1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109 #include <openssl/bn.h>
110
111 #include <assert.h>
112
113 #include <openssl/cpu.h>
114 #include <openssl/err.h>
115 #include <openssl/mem.h>
116
117 #include "internal.h"
118
119
120 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
121 #define OPENSSL_BN_ASM_MONT5
122 #define RSAZ_ENABLED
123
124 #include "rsaz_exp.h"
125 #endif
126
BN_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)127 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
128 int i, bits, ret = 0;
129 BIGNUM *v, *rr;
130
131 if ((p->flags & BN_FLG_CONSTTIME) != 0) {
132 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
133 OPENSSL_PUT_ERROR(BN, BN_exp, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
134 return 0;
135 }
136
137 BN_CTX_start(ctx);
138 if (r == a || r == p) {
139 rr = BN_CTX_get(ctx);
140 } else {
141 rr = r;
142 }
143
144 v = BN_CTX_get(ctx);
145 if (rr == NULL || v == NULL) {
146 goto err;
147 }
148
149 if (BN_copy(v, a) == NULL) {
150 goto err;
151 }
152 bits = BN_num_bits(p);
153
154 if (BN_is_odd(p)) {
155 if (BN_copy(rr, a) == NULL) {
156 goto err;
157 }
158 } else {
159 if (!BN_one(rr)) {
160 goto err;
161 }
162 }
163
164 for (i = 1; i < bits; i++) {
165 if (!BN_sqr(v, v, ctx)) {
166 goto err;
167 }
168 if (BN_is_bit_set(p, i)) {
169 if (!BN_mul(rr, rr, v, ctx)) {
170 goto err;
171 }
172 }
173 }
174 ret = 1;
175
176 err:
177 if (r != rr) {
178 BN_copy(r, rr);
179 }
180 BN_CTX_end(ctx);
181 return ret;
182 }
183
184 /* maximum precomputation table size for *variable* sliding windows */
185 #define TABLE_SIZE 32
186
187 typedef struct bn_recp_ctx_st {
188 BIGNUM N; /* the divisor */
189 BIGNUM Nr; /* the reciprocal */
190 int num_bits;
191 int shift;
192 int flags;
193 } BN_RECP_CTX;
194
BN_RECP_CTX_init(BN_RECP_CTX * recp)195 static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
196 BN_init(&recp->N);
197 BN_init(&recp->Nr);
198 recp->num_bits = 0;
199 recp->flags = 0;
200 }
201
BN_RECP_CTX_free(BN_RECP_CTX * recp)202 static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
203 if (recp == NULL) {
204 return;
205 }
206
207 BN_free(&recp->N);
208 BN_free(&recp->Nr);
209 }
210
BN_RECP_CTX_set(BN_RECP_CTX * recp,const BIGNUM * d,BN_CTX * ctx)211 static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
212 if (!BN_copy(&(recp->N), d)) {
213 return 0;
214 }
215 BN_zero(&recp->Nr);
216 recp->num_bits = BN_num_bits(d);
217 recp->shift = 0;
218
219 return 1;
220 }
221
222 /* len is the expected size of the result We actually calculate with an extra
223 * word of precision, so we can do faster division if the remainder is not
224 * required.
225 * r := 2^len / m */
BN_reciprocal(BIGNUM * r,const BIGNUM * m,int len,BN_CTX * ctx)226 static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
227 int ret = -1;
228 BIGNUM *t;
229
230 BN_CTX_start(ctx);
231 t = BN_CTX_get(ctx);
232 if (t == NULL) {
233 goto err;
234 }
235
236 if (!BN_set_bit(t, len)) {
237 goto err;
238 }
239
240 if (!BN_div(r, NULL, t, m, ctx)) {
241 goto err;
242 }
243
244 ret = len;
245
246 err:
247 BN_CTX_end(ctx);
248 return ret;
249 }
250
BN_div_recp(BIGNUM * dv,BIGNUM * rem,const BIGNUM * m,BN_RECP_CTX * recp,BN_CTX * ctx)251 static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
252 BN_RECP_CTX *recp, BN_CTX *ctx) {
253 int i, j, ret = 0;
254 BIGNUM *a, *b, *d, *r;
255
256 BN_CTX_start(ctx);
257 a = BN_CTX_get(ctx);
258 b = BN_CTX_get(ctx);
259 if (dv != NULL) {
260 d = dv;
261 } else {
262 d = BN_CTX_get(ctx);
263 }
264
265 if (rem != NULL) {
266 r = rem;
267 } else {
268 r = BN_CTX_get(ctx);
269 }
270
271 if (a == NULL || b == NULL || d == NULL || r == NULL) {
272 goto err;
273 }
274
275 if (BN_ucmp(m, &(recp->N)) < 0) {
276 BN_zero(d);
277 if (!BN_copy(r, m)) {
278 return 0;
279 }
280 BN_CTX_end(ctx);
281 return 1;
282 }
283
284 /* We want the remainder
285 * Given input of ABCDEF / ab
286 * we need multiply ABCDEF by 3 digests of the reciprocal of ab */
287
288 /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
289 i = BN_num_bits(m);
290 j = recp->num_bits << 1;
291 if (j > i) {
292 i = j;
293 }
294
295 /* Nr := round(2^i / N) */
296 if (i != recp->shift) {
297 recp->shift =
298 BN_reciprocal(&(recp->Nr), &(recp->N), i,
299 ctx); /* BN_reciprocal returns i, or -1 for an error */
300 }
301
302 if (recp->shift == -1) {
303 goto err;
304 }
305
306 /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
307 * BN_num_bits(N)))|
308 * = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
309 * BN_num_bits(N)))|
310 * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
311 * = |m/N| */
312 if (!BN_rshift(a, m, recp->num_bits)) {
313 goto err;
314 }
315 if (!BN_mul(b, a, &(recp->Nr), ctx)) {
316 goto err;
317 }
318 if (!BN_rshift(d, b, i - recp->num_bits)) {
319 goto err;
320 }
321 d->neg = 0;
322
323 if (!BN_mul(b, &(recp->N), d, ctx)) {
324 goto err;
325 }
326 if (!BN_usub(r, m, b)) {
327 goto err;
328 }
329 r->neg = 0;
330
331 j = 0;
332 while (BN_ucmp(r, &(recp->N)) >= 0) {
333 if (j++ > 2) {
