1 // Copyright 2012 the V8 project authors. All rights reserved.7
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "src/v8.h"
29
30 #include "src/base/bits.h"
31 #include "src/code-factory.h"
32 #include "src/code-stubs.h"
33 #include "src/hydrogen-osr.h"
34 #include "src/ic/ic.h"
35 #include "src/ic/stub-cache.h"
36 #include "src/mips/lithium-codegen-mips.h"
37 #include "src/mips/lithium-gap-resolver-mips.h"
38
39
40 namespace v8 {
41 namespace internal {
42
43
44 class SafepointGenerator FINAL : public CallWrapper {
45 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)46 SafepointGenerator(LCodeGen* codegen,
47 LPointerMap* pointers,
48 Safepoint::DeoptMode mode)
49 : codegen_(codegen),
50 pointers_(pointers),
51 deopt_mode_(mode) { }
~SafepointGenerator()52 virtual ~SafepointGenerator() {}
53
BeforeCall(int call_size) const54 virtual void BeforeCall(int call_size) const OVERRIDE {}
55
AfterCall() const56 virtual void AfterCall() const OVERRIDE {
57 codegen_->RecordSafepoint(pointers_, deopt_mode_);
58 }
59
60 private:
61 LCodeGen* codegen_;
62 LPointerMap* pointers_;
63 Safepoint::DeoptMode deopt_mode_;
64 };
65
66
67 #define __ masm()->
68
GenerateCode()69 bool LCodeGen::GenerateCode() {
70 LPhase phase("Z_Code generation", chunk());
71 DCHECK(is_unused());
72 status_ = GENERATING;
73
74 // Open a frame scope to indicate that there is a frame on the stack. The
75 // NONE indicates that the scope shouldn't actually generate code to set up
76 // the frame (that is done in GeneratePrologue).
77 FrameScope frame_scope(masm_, StackFrame::NONE);
78
79 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
80 GenerateJumpTable() && GenerateSafepointTable();
81 }
82
83
FinishCode(Handle<Code> code)84 void LCodeGen::FinishCode(Handle<Code> code) {
85 DCHECK(is_done());
86 code->set_stack_slots(GetStackSlotCount());
87 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
88 if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
89 PopulateDeoptimizationData(code);
90 }
91
92
SaveCallerDoubles()93 void LCodeGen::SaveCallerDoubles() {
94 DCHECK(info()->saves_caller_doubles());
95 DCHECK(NeedsEagerFrame());
96 Comment(";;; Save clobbered callee double registers");
97 int count = 0;
98 BitVector* doubles = chunk()->allocated_double_registers();
99 BitVector::Iterator save_iterator(doubles);
100 while (!save_iterator.Done()) {
101 __ sdc1(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
102 MemOperand(sp, count * kDoubleSize));
103 save_iterator.Advance();
104 count++;
105 }
106 }
107
108
RestoreCallerDoubles()109 void LCodeGen::RestoreCallerDoubles() {
110 DCHECK(info()->saves_caller_doubles());
111 DCHECK(NeedsEagerFrame());
112 Comment(";;; Restore clobbered callee double registers");
113 BitVector* doubles = chunk()->allocated_double_registers();
114 BitVector::Iterator save_iterator(doubles);
115 int count = 0;
116 while (!save_iterator.Done()) {
117 __ ldc1(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
118 MemOperand(sp, count * kDoubleSize));
119 save_iterator.Advance();
120 count++;
121 }
122 }
123
124
GeneratePrologue()125 bool LCodeGen::GeneratePrologue() {
126 DCHECK(is_generating());
127
128 if (info()->IsOptimizing()) {
129 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
130
131 #ifdef DEBUG
132 if (strlen(FLAG_stop_at) > 0 &&
133 info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
134 __ stop("stop_at");
135 }
136 #endif
137
138 // a1: Callee's JS function.
139 // cp: Callee's context.
140 // fp: Caller's frame pointer.
141 // lr: Caller's pc.
142
143 // Sloppy mode functions and builtins need to replace the receiver with the
144 // global proxy when called as functions (without an explicit receiver
145 // object).
146 if (info_->this_has_uses() &&
147 info_->strict_mode() == SLOPPY &&
148 !info_->is_native()) {
149 Label ok;
150 int receiver_offset = info_->scope()->num_parameters() * kPointerSize;
151 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
152 __ lw(a2, MemOperand(sp, receiver_offset));
153 __ Branch(&ok, ne, a2, Operand(at));
154
155 __ lw(a2, GlobalObjectOperand());
156 __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset));
157
158 __ sw(a2, MemOperand(sp, receiver_offset));
159
160 __ bind(&ok);
161 }
162 }
163
164 info()->set_prologue_offset(masm_->pc_offset());
165 if (NeedsEagerFrame()) {
166 if (info()->IsStub()) {
167 __ StubPrologue();
168 } else {
169 __ Prologue(info()->IsCodePreAgingActive());
170 }
171 frame_is_built_ = true;
172 info_->AddNoFrameRange(0, masm_->pc_offset());
173 }
174
175 // Reserve space for the stack slots needed by the code.
176 int slots = GetStackSlotCount();
177 if (slots > 0) {
178 if (FLAG_debug_code) {
179 __ Subu(sp, sp, Operand(slots * kPointerSize));
180 __ Push(a0, a1);
181 __ Addu(a0, sp, Operand(slots * kPointerSize));
182 __ li(a1, Operand(kSlotsZapValue));
183 Label loop;
184 __ bind(&loop);
185 __ Subu(a0, a0, Operand(kPointerSize));
186 __ sw(a1, MemOperand(a0, 2 * kPointerSize));
187 __ Branch(&loop, ne, a0, Operand(sp));
188 __ Pop(a0, a1);
189 } else {
190 __ Subu(sp, sp, Operand(slots * kPointerSize));
191 }
192 }
193
194 if (info()->saves_caller_doubles()) {
195 SaveCallerDoubles();
196 }
197
198 // Possibly allocate a local context.
199 int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
200 if (heap_slots > 0) {
201 Comment(";;; Allocate local context");
202 bool need_write_barrier = true;
203 // Argument to NewContext is the function, which is in a1.
204 if (heap_slots <= FastNewContextStub::kMaximumSlots) {
205 FastNewContextStub stub(isolate(), heap_slots);
206 __ CallStub(&stub);
207 // Result of FastNewContextStub is always in new space.
208 need_write_barrier = false;
209 } else {
210 __ push(a1);
211 __ CallRuntime(Runtime::kNewFunctionContext, 1);
212 }
213 RecordSafepoint(Safepoint::kNoLazyDeopt);
214 // Context is returned in both v0. It replaces the context passed to us.
215 // It's saved in the stack and kept live in cp.
216 __ mov(cp, v0);
217 __ sw(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
218 // Copy any necessary parameters into the context.
219 int num_parameters = scope()->num_parameters();
220 for (int i = 0; i < num_parameters; i++) {
221 Variable* var = scope()->parameter(i);
222 if (var->IsContextSlot()) {
223 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
224 (num_parameters - 1 - i) * kPointerSize;
225 // Load parameter from stack.
226 __ lw(a0, MemOperand(fp, parameter_offset));
227 // Store it in the context.
228 MemOperand target = ContextOperand(cp, var->index());
229 __ sw(a0, target);
230 // Update the write barrier. This clobbers a3 and a0.
231 if (need_write_barrier) {
232 __ RecordWriteContextSlot(
233 cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs);
234 } else if (FLAG_debug_code) {
235 Label done;
236 __ JumpIfInNewSpace(cp, a0, &done);
237 __ Abort(kExpectedNewSpaceObject);
238 __ bind(&done);
239 }
240 }
241 }
242 Comment(";;; End allocate local context");
243 }
244
245 // Trace the call.
246 if (FLAG_trace && info()->IsOptimizing()) {
247 // We have not executed any compiled code yet, so cp still holds the
248 // incoming context.
249 __ CallRuntime(Runtime::kTraceEnter, 0);
250 }
251 return !is_aborted();
252 }
253
254
GenerateOsrPrologue()255 void LCodeGen::GenerateOsrPrologue() {
256 // Generate the OSR entry prologue at the first unknown OSR value, or if there
257 // are none, at the OSR entrypoint instruction.
258 if (osr_pc_offset_ >= 0) return;
259
260 osr_pc_offset_ = masm()->pc_offset();
261
262 // Adjust the frame size, subsuming the unoptimized frame into the
263 // optimized frame.
264 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
265 DCHECK(slots >= 0);
266 __ Subu(sp, sp, Operand(slots * kPointerSize));
267 }
268
269
GenerateBodyInstructionPre(LInstruction * instr)270 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
271 if (instr->IsCall()) {
272 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
273 }
274 if (!instr->IsLazyBailout() && !instr->IsGap()) {
275 safepoints_.BumpLastLazySafepointIndex();
276 }
277 }
278
279
GenerateDeferredCode()280 bool LCodeGen::GenerateDeferredCode() {
281 DCHECK(is_generating());
282 if (deferred_.length() > 0) {
283 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
284 LDeferredCode* code = deferred_[i];
285
286 HValue* value =
287 instructions_->at(code->instruction_index())->hydrogen_value();
288 RecordAndWritePosition(
289 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
290
291 Comment(";;; <@%d,#%d> "
292 "-------------------- Deferred %s --------------------",
293 code->instruction_index(),
294 code->instr()->hydrogen_value()->id(),
295 code->instr()->Mnemonic());
296 __ bind(code->entry());
297 if (NeedsDeferredFrame()) {
298 Comment(";;; Build frame");
299 DCHECK(!frame_is_built_);
300 DCHECK(info()->IsStub());
301 frame_is_built_ = true;
302 __ MultiPush(cp.bit() | fp.bit() | ra.bit());
303 __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
304 __ push(scratch0());
305 __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
306 Comment(";;; Deferred code");
307 }
308 code->Generate();
309 if (NeedsDeferredFrame()) {
310 Comment(";;; Destroy frame");
311 DCHECK(frame_is_built_);
312 __ pop(at);
313 __ MultiPop(cp.bit() | fp.bit() | ra.bit());
314 frame_is_built_ = false;
315 }
316 __ jmp(code->exit());
317 }
318 }
319 // Deferred code is the last part of the instruction sequence. Mark
320 // the generated code as done unless we bailed out.
321 if (!is_aborted()) status_ = DONE;
322 return !is_aborted();
323 }
324
325
GenerateJumpTable()326 bool LCodeGen::GenerateJumpTable() {
327 if (jump_table_.length() > 0) {
328 Label needs_frame, call_deopt_entry;
329
330 Comment(";;; -------------------- Jump table --------------------");
331 Address base = jump_table_[0].address;
332
333 Register entry_offset = t9;
334
335 int length = jump_table_.length();
336 for (int i = 0; i < length; i++) {
337 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
338 __ bind(&table_entry->label);
339
340 DCHECK(table_entry->bailout_type == jump_table_[0].bailout_type);
341 Address entry = table_entry->address;
342 DeoptComment(table_entry->reason);
343
344 // Second-level deopt table entries are contiguous and small, so instead
345 // of loading the full, absolute address of each one, load an immediate
346 // offset which will be added to the base address later.
347 __ li(entry_offset, Operand(entry - base));
348
349 if (table_entry->needs_frame) {
350 DCHECK(!info()->saves_caller_doubles());
351 if (needs_frame.is_bound()) {
352 __ Branch(&needs_frame);
353 } else {
354 __ bind(&needs_frame);
355 Comment(";;; call deopt with frame");
356 __ MultiPush(cp.bit() | fp.bit() | ra.bit());
357 // This variant of deopt can only be used with stubs. Since we don't
358 // have a function pointer to install in the stack frame that we're
359 // building, install a special marker there instead.
360 DCHECK(info()->IsStub());
361 __ li(at, Operand(Smi::FromInt(StackFrame::STUB)));
362 __ push(at);
363 __ Addu(fp, sp,
364 Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
365 __ bind(&call_deopt_entry);
366 // Add the base address to the offset previously loaded in
367 // entry_offset.
368 __ Addu(entry_offset, entry_offset,
369 Operand(ExternalReference::ForDeoptEntry(base)));
370 __ Call(entry_offset);
371 }
372 } else {
373 // The last entry can fall through into `call_deopt_entry`, avoiding a
374 // branch.
375 bool need_branch = ((i + 1) != length) || call_deopt_entry.is_bound();
376
377 if (need_branch) __ Branch(&call_deopt_entry);
378 }
379 }
380
381 if (!call_deopt_entry.is_bound()) {
382 Comment(";;; call deopt");
383 __ bind(&call_deopt_entry);
384
385 if (info()->saves_caller_doubles()) {
386 DCHECK(info()->IsStub());
387 RestoreCallerDoubles();
388 }
389
390 // Add the base address to the offset previously loaded in entry_offset.
391 __ Addu(entry_offset, entry_offset,
392 Operand(ExternalReference::ForDeoptEntry(base)));
393 __ Call(entry_offset);
394 }
395 }
396 __ RecordComment("]");
397
398 // The deoptimization jump table is the last part of the instruction
399 // sequence. Mark the generated code as done unless we bailed out.
