
37 #ifdef USE_MINGW
38 #define S_IFLNK 0 /* used by make_link, not needed under mingw */
39 #endif
40
dentry_size(u32 entries,struct dentry * dentries)41 static u32 dentry_size(u32 entries, struct dentry *dentries)
42 {
43 u32 len = 24;
44 unsigned int i;
45 unsigned int dentry_len;
46
47 for (i = 0; i < entries; i++) {
48 dentry_len = 8 + ALIGN(strlen(dentries[i].filename), 4);
49 if (len % info.block_size + dentry_len > info.block_size)
50 len += info.block_size - (len % info.block_size);
51 len += dentry_len;
52 }
53
54 return len;
55 }
56
add_dentry(u8 * data,u32 * offset,struct ext4_dir_entry_2 * prev,u32 inode,const char * name,u8 file_type)57 static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
58 struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
59 u8 file_type)
60 {
61 u8 name_len = strlen(name);
62 u16 rec_len = 8 + ALIGN(name_len, 4);
63 struct ext4_dir_entry_2 *dentry;
64
65 u32 start_block = *offset / info.block_size;
66 u32 end_block = (*offset + rec_len - 1) / info.block_size;
67 if (start_block != end_block) {
68 /* Adding this dentry will cross a block boundary, so pad the previous
69 dentry to the block boundary */
70 if (!prev)
71 critical_error("no prev");
72 prev->rec_len += end_block * info.block_size - *offset;
73 *offset = end_block * info.block_size;
74 }
75
76 dentry = (struct ext4_dir_entry_2 *)(data + *offset);
77 dentry->inode = inode;
78 dentry->rec_len = rec_len;
79 dentry->name_len = name_len;
80 dentry->file_type = file_type;
81 memcpy(dentry->name, name, name_len);
82
83 *offset += rec_len;
84 return dentry;
85 }
86
87 /* Creates a directory structure for an array of directory entries, dentries,
88 and stores the location of the structure in an inode. The new inode's
89 .. link is set to dir_inode_num. Stores the location of the inode number
90 of each directory entry into dentries[i].inode, to be filled in later
91 when the inode for the entry is allocated. Returns the inode number of the
92 new directory */
make_directory(u32 dir_inode_num,u32 entries,struct dentry * dentries,u32 dirs)93 u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
94 u32 dirs)
95 {
96 struct ext4_inode *inode;
97 u32 blocks;
98 u32 len;
99 u32 offset = 0;
100 u32 inode_num;
101 u8 *data;
102 unsigned int i;
103 struct ext4_dir_entry_2 *dentry;
104
105 blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
106 len = blocks * info.block_size;
107
108 if (dir_inode_num) {
109 inode_num = allocate_inode(info);
110 } else {
111 dir_inode_num = EXT4_ROOT_INO;
112 inode_num = EXT4_ROOT_INO;
113 }
114
115 if (inode_num == EXT4_ALLOCATE_FAILED) {
116 error("failed to allocate inode\n");
117 return EXT4_ALLOCATE_FAILED;
118 }
119
120 add_directory(inode_num);
121
122 inode = get_inode(inode_num);
123 if (inode == NULL) {
124 error("failed to get inode %u", inode_num);
125 return EXT4_ALLOCATE_FAILED;
126 }
127
128 data = inode_allocate_data_extents(inode, len, len);
129 if (data == NULL) {
130 error("failed to allocate %u extents", len);
131 return EXT4_ALLOCATE_FAILED;
132 }
133
134 inode->i_mode = S_IFDIR;
135 inode->i_links_count = dirs + 2;
136 inode->i_flags |= aux_info.default_i_flags;
137
138 dentry = NULL;
139
140 dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
141 if (!dentry) {
142 error("failed to add . directory");
143 return EXT4_ALLOCATE_FAILED;
144 }
145
146 dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
147 if (!dentry) {
148 error("failed to add .. directory");
149 return EXT4_ALLOCATE_FAILED;
150 }
151
152 for (i = 0; i < entries; i++) {
153 dentry = add_dentry(data, &offset, dentry, 0,
154 dentries[i].filename, dentries[i].file_type);
155 if (offset > len || (offset == len && i != entries - 1))
156 critical_error("internal error: dentry for %s ends at %d, past %d\n",
157 dentries[i].filename, offset, len);
158 dentries[i].inode = &dentry->inode;
159 if (!dentry) {
160 error("failed to add directory");
161 return EXT4_ALLOCATE_FAILED;
162 }
163 }