334 OPENSSL_PUT_ERROR(BN, BN_div_recp, BN_R_BAD_RECIPROCAL);
335 goto err;
336 }
337 if (!BN_usub(r, r, &(recp->N))) {
338 goto err;
339 }
340 if (!BN_add_word(d, 1)) {
341 goto err;
342 }
343 }
344
345 r->neg = BN_is_zero(r) ? 0 : m->neg;
346 d->neg = m->neg ^ recp->N.neg;
347 ret = 1;
348
349 err:
350 BN_CTX_end(ctx);
351 return ret;
352 }
353
BN_mod_mul_reciprocal(BIGNUM * r,const BIGNUM * x,const BIGNUM * y,BN_RECP_CTX * recp,BN_CTX * ctx)354 static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
355 BN_RECP_CTX *recp, BN_CTX *ctx) {
356 int ret = 0;
357 BIGNUM *a;
358 const BIGNUM *ca;
359
360 BN_CTX_start(ctx);
361 a = BN_CTX_get(ctx);
362 if (a == NULL) {
363 goto err;
364 }
365
366 if (y != NULL) {
367 if (x == y) {
368 if (!BN_sqr(a, x, ctx)) {
369 goto err;
370 }
371 } else {
372 if (!BN_mul(a, x, y, ctx)) {
373 goto err;
374 }
375 }
376 ca = a;
377 } else {
378 ca = x; /* Just do the mod */
379 }
380
381 ret = BN_div_recp(NULL, r, ca, recp, ctx);
382
383 err:
384 BN_CTX_end(ctx);
385 return ret;
386 }
387
388 /* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp
389 * functions
390 *
391 * For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
392 * multiplications is a constant plus on average
393 *
394 * 2^(w-1) + (b-w)/(w+1);
395 *
396 * here 2^(w-1) is for precomputing the table (we actually need entries only
397 * for windows that have the lowest bit set), and (b-w)/(w+1) is an
398 * approximation for the expected number of w-bit windows, not counting the
399 * first one.
400 *
401 * Thus we should use
402 *
403 * w >= 6 if b > 671
404 * w = 5 if 671 > b > 239
405 * w = 4 if 239 > b > 79
406 * w = 3 if 79 > b > 23
407 * w <= 2 if 23 > b
408 *
409 * (with draws in between). Very small exponents are often selected
410 * with low Hamming weight, so we use w = 1 for b <= 23. */
411 #define BN_window_bits_for_exponent_size(b) \
412 ((b) > 671 ? 6 : \
413 (b) > 239 ? 5 : \
414 (b) > 79 ? 4 : \
415 (b) > 23 ? 3 : 1)
416
mod_exp_recp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)417 static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
418 const BIGNUM *m, BN_CTX *ctx) {
419 int i, j, bits, ret = 0, wstart, wend, window, wvalue;
420 int start = 1;
421 BIGNUM *aa;
422 /* Table of variables obtained from 'ctx' */
423 BIGNUM *val[TABLE_SIZE];
424 BN_RECP_CTX recp;
425
426 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
427 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
428 OPENSSL_PUT_ERROR(BN, mod_exp_recp, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
429 return 0;
430 }
431
432 bits = BN_num_bits(p);
433
434 if (bits == 0) {
435 ret = BN_one(r);
436 return ret;
437 }
438
439 BN_CTX_start(ctx);
440 aa = BN_CTX_get(ctx);
441 val[0] = BN_CTX_get(ctx);
442 if (!aa || !val[0]) {
443 goto err;
444 }
445
446 BN_RECP_CTX_init(&recp);
447 if (m->neg) {
448 /* ignore sign of 'm' */
449 if (!BN_copy(aa, m)) {
450 goto err;
451 }
452 aa->neg = 0;
453 if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
454 goto err;
455 }
456 } else {
457 if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
458 goto err;
459 }
460 }
461
462 if (!BN_nnmod(val[0], a, m, ctx)) {
463 goto err; /* 1 */
464 }
465 if (BN_is_zero(val[0])) {
466 BN_zero(r);
467 ret = 1;
468 goto err;
469 }
470
471 window = BN_window_bits_for_exponent_size(bits);
472 if (window > 1) {
473 if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
474 goto err; /* 2 */
475 }
476 j = 1 << (window - 1);
477 for (i = 1; i < j; i++) {
478 if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
479 !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
480 goto err;
481 }
482 }
483 }
484
485 start = 1; /* This is used to avoid multiplication etc
486 * when there is only the value '1' in the
487 * buffer. */
488 wvalue = 0; /* The 'value' of the window */
489 wstart = bits - 1; /* The top bit of the window */
490 wend = 0; /* The bottom bit of the window */
491
492 if (!BN_one(r)) {
493 goto err;
494 }
495
496 for (;;) {
497 if (BN_is_bit_set(p, wstart) == 0) {
498 if (!start) {
499 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
500 goto err;
501 }
502 }
503 if (wstart == 0) {
504 break;
505 }
506 wstart--;
507 continue;
508 }
509
510 /* We now have wstart on a 'set' bit, we now need to work out
511 * how bit a window to do. To do this we need to scan
512 * forward until the last set bit before the end of the
513 * window */
514 wvalue = 1;
515 wend = 0;
516 for (i = 1; i < window; i++) {
517 if (wstart - i < 0) {
518 break;
519 }
520 if (BN_is_bit_set(p, wstart - i)) {
521 wvalue <<= (i - wend);
522 wvalue |= 1;
523 wend = i;
524 }
525 }
526
527 /* wend is the size of the current window */
528 j = wend + 1;
529 /* add the 'bytes above' */
530 if (!start) {
531 for (i = 0; i < j; i++) {
532 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
533 goto err;
534 }
535 }
536 }
537
538 /* wvalue will be an odd number < 2^window */
539 if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
540 goto err;
541 }
542
543 /* move the 'window' down further */