400 if (!is_aborted()) status_ = DONE;
401 return !is_aborted();
402 }
403
404
GenerateSafepointTable()405 bool LCodeGen::GenerateSafepointTable() {
406 DCHECK(is_done());
407 safepoints_.Emit(masm(), GetStackSlotCount());
408 return !is_aborted();
409 }
410
411
ToRegister(int index) const412 Register LCodeGen::ToRegister(int index) const {
413 return Register::FromAllocationIndex(index);
414 }
415
416
ToDoubleRegister(int index) const417 DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
418 return DoubleRegister::FromAllocationIndex(index);
419 }
420
421
ToRegister(LOperand * op) const422 Register LCodeGen::ToRegister(LOperand* op) const {
423 DCHECK(op->IsRegister());
424 return ToRegister(op->index());
425 }
426
427
EmitLoadRegister(LOperand * op,Register scratch)428 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
429 if (op->IsRegister()) {
430 return ToRegister(op->index());
431 } else if (op->IsConstantOperand()) {
432 LConstantOperand* const_op = LConstantOperand::cast(op);
433 HConstant* constant = chunk_->LookupConstant(const_op);
434 Handle<Object> literal = constant->handle(isolate());
435 Representation r = chunk_->LookupLiteralRepresentation(const_op);
436 if (r.IsInteger32()) {
437 DCHECK(literal->IsNumber());
438 __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
439 } else if (r.IsSmi()) {
440 DCHECK(constant->HasSmiValue());
441 __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value())));
442 } else if (r.IsDouble()) {
443 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
444 } else {
445 DCHECK(r.IsSmiOrTagged());
446 __ li(scratch, literal);
447 }
448 return scratch;
449 } else if (op->IsStackSlot()) {
450 __ lw(scratch, ToMemOperand(op));
451 return scratch;
452 }
453 UNREACHABLE();
454 return scratch;
455 }
456
457
ToDoubleRegister(LOperand * op) const458 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
459 DCHECK(op->IsDoubleRegister());
460 return ToDoubleRegister(op->index());
461 }
462
463
EmitLoadDoubleRegister(LOperand * op,FloatRegister flt_scratch,DoubleRegister dbl_scratch)464 DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
465 FloatRegister flt_scratch,
466 DoubleRegister dbl_scratch) {
467 if (op->IsDoubleRegister()) {
468 return ToDoubleRegister(op->index());
469 } else if (op->IsConstantOperand()) {
470 LConstantOperand* const_op = LConstantOperand::cast(op);
471 HConstant* constant = chunk_->LookupConstant(const_op);
472 Handle<Object> literal = constant->handle(isolate());
473 Representation r = chunk_->LookupLiteralRepresentation(const_op);
474 if (r.IsInteger32()) {
475 DCHECK(literal->IsNumber());
476 __ li(at, Operand(static_cast<int32_t>(literal->Number())));
477 __ mtc1(at, flt_scratch);
478 __ cvt_d_w(dbl_scratch, flt_scratch);
479 return dbl_scratch;
480 } else if (r.IsDouble()) {
481 Abort(kUnsupportedDoubleImmediate);
482 } else if (r.IsTagged()) {
483 Abort(kUnsupportedTaggedImmediate);
484 }
485 } else if (op->IsStackSlot()) {
486 MemOperand mem_op = ToMemOperand(op);
487 __ ldc1(dbl_scratch, mem_op);
488 return dbl_scratch;
489 }
490 UNREACHABLE();
491 return dbl_scratch;
492 }
493
494
ToHandle(LConstantOperand * op) const495 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
496 HConstant* constant = chunk_->LookupConstant(op);
497 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
498 return constant->handle(isolate());
499 }
500
501
IsInteger32(LConstantOperand * op) const502 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
503 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
504 }
505
506
IsSmi(LConstantOperand * op) const507 bool LCodeGen::IsSmi(LConstantOperand* op) const {
508 return chunk_->LookupLiteralRepresentation(op).IsSmi();
509 }
510
511
ToInteger32(LConstantOperand * op) const512 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
513 return ToRepresentation(op, Representation::Integer32());
514 }
515
516
ToRepresentation(LConstantOperand * op,const Representation & r) const517 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
518 const Representation& r) const {
519 HConstant* constant = chunk_->LookupConstant(op);
520 int32_t value = constant->Integer32Value();
521 if (r.IsInteger32()) return value;
522 DCHECK(r.IsSmiOrTagged());
523 return reinterpret_cast<int32_t>(Smi::FromInt(value));
524 }
525
526
ToSmi(LConstantOperand * op) const527 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
528 HConstant* constant = chunk_->LookupConstant(op);
529 return Smi::FromInt(constant->Integer32Value());
530 }
531
532
ToDouble(LConstantOperand * op) const533 double LCodeGen::ToDouble(LConstantOperand* op) const {
534 HConstant* constant = chunk_->LookupConstant(op);
535 DCHECK(constant->HasDoubleValue());
536 return constant->DoubleValue();
537 }
538
539
ToOperand(LOperand * op)540 Operand LCodeGen::ToOperand(LOperand* op) {
541 if (op->IsConstantOperand()) {
542 LConstantOperand* const_op = LConstantOperand::cast(op);
543 HConstant* constant = chunk()->LookupConstant(const_op);
544 Representation r = chunk_->LookupLiteralRepresentation(const_op);
545 if (r.IsSmi()) {
546 DCHECK(constant->HasSmiValue());
547 return Operand(Smi::FromInt(constant->Integer32Value()));
548 } else if (r.IsInteger32()) {
549 DCHECK(constant->HasInteger32Value());
550 return Operand(constant->Integer32Value());
551 } else if (r.IsDouble()) {
552 Abort(kToOperandUnsupportedDoubleImmediate);
553 }
554 DCHECK(r.IsTagged());
555 return Operand(constant->handle(isolate()));
556 } else if (op->IsRegister()) {
557 return Operand(ToRegister(op));
558 } else if (op->IsDoubleRegister()) {
559 Abort(kToOperandIsDoubleRegisterUnimplemented);
560 return Operand(0);
561 }
562 // Stack slots not implemented, use ToMemOperand instead.
563 UNREACHABLE();
564 return Operand(0);
565 }
566
567
ArgumentsOffsetWithoutFrame(int index)568 static int ArgumentsOffsetWithoutFrame(int index) {
569 DCHECK(index < 0);
570 return -(index + 1) * kPointerSize;
571 }
572
573
ToMemOperand(LOperand * op) const574 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
575 DCHECK(!op->IsRegister());
576 DCHECK(!op->IsDoubleRegister());
577 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
578 if (NeedsEagerFrame()) {
579 return MemOperand(fp, StackSlotOffset(op->index()));
580 } else {
581 // Retrieve parameter without eager stack-frame relative to the
582 // stack-pointer.
583 return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
584 }
585 }
586
587
ToHighMemOperand(LOperand * op) const588 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
589 DCHECK(op->IsDoubleStackSlot());
590 if (NeedsEagerFrame()) {
591 return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
592 } else {
593 // Retrieve parameter without eager stack-frame relative to the
594 // stack-pointer.
595 return MemOperand(
596 sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
597 }
598 }
599
600
WriteTranslation(LEnvironment * environment,Translation * translation)601 void LCodeGen::WriteTranslation(LEnvironment* environment,
602 Translation* translation) {
603 if (environment == NULL) return;
604
605 // The translation includes one command per value in the environment.
606 int translation_size = environment->translation_size();
607 // The output frame height does not include the parameters.
608 int height = translation_size - environment->parameter_count();
609
610 WriteTranslation(environment->outer(), translation);
611 bool has_closure_id = !info()->closure().is_null() &&
612 !info()->closure().is_identical_to(environment->closure());
613 int closure_id = has_closure_id
614 ? DefineDeoptimizationLiteral(environment->closure())
615 : Translation::kSelfLiteralId;
616
617 switch (environment->frame_type()) {
618 case JS_FUNCTION:
619 translation->BeginJSFrame(environment->ast_id(), closure_id, height);
620 break;
621 case JS_CONSTRUCT:
622 translation->BeginConstructStubFrame(closure_id, translation_size);
623 break;
624 case JS_GETTER:
625 DCHECK(translation_size == 1);
626 DCHECK(height == 0);
627 translation->BeginGetterStubFrame(closure_id);
628 break;
629 case JS_SETTER:
630 DCHECK(translation_size == 2);
631 DCHECK(height == 0);
632 translation->BeginSetterStubFrame(closure_id);
633 break;
634 case STUB:
635 translation->BeginCompiledStubFrame();
636 break;
637 case ARGUMENTS_ADAPTOR:
638 translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
639 break;
640 }
641
642 int object_index = 0;
643 int dematerialized_index = 0;
644 for (int i = 0; i < translation_size; ++i) {
645 LOperand* value = environment->values()->at(i);
646 AddToTranslation(environment,
647 translation,
648 value,
649 environment->HasTaggedValueAt(i),
650 environment->HasUint32ValueAt(i),
651 &object_index,
652 &dematerialized_index);
653 }
654 }
655
656
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)657 void LCodeGen::AddToTranslation(LEnvironment* environment,
658 Translation* translation,
659 LOperand* op,
660 bool is_tagged,
661 bool is_uint32,
662 int* object_index_pointer,
663 int* dematerialized_index_pointer) {
664 if (op == LEnvironment::materialization_marker()) {
665 int object_index = (*object_index_pointer)++;
666 if (environment->ObjectIsDuplicateAt(object_index)) {
667 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
668 translation->DuplicateObject(dupe_of);
669 return;
670 }
671 int object_length = environment->ObjectLengthAt(object_index);
672 if (environment->ObjectIsArgumentsAt(object_index)) {
673 translation->BeginArgumentsObject(object_length);
674 } else {
675 translation->BeginCapturedObject(object_length);
676 }
677 int dematerialized_index = *dematerialized_index_pointer;
678 int env_offset = environment->translation_size() + dematerialized_index;
679 *dematerialized_index_pointer += object_length;
680 for (int i = 0; i < object_length; ++i) {
681 LOperand* value = environment->values()->at(env_offset + i);
682 AddToTranslation(environment,
683 translation,
684 value,
685 environment->HasTaggedValueAt(env_offset + i),
686 environment->HasUint32ValueAt(env_offset + i),
687 object_index_pointer,
688 dematerialized_index_pointer);
689 }
690 return;
691 }
692
693 if (op->IsStackSlot()) {
694 if (is_tagged) {
695 translation->StoreStackSlot(op->index());
696 } else if (is_uint32) {
697 translation->StoreUint32StackSlot(op->index());
698 } else {
699 translation->StoreInt32StackSlot(op->index());
700 }
701 } else if (op->IsDoubleStackSlot()) {
702 translation->StoreDoubleStackSlot(op->index());
703 } else if (op->IsRegister()) {
704 Register reg = ToRegister(op);
705 if (is_tagged) {
706 translation->StoreRegister(reg);
707 } else if (is_uint32) {
708 translation->StoreUint32Register(reg);
709 } else {
710 translation->StoreInt32Register(reg);
711 }
712 } else if (op->IsDoubleRegister()) {
713 DoubleRegister reg = ToDoubleRegister(op);
714 translation->StoreDoubleRegister(reg);
715 } else if (op->IsConstantOperand()) {
716 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
717 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
718 translation->StoreLiteral(src_index);
719 } else {
720 UNREACHABLE();
721 }
722 }
723
724
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)725 void LCodeGen::CallCode(Handle<Code> code,
726 RelocInfo::Mode mode,
727 LInstruction* instr) {
728 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
729 }
730
731
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)732 void LCodeGen::CallCodeGeneric(Handle<Code> code,
733 RelocInfo::Mode mode,
734 LInstruction* instr,
735 SafepointMode safepoint_mode) {
736 DCHECK(instr != NULL);
737 __ Call(code, mode);
738 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
739 }
740
741
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)742 void LCodeGen::CallRuntime(const Runtime::Function* function,
743 int num_arguments,
744 LInstruction* instr,
745 SaveFPRegsMode save_doubles) {
746 DCHECK(instr != NULL);
747
748 __ CallRuntime(function, num_arguments, save_doubles);
749
750 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
751 }
752
753
LoadContextFromDeferred(LOperand * context)754 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
755 if (context->IsRegister()) {
756 __ Move(cp, ToRegister(context));
757 } else if (context->IsStackSlot()) {
758 __ lw(cp, ToMemOperand(context));
759 } else if (context->IsConstantOperand()) {
760 HConstant* constant =
761 chunk_->LookupConstant(LConstantOperand::cast(context));
762 __ li(cp, Handle<Object>::cast(constant->handle(isolate())));
763 } else {
764 UNREACHABLE();
765 }
766 }
767
768
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)769 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
770 int argc,
771 LInstruction* instr,
772 LOperand* context) {
773 LoadContextFromDeferred(context);
774 __ CallRuntimeSaveDoubles(id);
775 RecordSafepointWithRegisters(
776 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
777 }
778
779
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)780 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
781 Safepoint::DeoptMode mode) {
782 environment->set_has_been_used();
783 if (!environment->HasBeenRegistered()) {
784 // Physical stack frame layout:
785 // -x ............. -4 0 ..................................... y
786 // [incoming arguments] [spill slots] [pushed outgoing arguments]
787
788 // Layout of the environment:
789 // 0 ..................................................... size-1
790 // [parameters] [locals] [expression stack including arguments]
791
792 // Layout of the translation:
793 // 0 ........................................................ size - 1 + 4
794 // [expression stack including arguments] [locals] [4 words] [parameters]
795 // |>------------ translation_size ------------<|
796
797 int frame_count = 0;
798 int jsframe_count = 0;
799 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
800 ++frame_count;
801 if (e->frame_type() == JS_FUNCTION) {
802 ++jsframe_count;
803 }
804 }
805 Translation translation(&translations_, frame_count, jsframe_count, zone());
806 WriteTranslation(environment, &translation);
807 int deoptimization_index = deoptimizations_.length();
808 int pc_offset = masm()->pc_offset();
809 environment->Register(deoptimization_index,
810 translation.index(),
811 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
812 deoptimizations_.Add(environment, zone());
813 }
814 }
815
816
DeoptimizeIf(Condition condition,LInstruction * instr,Deoptimizer::BailoutType bailout_type,Register src1,const Operand & src2,const char * detail)817 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
818 Deoptimizer::BailoutType bailout_type,
819 Register src1, const Operand& src2,
820 const char* detail) {
821 LEnvironment* environment = instr->environment();
822 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
823 DCHECK(environment->HasBeenRegistered());
824 int id = environment->deoptimization_index();
825 DCHECK(info()->IsOptimizing() || info()->IsStub());
826 Address entry =
827 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
828 if (entry == NULL) {
829 Abort(kBailoutWasNotPrepared);
830 return;
831 }
832
833 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
834 Register scratch = scratch0();
835 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
836 Label no_deopt;
837 __ Push(a1, scratch);
838 __ li(scratch, Operand(count));
839 __ lw(a1, MemOperand(scratch));
840 __ Subu(a1, a1, Operand(1));
841 __ Branch(&no_deopt, ne, a1, Operand(zero_reg));
842 __ li(a1, Operand(FLAG_deopt_every_n_times));
843 __ sw(a1, MemOperand(scratch));
844 __ Pop(a1, scratch);
845
846 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
847 __ bind(&no_deopt);
848 __ sw(a1, MemOperand(scratch));
849 __ Pop(a1, scratch);
850 }
851
852 if (info()->ShouldTrapOnDeopt()) {
853 Label skip;
854 if (condition != al) {
855 __ Branch(&skip, NegateCondition(condition), src1, src2);
856 }
857 __ stop("trap_on_deopt");
858 __ bind(&skip);
859 }
860
861 Deoptimizer::Reason reason(instr->hydrogen_value()->position().raw(),
862 instr->Mnemonic(), detail);
863 DCHECK(info()->IsStub() || frame_is_built_);
864 // Go through jump table if we need to handle condition, build frame, or
865 // restore caller doubles.