164
165 /* pad the last dentry out to the end of the block */
166 dentry->rec_len += len - offset;
167
168 return inode_num;
169 }
170
171 /* Creates a file on disk. Returns the inode number of the new file */
make_file(const char * filename,u64 len)172 u32 make_file(const char *filename, u64 len)
173 {
174 struct ext4_inode *inode;
175 u32 inode_num;
176
177 inode_num = allocate_inode(info);
178 if (inode_num == EXT4_ALLOCATE_FAILED) {
179 error("failed to allocate inode\n");
180 return EXT4_ALLOCATE_FAILED;
181 }
182
183 inode = get_inode(inode_num);
184 if (inode == NULL) {
185 error("failed to get inode %u", inode_num);
186 return EXT4_ALLOCATE_FAILED;
187 }
188
189 if (len > 0)
190 inode_allocate_file_extents(inode, len, filename);
191
192 inode->i_mode = S_IFREG;
193 inode->i_links_count = 1;
194 inode->i_flags |= aux_info.default_i_flags;
195
196 return inode_num;
197 }
198
199 /* Creates a file on disk. Returns the inode number of the new file */
make_link(const char * link)200 u32 make_link(const char *link)
201 {
202 struct ext4_inode *inode;
203 u32 inode_num;
204 u32 len = strlen(link);
205
206 inode_num = allocate_inode(info);
207 if (inode_num == EXT4_ALLOCATE_FAILED) {
208 error("failed to allocate inode\n");
209 return EXT4_ALLOCATE_FAILED;
210 }
211
212 inode = get_inode(inode_num);
213 if (inode == NULL) {
214 error("failed to get inode %u", inode_num);
215 return EXT4_ALLOCATE_FAILED;
216 }
217
218 inode->i_mode = S_IFLNK;
219 inode->i_links_count = 1;
220 inode->i_flags |= aux_info.default_i_flags;
221 inode->i_size_lo = len;
222
223 if (len + 1 <= sizeof(inode->i_block)) {
224 /* Fast symlink */
225 memcpy((char*)inode->i_block, link, len);
226 } else {
227 u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
228 memcpy(data, link, len);
229 inode->i_blocks_lo = info.block_size / 512;
230 }
231
232 return inode_num;
233 }
234
inode_set_permissions(u32 inode_num,u16 mode,u16 uid,u16 gid,u32 mtime)235 int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
236 {
237 struct ext4_inode *inode = get_inode(inode_num);
238
239 if (!inode)
240 return -1;
241
242 inode->i_mode |= mode;
243 inode->i_uid = uid;
244 inode->i_gid = gid;
245 inode->i_mtime = mtime;
246 inode->i_atime = mtime;
247 inode->i_ctime = mtime;
248
249 return 0;
250 }
251
252 /*
253 * Returns the amount of free space available in the specified
254 * xattr region
255 */
xattr_free_space(struct ext4_xattr_entry * entry,char * end)256 static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
257 {
258 while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
259 end -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
260 entry = EXT4_XATTR_NEXT(entry);
261 }
262
263 if (((char *) entry) > end) {
264 error("unexpected read beyond end of xattr space");
265 return 0;
266 }
267
268 return end - ((char *) entry);
269 }
270
271 /*
272 * Returns a pointer to the free space immediately after the
273 * last xattr element
274 */
xattr_get_last(struct ext4_xattr_entry * entry)275 static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
276 {
277 for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
278 // skip entry
279 }
280 return entry;
281 }
282
283 /*
284 * assert that the elements in the ext4 xattr section are in sorted order
285 *
286 * The ext4 filesystem requires extended attributes to be sorted when
287 * they're not stored in the inode. The kernel ext4 code uses the following
288 * sorting algorithm:
289 *
290 * 1) First sort extended attributes by their name_index. For example,
291 * EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
292 * 2) If the name_indexes are equal, then sorting is based on the length
293 * of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
294 * XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
295 * 3) If the name_index and name_length are equal, then memcmp() is used to determine
296 * which name comes first. For example, "selinux" would come before "yelinux".