544 wstart -= wend + 1;
545 wvalue = 0;
546 start = 0;
547 if (wstart < 0) {
548 break;
549 }
550 }
551 ret = 1;
552
553 err:
554 BN_CTX_end(ctx);
555 BN_RECP_CTX_free(&recp);
556 return ret;
557 }
558
BN_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)559 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
560 BN_CTX *ctx) {
561 /* For even modulus m = 2^k*m_odd, it might make sense to compute
562 * a^p mod m_odd and a^p mod 2^k separately (with Montgomery
563 * exponentiation for the odd part), using appropriate exponent
564 * reductions, and combine the results using the CRT.
565 *
566 * For now, we use Montgomery only if the modulus is odd; otherwise,
567 * exponentiation using the reciprocal-based quick remaindering
568 * algorithm is used.
569 *
570 * (Timing obtained with expspeed.c [computations a^p mod m
571 * where a, p, m are of the same length: 256, 512, 1024, 2048,
572 * 4096, 8192 bits], compared to the running time of the
573 * standard algorithm:
574 *
575 * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration]
576 * 55 .. 77 % [UltraSparc processor, but
577 * debug-solaris-sparcv8-gcc conf.]
578 *
579 * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration]
580 * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
581 *
582 * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
583 * at 2048 and more bits, but at 512 and 1024 bits, it was
584 * slower even than the standard algorithm!
585 *
586 * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
587 * should be obtained when the new Montgomery reduction code
588 * has been integrated into OpenSSL.) */
589
590 if (BN_is_odd(m)) {
591 if (a->top == 1 && !a->neg && BN_get_flags(p, BN_FLG_CONSTTIME) == 0) {
592 BN_ULONG A = a->d[0];
593 return BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
594 }
595
596 return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
597 }
598
599 return mod_exp_recp(r, a, p, m, ctx);
600 }
601
BN_mod_exp_mont(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)602 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
603 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) {
604 int i, j, bits, ret = 0, wstart, wend, window, wvalue;
605 int start = 1;
606 BIGNUM *d, *r;
607 const BIGNUM *aa;
608 /* Table of variables obtained from 'ctx' */
609 BIGNUM *val[TABLE_SIZE];
610 BN_MONT_CTX *mont = NULL;
611
612 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
613 return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
614 }
615
616 if (!BN_is_odd(m)) {
617 OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont, BN_R_CALLED_WITH_EVEN_MODULUS);
618 return 0;
619 }
620 bits = BN_num_bits(p);
621 if (bits == 0) {
622 ret = BN_one(rr);
623 return ret;
624 }
625
626 BN_CTX_start(ctx);
627 d = BN_CTX_get(ctx);
628 r = BN_CTX_get(ctx);
629 val[0] = BN_CTX_get(ctx);
630 if (!d || !r || !val[0]) {
631 goto err;
632 }
633
634 /* If this is not done, things will break in the montgomery part */
635
636 if (in_mont != NULL) {
637 mont = in_mont;
638 } else {
639 mont = BN_MONT_CTX_new();
640 if (mont == NULL) {
641 goto err;
642 }
643 if (!BN_MONT_CTX_set(mont, m, ctx)) {
644 goto err;
645 }
646 }
647
648 if (a->neg || BN_ucmp(a, m) >= 0) {
649 if (!BN_nnmod(val[0], a, m, ctx)) {
650 goto err;
651 }
652 aa = val[0];
653 } else {
654 aa = a;
655 }
656
657 if (BN_is_zero(aa)) {
658 BN_zero(rr);
659 ret = 1;
660 goto err;
661 }
662 if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
663 goto err; /* 1 */
664 }
665
666 window = BN_window_bits_for_exponent_size(bits);
667 if (window > 1) {
668 if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
669 goto err; /* 2 */
670 }
671 j = 1 << (window - 1);
672 for (i = 1; i < j; i++) {
673 if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
674 !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
675 goto err;
676 }
677 }
678 }
679
680 start = 1; /* This is used to avoid multiplication etc
681 * when there is only the value '1' in the
682 * buffer. */
683 wvalue = 0; /* The 'value' of the window */
684 wstart = bits - 1; /* The top bit of the window */
685 wend = 0; /* The bottom bit of the window */
686
687 j = m->top; /* borrow j */
688 if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
689 if (bn_wexpand(r, j) == NULL)
690 goto err;
691 /* 2^(top*BN_BITS2) - m */
692 r->d[0] = (0 - m->d[0]) & BN_MASK2;
693 for (i = 1; i < j; i++)
694 r->d[i] = (~m->d[i]) & BN_MASK2;
695 r->top = j;
696 /* Upper words will be zero if the corresponding words of 'm'
697 * were 0xfff[...], so decrement r->top accordingly. */
698 bn_correct_top(r);
699 } else if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
700 goto err;
701 }
702
703 for (;;) {
704 if (BN_is_bit_set(p, wstart) == 0) {
705 if (!start) {
706 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
707 goto err;
708 }
709 if (wstart == 0) {
710 break;
711 }
712 wstart--;
713 continue;
714 }
715
716 /* We now have wstart on a 'set' bit, we now need to work out how bit a