866 if (condition == al && frame_is_built_ &&
867 !info()->saves_caller_doubles()) {
868 DeoptComment(reason);
869 __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2);
870 } else {
871 Deoptimizer::JumpTableEntry table_entry(entry, reason, bailout_type,
872 !frame_is_built_);
873 // We often have several deopts to the same entry, reuse the last
874 // jump entry if this is the case.
875 if (jump_table_.is_empty() ||
876 !table_entry.IsEquivalentTo(jump_table_.last())) {
877 jump_table_.Add(table_entry, zone());
878 }
879 __ Branch(&jump_table_.last().label, condition, src1, src2);
880 }
881 }
882
883
DeoptimizeIf(Condition condition,LInstruction * instr,Register src1,const Operand & src2,const char * detail)884 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
885 Register src1, const Operand& src2,
886 const char* detail) {
887 Deoptimizer::BailoutType bailout_type = info()->IsStub()
888 ? Deoptimizer::LAZY
889 : Deoptimizer::EAGER;
890 DeoptimizeIf(condition, instr, bailout_type, src1, src2, detail);
891 }
892
893
PopulateDeoptimizationData(Handle<Code> code)894 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
895 int length = deoptimizations_.length();
896 if (length == 0) return;
897 Handle<DeoptimizationInputData> data =
898 DeoptimizationInputData::New(isolate(), length, TENURED);
899
900 Handle<ByteArray> translations =
901 translations_.CreateByteArray(isolate()->factory());
902 data->SetTranslationByteArray(*translations);
903 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
904 data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
905 if (info_->IsOptimizing()) {
906 // Reference to shared function info does not change between phases.
907 AllowDeferredHandleDereference allow_handle_dereference;
908 data->SetSharedFunctionInfo(*info_->shared_info());
909 } else {
910 data->SetSharedFunctionInfo(Smi::FromInt(0));
911 }
912
913 Handle<FixedArray> literals =
914 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
915 { AllowDeferredHandleDereference copy_handles;
916 for (int i = 0; i < deoptimization_literals_.length(); i++) {
917 literals->set(i, *deoptimization_literals_[i]);
918 }
919 data->SetLiteralArray(*literals);
920 }
921
922 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
923 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
924
925 // Populate the deoptimization entries.
926 for (int i = 0; i < length; i++) {
927 LEnvironment* env = deoptimizations_[i];
928 data->SetAstId(i, env->ast_id());
929 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
930 data->SetArgumentsStackHeight(i,
931 Smi::FromInt(env->arguments_stack_height()));
932 data->SetPc(i, Smi::FromInt(env->pc_offset()));
933 }
934 code->set_deoptimization_data(*data);
935 }
936
937
DefineDeoptimizationLiteral(Handle<Object> literal)938 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
939 int result = deoptimization_literals_.length();
940 for (int i = 0; i < deoptimization_literals_.length(); ++i) {
941 if (deoptimization_literals_[i].is_identical_to(literal)) return i;
942 }
943 deoptimization_literals_.Add(literal, zone());
944 return result;
945 }
946
947
PopulateDeoptimizationLiteralsWithInlinedFunctions()948 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
949 DCHECK(deoptimization_literals_.length() == 0);
950
951 const ZoneList<Handle<JSFunction> >* inlined_closures =
952 chunk()->inlined_closures();
953
954 for (int i = 0, length = inlined_closures->length();
955 i < length;
956 i++) {
957 DefineDeoptimizationLiteral(inlined_closures->at(i));
958 }
959
960 inlined_function_count_ = deoptimization_literals_.length();
961 }
962
963
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)964 void LCodeGen::RecordSafepointWithLazyDeopt(
965 LInstruction* instr, SafepointMode safepoint_mode) {
966 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
967 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
968 } else {
969 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
970 RecordSafepointWithRegisters(
971 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
972 }
973 }
974
975
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)976 void LCodeGen::RecordSafepoint(
977 LPointerMap* pointers,
978 Safepoint::Kind kind,
979 int arguments,
980 Safepoint::DeoptMode deopt_mode) {
981 DCHECK(expected_safepoint_kind_ == kind);
982
983 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
984 Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
985 kind, arguments, deopt_mode);
986 for (int i = 0; i < operands->length(); i++) {
987 LOperand* pointer = operands->at(i);
988 if (pointer->IsStackSlot()) {
989 safepoint.DefinePointerSlot(pointer->index(), zone());
990 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
991 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
992 }
993 }
994 }
995
996
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)997 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
998 Safepoint::DeoptMode deopt_mode) {
999 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
1000 }
1001
1002
RecordSafepoint(Safepoint::DeoptMode deopt_mode)1003 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
1004 LPointerMap empty_pointers(zone());
1005 RecordSafepoint(&empty_pointers, deopt_mode);
1006 }
1007
1008
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)1009 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
1010 int arguments,
1011 Safepoint::DeoptMode deopt_mode) {
1012 RecordSafepoint(
1013 pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
1014 }
1015
1016
RecordAndWritePosition(int position)1017 void LCodeGen::RecordAndWritePosition(int position) {
1018 if (position == RelocInfo::kNoPosition) return;
1019 masm()->positions_recorder()->RecordPosition(position);
1020 masm()->positions_recorder()->WriteRecordedPositions();
1021 }
1022
1023
LabelType(LLabel * label)1024 static const char* LabelType(LLabel* label) {
1025 if (label->is_loop_header()) return " (loop header)";
1026 if (label->is_osr_entry()) return " (OSR entry)";
1027 return "";
1028 }
1029
1030
DoLabel(LLabel * label)1031 void LCodeGen::DoLabel(LLabel* label) {
1032 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
1033 current_instruction_,
1034 label->hydrogen_value()->id(),
1035 label->block_id(),
1036 LabelType(label));
1037 __ bind(label->label());
1038 current_block_ = label->block_id();
1039 DoGap(label);
1040 }
1041
1042
DoParallelMove(LParallelMove * move)1043 void LCodeGen::DoParallelMove(LParallelMove* move) {
1044 resolver_.Resolve(move);
1045 }
1046
1047
DoGap(LGap * gap)1048 void LCodeGen::DoGap(LGap* gap) {
1049 for (int i = LGap::FIRST_INNER_POSITION;
1050 i <= LGap::LAST_INNER_POSITION;
1051 i++) {
1052 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1053 LParallelMove* move = gap->GetParallelMove(inner_pos);
1054 if (move != NULL) DoParallelMove(move);
1055 }
1056 }
1057
1058
DoInstructionGap(LInstructionGap * instr)1059 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
1060 DoGap(instr);
1061 }
1062
1063
DoParameter(LParameter * instr)1064 void LCodeGen::DoParameter(LParameter* instr) {
1065 // Nothing to do.
1066 }
1067
1068
DoCallStub(LCallStub * instr)1069 void LCodeGen::DoCallStub(LCallStub* instr) {
1070 DCHECK(ToRegister(instr->context()).is(cp));
1071 DCHECK(ToRegister(instr->result()).is(v0));
1072 switch (instr->hydrogen()->major_key()) {
1073 case CodeStub::RegExpExec: {
1074 RegExpExecStub stub(isolate());
1075 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1076 break;
1077 }
1078 case CodeStub::SubString: {
1079 SubStringStub stub(isolate());
1080 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1081 break;
1082 }
1083 case CodeStub::StringCompare: {
1084 StringCompareStub stub(isolate());
1085 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1086 break;
1087 }
1088 default:
1089 UNREACHABLE();
1090 }
1091 }
1092
1093
DoUnknownOSRValue(LUnknownOSRValue * instr)1094 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
1095 GenerateOsrPrologue();
1096 }
1097
1098
DoModByPowerOf2I(LModByPowerOf2I * instr)1099 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
1100 Register dividend = ToRegister(instr->dividend());
1101 int32_t divisor = instr->divisor();
1102 DCHECK(dividend.is(ToRegister(instr->result())));
1103
1104 // Theoretically, a variation of the branch-free code for integer division by
1105 // a power of 2 (calculating the remainder via an additional multiplication
1106 // (which gets simplified to an 'and') and subtraction) should be faster, and
1107 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
1108 // indicate that positive dividends are heavily favored, so the branching
1109 // version performs better.
1110 HMod* hmod = instr->hydrogen();
1111 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1112 Label dividend_is_not_negative, done;
1113
1114 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
1115 __ Branch(÷nd_is_not_negative, ge, dividend, Operand(zero_reg));
1116 // Note: The code below even works when right contains kMinInt.
1117 __ subu(dividend, zero_reg, dividend);
1118 __ And(dividend, dividend, Operand(mask));
1119 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1120 DeoptimizeIf(eq, instr, dividend, Operand(zero_reg));
1121 }
1122 __ Branch(USE_DELAY_SLOT, &done);
1123 __ subu(dividend, zero_reg, dividend);
1124 }
1125
1126 __ bind(÷nd_is_not_negative);
1127 __ And(dividend, dividend, Operand(mask));
1128 __ bind(&done);
1129 }
1130
1131
DoModByConstI(LModByConstI * instr)1132 void LCodeGen::DoModByConstI(LModByConstI* instr) {
1133 Register dividend = ToRegister(instr->dividend());
1134 int32_t divisor = instr->divisor();
1135 Register result = ToRegister(instr->result());
1136 DCHECK(!dividend.is(result));
1137
1138 if (divisor == 0) {
1139 DeoptimizeIf(al, instr);
1140 return;
1141 }
1142
1143 __ TruncatingDiv(result, dividend, Abs(divisor));
1144 __ Mul(result, result, Operand(Abs(divisor)));
1145 __ Subu(result, dividend, Operand(result));
1146
1147 // Check for negative zero.
1148 HMod* hmod = instr->hydrogen();
1149 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1150 Label remainder_not_zero;
1151 __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg));
1152 DeoptimizeIf(lt, instr, dividend, Operand(zero_reg));
1153 __ bind(&remainder_not_zero);
1154 }
1155 }
1156
1157
DoModI(LModI * instr)1158 void LCodeGen::DoModI(LModI* instr) {
1159 HMod* hmod = instr->hydrogen();
1160 const Register left_reg = ToRegister(instr->left());
1161 const Register right_reg = ToRegister(instr->right());
1162 const Register result_reg = ToRegister(instr->result());
1163
1164 // div runs in the background while we check for special cases.
1165 __ Mod(result_reg, left_reg, right_reg);
1166
1167 Label done;
1168 // Check for x % 0, we have to deopt in this case because we can't return a
1169 // NaN.
1170 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1171 DeoptimizeIf(eq, instr, right_reg, Operand(zero_reg));
1172 }
1173
1174 // Check for kMinInt % -1, div will return kMinInt, which is not what we
1175 // want. We have to deopt if we care about -0, because we can't return that.
1176 if (hmod->CheckFlag(HValue::kCanOverflow)) {
1177 Label no_overflow_possible;
1178 __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt));
1179 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1180 DeoptimizeIf(eq, instr, right_reg, Operand(-1));
1181 } else {
1182 __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1));
1183 __ Branch(USE_DELAY_SLOT, &done);
1184 __ mov(result_reg, zero_reg);
1185 }
1186 __ bind(&no_overflow_possible);
1187 }
1188
1189 // If we care about -0, test if the dividend is <0 and the result is 0.
