• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #include <openssl/bn.h>
110 
111 #include <assert.h>
112 
113 #include <openssl/cpu.h>
114 #include <openssl/err.h>
115 #include <openssl/mem.h>
116 
117 #include "internal.h"
118 
119 
120 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
121 #define OPENSSL_BN_ASM_MONT5
122 #define RSAZ_ENABLED
123 
124 #include "rsaz_exp.h"
125 #endif
126 
BN_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)127 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
128   int i, bits, ret = 0;
129   BIGNUM *v, *rr;
130 
131   if ((p->flags & BN_FLG_CONSTTIME) != 0) {
132     /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
133     OPENSSL_PUT_ERROR(BN, BN_exp, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
134     return 0;
135   }
136 
137   BN_CTX_start(ctx);
138   if (r == a || r == p) {
139     rr = BN_CTX_get(ctx);
140   } else {
141     rr = r;
142   }
143 
144   v = BN_CTX_get(ctx);
145   if (rr == NULL || v == NULL) {
146     goto err;
147   }
148 
149   if (BN_copy(v, a) == NULL) {
150     goto err;
151   }
152   bits = BN_num_bits(p);
153 
154   if (BN_is_odd(p)) {
155     if (BN_copy(rr, a) == NULL) {
156       goto err;
157     }
158   } else {
159     if (!BN_one(rr)) {
160       goto err;
161     }
162   }
163 
164   for (i = 1; i < bits; i++) {
165     if (!BN_sqr(v, v, ctx)) {
166       goto err;
167     }
168     if (BN_is_bit_set(p, i)) {
169       if (!BN_mul(rr, rr, v, ctx)) {
170         goto err;
171       }
172     }
173   }
174   ret = 1;
175 
176 err:
177   if (r != rr) {
178     BN_copy(r, rr);
179   }
180   BN_CTX_end(ctx);
181   return ret;
182 }
183 
184 /* maximum precomputation table size for *variable* sliding windows */
185 #define TABLE_SIZE 32
186 
187 typedef struct bn_recp_ctx_st {
188   BIGNUM N;  /* the divisor */
189   BIGNUM Nr; /* the reciprocal */
190   int num_bits;
191   int shift;
192   int flags;
193 } BN_RECP_CTX;
194 
BN_RECP_CTX_init(BN_RECP_CTX * recp)195 static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
196   BN_init(&recp->N);
197   BN_init(&recp->Nr);
198   recp->num_bits = 0;
199   recp->flags = 0;
200 }
201 
BN_RECP_CTX_free(BN_RECP_CTX * recp)202 static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
203   if (recp == NULL) {
204     return;
205   }
206 
207   BN_free(&recp->N);
208   BN_free(&recp->Nr);
209 }
210 
BN_RECP_CTX_set(BN_RECP_CTX * recp,const BIGNUM * d,BN_CTX * ctx)211 static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
212   if (!BN_copy(&(recp->N), d)) {
213     return 0;
214   }
215   BN_zero(&recp->Nr);
216   recp->num_bits = BN_num_bits(d);
217   recp->shift = 0;
218 
219   return 1;
220 }
221 
222 /* len is the expected size of the result We actually calculate with an extra
223  * word of precision, so we can do faster division if the remainder is not
224  * required.
225  * r := 2^len / m */
BN_reciprocal(BIGNUM * r,const BIGNUM * m,int len,BN_CTX * ctx)226 static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
227   int ret = -1;
228   BIGNUM *t;
229 
230   BN_CTX_start(ctx);
231   t = BN_CTX_get(ctx);
232   if (t == NULL) {
233     goto err;
234   }
235 
236   if (!BN_set_bit(t, len)) {
237     goto err;
238   }
239 
240   if (!BN_div(r, NULL, t, m, ctx)) {
241     goto err;
242   }
243 
244   ret = len;
245 
246 err:
247   BN_CTX_end(ctx);
248   return ret;
249 }
250 
BN_div_recp(BIGNUM * dv,BIGNUM * rem,const BIGNUM * m,BN_RECP_CTX * recp,BN_CTX * ctx)251 static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
252                        BN_RECP_CTX *recp, BN_CTX *ctx) {
253   int i, j, ret = 0;
254   BIGNUM *a, *b, *d, *r;
255 
256   BN_CTX_start(ctx);
257   a = BN_CTX_get(ctx);
258   b = BN_CTX_get(ctx);
259   if (dv != NULL) {
260     d = dv;
261   } else {
262     d = BN_CTX_get(ctx);
263   }
264 
265   if (rem != NULL) {
266     r = rem;
267   } else {
268     r = BN_CTX_get(ctx);
269   }
270 
271   if (a == NULL || b == NULL || d == NULL || r == NULL) {
272     goto err;
273   }
274 
275   if (BN_ucmp(m, &(recp->N)) < 0) {
276     BN_zero(d);
277     if (!BN_copy(r, m)) {
278       return 0;
279     }
280     BN_CTX_end(ctx);
281     return 1;
282   }
283 
284   /* We want the remainder
285    * Given input of ABCDEF / ab
286    * we need multiply ABCDEF by 3 digests of the reciprocal of ab */
287 
288   /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
289   i = BN_num_bits(m);
290   j = recp->num_bits << 1;
291   if (j > i) {
292     i = j;
293   }
294 
295   /* Nr := round(2^i / N) */
296   if (i != recp->shift) {
297     recp->shift =
298         BN_reciprocal(&(recp->Nr), &(recp->N), i,
299                       ctx); /* BN_reciprocal returns i, or -1 for an error */
300   }
301 
302   if (recp->shift == -1) {
303     goto err;
304   }
305 
306   /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
307    * BN_num_bits(N)))|
308    *    = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
309    * BN_num_bits(N)))|
310    *   <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
311    *    = |m/N| */
312   if (!BN_rshift(a, m, recp->num_bits)) {
313     goto err;
314   }
315   if (!BN_mul(b, a, &(recp->Nr), ctx)) {
316     goto err;
317   }
318   if (!BN_rshift(d, b, i - recp->num_bits)) {
319     goto err;
320   }
321   d->neg = 0;
322 
323   if (!BN_mul(b, &(recp->N), d, ctx)) {
324     goto err;
325   }
326   if (!BN_usub(r, m, b)) {
327     goto err;
328   }
329   r->neg = 0;
330 
331   j = 0;
332   while (BN_ucmp(r, &(recp->N)) >= 0) {
333     if (j++ > 2) {
334       OPENSSL_PUT_ERROR(BN, BN_div_recp, BN_R_BAD_RECIPROCAL);
335       goto err;
336     }