717 * window to do. To do this we need to scan forward until the last set bit
718 * before the end of the window */
719 j = wstart;
720 wvalue = 1;
721 wend = 0;
722 for (i = 1; i < window; i++) {
723 if (wstart - i < 0) {
724 break;
725 }
726 if (BN_is_bit_set(p, wstart - i)) {
727 wvalue <<= (i - wend);
728 wvalue |= 1;
729 wend = i;
730 }
731 }
732
733 /* wend is the size of the current window */
734 j = wend + 1;
735 /* add the 'bytes above' */
736 if (!start) {
737 for (i = 0; i < j; i++) {
738 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
739 goto err;
740 }
741 }
742 }
743
744 /* wvalue will be an odd number < 2^window */
745 if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
746 goto err;
747 }
748
749 /* move the 'window' down further */
750 wstart -= wend + 1;
751 wvalue = 0;
752 start = 0;
753 if (wstart < 0) {
754 break;
755 }
756 }
757
758 if (!BN_from_montgomery(rr, r, mont, ctx)) {
759 goto err;
760 }
761 ret = 1;
762
763 err:
764 if (in_mont == NULL && mont != NULL) {
765 BN_MONT_CTX_free(mont);
766 }
767 BN_CTX_end(ctx);
768 return ret;
769 }
770
771 /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
772 * layout so that accessing any of these table values shows the same access
773 * pattern as far as cache lines are concerned. The following functions are
774 * used to transfer a BIGNUM from/to that table. */
copy_to_prebuf(const BIGNUM * b,int top,unsigned char * buf,int idx,int width)775 static int copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf, int idx,
776 int width) {
777 size_t i, j;
778
779 if (top > b->top) {
780 top = b->top; /* this works because 'buf' is explicitly zeroed */
781 }
782 for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
783 buf[j] = ((unsigned char *)b->d)[i];
784 }
785
786 return 1;
787 }
788
copy_from_prebuf(BIGNUM * b,int top,unsigned char * buf,int idx,int width)789 static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
790 int width) {
791 size_t i, j;
792
793 if (bn_wexpand(b, top) == NULL) {
794 return 0;
795 }
796
797 for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
798 ((unsigned char *)b->d)[i] = buf[j];
799 }
800
801 b->top = top;
802 bn_correct_top(b);
803 return 1;
804 }
805
806 /* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
807 * line width of the target processor is at least the following value. */
808 #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
809 #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
810 (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
811
812 /* Window sizes optimized for fixed window size modular exponentiation
813 * algorithm (BN_mod_exp_mont_consttime).
814 *
815 * To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
816 * size of the window must not exceed
817 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
818 *
819 * Window size thresholds are defined for cache line sizes of 32 and 64, cache
820 * line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
821 * 7 should only be used on processors that have a 128 byte or greater cache
822 * line size. */
823 #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
824
825 #define BN_window_bits_for_ctime_exponent_size(b) \
826 ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
827 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
828
829 #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
830
831 #define BN_window_bits_for_ctime_exponent_size(b) \
832 ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
833 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
834
835 #endif
836
837 /* Given a pointer value, compute the next address that is a cache line
838 * multiple. */
839 #define MOD_EXP_CTIME_ALIGN(x_) \
840 ((unsigned char *)(x_) + \
841 (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
842 (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
843
844 /* This variant of BN_mod_exp_mont() uses fixed windows and the special
845 * precomputation memory layout to limit data-dependency to a minimum
846 * to protect secret exponents (cf. the hyper-threading timing attacks
847 * pointed out by Colin Percival,
848 * http://www.daemonology.net/hyperthreading-considered-harmful/)
849 */
BN_mod_exp_mont_consttime(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)850 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
851 const BIGNUM *m, BN_CTX *ctx,
852 BN_MONT_CTX *in_mont) {
853 int i, bits, ret = 0, window, wvalue;
854 int top;
855 BN_MONT_CTX *mont = NULL;
856
857 int numPowers;
858 unsigned char *powerbufFree = NULL;
859 int powerbufLen = 0;
860 unsigned char *powerbuf = NULL;
861 BIGNUM tmp, am;
862
863 top = m->top;
864
865 if (!(m->d[0] & 1)) {
866 OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_consttime,
867 BN_R_CALLED_WITH_EVEN_MODULUS);
868 return 0;
869 }
870 bits = BN_num_bits(p);
871 if (bits == 0) {
872 ret = BN_one(rr);
873 return ret;
874 }
875
876 BN_CTX_start(ctx);
877
878 /* Allocate a montgomery context if it was not supplied by the caller.
879 * If this is not done, things will break in the montgomery part.