1190 __ Branch(&done, ge, left_reg, Operand(zero_reg));
1191 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1192 DeoptimizeIf(eq, instr, result_reg, Operand(zero_reg));
1193 }
1194 __ bind(&done);
1195 }
1196
1197
DoDivByPowerOf2I(LDivByPowerOf2I * instr)1198 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1199 Register dividend = ToRegister(instr->dividend());
1200 int32_t divisor = instr->divisor();
1201 Register result = ToRegister(instr->result());
1202 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1203 DCHECK(!result.is(dividend));
1204
1205 // Check for (0 / -x) that will produce negative zero.
1206 HDiv* hdiv = instr->hydrogen();
1207 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1208 DeoptimizeIf(eq, instr, dividend, Operand(zero_reg));
1209 }
1210 // Check for (kMinInt / -1).
1211 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1212 DeoptimizeIf(eq, instr, dividend, Operand(kMinInt));
1213 }
1214 // Deoptimize if remainder will not be 0.
1215 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1216 divisor != 1 && divisor != -1) {
1217 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1218 __ And(at, dividend, Operand(mask));
1219 DeoptimizeIf(ne, instr, at, Operand(zero_reg));
1220 }
1221
1222 if (divisor == -1) { // Nice shortcut, not needed for correctness.
1223 __ Subu(result, zero_reg, dividend);
1224 return;
1225 }
1226 uint16_t shift = WhichPowerOf2Abs(divisor);
1227 if (shift == 0) {
1228 __ Move(result, dividend);
1229 } else if (shift == 1) {
1230 __ srl(result, dividend, 31);
1231 __ Addu(result, dividend, Operand(result));
1232 } else {
1233 __ sra(result, dividend, 31);
1234 __ srl(result, result, 32 - shift);
1235 __ Addu(result, dividend, Operand(result));
1236 }
1237 if (shift > 0) __ sra(result, result, shift);
1238 if (divisor < 0) __ Subu(result, zero_reg, result);
1239 }
1240
1241
DoDivByConstI(LDivByConstI * instr)1242 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1243 Register dividend = ToRegister(instr->dividend());
1244 int32_t divisor = instr->divisor();
1245 Register result = ToRegister(instr->result());
1246 DCHECK(!dividend.is(result));
1247
1248 if (divisor == 0) {
1249 DeoptimizeIf(al, instr);
1250 return;
1251 }
1252
1253 // Check for (0 / -x) that will produce negative zero.
1254 HDiv* hdiv = instr->hydrogen();
1255 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1256 DeoptimizeIf(eq, instr, dividend, Operand(zero_reg));
1257 }
1258
1259 __ TruncatingDiv(result, dividend, Abs(divisor));
1260 if (divisor < 0) __ Subu(result, zero_reg, result);
1261
1262 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1263 __ Mul(scratch0(), result, Operand(divisor));
1264 __ Subu(scratch0(), scratch0(), dividend);
1265 DeoptimizeIf(ne, instr, scratch0(), Operand(zero_reg));
1266 }
1267 }
1268
1269
1270 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1271 void LCodeGen::DoDivI(LDivI* instr) {
1272 HBinaryOperation* hdiv = instr->hydrogen();
1273 Register dividend = ToRegister(instr->dividend());
1274 Register divisor = ToRegister(instr->divisor());
1275 const Register result = ToRegister(instr->result());
1276 Register remainder = ToRegister(instr->temp());
1277
1278 // On MIPS div is asynchronous - it will run in the background while we
1279 // check for special cases.
1280 __ Div(remainder, result, dividend, divisor);
1281
1282 // Check for x / 0.
1283 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1284 DeoptimizeIf(eq, instr, divisor, Operand(zero_reg));
1285 }
1286
1287 // Check for (0 / -x) that will produce negative zero.
1288 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1289 Label left_not_zero;
1290 __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1291 DeoptimizeIf(lt, instr, divisor, Operand(zero_reg));
1292 __ bind(&left_not_zero);
1293 }
1294
1295 // Check for (kMinInt / -1).
1296 if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1297 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1298 Label left_not_min_int;
1299 __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1300 DeoptimizeIf(eq, instr, divisor, Operand(-1));
1301 __ bind(&left_not_min_int);
1302 }
1303
1304 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1305 DeoptimizeIf(ne, instr, remainder, Operand(zero_reg));
1306 }
1307 }
1308
1309
DoMultiplyAddD(LMultiplyAddD * instr)1310 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1311 DoubleRegister addend = ToDoubleRegister(instr->addend());
1312 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1313 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1314
1315 // This is computed in-place.
1316 DCHECK(addend.is(ToDoubleRegister(instr->result())));
1317
1318 __ madd_d(addend, addend, multiplier, multiplicand);
1319 }
1320
1321
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1322 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1323 Register dividend = ToRegister(instr->dividend());
1324 Register result = ToRegister(instr->result());
1325 int32_t divisor = instr->divisor();
1326 Register scratch = result.is(dividend) ? scratch0() : dividend;
1327 DCHECK(!result.is(dividend) || !scratch.is(dividend));
1328
1329 // If the divisor is 1, return the dividend.
1330 if (divisor == 1) {
1331 __ Move(result, dividend);
1332 return;
1333 }
1334
1335 // If the divisor is positive, things are easy: There can be no deopts and we
1336 // can simply do an arithmetic right shift.
1337 uint16_t shift = WhichPowerOf2Abs(divisor);
1338 if (divisor > 1) {
1339 __ sra(result, dividend, shift);
1340 return;
1341 }
1342
1343 // If the divisor is negative, we have to negate and handle edge cases.
1344
1345 // dividend can be the same register as result so save the value of it
1346 // for checking overflow.
1347 __ Move(scratch, dividend);
1348
1349 __ Subu(result, zero_reg, dividend);
1350 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1351 DeoptimizeIf(eq, instr, result, Operand(zero_reg));
1352 }
1353
1354 // Dividing by -1 is basically negation, unless we overflow.
1355 __ Xor(scratch, scratch, result);
1356 if (divisor == -1) {
1357 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1358 DeoptimizeIf(ge, instr, scratch, Operand(zero_reg));
1359 }
1360 return;
1361 }
1362
1363 // If the negation could not overflow, simply shifting is OK.
1364 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1365 __ sra(result, result, shift);
1366 return;
1367 }
1368
1369 Label no_overflow, done;
1370 __ Branch(&no_overflow, lt, scratch, Operand(zero_reg));
1371 __ li(result, Operand(kMinInt / divisor));
1372 __ Branch(&done);
1373 __ bind(&no_overflow);
1374 __ sra(result, result, shift);
1375 __ bind(&done);
1376 }
1377
1378
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1379 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1380 Register dividend = ToRegister(instr->dividend());
1381 int32_t divisor = instr->divisor();
1382 Register result = ToRegister(instr->result());
1383 DCHECK(!dividend.is(result));
1384
1385 if (divisor == 0) {
1386 DeoptimizeIf(al, instr);
1387 return;
1388 }
1389
1390 // Check for (0 / -x) that will produce negative zero.
1391 HMathFloorOfDiv* hdiv = instr->hydrogen();
1392 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1393 DeoptimizeIf(eq, instr, dividend, Operand(zero_reg));
1394 }
1395
1396 // Easy case: We need no dynamic check for the dividend and the flooring
1397 // division is the same as the truncating division.
1398 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1399 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1400 __ TruncatingDiv(result, dividend, Abs(divisor));
1401 if (divisor < 0) __ Subu(result, zero_reg, result);
1402 return;
1403 }
1404
1405 // In the general case we may need to adjust before and after the truncating
1406 // division to get a flooring division.
1407 Register temp = ToRegister(instr->temp());
1408 DCHECK(!temp.is(dividend) && !temp.is(result));
1409 Label needs_adjustment, done;
1410 __ Branch(&needs_adjustment, divisor > 0 ? lt : gt,
1411 dividend, Operand(zero_reg));
1412 __ TruncatingDiv(result, dividend, Abs(divisor));
1413 if (divisor < 0) __ Subu(result, zero_reg, result);
1414 __ jmp(&done);
1415 __ bind(&needs_adjustment);
1416 __ Addu(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1417 __ TruncatingDiv(result, temp, Abs(divisor));
1418 if (divisor < 0) __ Subu(result, zero_reg, result);
1419 __ Subu(result, result, Operand(1));
1420 __ bind(&done);
1421 }
1422
1423
1424 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1425 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1426 HBinaryOperation* hdiv = instr->hydrogen();
1427 Register dividend = ToRegister(instr->dividend());
1428 Register divisor = ToRegister(instr->divisor());
1429 const Register result = ToRegister(instr->result());
1430 Register remainder = scratch0();
1431 // On MIPS div is asynchronous - it will run in the background while we
1432 // check for special cases.
1433 __ Div(remainder, result, dividend, divisor);
1434
1435 // Check for x / 0.
1436 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1437 DeoptimizeIf(eq, instr, divisor, Operand(zero_reg));
1438 }
1439
1440 // Check for (0 / -x) that will produce negative zero.
1441 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1442 Label left_not_zero;
1443 __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1444 DeoptimizeIf(lt, instr, divisor, Operand(zero_reg));
1445 __ bind(&left_not_zero);
1446 }
1447
1448 // Check for (kMinInt / -1).
1449 if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1450 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1451 Label left_not_min_int;
1452 __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1453 DeoptimizeIf(eq, instr, divisor, Operand(-1));
1454 __ bind(&left_not_min_int);
1455 }
1456
1457 // We performed a truncating division. Correct the result if necessary.
1458 Label done;
1459 __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT);
1460 __ Xor(remainder, remainder, Operand(divisor));
1461 __ Branch(&done, ge, remainder, Operand(zero_reg));
1462 __ Subu(result, result, Operand(1));
1463 __ bind(&done);
1464 }
1465
1466
DoMulI(LMulI * instr)1467 void LCodeGen::DoMulI(LMulI* instr) {
1468 Register scratch = scratch0();
1469 Register result = ToRegister(instr->result());
1470 // Note that result may alias left.
1471 Register left = ToRegister(instr->left());
1472 LOperand* right_op = instr->right();
1473
1474 bool bailout_on_minus_zero =
1475 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1476 bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1477
1478 if (right_op->IsConstantOperand()) {
1479 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1480
1481 if (bailout_on_minus_zero && (constant < 0)) {
1482 // The case of a null constant will be handled separately.
1483 // If constant is negative and left is null, the result should be -0.
1484 DeoptimizeIf(eq, instr, left, Operand(zero_reg));
1485 }
1486
1487 switch (constant) {
1488 case -1:
1489 if (overflow) {
1490 __ SubuAndCheckForOverflow(result, zero_reg, left, scratch);
1491 DeoptimizeIf(lt, instr, scratch, Operand(zero_reg));
1492 } else {
1493 __ Subu(result, zero_reg, left);
1494 }
1495 break;
1496 case 0:
1497 if (bailout_on_minus_zero) {
1498 // If left is strictly negative and the constant is null, the
1499 // result is -0. Deoptimize if required, otherwise return 0.
1500 DeoptimizeIf(lt, instr, left, Operand(zero_reg));
1501 }
1502 __ mov(result, zero_reg);
1503 break;
1504 case 1:
1505 // Nothing to do.
1506 __ Move(result, left);
1507 break;
1508 default:
1509 // Multiplying by powers of two and powers of two plus or minus
1510 // one can be done faster with shifted operands.
1511 // For other constants we emit standard code.
1512 int32_t mask = constant >> 31;
1513 uint32_t constant_abs = (constant + mask) ^ mask;
1514
1515 if (base::bits::IsPowerOfTwo32(constant_abs)) {
1516 int32_t shift = WhichPowerOf2(constant_abs);
1517 __ sll(result, left, shift);
1518 // Correct the sign of the result if the constant is negative.
1519 if (constant < 0) __ Subu(result, zero_reg, result);
1520 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1521 int32_t shift = WhichPowerOf2(constant_abs - 1);
1522 __ sll(scratch, left, shift);
1523 __ Addu(result, scratch, left);
1524 // Correct the sign of the result if the constant is negative.
1525 if (constant < 0) __ Subu(result, zero_reg, result);
1526 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1527 int32_t shift = WhichPowerOf2(constant_abs + 1);
1528 __ sll(scratch, left, shift);
1529 __ Subu(result, scratch, left);
1530 // Correct the sign of the result if the constant is negative.
1531 if (constant < 0) __ Subu(result, zero_reg, result);
1532 } else {
1533 // Generate standard code.
1534 __ li(at, constant);
1535 __ Mul(result, left, at);
1536 }
1537 }
1538
1539 } else {
1540 DCHECK(right_op->IsRegister());
1541 Register right = ToRegister(right_op);
1542
1543 if (overflow) {
1544 // hi:lo = left * right.
1545 if (instr->hydrogen()->representation().IsSmi()) {
1546 __ SmiUntag(result, left);
1547 __ Mul(scratch, result, result, right);
1548 } else {
1549 __ Mul(scratch, result, left, right);
1550 }
1551 __ sra(at, result, 31);
1552 DeoptimizeIf(ne, instr, scratch, Operand(at));
1553 } else {
1554 if (instr->hydrogen()->representation().IsSmi()) {
1555 __ SmiUntag(result, left);
1556 __ Mul(result, result, right);
1557 } else {
1558 __ Mul(result, left, right);
1559 }
1560 }
1561
1562 if (bailout_on_minus_zero) {
1563 Label done;
1564 __ Xor(at, left, right);
1565 __ Branch(&done, ge, at, Operand(zero_reg));
1566 // Bail out if the result is minus zero.