337     if (!BN_usub(r, r, &(recp->N))) {
338       goto err;
339     }
340     if (!BN_add_word(d, 1)) {
341       goto err;
342     }
343   }
344 
345   r->neg = BN_is_zero(r) ? 0 : m->neg;
346   d->neg = m->neg ^ recp->N.neg;
347   ret = 1;
348 
349 err:
350   BN_CTX_end(ctx);
351   return ret;
352 }
353 
BN_mod_mul_reciprocal(BIGNUM * r,const BIGNUM * x,const BIGNUM * y,BN_RECP_CTX * recp,BN_CTX * ctx)354 static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
355                                  BN_RECP_CTX *recp, BN_CTX *ctx) {
356   int ret = 0;
357   BIGNUM *a;
358   const BIGNUM *ca;
359 
360   BN_CTX_start(ctx);
361   a = BN_CTX_get(ctx);
362   if (a == NULL) {
363     goto err;
364   }
365 
366   if (y != NULL) {
367     if (x == y) {
368       if (!BN_sqr(a, x, ctx)) {
369         goto err;
370       }
371     } else {
372       if (!BN_mul(a, x, y, ctx)) {
373         goto err;
374       }
375     }
376     ca = a;
377   } else {
378     ca = x; /* Just do the mod */
379   }
380 
381   ret = BN_div_recp(NULL, r, ca, recp, ctx);
382 
383 err:
384   BN_CTX_end(ctx);
385   return ret;
386 }
387 
388 /* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp
389  * functions
390  *
391  * For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
392  * multiplications is a constant plus on average
393  *
394  *    2^(w-1) + (b-w)/(w+1);
395  *
396  * here 2^(w-1)  is for precomputing the table (we actually need entries only
397  * for windows that have the lowest bit set), and (b-w)/(w+1)  is an
398  * approximation for the expected number of w-bit windows, not counting the
399  * first one.
400  *
401  * Thus we should use
402  *
403  *    w >= 6  if        b > 671
404  *     w = 5  if  671 > b > 239
405  *     w = 4  if  239 > b >  79
406  *     w = 3  if   79 > b >  23
407  *    w <= 2  if   23 > b
408  *
409  * (with draws in between).  Very small exponents are often selected
410  * with low Hamming weight, so we use  w = 1  for b <= 23. */
411 #define BN_window_bits_for_exponent_size(b) \
412 		((b) > 671 ? 6 : \
413 		 (b) > 239 ? 5 : \
414 		 (b) >  79 ? 4 : \
415 		 (b) >  23 ? 3 : 1)
416 
mod_exp_recp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)417 static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
418                         const BIGNUM *m, BN_CTX *ctx) {
419   int i, j, bits, ret = 0, wstart, wend, window, wvalue;
420   int start = 1;
421   BIGNUM *aa;
422   /* Table of variables obtained from 'ctx' */
423   BIGNUM *val[TABLE_SIZE];
424   BN_RECP_CTX recp;
425 
426   if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
427     /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
428     OPENSSL_PUT_ERROR(BN, mod_exp_recp, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
429     return 0;
430   }
431 
432   bits = BN_num_bits(p);
433 
434   if (bits == 0) {
435     ret = BN_one(r);
436     return ret;
437   }
438 
439   BN_CTX_start(ctx);
440   aa = BN_CTX_get(ctx);
441   val[0] = BN_CTX_get(ctx);
442   if (!aa || !val[0]) {
443     goto err;
444   }
445 
446   BN_RECP_CTX_init(&recp);
447   if (m->neg) {
448     /* ignore sign of 'm' */
449     if (!BN_copy(aa, m)) {
450       goto err;
451     }
452     aa->neg = 0;
453     if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
454       goto err;
455     }
456   } else {
457     if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
458       goto err;
459     }
460   }
461 
462   if (!BN_nnmod(val[0], a, m, ctx)) {
463     goto err; /* 1 */
464   }
465   if (BN_is_zero(val[0])) {
466     BN_zero(r);
467     ret = 1;
468     goto err;
469   }
470 
471   window = BN_window_bits_for_exponent_size(bits);
472   if (window > 1) {
473     if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
474       goto err; /* 2 */
475     }
476     j = 1 << (window - 1);
477     for (i = 1; i < j; i++) {
478       if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
479           !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
480         goto err;
481       }
482     }
483   }
484 
485   start = 1; /* This is used to avoid multiplication etc
486               * when there is only the value '1' in the
487               * buffer. */
488   wvalue = 0;        /* The 'value' of the window */
489   wstart = bits - 1; /* The top bit of the window */
490   wend = 0;          /* The bottom bit of the window */
491 
492   if (!BN_one(r)) {
493     goto err;
494   }
495 
496   for (;;) {
497     if (BN_is_bit_set(p, wstart) == 0) {
498       if (!start) {
499         if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
500           goto err;
501         }
502       }
503       if (wstart == 0) {
504         break;
505       }
506       wstart--;
507       continue;
508     }
509 
510     /* We now have wstart on a 'set' bit, we now need to work out
511      * how bit a window to do.  To do this we need to scan
512      * forward until the last set bit before the end of the
513      * window */
514     wvalue = 1;
515     wend = 0;
516     for (i = 1; i < window; i++) {
517       if (wstart - i < 0) {
518         break;
519       }
520       if (BN_is_bit_set(p, wstart - i)) {
521         wvalue <<= (i - wend);
522         wvalue |= 1;
523         wend = i;
524       }
525     }
526 
527     /* wend is the size of the current window */
528     j = wend + 1;
529     /* add the 'bytes above' */
530     if (!start) {
531       for (i = 0; i < j; i++) {
532         if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
533           goto err;
534         }
535       }
536     }
537 
538     /* wvalue will be an odd number < 2^window */
539     if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