297 *
298 * This method is intended to implement the sorting function defined in
299 * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
300 */
xattr_assert_sane(struct ext4_xattr_entry * entry)301 static void xattr_assert_sane(struct ext4_xattr_entry *entry)
302 {
303 for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
304 struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
305 if (IS_LAST_ENTRY(next)) {
306 return;
307 }
308
309 int cmp = next->e_name_index - entry->e_name_index;
310 if (cmp == 0)
311 cmp = next->e_name_len - entry->e_name_len;
312 if (cmp == 0)
313 cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
314 if (cmp < 0) {
315 error("BUG: extended attributes are not sorted\n");
316 return;
317 }
318 if (cmp == 0) {
319 error("BUG: duplicate extended attributes detected\n");
320 return;
321 }
322 }
323 }
324
325 #define NAME_HASH_SHIFT 5
326 #define VALUE_HASH_SHIFT 16
327
ext4_xattr_hash_entry(struct ext4_xattr_header * header,struct ext4_xattr_entry * entry)328 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
329 struct ext4_xattr_entry *entry)
330 {
331 u32 hash = 0;
332 char *name = entry->e_name;
333 int n;
334
335 for (n = 0; n < entry->e_name_len; n++) {
336 hash = (hash << NAME_HASH_SHIFT) ^
337 (hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
338 *name++;
339 }
340
341 if (entry->e_value_block == 0 && entry->e_value_size != 0) {
342 u32 *value = (u32 *)((char *)header +
343 le16_to_cpu(entry->e_value_offs));
344 for (n = (le32_to_cpu(entry->e_value_size) +
345 EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
346 hash = (hash << VALUE_HASH_SHIFT) ^
347 (hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
348 le32_to_cpu(*value++);
349 }
350 }
351 entry->e_hash = cpu_to_le32(hash);
352 }
353
354 #undef NAME_HASH_SHIFT
355 #undef VALUE_HASH_SHIFT
356
xattr_addto_range(void * block_start,void * block_end,struct ext4_xattr_entry * first,int name_index,const char * name,const void * value,size_t value_len)357 static struct ext4_xattr_entry* xattr_addto_range(
358 void *block_start,
359 void *block_end,
360 struct ext4_xattr_entry *first,
361 int name_index,
362 const char *name,
363 const void *value,
364 size_t value_len)
365 {
366 size_t name_len = strlen(name);
367 if (name_len > 255)
368 return NULL;
369
370 size_t available_size = xattr_free_space(first, block_end);
371 size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
372
373 if (needed_size > available_size)
374 return NULL;
375
376 struct ext4_xattr_entry *new_entry = xattr_get_last(first);
377 memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
378
379 new_entry->e_name_len = name_len;
380 new_entry->e_name_index = name_index;
381 memcpy(new_entry->e_name, name, name_len);
382 new_entry->e_value_block = 0;
383 new_entry->e_value_size = cpu_to_le32(value_len);
384
385 char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
386 size_t e_value_offs = val - (char *) block_start;
387
388 new_entry->e_value_offs = cpu_to_le16(e_value_offs);
389 memset(val, 0, EXT4_XATTR_SIZE(value_len));
390 memcpy(val, value, value_len);
391
392 xattr_assert_sane(first);
393 return new_entry;
394 }
395
xattr_addto_inode(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)396 static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
397 const char *name, const void *value, size_t value_len)
398 {
399 struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
400 struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
401 char *block_end = ((char *) inode) + info.inode_size;
402
403 struct ext4_xattr_entry *result =
404 xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
405
406 if (result == NULL)
407 return -1;
408
409 hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
410 inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
411
412 return 0;
413 }
414
xattr_addto_block(struct ext4_inode * inode,int name_index,const char * name,const void * value,size_t value_len)415 static int xattr_addto_block(struct ext4_inode *inode, int name_index,
416 const char *name, const void *value, size_t value_len)
417 {
418 struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
419 if (!header)
420 return -1;
421
422 struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
423 char *block_end = ((char *) header) + info.block_size;
424
425 struct ext4_xattr_entry *result =
426 xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
427
428 if (result == NULL)
429 return -1;
430
431 ext4_xattr_hash_entry(header, result);
432 return 0;
433 }
434
435
xattr_add(u32 inode_num,int name_index,const char * name,const void * value,size_t value_len)436 static int xattr_add(u32 inode_num, int name_index, const char *name,
437 const void *value, size_t value_len)
438 {
439 if (!value)
440 return 0;
441
442 struct ext4_inode *inode = get_inode(inode_num);
443
444 if (!inode)
445 return -1;
446
447 int result = xattr_addto_inode(inode, name_index, name, value, value_len);
448 if (result != 0) {
449 result = xattr_addto_block(inode, name_index, name, value, value_len);
450 }
451 return result;
452 }
453
inode_set_selinux(u32 inode_num,const char * secon)454 int inode_set_selinux(u32 inode_num, const char *secon)
455 {
456 if (!secon)
457 return 0;
458
459 return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
460 XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
461 }
462
inode_set_capabilities(u32 inode_num,uint64_t capabilities)463 int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
464 if (capabilities == 0)
465 return 0;
466
467 struct vfs_cap_data cap_data;
468 memset(&cap_data, 0, sizeof(cap_data));
469
470 cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
471 cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
472 cap_data.data[0].inheritable = 0;
473 cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
474 cap_data.data[1].inheritable = 0;
475
476 return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
477 XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
478 }
479
480