880 */
881 if (in_mont != NULL)
882 mont = in_mont;
883 else {
884 if ((mont = BN_MONT_CTX_new()) == NULL)
885 goto err;
886 if (!BN_MONT_CTX_set(mont, m, ctx))
887 goto err;
888 }
889
890 #ifdef RSAZ_ENABLED
891 /* If the size of the operands allow it, perform the optimized
892 * RSAZ exponentiation. For further information see
893 * crypto/bn/rsaz_exp.c and accompanying assembly modules. */
894 if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) &&
895 rsaz_avx2_eligible()) {
896 if (NULL == bn_wexpand(rr, 16))
897 goto err;
898 RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
899 rr->top = 16;
900 rr->neg = 0;
901 bn_correct_top(rr);
902 ret = 1;
903 goto err;
904 } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
905 if (NULL == bn_wexpand(rr, 8))
906 goto err;
907 RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
908 rr->top = 8;
909 rr->neg = 0;
910 bn_correct_top(rr);
911 ret = 1;
912 goto err;
913 }
914 #endif
915
916 /* Get the window size to use with size of p. */
917 window = BN_window_bits_for_ctime_exponent_size(bits);
918 #if defined(OPENSSL_BN_ASM_MONT5)
919 if (window >= 5) {
920 window = 5; /* ~5% improvement for RSA2048 sign, and even for RSA4096 */
921 if ((top & 7) == 0)
922 powerbufLen += 2 * top * sizeof(m->d[0]);
923 }
924 #endif
925 (void)0;
926
927 /* Allocate a buffer large enough to hold all of the pre-computed
928 * powers of am, am itself and tmp.
929 */
930 numPowers = 1 << window;
931 powerbufLen +=
932 sizeof(m->d[0]) *
933 (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
934 #ifdef alloca
935 if (powerbufLen < 3072)
936 powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
937 else
938 #endif
939 if ((powerbufFree = (unsigned char *)OPENSSL_malloc(
940 powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL)
941 goto err;
942
943 powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
944 memset(powerbuf, 0, powerbufLen);
945
946 #ifdef alloca
947 if (powerbufLen < 3072)
948 powerbufFree = NULL;
949 #endif
950
951 /* lay down tmp and am right after powers table */
952 tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
953 am.d = tmp.d + top;
954 tmp.top = am.top = 0;
955 tmp.dmax = am.dmax = top;
956 tmp.neg = am.neg = 0;
957 tmp.flags = am.flags = BN_FLG_STATIC_DATA;
958
959 /* prepare a^0 in Montgomery domain */
960 /* by Shay Gueron's suggestion */
961 if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
962 /* 2^(top*BN_BITS2) - m */
963 tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
964 for (i = 1; i < top; i++)
965 tmp.d[i] = (~m->d[i]) & BN_MASK2;
966 tmp.top = top;
967 } else if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx))
968 goto err;
969
970 /* prepare a^1 in Montgomery domain */
971 if (a->neg || BN_ucmp(a, m) >= 0) {
972 if (!BN_mod(&am, a, m, ctx))
973 goto err;
974 if (!BN_to_montgomery(&am, &am, mont, ctx))
975 goto err;
976 } else if (!BN_to_montgomery(&am, a, mont, ctx))
977 goto err;
978
979 #if defined(OPENSSL_BN_ASM_MONT5)
980 /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
981 * specifically optimization of cache-timing attack countermeasures
982 * and pre-computation optimization. */
983
984 /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
985 * 512-bit RSA is hardly relevant, we omit it to spare size... */
986 if (window == 5 && top > 1) {
987 void bn_mul_mont_gather5(BN_ULONG * rp, const BN_ULONG * ap,
988 const void * table, const BN_ULONG * np,
989 const BN_ULONG * n0, int num, int power);
990 void bn_scatter5(const BN_ULONG * inp, size_t num, void * table,
991 size_t power);
992 void bn_gather5(BN_ULONG * out, size_t num, void * table, size_t power);
993 void bn_power5(BN_ULONG * rp, const BN_ULONG * ap, const void * table,
994 const BN_ULONG * np, const BN_ULONG * n0, int num,
995 int power);
996 int bn_from_montgomery(BN_ULONG * rp, const BN_ULONG * ap,
997 const BN_ULONG * not_used, const BN_ULONG * np,
998 const BN_ULONG * n0, int num);
999
1000 BN_ULONG *np = mont->N.d, *n0 = mont->n0, *np2;
1001
1002 /* BN_to_montgomery can contaminate words above .top
1003 * [in BN_DEBUG[_DEBUG] build]... */
1004 for (i = am.top; i < top; i++)
1005 am.d[i] = 0;
1006 for (i = tmp.top; i < top; i++)
1007 tmp.d[i] = 0;
1008
1009 if (top & 7)
1010 np2 = np;
1011 else
1012 for (np2 = am.d + top, i = 0; i < top; i++)
1013 np2[2 * i] = np[i];
1014
1015 bn_scatter5(tmp.d, top, powerbuf, 0);
1016 bn_scatter5(am.d, am.top, powerbuf, 1);
1017 bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
1018 bn_scatter5(tmp.d, top, powerbuf, 2);
1019
1020 /* same as above, but uses squaring for 1/2 of operations */
1021 for (i = 4; i < 32; i *= 2) {
1022 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1023 bn_scatter5(tmp.d, top, powerbuf, i);
1024 }
1025 for (i = 3; i < 8; i += 2) {
1026 int j;
1027 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1028 bn_scatter5(tmp.d, top, powerbuf, i);
1029 for (j = 2 * i; j < 32; j *= 2) {
1030 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1031 bn_scatter5(tmp.d, top, powerbuf, j);
1032 }
1033 }
1034 for (; i < 16; i += 2) {
1035 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1036 bn_scatter5(tmp.d, top, powerbuf, i);
1037 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1038 bn_scatter5(tmp.d, top, powerbuf, 2 * i);
1039 }
1040 for (; i < 32; i += 2) {
1041 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1042 bn_scatter5(tmp.d, top, powerbuf, i);
1043 }
1044
1045 bits--;
1046 for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--)
1047 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1048 bn_gather5(tmp.d, top, powerbuf, wvalue);
1049
1050 /* At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
1051 * that has not been read yet.) */
1052 assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
1053
1054 /* Scan the exponent one window at a time starting from the most
1055 * significant bits.