540       goto err;
541     }
542 
543     /* move the 'window' down further */
544     wstart -= wend + 1;
545     wvalue = 0;
546     start = 0;
547     if (wstart < 0) {
548       break;
549     }
550   }
551   ret = 1;
552 
553 err:
554   BN_CTX_end(ctx);
555   BN_RECP_CTX_free(&recp);
556   return ret;
557 }
558 
BN_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)559 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
560                BN_CTX *ctx) {
561   /* For even modulus  m = 2^k*m_odd,  it might make sense to compute
562    * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
563    * exponentiation for the odd part), using appropriate exponent
564    * reductions, and combine the results using the CRT.
565    *
566    * For now, we use Montgomery only if the modulus is odd; otherwise,
567    * exponentiation using the reciprocal-based quick remaindering
568    * algorithm is used.
569    *
570    * (Timing obtained with expspeed.c [computations  a^p mod m
571    * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
572    * 4096, 8192 bits], compared to the running time of the
573    * standard algorithm:
574    *
575    *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
576    *                     55 .. 77 %  [UltraSparc processor, but
577    *                                  debug-solaris-sparcv8-gcc conf.]
578    *
579    *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
580    *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
581    *
582    * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
583    * at 2048 and more bits, but at 512 and 1024 bits, it was
584    * slower even than the standard algorithm!
585    *
586    * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
587    * should be obtained when the new Montgomery reduction code
588    * has been integrated into OpenSSL.) */
589 
590   if (BN_is_odd(m)) {
591     if (a->top == 1 && !a->neg && BN_get_flags(p, BN_FLG_CONSTTIME) == 0) {
592       BN_ULONG A = a->d[0];
593       return BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
594     }
595 
596     return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
597   }
598 
599   return mod_exp_recp(r, a, p, m, ctx);
600 }
601 
BN_mod_exp_mont(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)602 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
603                     const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) {
604   int i, j, bits, ret = 0, wstart, wend, window, wvalue;
605   int start = 1;
606   BIGNUM *d, *r;
607   const BIGNUM *aa;
608   /* Table of variables obtained from 'ctx' */
609   BIGNUM *val[TABLE_SIZE];
610   BN_MONT_CTX *mont = NULL;
611 
612   if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
613     return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
614   }
615 
616   if (!BN_is_odd(m)) {
617     OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont, BN_R_CALLED_WITH_EVEN_MODULUS);
618     return 0;
619   }
620   bits = BN_num_bits(p);
621   if (bits == 0) {
622     ret = BN_one(rr);
623     return ret;
624   }
625 
626   BN_CTX_start(ctx);
627   d = BN_CTX_get(ctx);
628   r = BN_CTX_get(ctx);
629   val[0] = BN_CTX_get(ctx);
630   if (!d || !r || !val[0]) {
631     goto err;
632   }
633 
634   /* If this is not done, things will break in the montgomery part */
635 
636   if (in_mont != NULL) {
637     mont = in_mont;
638   } else {
639     mont = BN_MONT_CTX_new();
640     if (mont == NULL) {
641       goto err;
642     }
643     if (!BN_MONT_CTX_set(mont, m, ctx)) {
644       goto err;
645     }
646   }
647 
648   if (a->neg || BN_ucmp(a, m) >= 0) {
649     if (!BN_nnmod(val[0], a, m, ctx)) {
650       goto err;
651     }
652     aa = val[0];
653   } else {
654     aa = a;
655   }
656 
657   if (BN_is_zero(aa)) {
658     BN_zero(rr);
659     ret = 1;
660     goto err;
661   }
662   if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
663     goto err; /* 1 */
664   }
665 
666   window = BN_window_bits_for_exponent_size(bits);
667   if (window > 1) {
668     if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
669       goto err; /* 2 */
670     }
671     j = 1 << (window - 1);
672     for (i = 1; i < j; i++) {
673       if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
674           !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
675         goto err;
676       }
677     }
678   }
679 
680   start = 1; /* This is used to avoid multiplication etc
681               * when there is only the value '1' in the
682               * buffer. */
683   wvalue = 0;        /* The 'value' of the window */
684   wstart = bits - 1; /* The top bit of the window */
685   wend = 0;          /* The bottom bit of the window */
686 
687   j = m->top; /* borrow j */
688   if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
689     if (bn_wexpand(r, j) == NULL)
690       goto err;
691     /* 2^(top*BN_BITS2) - m */
692     r->d[0] = (0 - m->d[0]) & BN_MASK2;
693     for (i = 1; i < j; i++)
694       r->d[i] = (~m->d[i]) & BN_MASK2;
695     r->top = j;
696     /* Upper words will be zero if the corresponding words of 'm'
697      * were 0xfff[...], so decrement r->top accordingly. */
698     bn_correct_top(r);
699   } else if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
700     goto err;
701   }
702 
703   for (;;) {
704     if (BN_is_bit_set(p, wstart) == 0) {
705       if (!start) {
706         if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
707           goto err;
708       }
709       if (wstart == 0) {
710         break;
711       }
712       wstart--;
713       continue;
714     }
715 