1567 DeoptimizeIf(eq, instr, result, Operand(zero_reg));
1568 __ bind(&done);
1569 }
1570 }
1571 }
1572
1573
DoBitI(LBitI * instr)1574 void LCodeGen::DoBitI(LBitI* instr) {
1575 LOperand* left_op = instr->left();
1576 LOperand* right_op = instr->right();
1577 DCHECK(left_op->IsRegister());
1578 Register left = ToRegister(left_op);
1579 Register result = ToRegister(instr->result());
1580 Operand right(no_reg);
1581
1582 if (right_op->IsStackSlot()) {
1583 right = Operand(EmitLoadRegister(right_op, at));
1584 } else {
1585 DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1586 right = ToOperand(right_op);
1587 }
1588
1589 switch (instr->op()) {
1590 case Token::BIT_AND:
1591 __ And(result, left, right);
1592 break;
1593 case Token::BIT_OR:
1594 __ Or(result, left, right);
1595 break;
1596 case Token::BIT_XOR:
1597 if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
1598 __ Nor(result, zero_reg, left);
1599 } else {
1600 __ Xor(result, left, right);
1601 }
1602 break;
1603 default:
1604 UNREACHABLE();
1605 break;
1606 }
1607 }
1608
1609
DoShiftI(LShiftI * instr)1610 void LCodeGen::DoShiftI(LShiftI* instr) {
1611 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1612 // result may alias either of them.
1613 LOperand* right_op = instr->right();
1614 Register left = ToRegister(instr->left());
1615 Register result = ToRegister(instr->result());
1616 Register scratch = scratch0();
1617
1618 if (right_op->IsRegister()) {
1619 // No need to mask the right operand on MIPS, it is built into the variable
1620 // shift instructions.
1621 switch (instr->op()) {
1622 case Token::ROR:
1623 __ Ror(result, left, Operand(ToRegister(right_op)));
1624 break;
1625 case Token::SAR:
1626 __ srav(result, left, ToRegister(right_op));
1627 break;
1628 case Token::SHR:
1629 __ srlv(result, left, ToRegister(right_op));
1630 if (instr->can_deopt()) {
1631 DeoptimizeIf(lt, instr, result, Operand(zero_reg));
1632 }
1633 break;
1634 case Token::SHL:
1635 __ sllv(result, left, ToRegister(right_op));
1636 break;
1637 default:
1638 UNREACHABLE();
1639 break;
1640 }
1641 } else {
1642 // Mask the right_op operand.
1643 int value = ToInteger32(LConstantOperand::cast(right_op));
1644 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1645 switch (instr->op()) {
1646 case Token::ROR:
1647 if (shift_count != 0) {
1648 __ Ror(result, left, Operand(shift_count));
1649 } else {
1650 __ Move(result, left);
1651 }
1652 break;
1653 case Token::SAR:
1654 if (shift_count != 0) {
1655 __ sra(result, left, shift_count);
1656 } else {
1657 __ Move(result, left);
1658 }
1659 break;
1660 case Token::SHR:
1661 if (shift_count != 0) {
1662 __ srl(result, left, shift_count);
1663 } else {
1664 if (instr->can_deopt()) {
1665 __ And(at, left, Operand(0x80000000));
1666 DeoptimizeIf(ne, instr, at, Operand(zero_reg));
1667 }
1668 __ Move(result, left);
1669 }
1670 break;
1671 case Token::SHL:
1672 if (shift_count != 0) {
1673 if (instr->hydrogen_value()->representation().IsSmi() &&
1674 instr->can_deopt()) {
1675 if (shift_count != 1) {
1676 __ sll(result, left, shift_count - 1);
1677 __ SmiTagCheckOverflow(result, result, scratch);
1678 } else {
1679 __ SmiTagCheckOverflow(result, left, scratch);
1680 }
1681 DeoptimizeIf(lt, instr, scratch, Operand(zero_reg));
1682 } else {
1683 __ sll(result, left, shift_count);
1684 }
1685 } else {
1686 __ Move(result, left);
1687 }
1688 break;
1689 default:
1690 UNREACHABLE();
1691 break;
1692 }
1693 }
1694 }
1695
1696
DoSubI(LSubI * instr)1697 void LCodeGen::DoSubI(LSubI* instr) {
1698 LOperand* left = instr->left();
1699 LOperand* right = instr->right();
1700 LOperand* result = instr->result();
1701 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1702
1703 if (!can_overflow) {
1704 if (right->IsStackSlot()) {
1705 Register right_reg = EmitLoadRegister(right, at);
1706 __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg));
1707 } else {
1708 DCHECK(right->IsRegister() || right->IsConstantOperand());
1709 __ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
1710 }
1711 } else { // can_overflow.
1712 Register overflow = scratch0();
1713 Register scratch = scratch1();
1714 if (right->IsStackSlot() || right->IsConstantOperand()) {
1715 Register right_reg = EmitLoadRegister(right, scratch);
1716 __ SubuAndCheckForOverflow(ToRegister(result),
1717 ToRegister(left),
1718 right_reg,
1719 overflow); // Reg at also used as scratch.
1720 } else {
1721 DCHECK(right->IsRegister());
1722 // Due to overflow check macros not supporting constant operands,
1723 // handling the IsConstantOperand case was moved to prev if clause.
1724 __ SubuAndCheckForOverflow(ToRegister(result),
1725 ToRegister(left),
1726 ToRegister(right),
1727 overflow); // Reg at also used as scratch.
1728 }
1729 DeoptimizeIf(lt, instr, overflow, Operand(zero_reg));
1730 }
1731 }
1732
1733
DoConstantI(LConstantI * instr)1734 void LCodeGen::DoConstantI(LConstantI* instr) {
1735 __ li(ToRegister(instr->result()), Operand(instr->value()));
1736 }
1737
1738
DoConstantS(LConstantS * instr)1739 void LCodeGen::DoConstantS(LConstantS* instr) {
1740 __ li(ToRegister(instr->result()), Operand(instr->value()));
1741 }
1742
1743
DoConstantD(LConstantD * instr)1744 void LCodeGen::DoConstantD(LConstantD* instr) {
1745 DCHECK(instr->result()->IsDoubleRegister());
1746 DoubleRegister result = ToDoubleRegister(instr->result());
1747 double v = instr->value();
1748 __ Move(result, v);
1749 }
1750
1751
DoConstantE(LConstantE * instr)1752 void LCodeGen::DoConstantE(LConstantE* instr) {
1753 __ li(ToRegister(instr->result()), Operand(instr->value()));
1754 }
1755
1756
DoConstantT(LConstantT * instr)1757 void LCodeGen::DoConstantT(LConstantT* instr) {
1758 Handle<Object> object = instr->value(isolate());
1759 AllowDeferredHandleDereference smi_check;
1760 __ li(ToRegister(instr->result()), object);
1761 }
1762
1763
DoMapEnumLength(LMapEnumLength * instr)1764 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
1765 Register result = ToRegister(instr->result());
1766 Register map = ToRegister(instr->value());
1767 __ EnumLength(result, map);
1768 }
1769
1770
DoDateField(LDateField * instr)1771 void LCodeGen::DoDateField(LDateField* instr) {
1772 Register object = ToRegister(instr->date());
1773 Register result = ToRegister(instr->result());
1774 Register scratch = ToRegister(instr->temp());
1775 Smi* index = instr->index();
1776 Label runtime, done;
1777 DCHECK(object.is(a0));
1778 DCHECK(result.is(v0));
1779 DCHECK(!scratch.is(scratch0()));
1780 DCHECK(!scratch.is(object));
1781
1782 __ SmiTst(object, at);
1783 DeoptimizeIf(eq, instr, at, Operand(zero_reg));
1784 __ GetObjectType(object, scratch, scratch);
1785 DeoptimizeIf(ne, instr, scratch, Operand(JS_DATE_TYPE));
1786
1787 if (index->value() == 0) {
1788 __ lw(result, FieldMemOperand(object, JSDate::kValueOffset));
1789 } else {
1790 if (index->value() < JSDate::kFirstUncachedField) {
1791 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
1792 __ li(scratch, Operand(stamp));
1793 __ lw(scratch, MemOperand(scratch));
1794 __ lw(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
1795 __ Branch(&runtime, ne, scratch, Operand(scratch0()));
1796 __ lw(result, FieldMemOperand(object, JSDate::kValueOffset +
1797 kPointerSize * index->value()));
1798 __ jmp(&done);
1799 }
1800 __ bind(&runtime);
1801 __ PrepareCallCFunction(2, scratch);
1802 __ li(a1, Operand(index));
1803 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
1804 __ bind(&done);
1805 }
1806 }
1807
1808
BuildSeqStringOperand(Register string,LOperand * index,String::Encoding encoding)1809 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
1810 LOperand* index,
1811 String::Encoding encoding) {
1812 if (index->IsConstantOperand()) {
1813 int offset = ToInteger32(LConstantOperand::cast(index));
1814 if (encoding == String::TWO_BYTE_ENCODING) {
1815 offset *= kUC16Size;
1816 }
1817 STATIC_ASSERT(kCharSize == 1);
1818 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1819 }
1820 Register scratch = scratch0();
1821 DCHECK(!scratch.is(string));
1822 DCHECK(!scratch.is(ToRegister(index)));
1823 if (encoding == String::ONE_BYTE_ENCODING) {
1824 __ Addu(scratch, string, ToRegister(index));
1825 } else {
1826 STATIC_ASSERT(kUC16Size == 2);
1827 __ sll(scratch, ToRegister(index), 1);
1828 __ Addu(scratch, string, scratch);
1829 }
1830 return FieldMemOperand(scratch, SeqString::kHeaderSize);
1831 }
1832
1833
DoSeqStringGetChar(LSeqStringGetChar * instr)1834 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1835 String::Encoding encoding = instr->hydrogen()->encoding();
1836 Register string = ToRegister(instr->string());
1837 Register result = ToRegister(instr->result());
1838
1839 if (FLAG_debug_code) {
1840 Register scratch = scratch0();
1841 __ lw(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1842 __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1843
1844 __ And(scratch, scratch,
1845 Operand(kStringRepresentationMask | kStringEncodingMask));
1846 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1847 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1848 __ Subu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING
1849 ? one_byte_seq_type : two_byte_seq_type));
1850 __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
1851 }
1852
1853 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1854 if (encoding == String::ONE_BYTE_ENCODING) {
1855 __ lbu(result, operand);
1856 } else {
1857 __ lhu(result, operand);
1858 }
1859 }
1860
1861
DoSeqStringSetChar(LSeqStringSetChar * instr)1862 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1863 String::Encoding encoding = instr->hydrogen()->encoding();
1864 Register string = ToRegister(instr->string());
1865 Register value = ToRegister(instr->value());
1866
1867 if (FLAG_debug_code) {
1868 Register scratch = scratch0();
1869 Register index = ToRegister(instr->index());
1870 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1871 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1872 int encoding_mask =
1873 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1874 ? one_byte_seq_type : two_byte_seq_type;
1875 __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask);
1876 }
1877
1878 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1879 if (encoding == String::ONE_BYTE_ENCODING) {
1880 __ sb(value, operand);
1881 } else {
1882 __ sh(value, operand);
1883 }
1884 }
1885
1886
DoAddI(LAddI * instr)1887 void LCodeGen::DoAddI(LAddI* instr) {
1888 LOperand* left = instr->left();
1889 LOperand* right = instr->right();
1890 LOperand* result = instr->result();
1891 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1892
1893 if (!can_overflow) {
1894 if (right->IsStackSlot()) {
1895 Register right_reg = EmitLoadRegister(right, at);
1896 __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg));
1897 } else {
1898 DCHECK(right->IsRegister() || right->IsConstantOperand());
1899 __ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
1900 }
1901 } else { // can_overflow.
1902 Register overflow = scratch0();
1903 Register scratch = scratch1();
1904 if (right->IsStackSlot() ||
1905 right->IsConstantOperand()) {
1906 Register right_reg = EmitLoadRegister(right, scratch);
1907 __ AdduAndCheckForOverflow(ToRegister(result),
1908 ToRegister(left),
1909 right_reg,
1910 overflow); // Reg at also used as scratch.
1911 } else {
1912 DCHECK(right->IsRegister());
1913 // Due to overflow check macros not supporting constant operands,
1914 // handling the IsConstantOperand case was moved to prev if clause.
1915 __ AdduAndCheckForOverflow(ToRegister(result),
1916 ToRegister(left),
1917 ToRegister(right),
1918 overflow); // Reg at also used as scratch.