1056 */
1057 if (top & 7) {
1058 while (bits >= 0) {
1059 for (wvalue = 0, i = 0; i < 5; i++, bits--)
1060 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1061
1062 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1063 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1064 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1065 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1066 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1067 bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1068 }
1069 } else {
1070 const uint8_t *p_bytes = (const uint8_t *)p->d;
1071 int max_bits = p->top * BN_BITS2;
1072 assert(bits < max_bits);
1073 /* |p = 0| has been handled as a special case, so |max_bits| is at least
1074 * one word. */
1075 assert(max_bits >= 64);
1076
1077 /* If the first bit to be read lands in the last byte, unroll the first
1078 * iteration to avoid reading past the bounds of |p->d|. (After the first
1079 * iteration, we are guaranteed to be past the last byte.) Note |bits|
1080 * here is the top bit, inclusive. */
1081 if (bits - 4 >= max_bits - 8) {
1082 /* Read five bits from |bits-4| through |bits|, inclusive. */
1083 wvalue = p_bytes[p->top * BN_BYTES - 1];
1084 wvalue >>= (bits - 4) & 7;
1085 wvalue &= 0x1f;
1086 bits -= 5;
1087 bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
1088 }
1089 while (bits >= 0) {
1090 /* Read five bits from |bits-4| through |bits|, inclusive. */
1091 int first_bit = bits - 4;
1092 wvalue = *(const uint16_t *) (p_bytes + (first_bit >> 3));
1093 wvalue >>= first_bit & 7;
1094 wvalue &= 0x1f;
1095 bits -= 5;
1096 bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
1097 }
1098 }
1099
1100 ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np2, n0, top);
1101 tmp.top = top;
1102 bn_correct_top(&tmp);
1103 if (ret) {
1104 if (!BN_copy(rr, &tmp))
1105 ret = 0;
1106 goto err; /* non-zero ret means it's not error */
1107 }
1108 } else
1109 #endif
1110 {
1111 if (!copy_to_prebuf(&tmp, top, powerbuf, 0, numPowers))
1112 goto err;
1113 if (!copy_to_prebuf(&am, top, powerbuf, 1, numPowers))
1114 goto err;
1115
1116 /* If the window size is greater than 1, then calculate
1117 * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
1118 * (even powers could instead be computed as (a^(i/2))^2
1119 * to use the slight performance advantage of sqr over mul).
1120 */
1121 if (window > 1) {
1122 if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx))
1123 goto err;
1124 if (!copy_to_prebuf(&tmp, top, powerbuf, 2, numPowers))
1125 goto err;
1126 for (i = 3; i < numPowers; i++) {
1127 /* Calculate a^i = a^(i-1) * a */
1128 if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx))
1129 goto err;
1130 if (!copy_to_prebuf(&tmp, top, powerbuf, i, numPowers))
1131 goto err;
1132 }
1133 }
1134
1135 bits--;
1136 for (wvalue = 0, i = bits % window; i >= 0; i--, bits--)
1137 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1138 if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, numPowers))
1139 goto err;
1140
1141 /* Scan the exponent one window at a time starting from the most
1142 * significant bits.