716     /* We now have wstart on a 'set' bit, we now need to work out how bit a
717      * window to do.  To do this we need to scan forward until the last set bit
718      * before the end of the window */
719     j = wstart;
720     wvalue = 1;
721     wend = 0;
722     for (i = 1; i < window; i++) {
723       if (wstart - i < 0) {
724         break;
725       }
726       if (BN_is_bit_set(p, wstart - i)) {
727         wvalue <<= (i - wend);
728         wvalue |= 1;
729         wend = i;
730       }
731     }
732 
733     /* wend is the size of the current window */
734     j = wend + 1;
735     /* add the 'bytes above' */
736     if (!start) {
737       for (i = 0; i < j; i++) {
738         if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
739           goto err;
740         }
741       }
742     }
743 
744     /* wvalue will be an odd number < 2^window */
745     if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
746       goto err;
747     }
748 
749     /* move the 'window' down further */
750     wstart -= wend + 1;
751     wvalue = 0;
752     start = 0;
753     if (wstart < 0) {
754       break;
755     }
756   }
757 
758   if (!BN_from_montgomery(rr, r, mont, ctx)) {
759     goto err;
760   }
761   ret = 1;
762 
763 err:
764   if (in_mont == NULL && mont != NULL) {
765     BN_MONT_CTX_free(mont);
766   }
767   BN_CTX_end(ctx);
768   return ret;
769 }
770 
771 /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
772  * layout so that accessing any of these table values shows the same access
773  * pattern as far as cache lines are concerned. The following functions are
774  * used to transfer a BIGNUM from/to that table. */
copy_to_prebuf(const BIGNUM * b,int top,unsigned char * buf,int idx,int width)775 static int copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf, int idx,
776                           int width) {
777   size_t i, j;
778 
779   if (top > b->top) {
780     top = b->top; /* this works because 'buf' is explicitly zeroed */
781   }
782   for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
783     buf[j] = ((unsigned char *)b->d)[i];
784   }
785 
786   return 1;
787 }
788 
copy_from_prebuf(BIGNUM * b,int top,unsigned char * buf,int idx,int width)789 static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
790                             int width) {
791   size_t i, j;
792 
793   if (bn_wexpand(b, top) == NULL) {
794     return 0;
795   }
796 
797   for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
798     ((unsigned char *)b->d)[i] = buf[j];
799   }
800 
801   b->top = top;
802   bn_correct_top(b);
803   return 1;
804 }
805 
806 /* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
807  * line width of the target processor is at least the following value. */
808 #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
809 #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
810   (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
811 
812 /* Window sizes optimized for fixed window size modular exponentiation
813  * algorithm (BN_mod_exp_mont_consttime).
814  *
815  * To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
816  * size of the window must not exceed
817  * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
818  *
819  * Window size thresholds are defined for cache line sizes of 32 and 64, cache
820  * line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
821  * 7 should only be used on processors that have a 128 byte or greater cache
822  * line size. */
823 #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
824 
825 #define BN_window_bits_for_ctime_exponent_size(b) \
826   ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
827 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
828 
829 #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
830 
831 #define BN_window_bits_for_ctime_exponent_size(b) \
832   ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
833 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
834 
835 #endif
836 
837 /* Given a pointer value, compute the next address that is a cache line
838  * multiple. */
839 #define MOD_EXP_CTIME_ALIGN(x_)          \
840   ((unsigned char *)(x_) +               \
841    (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
842     (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
843 
844 /* This variant of BN_mod_exp_mont() uses fixed windows and the special
845  * precomputation memory layout to limit data-dependency to a minimum
846  * to protect secret exponents (cf. the hyper-threading timing attacks
847  * pointed out by Colin Percival,
848  * http://www.daemonology.net/hyperthreading-considered-harmful/)
849  */
BN_mod_exp_mont_consttime(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)850 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
851                               const BIGNUM *m, BN_CTX *ctx,
852                               BN_MONT_CTX *in_mont) {
853   int i, bits, ret = 0, window, wvalue;
854   int top;
855   BN_MONT_CTX *mont = NULL;
856 
857   int numPowers;
858   unsigned char *powerbufFree = NULL;
859   int powerbufLen = 0;
860   unsigned char *powerbuf = NULL;
861   BIGNUM tmp, am;
862 
863   top = m->top;
864 
865   if (!(m->d[0] & 1)) {
866     OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_consttime,
867                       BN_R_CALLED_WITH_EVEN_MODULUS);
868     return 0;
869   }
870   bits = BN_num_bits(p);
871   if (bits == 0) {
872     ret = BN_one(rr);
873     return ret;
874   }
875 
876   BN_CTX_start(ctx);
877 
878   /* Allocate a montgomery context if it was not supplied by the caller.
879    * If this is not done, things will break in the montgomery part.