1919 }
1920 DeoptimizeIf(lt, instr, overflow, Operand(zero_reg));
1921 }
1922 }
1923
1924
DoMathMinMax(LMathMinMax * instr)1925 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1926 LOperand* left = instr->left();
1927 LOperand* right = instr->right();
1928 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1929 Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
1930 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1931 Register left_reg = ToRegister(left);
1932 Register right_reg = EmitLoadRegister(right, scratch0());
1933 Register result_reg = ToRegister(instr->result());
1934 Label return_right, done;
1935 Register scratch = scratch1();
1936 __ Slt(scratch, left_reg, Operand(right_reg));
1937 if (condition == ge) {
1938 __ Movz(result_reg, left_reg, scratch);
1939 __ Movn(result_reg, right_reg, scratch);
1940 } else {
1941 DCHECK(condition == le);
1942 __ Movn(result_reg, left_reg, scratch);
1943 __ Movz(result_reg, right_reg, scratch);
1944 }
1945 } else {
1946 DCHECK(instr->hydrogen()->representation().IsDouble());
1947 FPURegister left_reg = ToDoubleRegister(left);
1948 FPURegister right_reg = ToDoubleRegister(right);
1949 FPURegister result_reg = ToDoubleRegister(instr->result());
1950 Label check_nan_left, check_zero, return_left, return_right, done;
1951 __ BranchF(&check_zero, &check_nan_left, eq, left_reg, right_reg);
1952 __ BranchF(&return_left, NULL, condition, left_reg, right_reg);
1953 __ Branch(&return_right);
1954
1955 __ bind(&check_zero);
1956 // left == right != 0.
1957 __ BranchF(&return_left, NULL, ne, left_reg, kDoubleRegZero);
1958 // At this point, both left and right are either 0 or -0.
1959 if (operation == HMathMinMax::kMathMin) {
1960 __ neg_d(left_reg, left_reg);
1961 __ sub_d(result_reg, left_reg, right_reg);
1962 __ neg_d(result_reg, result_reg);
1963 } else {
1964 __ add_d(result_reg, left_reg, right_reg);
1965 }
1966 __ Branch(&done);
1967
1968 __ bind(&check_nan_left);
1969 // left == NaN.
1970 __ BranchF(NULL, &return_left, eq, left_reg, left_reg);
1971 __ bind(&return_right);
1972 if (!right_reg.is(result_reg)) {
1973 __ mov_d(result_reg, right_reg);
1974 }
1975 __ Branch(&done);
1976
1977 __ bind(&return_left);
1978 if (!left_reg.is(result_reg)) {
1979 __ mov_d(result_reg, left_reg);
1980 }
1981 __ bind(&done);
1982 }
1983 }
1984
1985
DoArithmeticD(LArithmeticD * instr)1986 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1987 DoubleRegister left = ToDoubleRegister(instr->left());
1988 DoubleRegister right = ToDoubleRegister(instr->right());
1989 DoubleRegister result = ToDoubleRegister(instr->result());
1990 switch (instr->op()) {
1991 case Token::ADD:
1992 __ add_d(result, left, right);
1993 break;
1994 case Token::SUB:
1995 __ sub_d(result, left, right);
1996 break;
1997 case Token::MUL:
1998 __ mul_d(result, left, right);
1999 break;
2000 case Token::DIV:
2001 __ div_d(result, left, right);
2002 break;
2003 case Token::MOD: {
2004 // Save a0-a3 on the stack.
2005 RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
2006 __ MultiPush(saved_regs);
2007
2008 __ PrepareCallCFunction(0, 2, scratch0());
2009 __ MovToFloatParameters(left, right);
2010 __ CallCFunction(
2011 ExternalReference::mod_two_doubles_operation(isolate()),
2012 0, 2);
2013 // Move the result in the double result register.
2014 __ MovFromFloatResult(result);
2015
2016 // Restore saved register.
2017 __ MultiPop(saved_regs);
2018 break;
2019 }
2020 default:
2021 UNREACHABLE();
2022 break;
2023 }
2024 }
2025
2026
DoArithmeticT(LArithmeticT * instr)2027 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2028 DCHECK(ToRegister(instr->context()).is(cp));
2029 DCHECK(ToRegister(instr->left()).is(a1));
2030 DCHECK(ToRegister(instr->right()).is(a0));
2031 DCHECK(ToRegister(instr->result()).is(v0));
2032
2033 Handle<Code> code =
2034 CodeFactory::BinaryOpIC(isolate(), instr->op(), NO_OVERWRITE).code();
2035 CallCode(code, RelocInfo::CODE_TARGET, instr);
2036 // Other arch use a nop here, to signal that there is no inlined
2037 // patchable code. Mips does not need the nop, since our marker
2038 // instruction (andi zero_reg) will never be used in normal code.
2039 }
2040
2041
2042 template<class InstrType>
EmitBranch(InstrType instr,Condition condition,Register src1,const Operand & src2)2043 void LCodeGen::EmitBranch(InstrType instr,
2044 Condition condition,
2045 Register src1,
2046 const Operand& src2) {
2047 int left_block = instr->TrueDestination(chunk_);
2048 int right_block = instr->FalseDestination(chunk_);
2049
2050 int next_block = GetNextEmittedBlock();
2051 if (right_block == left_block || condition == al) {
2052 EmitGoto(left_block);
2053 } else if (left_block == next_block) {
2054 __ Branch(chunk_->GetAssemblyLabel(right_block),
2055 NegateCondition(condition), src1, src2);
2056 } else if (right_block == next_block) {
2057 __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
2058 } else {
2059 __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
2060 __ Branch(chunk_->GetAssemblyLabel(right_block));
2061 }
2062 }
2063
2064
2065 template<class InstrType>
EmitBranchF(InstrType instr,Condition condition,FPURegister src1,FPURegister src2)2066 void LCodeGen::EmitBranchF(InstrType instr,
2067 Condition condition,
2068 FPURegister src1,
2069 FPURegister src2) {
2070 int right_block = instr->FalseDestination(chunk_);
2071 int left_block = instr->TrueDestination(chunk_);
2072
2073 int next_block = GetNextEmittedBlock();
2074 if (right_block == left_block) {
2075 EmitGoto(left_block);
2076 } else if (left_block == next_block) {
2077 __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
2078 NegateCondition(condition), src1, src2);
2079 } else if (right_block == next_block) {
2080 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
2081 condition, src1, src2);
2082 } else {
2083 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
2084 condition, src1, src2);
2085 __ Branch(chunk_->GetAssemblyLabel(right_block));
2086 }
2087 }
2088
2089
2090 template<class InstrType>
EmitFalseBranch(InstrType instr,Condition condition,Register src1,const Operand & src2)2091 void LCodeGen::EmitFalseBranch(InstrType instr,
2092 Condition condition,
2093 Register src1,
2094 const Operand& src2) {
2095 int false_block = instr->FalseDestination(chunk_);
2096 __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2);
2097 }
2098
2099
2100 template<class InstrType>
EmitFalseBranchF(InstrType instr,Condition condition,FPURegister src1,FPURegister src2)2101 void LCodeGen::EmitFalseBranchF(InstrType instr,
2102 Condition condition,
2103 FPURegister src1,
2104 FPURegister src2) {
2105 int false_block = instr->FalseDestination(chunk_);
2106 __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL,
2107 condition, src1, src2);
2108 }
2109
2110
DoDebugBreak(LDebugBreak * instr)2111 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
2112 __ stop("LDebugBreak");
2113 }
2114
2115
DoBranch(LBranch * instr)2116 void LCodeGen::DoBranch(LBranch* instr) {
2117 Representation r = instr->hydrogen()->value()->representation();
2118 if (r.IsInteger32() || r.IsSmi()) {
2119 DCHECK(!info()->IsStub());
2120 Register reg = ToRegister(instr->value());
2121 EmitBranch(instr, ne, reg, Operand(zero_reg));
2122 } else if (r.IsDouble()) {
2123 DCHECK(!info()->IsStub());
2124 DoubleRegister reg = ToDoubleRegister(instr->value());
2125 // Test the double value. Zero and NaN are false.
2126 EmitBranchF(instr, nue, reg, kDoubleRegZero);
2127 } else {
2128 DCHECK(r.IsTagged());
2129 Register reg = ToRegister(instr->value());
2130 HType type = instr->hydrogen()->value()->type();
2131 if (type.IsBoolean()) {
2132 DCHECK(!info()->IsStub());
2133 __ LoadRoot(at, Heap::kTrueValueRootIndex);
2134 EmitBranch(instr, eq, reg, Operand(at));
2135 } else if (type.IsSmi()) {
2136 DCHECK(!info()->IsStub());
2137 EmitBranch(instr, ne, reg, Operand(zero_reg));
2138 } else if (type.IsJSArray()) {
2139 DCHECK(!info()->IsStub());
2140 EmitBranch(instr, al, zero_reg, Operand(zero_reg));
2141 } else if (type.IsHeapNumber()) {
2142 DCHECK(!info()->IsStub());
2143 DoubleRegister dbl_scratch = double_scratch0();
2144 __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2145 // Test the double value. Zero and NaN are false.
2146 EmitBranchF(instr, nue, dbl_scratch, kDoubleRegZero);
2147 } else if (type.IsString()) {
2148 DCHECK(!info()->IsStub());
2149 __ lw(at, FieldMemOperand(reg, String::kLengthOffset));
2150 EmitBranch(instr, ne, at, Operand(zero_reg));
2151 } else {
2152 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
2153 // Avoid deopts in the case where we've never executed this path before.
2154 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
2155
2156 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
2157 // undefined -> false.
2158 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2159 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2160 }
2161 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
2162 // Boolean -> its value.
2163 __ LoadRoot(at, Heap::kTrueValueRootIndex);
2164 __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at));
2165 __ LoadRoot(at, Heap::kFalseValueRootIndex);
2166 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2167 }
2168 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
2169 // 'null' -> false.
2170 __ LoadRoot(at, Heap::kNullValueRootIndex);
2171 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2172 }
2173
2174 if (expected.Contains(ToBooleanStub::SMI)) {
2175 // Smis: 0 -> false, all other -> true.
2176 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg));
2177 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2178 } else if (expected.NeedsMap()) {
2179 // If we need a map later and have a Smi -> deopt.
2180 __ SmiTst(reg, at);
2181 DeoptimizeIf(eq, instr, at, Operand(zero_reg));
2182 }
2183
2184 const Register map = scratch0();
2185 if (expected.NeedsMap()) {
2186 __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2187 if (expected.CanBeUndetectable()) {
2188 // Undetectable -> false.
2189 __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
2190 __ And(at, at, Operand(1 << Map::kIsUndetectable));
2191 __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg));
2192 }
2193 }
2194
2195 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
2196 // spec object -> true.
2197 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
2198 __ Branch(instr->TrueLabel(chunk_),
2199 ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
2200 }
2201
2202 if (expected.Contains(ToBooleanStub::STRING)) {
2203 // String value -> false iff empty.
2204 Label not_string;
2205 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
2206 __ Branch(¬_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
2207 __ lw(at, FieldMemOperand(reg, String::kLengthOffset));
2208 __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg));
2209 __ Branch(instr->FalseLabel(chunk_));
2210 __ bind(¬_string);
2211 }
2212
2213 if (expected.Contains(ToBooleanStub::SYMBOL)) {
2214 // Symbol value -> true.
2215 const Register scratch = scratch1();
2216 __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
2217 __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE));
2218 }
2219
2220 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
2221 // heap number -> false iff +0, -0, or NaN.
2222 DoubleRegister dbl_scratch = double_scratch0();
2223 Label not_heap_number;
2224 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
2225 __ Branch(¬_heap_number, ne, map, Operand(at));
2226 __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2227 __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2228 ne, dbl_scratch, kDoubleRegZero);
2229 // Falls through if dbl_scratch == 0.
2230 __ Branch(instr->FalseLabel(chunk_));
2231 __ bind(¬_heap_number);
2232 }
2233
2234 if (!expected.IsGeneric()) {
2235 // We've seen something for the first time -> deopt.
2236 // This can only happen if we are not generic already.
2237 DeoptimizeIf(al, instr, zero_reg, Operand(zero_reg));
2238 }
2239 }
2240 }
2241 }
2242
2243
EmitGoto(int block)2244 void LCodeGen::EmitGoto(int block) {
2245 if (!IsNextEmittedBlock(block)) {
2246 __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2247 }
2248 }
2249
2250
DoGoto(LGoto * instr)2251 void LCodeGen::DoGoto(LGoto* instr) {
2252 EmitGoto(instr->block_id());
2253 }
2254
2255
TokenToCondition(Token::Value op,bool is_unsigned)2256 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2257 Condition cond = kNoCondition;
2258 switch (op) {
2259 case Token::EQ:
2260 case Token::EQ_STRICT:
2261 cond = eq;
2262 break;
2263 case Token::NE:
2264 case Token::NE_STRICT:
2265 cond = ne;
2266 break;
2267 case Token::LT:
2268 cond = is_unsigned ? lo : lt;
2269 break;
2270 case Token::GT:
2271 cond = is_unsigned ? hi : gt;
2272 break;
2273 case Token::LTE:
2274 cond = is_unsigned ? ls : le;
2275 break;
2276 case Token::GTE:
2277 cond = is_unsigned ? hs : ge;
2278 break;
2279 case Token::IN:
2280 case Token::INSTANCEOF:
2281 default:
2282 UNREACHABLE();
2283 }
2284 return cond;
2285 }
2286
2287
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2288 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2289 LOperand* left = instr->left();
2290 LOperand* right = instr->right();
2291 bool is_unsigned =
2292 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2293 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2294 Condition cond = TokenToCondition(instr->op(), is_unsigned);
2295
2296 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2297 // We can statically evaluate the comparison.
2298 double left_val = ToDouble(LConstantOperand::cast(left));
2299 double right_val = ToDouble(LConstantOperand::cast(right));
2300 int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2301 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2302 EmitGoto(next_block);
2303 } else {
2304 if (instr->is_double()) {
2305 // Compare left and right as doubles and load the
2306 // resulting flags into the normal status register.