1143 */
1144 while (bits >= 0) {
1145 wvalue = 0; /* The 'value' of the window */
1146
1147 /* Scan the window, squaring the result as we go */
1148 for (i = 0; i < window; i++, bits--) {
1149 if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx))
1150 goto err;
1151 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1152 }
1153
1154 /* Fetch the appropriate pre-computed value from the pre-buf */
1155 if (!copy_from_prebuf(&am, top, powerbuf, wvalue, numPowers))
1156 goto err;
1157
1158 /* Multiply the result into the intermediate result */
1159 if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx))
1160 goto err;
1161 }
1162 }
1163
1164 /* Convert the final result from montgomery to standard format */
1165 if (!BN_from_montgomery(rr, &tmp, mont, ctx))
1166 goto err;
1167 ret = 1;
1168 err:
1169 if ((in_mont == NULL) && (mont != NULL))
1170 BN_MONT_CTX_free(mont);
1171 if (powerbuf != NULL) {
1172 OPENSSL_cleanse(powerbuf, powerbufLen);
1173 if (powerbufFree)
1174 OPENSSL_free(powerbufFree);
1175 }
1176 BN_CTX_end(ctx);
1177 return (ret);
1178 }
1179
BN_mod_exp_mont_word(BIGNUM * rr,BN_ULONG a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)1180 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1181 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) {
1182 BN_MONT_CTX *mont = NULL;
1183 int b, bits, ret = 0;
1184 int r_is_one;
1185 BN_ULONG w, next_w;
1186 BIGNUM *d, *r, *t;
1187 BIGNUM *swap_tmp;
1188 #define BN_MOD_MUL_WORD(r, w, m) \
1189 (BN_mul_word(r, (w)) && \
1190 (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
1191 (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1192 /* BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1193 * probably more overhead than always using BN_mod (which uses BN_copy if a
1194 * similar test returns true). We can use BN_mod and do not need BN_nnmod
1195 * because our accumulator is never negative (the result of BN_mod does not
1196 * depend on the sign of the modulus). */
1197 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1198 (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1199
1200 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
1201 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1202 OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_word,
1203 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1204 return 0;
1205 }
1206
1207 if (!BN_is_odd(m)) {
1208 OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_word, BN_R_CALLED_WITH_EVEN_MODULUS);
1209 return 0;
1210 }
1211
1212 if (m->top == 1) {
1213 a %= m->d[0]; /* make sure that 'a' is reduced */
1214 }
1215
1216 bits = BN_num_bits(p);
1217 if (bits == 0) {
1218 /* x**0 mod 1 is still zero. */
1219 if (BN_is_one(m)) {
1220 ret = 1;
1221 BN_zero(rr);
1222 } else {
1223 ret = BN_one(rr);
1224 }
1225 return ret;
1226 }
1227 if (a == 0) {
1228 BN_zero(rr);
1229 ret = 1;
1230 return ret;
1231 }
1232
1233 BN_CTX_start(ctx);
1234 d = BN_CTX_get(ctx);
1235 r = BN_CTX_get(ctx);
1236 t = BN_CTX_get(ctx);
1237 if (d == NULL || r == NULL || t == NULL) {
1238 goto err;
1239 }
1240
1241 if (in_mont != NULL)
1242 mont = in_mont;
1243 else {
1244 if ((mont = BN_MONT_CTX_new()) == NULL) {
1245 goto err;
1246 }
1247 if (!BN_MONT_CTX_set(mont, m, ctx)) {
1248 goto err;
1249 }
1250 }
1251
1252 r_is_one = 1; /* except for Montgomery factor */
1253
1254 /* bits-1 >= 0 */
1255
1256 /* The result is accumulated in the product r*w. */
1257 w = a; /* bit 'bits-1' of 'p' is always set */
1258 for (b = bits - 2; b >= 0; b--) {
1259 /* First, square r*w. */
1260 next_w = w * w;
1261 if ((next_w / w) != w) {
1262 /* overflow */
1263 if (r_is_one) {
1264 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1265 goto err;
1266 }
1267 r_is_one = 0;
1268 } else {
1269 if (!BN_MOD_MUL_WORD(r, w, m)) {
1270 goto err;
1271 }
1272 }
1273 next_w = 1;
1274 }
1275
1276 w = next_w;
1277 if (!r_is_one) {
1278 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
1279 goto err;
1280 }
1281 }
1282
1283 /* Second, multiply r*w by 'a' if exponent bit is set. */
1284 if (BN_is_bit_set(p, b)) {
1285 next_w = w * a;
1286 if ((next_w / a) != w) {
1287 /* overflow */
1288 if (r_is_one) {
1289 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1290 goto err;
1291 }
1292 r_is_one = 0;
1293 } else {
1294 if (!BN_MOD_MUL_WORD(r, w, m)) {
1295 goto err;
1296 }
1297 }
1298 next_w = a;
1299 }
1300 w = next_w;
1301 }
1302 }
1303
1304 /* Finally, set r:=r*w. */
1305 if (w != 1) {
1306 if (r_is_one) {
1307 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1308 goto err;
1309 }
1310 r_is_one = 0;
1311 } else {
1312 if (!BN_MOD_MUL_WORD(r, w, m)) {
1313 goto err;
1314 }
1315 }
1316 }
1317
1318 if (r_is_one) {
1319 /* can happen only if a == 1*/
1320 if (!BN_one(rr)) {
1321 goto err;
1322 }
1323 } else {
1324 if (!BN_from_montgomery(rr, r, mont, ctx)) {
1325 goto err;
1326 }
1327 }
1328 ret = 1;
1329
1330 err:
1331 if (in_mont == NULL && mont != NULL) {
1332 BN_MONT_CTX_free(mont);
1333 }
1334 BN_CTX_end(ctx);
1335 return ret;
1336 }
1337
1338 #define TABLE_SIZE 32
1339
BN_mod_exp2_mont(BIGNUM * rr,const BIGNUM * a1,const BIGNUM * p1,const BIGNUM * a2,const BIGNUM * p2,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)1340 int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
1341 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
1342 BN_CTX *ctx, BN_MONT_CTX *in_mont) {
1343 int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2,
1344 wvalue1, wvalue2;
1345 int r_is_one = 1;
1346 BIGNUM *d, *r;
1347 const BIGNUM *a_mod_m;
1348 /* Tables of variables obtained from 'ctx' */
1349 BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE];
1350 BN_MONT_CTX *mont = NULL;
1351
1352 if (!(m->d[0] & 1)) {
1353 OPENSSL_PUT_ERROR(BN, BN_mod_exp2_mont, BN_R_CALLED_WITH_EVEN_MODULUS);
1354 return 0;
1355 }
1356 bits1 = BN_num_bits(p1);
1357 bits2 = BN_num_bits(p2);
1358 if (bits1 == 0 && bits2 == 0) {
1359 ret = BN_one(rr);
1360 return ret;
1361 }
1362
1363 bits = (bits1 > bits2) ? bits1 : bits2;
1364
1365 BN_CTX_start(ctx);
1366 d = BN_CTX_get(ctx);
1367 r = BN_CTX_get(ctx);
1368 val1[0] = BN_CTX_get(ctx);
1369 val2[0] = BN_CTX_get(ctx);
1370 if (!d || !r || !val1[0] || !val2[0]) {
1371 goto err;
1372 }
1373
1374 if (in_mont != NULL) {
1375 mont = in_mont;
1376 } else {
1377 mont = BN_MONT_CTX_new();
1378 if (mont == NULL) {
1379 goto err;
1380 }
1381 if (!BN_MONT_CTX_set(mont, m, ctx)) {
1382 goto err;
1383 }
1384 }
1385
1386 window1 = BN_window_bits_for_exponent_size(bits1);
1387 window2 = BN_window_bits_for_exponent_size(bits2);
1388
1389 /* Build table for a1: val1[i] := a1^(2*i + 1) mod m for i = 0 ..