880    */
881   if (in_mont != NULL)
882     mont = in_mont;
883   else {
884     if ((mont = BN_MONT_CTX_new()) == NULL)
885       goto err;
886     if (!BN_MONT_CTX_set(mont, m, ctx))
887       goto err;
888   }
889 
890 #ifdef RSAZ_ENABLED
891   /* If the size of the operands allow it, perform the optimized
892    * RSAZ exponentiation. For further information see
893    * crypto/bn/rsaz_exp.c and accompanying assembly modules. */
894   if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) &&
895       rsaz_avx2_eligible()) {
896     if (NULL == bn_wexpand(rr, 16))
897       goto err;
898     RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
899     rr->top = 16;
900     rr->neg = 0;
901     bn_correct_top(rr);
902     ret = 1;
903     goto err;
904   } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
905     if (NULL == bn_wexpand(rr, 8))
906       goto err;
907     RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
908     rr->top = 8;
909     rr->neg = 0;
910     bn_correct_top(rr);
911     ret = 1;
912     goto err;
913   }
914 #endif
915 
916   /* Get the window size to use with size of p. */
917   window = BN_window_bits_for_ctime_exponent_size(bits);
918 #if defined(OPENSSL_BN_ASM_MONT5)
919   if (window >= 5) {
920     window = 5; /* ~5% improvement for RSA2048 sign, and even for RSA4096 */
921     if ((top & 7) == 0)
922       powerbufLen += 2 * top * sizeof(m->d[0]);
923   }
924 #endif
925   (void)0;
926 
927   /* Allocate a buffer large enough to hold all of the pre-computed
928    * powers of am, am itself and tmp.
929    */
930   numPowers = 1 << window;
931   powerbufLen +=
932       sizeof(m->d[0]) *
933       (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
934 #ifdef alloca
935   if (powerbufLen < 3072)
936     powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
937   else
938 #endif
939       if ((powerbufFree = (unsigned char *)OPENSSL_malloc(
940                powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL)
941     goto err;
942 
943   powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
944   memset(powerbuf, 0, powerbufLen);
945 
946 #ifdef alloca
947   if (powerbufLen < 3072)
948     powerbufFree = NULL;
949 #endif
950 
951   /* lay down tmp and am right after powers table */
952   tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
953   am.d = tmp.d + top;
954   tmp.top = am.top = 0;
955   tmp.dmax = am.dmax = top;
956   tmp.neg = am.neg = 0;
957   tmp.flags = am.flags = BN_FLG_STATIC_DATA;
958 
959 /* prepare a^0 in Montgomery domain */
960 /* by Shay Gueron's suggestion */
961   if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
962     /* 2^(top*BN_BITS2) - m */
963     tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
964     for (i = 1; i < top; i++)
965       tmp.d[i] = (~m->d[i]) & BN_MASK2;
966     tmp.top = top;
967   } else if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx))
968     goto err;
969 
970   /* prepare a^1 in Montgomery domain */
971   if (a->neg || BN_ucmp(a, m) >= 0) {
972     if (!BN_mod(&am, a, m, ctx))
973       goto err;
974     if (!BN_to_montgomery(&am, &am, mont, ctx))
975       goto err;
976   } else if (!BN_to_montgomery(&am, a, mont, ctx))
977     goto err;
978 
979 #if defined(OPENSSL_BN_ASM_MONT5)
980   /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
981    * specifically optimization of cache-timing attack countermeasures
982    * and pre-computation optimization. */
983 
984   /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
985    * 512-bit RSA is hardly relevant, we omit it to spare size... */
986   if (window == 5 && top > 1) {
987     void bn_mul_mont_gather5(BN_ULONG * rp, const BN_ULONG * ap,
988                              const void * table, const BN_ULONG * np,
989                              const BN_ULONG * n0, int num, int power);
990     void bn_scatter5(const BN_ULONG * inp, size_t num, void * table,
991                      size_t power);
992     void bn_gather5(BN_ULONG * out, size_t num, void * table, size_t power);
993     void bn_power5(BN_ULONG * rp, const BN_ULONG * ap, const void * table,
994                    const BN_ULONG * np, const BN_ULONG * n0, int num,
995                    int power);
996     int bn_from_montgomery(BN_ULONG * rp, const BN_ULONG * ap,
997                            const BN_ULONG * not_used, const BN_ULONG * np,
998                            const BN_ULONG * n0, int num);
999 
1000     BN_ULONG *np = mont->N.d, *n0 = mont->n0, *np2;
1001 
1002     /* BN_to_montgomery can contaminate words above .top
1003      * [in BN_DEBUG[_DEBUG] build]... */
1004     for (i = am.top; i < top; i++)
1005       am.d[i] = 0;
1006     for (i = tmp.top; i < top; i++)
1007       tmp.d[i] = 0;
1008 
1009     if (top & 7)
1010       np2 = np;
1011     else
1012       for (np2 = am.d + top, i = 0; i < top; i++)
1013         np2[2 * i] = np[i];
1014 
1015     bn_scatter5(tmp.d, top, powerbuf, 0);
1016     bn_scatter5(am.d, am.top, powerbuf, 1);
1017     bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
1018     bn_scatter5(tmp.d, top, powerbuf, 2);
1019 
1020     /* same as above, but uses squaring for 1/2 of operations */
1021     for (i = 4; i < 32; i *= 2) {
1022       bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1023       bn_scatter5(tmp.d, top, powerbuf, i);
1024     }
1025     for (i = 3; i < 8; i += 2) {
1026       int j;
1027       bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1028       bn_scatter5(tmp.d, top, powerbuf, i);
1029       for (j = 2 * i; j < 32; j *= 2) {
1030         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1031         bn_scatter5(tmp.d, top, powerbuf, j);
1032       }
1033     }
1034     for (; i < 16; i += 2) {
1035       bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1036       bn_scatter5(tmp.d, top, powerbuf, i);
1037       bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1038       bn_scatter5(tmp.d, top, powerbuf, 2 * i);
1039     }
1040     for (; i < 32; i += 2) {
1041       bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1042       bn_scatter5(tmp.d, top, powerbuf, i);
1043     }
1044 
1045     bits--;
1046     for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--)
1047       wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1048     bn_gather5(tmp.d, top, powerbuf, wvalue);
1049 
1050     /* At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
1051      * that has not been read yet.) */
1052     assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
1053 
1054     /* Scan the exponent one window at a time starting from the most
1055      * significant bits.