2307 FPURegister left_reg = ToDoubleRegister(left);
2308 FPURegister right_reg = ToDoubleRegister(right);
2309
2310 // If a NaN is involved, i.e. the result is unordered,
2311 // jump to false block label.
2312 __ BranchF(NULL, instr->FalseLabel(chunk_), eq,
2313 left_reg, right_reg);
2314
2315 EmitBranchF(instr, cond, left_reg, right_reg);
2316 } else {
2317 Register cmp_left;
2318 Operand cmp_right = Operand(0);
2319
2320 if (right->IsConstantOperand()) {
2321 int32_t value = ToInteger32(LConstantOperand::cast(right));
2322 if (instr->hydrogen_value()->representation().IsSmi()) {
2323 cmp_left = ToRegister(left);
2324 cmp_right = Operand(Smi::FromInt(value));
2325 } else {
2326 cmp_left = ToRegister(left);
2327 cmp_right = Operand(value);
2328 }
2329 } else if (left->IsConstantOperand()) {
2330 int32_t value = ToInteger32(LConstantOperand::cast(left));
2331 if (instr->hydrogen_value()->representation().IsSmi()) {
2332 cmp_left = ToRegister(right);
2333 cmp_right = Operand(Smi::FromInt(value));
2334 } else {
2335 cmp_left = ToRegister(right);
2336 cmp_right = Operand(value);
2337 }
2338 // We commuted the operands, so commute the condition.
2339 cond = CommuteCondition(cond);
2340 } else {
2341 cmp_left = ToRegister(left);
2342 cmp_right = Operand(ToRegister(right));
2343 }
2344
2345 EmitBranch(instr, cond, cmp_left, cmp_right);
2346 }
2347 }
2348 }
2349
2350
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2351 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2352 Register left = ToRegister(instr->left());
2353 Register right = ToRegister(instr->right());
2354
2355 EmitBranch(instr, eq, left, Operand(right));
2356 }
2357
2358
DoCmpHoleAndBranch(LCmpHoleAndBranch * instr)2359 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2360 if (instr->hydrogen()->representation().IsTagged()) {
2361 Register input_reg = ToRegister(instr->object());
2362 __ li(at, Operand(factory()->the_hole_value()));
2363 EmitBranch(instr, eq, input_reg, Operand(at));
2364 return;
2365 }
2366
2367 DoubleRegister input_reg = ToDoubleRegister(instr->object());
2368 EmitFalseBranchF(instr, eq, input_reg, input_reg);
2369
2370 Register scratch = scratch0();
2371 __ FmoveHigh(scratch, input_reg);
2372 EmitBranch(instr, eq, scratch, Operand(kHoleNanUpper32));
2373 }
2374
2375
DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch * instr)2376 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2377 Representation rep = instr->hydrogen()->value()->representation();
2378 DCHECK(!rep.IsInteger32());
2379 Register scratch = ToRegister(instr->temp());
2380
2381 if (rep.IsDouble()) {
2382 DoubleRegister value = ToDoubleRegister(instr->value());
2383 EmitFalseBranchF(instr, ne, value, kDoubleRegZero);
2384 __ FmoveHigh(scratch, value);
2385 __ li(at, 0x80000000);
2386 } else {
2387 Register value = ToRegister(instr->value());
2388 __ CheckMap(value,
2389 scratch,
2390 Heap::kHeapNumberMapRootIndex,
2391 instr->FalseLabel(chunk()),
2392 DO_SMI_CHECK);
2393 __ lw(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
2394 EmitFalseBranch(instr, ne, scratch, Operand(0x80000000));
2395 __ lw(scratch, FieldMemOperand(value, HeapNumber::kMantissaOffset));
2396 __ mov(at, zero_reg);
2397 }
2398 EmitBranch(instr, eq, scratch, Operand(at));
2399 }
2400
2401
EmitIsObject(Register input,Register temp1,Register temp2,Label * is_not_object,Label * is_object)2402 Condition LCodeGen::EmitIsObject(Register input,
2403 Register temp1,
2404 Register temp2,
2405 Label* is_not_object,
2406 Label* is_object) {
2407 __ JumpIfSmi(input, is_not_object);
2408
2409 __ LoadRoot(temp2, Heap::kNullValueRootIndex);
2410 __ Branch(is_object, eq, input, Operand(temp2));
2411
2412 // Load map.
2413 __ lw(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
2414 // Undetectable objects behave like undefined.
2415 __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
2416 __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable));
2417 __ Branch(is_not_object, ne, temp2, Operand(zero_reg));
2418
2419 // Load instance type and check that it is in object type range.
2420 __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
2421 __ Branch(is_not_object,
2422 lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2423
2424 return le;
2425 }
2426
2427
DoIsObjectAndBranch(LIsObjectAndBranch * instr)2428 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
2429 Register reg = ToRegister(instr->value());
2430 Register temp1 = ToRegister(instr->temp());
2431 Register temp2 = scratch0();
2432
2433 Condition true_cond =
2434 EmitIsObject(reg, temp1, temp2,
2435 instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
2436
2437 EmitBranch(instr, true_cond, temp2,
2438 Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
2439 }
2440
2441
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2442 Condition LCodeGen::EmitIsString(Register input,
2443 Register temp1,
2444 Label* is_not_string,
2445 SmiCheck check_needed = INLINE_SMI_CHECK) {
2446 if (check_needed == INLINE_SMI_CHECK) {
2447 __ JumpIfSmi(input, is_not_string);
2448 }
2449 __ GetObjectType(input, temp1, temp1);
2450
2451 return lt;
2452 }
2453
2454
DoIsStringAndBranch(LIsStringAndBranch * instr)2455 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2456 Register reg = ToRegister(instr->value());
2457 Register temp1 = ToRegister(instr->temp());
2458
2459 SmiCheck check_needed =
2460 instr->hydrogen()->value()->type().IsHeapObject()
2461 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2462 Condition true_cond =
2463 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2464
2465 EmitBranch(instr, true_cond, temp1,
2466 Operand(FIRST_NONSTRING_TYPE));
2467 }
2468
2469
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2470 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2471 Register input_reg = EmitLoadRegister(instr->value(), at);
2472 __ And(at, input_reg, kSmiTagMask);
2473 EmitBranch(instr, eq, at, Operand(zero_reg));
2474 }
2475
2476
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2477 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2478 Register input = ToRegister(instr->value());
2479 Register temp = ToRegister(instr->temp());
2480
2481 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2482 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2483 }
2484 __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2485 __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2486 __ And(at, temp, Operand(1 << Map::kIsUndetectable));
2487 EmitBranch(instr, ne, at, Operand(zero_reg));
2488 }
2489
2490
ComputeCompareCondition(Token::Value op)2491 static Condition ComputeCompareCondition(Token::Value op) {
2492 switch (op) {
2493 case Token::EQ_STRICT:
2494 case Token::EQ:
2495 return eq;
2496 case Token::LT:
2497 return lt;
2498 case Token::GT:
2499 return gt;
2500 case Token::LTE:
2501 return le;
2502 case Token::GTE:
2503 return ge;
2504 default:
2505 UNREACHABLE();
2506 return kNoCondition;
2507 }
2508 }
2509
2510
DoStringCompareAndBranch(LStringCompareAndBranch * instr)2511 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2512 DCHECK(ToRegister(instr->context()).is(cp));
2513 Token::Value op = instr->op();
2514
2515 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2516 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2517
2518 Condition condition = ComputeCompareCondition(op);
2519
2520 EmitBranch(instr, condition, v0, Operand(zero_reg));
2521 }
2522
2523
TestType(HHasInstanceTypeAndBranch * instr)2524 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2525 InstanceType from = instr->from();
2526 InstanceType to = instr->to();
2527 if (from == FIRST_TYPE) return to;
2528 DCHECK(from == to || to == LAST_TYPE);
2529 return from;
2530 }
2531
2532
BranchCondition(HHasInstanceTypeAndBranch * instr)2533 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2534 InstanceType from = instr->from();
2535 InstanceType to = instr->to();
2536 if (from == to) return eq;
2537 if (to == LAST_TYPE) return hs;
2538 if (from == FIRST_TYPE) return ls;
2539 UNREACHABLE();
2540 return eq;
2541 }
2542
2543
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2544 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2545 Register scratch = scratch0();
2546 Register input = ToRegister(instr->value());
2547
2548 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2549 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2550 }
2551
2552 __ GetObjectType(input, scratch, scratch);
2553 EmitBranch(instr,
2554 BranchCondition(instr->hydrogen()),
2555 scratch,
2556 Operand(TestType(instr->hydrogen())));
2557 }
2558
2559
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)2560 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2561 Register input = ToRegister(instr->value());
2562 Register result = ToRegister(instr->result());
2563
2564 __ AssertString(input);
2565
2566 __ lw(result, FieldMemOperand(input, String::kHashFieldOffset));
2567 __ IndexFromHash(result, result);
2568 }
2569
2570
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)2571 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2572 LHasCachedArrayIndexAndBranch* instr) {
2573 Register input = ToRegister(instr->value());
2574 Register scratch = scratch0();
2575
2576 __ lw(scratch,
2577 FieldMemOperand(input, String::kHashFieldOffset));
2578 __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
2579 EmitBranch(instr, eq, at, Operand(zero_reg));
2580 }
2581
2582
2583 // Branches to a label or falls through with the answer in flags. Trashes
2584 // the temp registers, but not the input.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)2585 void LCodeGen::EmitClassOfTest(Label* is_true,
2586 Label* is_false,
2587 Handle<String>class_name,
2588 Register input,
2589 Register temp,
2590 Register temp2) {
2591 DCHECK(!input.is(temp));
2592 DCHECK(!input.is(temp2));
2593 DCHECK(!temp.is(temp2));
2594
2595 __ JumpIfSmi(input, is_false);
2596
2597 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2598 // Assuming the following assertions, we can use the same compares to test
2599 // for both being a function type and being in the object type range.
2600 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2601 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2602 FIRST_SPEC_OBJECT_TYPE + 1);
2603 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2604 LAST_SPEC_OBJECT_TYPE - 1);
2605 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2606
2607 __ GetObjectType(input, temp, temp2);
2608 __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
2609 __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
2610 __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE));
2611 } else {
2612 // Faster code path to avoid two compares: subtract lower bound from the
2613 // actual type and do a signed compare with the width of the type range.
2614 __ GetObjectType(input, temp, temp2);
2615 __ Subu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2616 __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
2617 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2618 }
2619
2620 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2621 // Check if the constructor in the map is a function.
2622 __ lw(temp, FieldMemOperand(temp, Map::kConstructorOffset));
2623
2624 // Objects with a non-function constructor have class 'Object'.
2625 __ GetObjectType(temp, temp2, temp2);
2626 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2627 __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE));
2628 } else {
2629 __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE));
2630 }
2631
2632 // temp now contains the constructor function. Grab the
2633 // instance class name from there.
2634 __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2635 __ lw(temp, FieldMemOperand(temp,
2636 SharedFunctionInfo::kInstanceClassNameOffset));
2637 // The class name we are testing against is internalized since it's a literal.
2638 // The name in the constructor is internalized because of the way the context
2639 // is booted. This routine isn't expected to work for random API-created
2640 // classes and it doesn't have to because you can't access it with natives
2641 // syntax. Since both sides are internalized it is sufficient to use an
2642 // identity comparison.
2643
2644 // End with the address of this class_name instance in temp register.
2645 // On MIPS, the caller must do the comparison with Handle<String>class_name.
2646 }
2647
2648
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2649 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2650 Register input = ToRegister(instr->value());
2651 Register temp = scratch0();
2652 Register temp2 = ToRegister(instr->temp());
2653 Handle<String> class_name = instr->hydrogen()->class_name();
2654
2655 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2656 class_name, input, temp, temp2);
2657
2658 EmitBranch(instr, eq, temp, Operand(class_name));
2659 }
2660
2661
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2662 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2663 Register reg = ToRegister(instr->value());
2664 Register temp = ToRegister(instr->temp());
2665
2666 __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2667 EmitBranch(instr, eq, temp, Operand(instr->map()));
2668 }
2669
2670
DoInstanceOf(LInstanceOf * instr)2671 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2672 DCHECK(ToRegister(instr->context()).is(cp));
2673 Label true_label, done;
2674 DCHECK(ToRegister(instr->left()).is(a0)); // Object is in a0.
2675 DCHECK(ToRegister(instr->right()).is(a1)); // Function is in a1.
2676 Register result = ToRegister(instr->result());
2677 DCHECK(result.is(v0));
2678
2679 InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
2680 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2681
2682 __ Branch(&true_label, eq, result, Operand(zero_reg));
2683 __ li(result, Operand(factory()->false_value()));
2684 __ Branch(&done);
2685 __ bind(&true_label);
2686 __ li(result, Operand(factory()->true_value()));
2687 __ bind(&done);
2688 }
2689
2690
DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr)2691 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
2692 class DeferredInstanceOfKnownGlobal FINAL : public LDeferredCode {
2693 public:
2694 DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
2695 LInstanceOfKnownGlobal* instr)
2696 : LDeferredCode(codegen), instr_(instr) { }
2697 virtual void Generate() OVERRIDE {
2698 codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
2699 }
2700 virtual LInstruction* instr() OVERRIDE { return instr_; }
2701 Label* map_check() { return &map_check_; }
2702
2703 private:
2704 LInstanceOfKnownGlobal* instr_;
2705 Label map_check_;
2706 };
2707
2708 DeferredInstanceOfKnownGlobal* deferred;
2709 deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
2710
2711 Label done, false_result;
2712 Register object = ToRegister(instr->value());
2713 Register temp = ToRegister(instr->temp());
2714 Register result = ToRegister(instr->result());
2715
2716 DCHECK(object.is(a0));
2717 DCHECK(result.is(v0));
2718
2719 // A Smi is not instance of anything.