1390 * 2^(window1-1) */
1391 if (a1->neg || BN_ucmp(a1, m) >= 0) {
1392 if (!BN_mod(val1[0], a1, m, ctx)) {
1393 goto err;
1394 }
1395 a_mod_m = val1[0];
1396 } else {
1397 a_mod_m = a1;
1398 }
1399
1400 if (BN_is_zero(a_mod_m)) {
1401 BN_zero(rr);
1402 ret = 1;
1403 goto err;
1404 }
1405
1406 if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) {
1407 goto err;
1408 }
1409
1410 if (window1 > 1) {
1411 if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) {
1412 goto err;
1413 }
1414
1415 j = 1 << (window1 - 1);
1416 for (i = 1; i < j; i++) {
1417 if (((val1[i] = BN_CTX_get(ctx)) == NULL) ||
1418 !BN_mod_mul_montgomery(val1[i], val1[i - 1], d, mont, ctx)) {
1419 goto err;
1420 }
1421 }
1422 }
1423
1424 /* Build table for a2: val2[i] := a2^(2*i + 1) mod m for i = 0 ..
1425 * 2^(window2-1) */
1426 if (a2->neg || BN_ucmp(a2, m) >= 0) {
1427 if (!BN_mod(val2[0], a2, m, ctx)) {
1428 goto err;
1429 }
1430 a_mod_m = val2[0];
1431 } else {
1432 a_mod_m = a2;
1433 }
1434
1435 if (BN_is_zero(a_mod_m)) {
1436 BN_zero(rr);
1437 ret = 1;
1438 goto err;
1439 }
1440
1441 if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) {
1442 goto err;
1443 }
1444
1445 if (window2 > 1) {
1446 if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) {
1447 goto err;
1448 }
1449
1450 j = 1 << (window2 - 1);
1451 for (i = 1; i < j; i++) {
1452 if (((val2[i] = BN_CTX_get(ctx)) == NULL) ||
1453 !BN_mod_mul_montgomery(val2[i], val2[i - 1], d, mont, ctx)) {
1454 goto err;
1455 }
1456 }
1457 }
1458
1459 /* Now compute the power product, using independent windows. */
1460 r_is_one = 1;
1461 wvalue1 = 0; /* The 'value' of the first window */
1462 wvalue2 = 0; /* The 'value' of the second window */
1463 wpos1 = 0; /* If wvalue1 > 0, the bottom bit of the first window */
1464 wpos2 = 0; /* If wvalue2 > 0, the bottom bit of the second window */
1465
1466 if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
1467 goto err;
1468 }
1469
1470 for (b = bits - 1; b >= 0; b--) {
1471 if (!r_is_one) {
1472 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
1473 goto err;
1474 }
1475 }
1476
1477 if (!wvalue1 && BN_is_bit_set(p1, b)) {
1478 /* consider bits b-window1+1 .. b for this window */
1479 i = b - window1 + 1;
1480 while (!BN_is_bit_set(p1, i)) /* works for i<0 */
1481 i++;
1482 wpos1 = i;
1483 wvalue1 = 1;
1484 for (i = b - 1; i >= wpos1; i--) {
1485 wvalue1 <<= 1;
1486 if (BN_is_bit_set(p1, i))
1487 wvalue1++;
1488 }
1489 }
1490
1491 if (!wvalue2 && BN_is_bit_set(p2, b)) {
1492 /* consider bits b-window2+1 .. b for this window */
1493 i = b - window2 + 1;
1494 while (!BN_is_bit_set(p2, i))
1495 i++;
1496 wpos2 = i;
1497 wvalue2 = 1;
1498 for (i = b - 1; i >= wpos2; i--) {
1499 wvalue2 <<= 1;
1500 if (BN_is_bit_set(p2, i))
1501 wvalue2++;
1502 }
1503 }
1504
1505 if (wvalue1 && b == wpos1) {
1506 /* wvalue1 is odd and < 2^window1 */
1507 if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], mont, ctx)) {
1508 goto err;
1509 }
1510 wvalue1 = 0;
1511 r_is_one = 0;
1512 }
1513
1514 if (wvalue2 && b == wpos2) {
1515 /* wvalue2 is odd and < 2^window2 */
1516 if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], mont, ctx)) {
1517 goto err;
1518 }
1519 wvalue2 = 0;
1520 r_is_one = 0;
1521 }
1522 }
1523
1524 if (!BN_from_montgomery(rr, r, mont, ctx)) {
1525 goto err;
1526 }
1527 ret = 1;
1528
1529 err:
1530 if (in_mont == NULL && mont != NULL) {
1531 BN_MONT_CTX_free(mont);
1532 }
1533 BN_CTX_end(ctx);
1534 return ret;
1535 }
1536