1056      */
1057     if (top & 7) {
1058       while (bits >= 0) {
1059         for (wvalue = 0, i = 0; i < 5; i++, bits--)
1060           wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1061 
1062         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1063         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1064         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1065         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1066         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1067         bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1068       }
1069     } else {
1070       const uint8_t *p_bytes = (const uint8_t *)p->d;
1071       int max_bits = p->top * BN_BITS2;
1072       assert(bits < max_bits);
1073       /* |p = 0| has been handled as a special case, so |max_bits| is at least
1074        * one word. */
1075       assert(max_bits >= 64);
1076 
1077       /* If the first bit to be read lands in the last byte, unroll the first
1078        * iteration to avoid reading past the bounds of |p->d|. (After the first
1079        * iteration, we are guaranteed to be past the last byte.) Note |bits|
1080        * here is the top bit, inclusive. */
1081       if (bits - 4 >= max_bits - 8) {
1082         /* Read five bits from |bits-4| through |bits|, inclusive. */
1083         wvalue = p_bytes[p->top * BN_BYTES - 1];
1084         wvalue >>= (bits - 4) & 7;
1085         wvalue &= 0x1f;
1086         bits -= 5;
1087         bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
1088       }
1089       while (bits >= 0) {
1090         /* Read five bits from |bits-4| through |bits|, inclusive. */
1091         int first_bit = bits - 4;
1092         wvalue = *(const uint16_t *) (p_bytes + (first_bit >> 3));
1093         wvalue >>= first_bit & 7;
1094         wvalue &= 0x1f;
1095         bits -= 5;
1096         bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
1097       }
1098     }
1099 
1100     ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np2, n0, top);
1101     tmp.top = top;
1102     bn_correct_top(&tmp);
1103     if (ret) {
1104       if (!BN_copy(rr, &tmp))
1105         ret = 0;
1106       goto err; /* non-zero ret means it's not error */
1107     }
1108   } else
1109 #endif
1110   {
1111     if (!copy_to_prebuf(&tmp, top, powerbuf, 0, numPowers))
1112       goto err;
1113     if (!copy_to_prebuf(&am, top, powerbuf, 1, numPowers))
1114       goto err;
1115 
1116     /* If the window size is greater than 1, then calculate
1117      * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
1118      * (even powers could instead be computed as (a^(i/2))^2
1119      * to use the slight performance advantage of sqr over mul).
1120      */
1121     if (window > 1) {
1122       if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx))
1123         goto err;
1124       if (!copy_to_prebuf(&tmp, top, powerbuf, 2, numPowers))
1125         goto err;
1126       for (i = 3; i < numPowers; i++) {
1127         /* Calculate a^i = a^(i-1) * a */
1128         if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx))
1129           goto err;
1130         if (!copy_to_prebuf(&tmp, top, powerbuf, i, numPowers))
1131           goto err;
1132       }
1133     }
1134 
1135     bits--;
1136     for (wvalue = 0, i = bits % window; i >= 0; i--, bits--)
1137       wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1138     if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, numPowers))
1139       goto err;
1140 
1141     /* Scan the exponent one window at a time starting from the most
1142      * significant bits.
1143      */
1144     while (bits >= 0) {
1145       wvalue = 0; /* The 'value' of the window */
1146 
1147       /* Scan the window, squaring the result as we go */
1148       for (i = 0; i < window; i++, bits--) {
1149         if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx))
1150           goto err;
1151         wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1152       }
1153 
1154       /* Fetch the appropriate pre-computed value from the pre-buf */
1155       if (!copy_from_prebuf(&am, top, powerbuf, wvalue, numPowers))
1156         goto err;
1157 
1158       /* Multiply the result into the intermediate result */
1159       if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx))
1160         goto err;
1161     }
1162   }
1163 
1164   /* Convert the final result from montgomery to standard format */
1165   if (!BN_from_montgomery(rr, &tmp, mont, ctx))
1166     goto err;
1167   ret = 1;
1168 err:
1169   if ((in_mont == NULL) && (mont != NULL))
1170     BN_MONT_CTX_free(mont);
1171   if (powerbuf != NULL) {
1172     OPENSSL_cleanse(powerbuf, powerbufLen);
1173     if (powerbufFree)
1174       OPENSSL_free(powerbufFree);
1175   }
1176   BN_CTX_end(ctx);
1177   return (ret);
1178 }
1179 
BN_mod_exp_mont_word(BIGNUM * rr,BN_ULONG a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)1180 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1181                          const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) {
1182   BN_MONT_CTX *mont = NULL;
1183   int b, bits, ret = 0;
1184   int r_is_one;
1185   BN_ULONG w, next_w;
1186   BIGNUM *d, *r, *t;
1187   BIGNUM *swap_tmp;
1188 #define BN_MOD_MUL_WORD(r, w, m)   \
1189   (BN_mul_word(r, (w)) &&          \
1190    (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
1191     (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1192   /* BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1193    * probably more overhead than always using BN_mod (which uses BN_copy if a
1194    * similar test returns true). We can use BN_mod and do not need BN_nnmod
1195    * because our accumulator is never negative (the result of BN_mod does not
1196    * depend on the sign of the modulus). */
1197 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1198   (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1199 
1200   if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
1201     /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1202     OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_word,
1203         ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1204     return 0;
1205   }
1206 
1207   if (!BN_is_odd(m)) {
1208     OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_word, BN_R_CALLED_WITH_EVEN_MODULUS);
1209     return 0;
1210   }
1211 
1212   if (m->top == 1) {
1213     a %= m->d[0]; /* make sure that 'a' is reduced */
1214   }
1215 
1216   bits = BN_num_bits(p);
1217   if (bits == 0) {
1218     /* x**0 mod 1 is still zero. */
1219     if (BN_is_one(m)) {
1220       ret = 1;
1221       BN_zero(rr);
1222     } else {
1223       ret = BN_one(rr);
1224     }
1225     return ret;
1226   }
1227   if (a == 0) {
1228     BN_zero(rr);
1229     ret = 1;
1230     return ret;
1231   }
1232 
1233   BN_CTX_start(ctx);
1234   d = BN_CTX_get(ctx);
1235   r = BN_CTX_get(ctx);
1236   t = BN_CTX_get(ctx);
1237   if (d == NULL || r == NULL || t == NULL) {
1238     goto err;
1239   }
1240 
1241   if (in_mont != NULL)
1242     mont = in_mont;
1243   else {
1244     if ((mont = BN_MONT_CTX_new()) == NULL) {
1245       goto err;
1246     }
1247     if (!BN_MONT_CTX_set(mont, m, ctx)) {
1248       goto err;
1249     }
1250   }
1251 
1252   r_is_one = 1; /* except for Montgomery factor */
1253 
1254   /* bits-1 >= 0 */
1255 
1256   /* The result is accumulated in the product r*w. */
1257   w = a; /* bit 'bits-1' of 'p' is always set */
1258   for (b = bits - 2; b >= 0; b--) {
1259     /* First, square r*w. */
1260     next_w = w * w;
1261     if ((next_w / w) != w) {
1262       /* overflow */
1263       if (r_is_one) {
1264         if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1265           goto err;
1266         }
1267         r_is_one = 0;
1268       } else {
1269         if (!BN_MOD_MUL_WORD(r, w, m)) {
1270           goto err;
1271         }
1272       }
1273       next_w = 1;
1274     }
1275 
1276     w = next_w;
1277     if (!r_is_one) {
1278       if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
1279         goto err;
1280       }
1281     }
1282 
1283     /* Second, multiply r*w by 'a' if exponent bit is set. */
1284     if (BN_is_bit_set(p, b)) {
1285       next_w = w * a;
1286       if ((next_w / a) != w) {
1287         /* overflow */
1288         if (r_is_one) {
1289           if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1290             goto err;
1291           }
1292           r_is_one = 0;
1293         } else {
1294           if (!BN_MOD_MUL_WORD(r, w, m)) {
1295             goto err;
1296           }
1297         }
1298         next_w = a;
1299       }
1300       w = next_w;
1301     }
1302   }
1303 
1304   /* Finally, set r:=r*w. */
1305   if (w != 1) {
1306     if (r_is_one) {
1307       if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1308         goto err;
1309       }
1310       r_is_one = 0;
1311     } else {
1312       if (!BN_MOD_MUL_WORD(r, w, m)) {
1313         goto err;
1314       }
1315     }
1316   }
1317 
1318   if (r_is_one) {
1319     /* can happen only if a == 1*/
1320     if (!BN_one(rr)) {
1321       goto err;
1322     }
1323   } else {
1324     if (!BN_from_montgomery(rr, r, mont, ctx)) {
1325       goto err;
1326     }
1327   }
1328   ret = 1;
1329 
1330 err:
1331   if (in_mont == NULL && mont != NULL) {
1332     BN_MONT_CTX_free(mont);
1333   }
1334   BN_CTX_end(ctx);
1335   return ret;
1336 }
1337 
1338 #define TABLE_SIZE 32
1339 
BN_mod_exp2_mont(BIGNUM * rr,const BIGNUM * a1,const BIGNUM * p1,const BIGNUM * a2,const BIGNUM * p2,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)1340 int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
1341                      const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
1342                      BN_CTX *ctx, BN_MONT_CTX *in_mont) {
1343   int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2,
1344                                    wvalue1, wvalue2;
1345   int r_is_one = 1;
1346   BIGNUM *d, *r;
1347   const BIGNUM *a_mod_m;
1348   /* Tables of variables obtained from 'ctx' */
1349   BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE];
1350   BN_MONT_CTX *mont = NULL;
1351 
1352   if (!(m->d[0] & 1)) {
1353     OPENSSL_PUT_ERROR(BN, BN_mod_exp2_mont, BN_R_CALLED_WITH_EVEN_MODULUS);
1354     return 0;
1355   }
1356   bits1 = BN_num_bits(p1);
1357   bits2 = BN_num_bits(p2);
1358   if (bits1 == 0 && bits2 == 0) {
1359     ret = BN_one(rr);
1360     return ret;
1361   }
1362 
1363   bits = (bits1 > bits2) ? bits1 : bits2;
1364 
1365   BN_CTX_start(ctx);
1366   d = BN_CTX_get(ctx);
1367   r = BN_CTX_get(ctx);
1368   val1[0] = BN_CTX_get(ctx);
1369   val2[0] = BN_CTX_get(ctx);
1370   if (!d || !r || !val1[0] || !val2[0]) {
1371     goto err;
1372   }
1373 
1374   if (in_mont != NULL) {
1375     mont = in_mont;
1376   } else {
1377     mont = BN_MONT_CTX_new();
1378     if (mont == NULL) {
1379       goto err;
1380     }
1381     if (!BN_MONT_CTX_set(mont, m, ctx)) {
1382       goto err;
1383     }
1384   }
1385 
1386   window1 = BN_window_bits_for_exponent_size(bits1);
1387   window2 = BN_window_bits_for_exponent_size(bits2);
1388 
1389   /* Build table for a1:   val1[i] := a1^(2*i + 1) mod m  for i = 0 ..
1390    * 2^(window1-1) */
1391   if (a1->neg || BN_ucmp(a1, m) >= 0) {
1392     if (!BN_mod(val1[0], a1, m, ctx)) {
1393       goto err;
1394     }
1395     a_mod_m = val1[0];
1396   } else {
1397     a_mod_m = a1;
1398   }
1399 
1400   if (BN_is_zero(a_mod_m)) {
1401     BN_zero(rr);
1402     ret = 1;
1403     goto err;
1404   }
1405 
1406   if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) {
1407     goto err;
1408   }
1409 
1410   if (window1 > 1) {
1411     if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) {
1412       goto err;
1413     }
1414 
1415     j = 1 << (window1 - 1);
1416     for (i = 1; i < j; i++) {
1417       if (((val1[i] = BN_CTX_get(ctx)) == NULL) ||
1418           !BN_mod_mul_montgomery(val1[i], val1[i - 1], d, mont, ctx)) {
1419         goto err;
1420       }
1421     }
1422   }
1423 
1424   /* Build table for a2:   val2[i] := a2^(2*i + 1) mod m  for i = 0 ..
1425    * 2^(window2-1) */
1426   if (a2->neg || BN_ucmp(a2, m) >= 0) {
1427     if (!BN_mod(val2[0], a2, m, ctx)) {
1428       goto err;
1429     }
1430     a_mod_m = val2[0];
1431   } else {
1432     a_mod_m = a2;
1433   }
1434 
1435   if (BN_is_zero(a_mod_m)) {
1436     BN_zero(rr);
1437     ret = 1;
1438     goto err;
1439   }
1440 
1441   if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) {
1442     goto err;
1443   }
1444 
1445   if (window2 > 1) {
1446     if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) {
1447       goto err;
1448     }
1449 
1450     j = 1 << (window2 - 1);
1451     for (i = 1; i < j; i++) {
1452       if (((val2[i] = BN_CTX_get(ctx)) == NULL) ||
1453           !BN_mod_mul_montgomery(val2[i], val2[i - 1], d, mont, ctx)) {
1454         goto err;
1455       }
1456     }
1457   }
1458 
1459   /* Now compute the power product, using independent windows. */
1460   r_is_one = 1;
1461   wvalue1 = 0; /* The 'value' of the first window */
1462   wvalue2 = 0; /* The 'value' of the second window */
1463   wpos1 = 0;   /* If wvalue1 > 0, the bottom bit of the first window */
1464   wpos2 = 0;   /* If wvalue2 > 0, the bottom bit of the second window */
1465 
1466   if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
1467     goto err;
1468   }
1469 
1470   for (b = bits - 1; b >= 0; b--) {
1471     if (!r_is_one) {
1472       if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
1473         goto err;
1474       }
1475     }
1476 
1477     if (!wvalue1 && BN_is_bit_set(p1, b)) {
1478       /* consider bits b-window1+1 .. b for this window */
1479       i = b - window1 + 1;
1480       while (!BN_is_bit_set(p1, i)) /* works for i<0 */
1481         i++;
1482       wpos1 = i;
1483       wvalue1 = 1;
1484       for (i = b - 1; i >= wpos1; i--) {
1485         wvalue1 <<= 1;
1486         if (BN_is_bit_set(p1, i))
1487           wvalue1++;
1488       }
1489     }
1490 
1491     if (!wvalue2 && BN_is_bit_set(p2, b)) {
1492       /* consider bits b-window2+1 .. b for this window */
1493       i = b - window2 + 1;
1494       while (!BN_is_bit_set(p2, i))
1495         i++;
1496       wpos2 = i;
1497       wvalue2 = 1;
1498       for (i = b - 1; i >= wpos2; i--) {
1499         wvalue2 <<= 1;
1500         if (BN_is_bit_set(p2, i))
1501           wvalue2++;
1502       }
1503     }
1504 
1505     if (wvalue1 && b == wpos1) {
1506       /* wvalue1 is odd and < 2^window1 */
1507       if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], mont, ctx)) {
1508         goto err;
1509       }
1510       wvalue1 = 0;
1511       r_is_one = 0;
1512     }
1513 
1514     if (wvalue2 && b == wpos2) {
1515       /* wvalue2 is odd and < 2^window2 */
1516       if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], mont, ctx)) {
1517         goto err;
1518       }
1519       wvalue2 = 0;
1520       r_is_one = 0;
1521     }
1522   }
1523 
1524   if (!BN_from_montgomery(rr, r, mont, ctx)) {
1525     goto err;
1526   }
1527   ret = 1;
1528 
1529 err:
1530   if (in_mont == NULL && mont != NULL) {
1531     BN_MONT_CTX_free(mont);
1532   }
1533   BN_CTX_end(ctx);
1534   return ret;
1535 }
1536