2720 __ JumpIfSmi(object, &false_result);
2721
2722 // This is the inlined call site instanceof cache. The two occurences of the
2723 // hole value will be patched to the last map/result pair generated by the
2724 // instanceof stub.
2725 Label cache_miss;
2726 Register map = temp;
2727 __ lw(map, FieldMemOperand(object, HeapObject::kMapOffset));
2728
2729 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
2730 __ bind(deferred->map_check()); // Label for calculating code patching.
2731 // We use Factory::the_hole_value() on purpose instead of loading from the
2732 // root array to force relocation to be able to later patch with
2733 // the cached map.
2734 Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
2735 __ li(at, Operand(Handle<Object>(cell)));
2736 __ lw(at, FieldMemOperand(at, PropertyCell::kValueOffset));
2737 __ BranchShort(&cache_miss, ne, map, Operand(at));
2738 // We use Factory::the_hole_value() on purpose instead of loading from the
2739 // root array to force relocation to be able to later patch
2740 // with true or false. The distance from map check has to be constant.
2741 __ li(result, Operand(factory()->the_hole_value()), CONSTANT_SIZE);
2742 __ Branch(&done);
2743
2744 // The inlined call site cache did not match. Check null and string before
2745 // calling the deferred code.
2746 __ bind(&cache_miss);
2747 // Null is not instance of anything.
2748 __ LoadRoot(temp, Heap::kNullValueRootIndex);
2749 __ Branch(&false_result, eq, object, Operand(temp));
2750
2751 // String values is not instance of anything.
2752 Condition cc = __ IsObjectStringType(object, temp, temp);
2753 __ Branch(&false_result, cc, temp, Operand(zero_reg));
2754
2755 // Go to the deferred code.
2756 __ Branch(deferred->entry());
2757
2758 __ bind(&false_result);
2759 __ LoadRoot(result, Heap::kFalseValueRootIndex);
2760
2761 // Here result has either true or false. Deferred code also produces true or
2762 // false object.
2763 __ bind(deferred->exit());
2764 __ bind(&done);
2765 }
2766
2767
DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr,Label * map_check)2768 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
2769 Label* map_check) {
2770 Register result = ToRegister(instr->result());
2771 DCHECK(result.is(v0));
2772
2773 InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
2774 flags = static_cast<InstanceofStub::Flags>(
2775 flags | InstanceofStub::kArgsInRegisters);
2776 flags = static_cast<InstanceofStub::Flags>(
2777 flags | InstanceofStub::kCallSiteInlineCheck);
2778 flags = static_cast<InstanceofStub::Flags>(
2779 flags | InstanceofStub::kReturnTrueFalseObject);
2780 InstanceofStub stub(isolate(), flags);
2781
2782 PushSafepointRegistersScope scope(this);
2783 LoadContextFromDeferred(instr->context());
2784
2785 // Get the temp register reserved by the instruction. This needs to be t0 as
2786 // its slot of the pushing of safepoint registers is used to communicate the
2787 // offset to the location of the map check.
2788 Register temp = ToRegister(instr->temp());
2789 DCHECK(temp.is(t0));
2790 __ li(InstanceofStub::right(), instr->function());
2791 static const int kAdditionalDelta = 7;
2792 int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
2793 Label before_push_delta;
2794 __ bind(&before_push_delta);
2795 {
2796 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
2797 __ li(temp, Operand(delta * kPointerSize), CONSTANT_SIZE);
2798 __ StoreToSafepointRegisterSlot(temp, temp);
2799 }
2800 CallCodeGeneric(stub.GetCode(),
2801 RelocInfo::CODE_TARGET,
2802 instr,
2803 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
2804 LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
2805 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2806 // Put the result value into the result register slot and
2807 // restore all registers.
2808 __ StoreToSafepointRegisterSlot(result, result);
2809 }
2810
2811
DoCmpT(LCmpT * instr)2812 void LCodeGen::DoCmpT(LCmpT* instr) {
2813 DCHECK(ToRegister(instr->context()).is(cp));
2814 Token::Value op = instr->op();
2815
2816 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2817 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2818 // On MIPS there is no need for a "no inlined smi code" marker (nop).
2819
2820 Condition condition = ComputeCompareCondition(op);
2821 // A minor optimization that relies on LoadRoot always emitting one
2822 // instruction.
2823 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
2824 Label done, check;
2825 __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
2826 __ bind(&check);
2827 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2828 DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check));
2829 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2830 __ bind(&done);
2831 }
2832
2833
DoReturn(LReturn * instr)2834 void LCodeGen::DoReturn(LReturn* instr) {
2835 if (FLAG_trace && info()->IsOptimizing()) {
2836 // Push the return value on the stack as the parameter.
2837 // Runtime::TraceExit returns its parameter in v0. We're leaving the code
2838 // managed by the register allocator and tearing down the frame, it's
2839 // safe to write to the context register.
2840 __ push(v0);
2841 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2842 __ CallRuntime(Runtime::kTraceExit, 1);
2843 }
2844 if (info()->saves_caller_doubles()) {
2845 RestoreCallerDoubles();
2846 }
2847 int no_frame_start = -1;
2848 if (NeedsEagerFrame()) {
2849 __ mov(sp, fp);
2850 no_frame_start = masm_->pc_offset();
2851 __ Pop(ra, fp);
2852 }
2853 if (instr->has_constant_parameter_count()) {
2854 int parameter_count = ToInteger32(instr->constant_parameter_count());
2855 int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2856 if (sp_delta != 0) {
2857 __ Addu(sp, sp, Operand(sp_delta));
2858 }
2859 } else {
2860 Register reg = ToRegister(instr->parameter_count());
2861 // The argument count parameter is a smi
2862 __ SmiUntag(reg);
2863 __ sll(at, reg, kPointerSizeLog2);
2864 __ Addu(sp, sp, at);
2865 }
2866
2867 __ Jump(ra);
2868
2869 if (no_frame_start != -1) {
2870 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
2871 }
2872 }
2873
2874
DoLoadGlobalCell(LLoadGlobalCell * instr)2875 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2876 Register result = ToRegister(instr->result());
2877 __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
2878 __ lw(result, FieldMemOperand(at, Cell::kValueOffset));
2879 if (instr->hydrogen()->RequiresHoleCheck()) {
2880 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2881 DeoptimizeIf(eq, instr, result, Operand(at));
2882 }
2883 }
2884
2885
2886 template <class T>
EmitVectorLoadICRegisters(T * instr)2887 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
2888 DCHECK(FLAG_vector_ics);
2889 Register vector = ToRegister(instr->temp_vector());
2890 DCHECK(vector.is(VectorLoadICDescriptor::VectorRegister()));
2891 __ li(vector, instr->hydrogen()->feedback_vector());
2892 // No need to allocate this register.
2893 DCHECK(VectorLoadICDescriptor::SlotRegister().is(a0));
2894 __ li(VectorLoadICDescriptor::SlotRegister(),
2895 Operand(Smi::FromInt(instr->hydrogen()->slot())));
2896 }
2897
2898
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)2899 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2900 DCHECK(ToRegister(instr->context()).is(cp));
2901 DCHECK(ToRegister(instr->global_object())
2902 .is(LoadDescriptor::ReceiverRegister()));
2903 DCHECK(ToRegister(instr->result()).is(v0));
2904
2905 __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
2906 if (FLAG_vector_ics) {
2907 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
2908 }
2909 ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
2910 Handle<Code> ic = CodeFactory::LoadIC(isolate(), mode).code();
2911 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2912 }
2913
2914
DoStoreGlobalCell(LStoreGlobalCell * instr)2915 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2916 Register value = ToRegister(instr->value());
2917 Register cell = scratch0();
2918
2919 // Load the cell.
2920 __ li(cell, Operand(instr->hydrogen()->cell().handle()));
2921
2922 // If the cell we are storing to contains the hole it could have
2923 // been deleted from the property dictionary. In that case, we need
2924 // to update the property details in the property dictionary to mark
2925 // it as no longer deleted.
2926 if (instr->hydrogen()->RequiresHoleCheck()) {
2927 // We use a temp to check the payload.
2928 Register payload = ToRegister(instr->temp());
2929 __ lw(payload, FieldMemOperand(cell, Cell::kValueOffset));
2930 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2931 DeoptimizeIf(eq, instr, payload, Operand(at));
2932 }
2933
2934 // Store the value.
2935 __ sw(value, FieldMemOperand(cell, Cell::kValueOffset));
2936 // Cells are always rescanned, so no write barrier here.
2937 }
2938
2939
2940
DoLoadContextSlot(LLoadContextSlot * instr)2941 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2942 Register context = ToRegister(instr->context());
2943 Register result = ToRegister(instr->result());
2944
2945 __ lw(result, ContextOperand(context, instr->slot_index()));
2946 if (instr->hydrogen()->RequiresHoleCheck()) {
2947 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2948
2949 if (instr->hydrogen()->DeoptimizesOnHole()) {
2950 DeoptimizeIf(eq, instr, result, Operand(at));
2951 } else {
2952 Label is_not_hole;
2953 __ Branch(&is_not_hole, ne, result, Operand(at));
2954 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2955 __ bind(&is_not_hole);
2956 }
2957 }
2958 }
2959
2960
DoStoreContextSlot(LStoreContextSlot * instr)2961 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2962 Register context = ToRegister(instr->context());
2963 Register value = ToRegister(instr->value());
2964 Register scratch = scratch0();
2965 MemOperand target = ContextOperand(context, instr->slot_index());
2966
2967 Label skip_assignment;
2968
2969 if (instr->hydrogen()->RequiresHoleCheck()) {
2970 __ lw(scratch, target);
2971 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2972
2973 if (instr->hydrogen()->DeoptimizesOnHole()) {
2974 DeoptimizeIf(eq, instr, scratch, Operand(at));
2975 } else {
2976 __ Branch(&skip_assignment, ne, scratch, Operand(at));
2977 }
2978 }
2979
2980 __ sw(value, target);
2981 if (instr->hydrogen()->NeedsWriteBarrier()) {
2982 SmiCheck check_needed =
2983 instr->hydrogen()->value()->type().IsHeapObject()
2984 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2985 __ RecordWriteContextSlot(context,
2986 target.offset(),
2987 value,
2988 scratch0(),
2989 GetRAState(),
2990 kSaveFPRegs,
2991 EMIT_REMEMBERED_SET,
2992 check_needed);
2993 }
2994
2995 __ bind(&skip_assignment);
2996 }
2997
2998
DoLoadNamedField(LLoadNamedField * instr)2999 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3000 HObjectAccess access = instr->hydrogen()->access();
3001 int offset = access.offset();
3002 Register object = ToRegister(instr->object());
3003
3004 if (access.IsExternalMemory()) {
3005 Register result = ToRegister(instr->result());
3006 MemOperand operand = MemOperand(object, offset);
3007 __ Load(result, operand, access.representation());
3008 return;
3009 }
3010
3011 if (instr->hydrogen()->representation().IsDouble()) {
3012 DoubleRegister result = ToDoubleRegister(instr->result());
3013 __ ldc1(result, FieldMemOperand(object, offset));
3014 return;
3015 }
3016
3017 Register result = ToRegister(instr->result());
3018 if (!access.IsInobject()) {
3019 __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
3020 object = result;
3021 }
3022 MemOperand operand = FieldMemOperand(object, offset);
3023 __ Load(result, operand, access.representation());
3024 }
3025
3026
DoLoadNamedGeneric(LLoadNamedGeneric * instr)3027 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3028 DCHECK(ToRegister(instr->context()).is(cp));
3029 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3030 DCHECK(ToRegister(instr->result()).is(v0));
3031
3032 // Name is always in a2.
3033 __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
3034 if (FLAG_vector_ics) {
3035 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
3036 }
3037 Handle<Code> ic = CodeFactory::LoadIC(isolate(), NOT_CONTEXTUAL).code();
3038 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3039 }
3040
3041
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)3042 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3043 Register scratch = scratch0();
3044 Register function = ToRegister(instr->function());
3045 Register result = ToRegister(instr->result());
3046
3047 // Get the prototype or initial map from the function.
3048 __ lw(result,
3049 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3050
3051 // Check that the function has a prototype or an initial map.
3052 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
3053 DeoptimizeIf(eq, instr, result, Operand(at));
3054
3055 // If the function does not have an initial map, we're done.
3056 Label done;
3057 __ GetObjectType(result, scratch, scratch);
3058 __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
3059
3060 // Get the prototype from the initial map.
3061 __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
3062
3063 // All done.
3064 __ bind(&done);
3065 }
3066
3067
DoLoadRoot(LLoadRoot * instr)3068 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3069 Register result = ToRegister(instr->result());
3070 __ LoadRoot(result, instr->index());
3071 }
3072
3073
DoAccessArgumentsAt(LAccessArgumentsAt * instr)3074 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
3075 Register arguments = ToRegister(instr->arguments());
3076 Register result = ToRegister(instr->result());
3077 // There are two words between the frame pointer and the last argument.
3078 // Subtracting from length accounts for one of them add one more.
3079 if (instr->length()->IsConstantOperand()) {
3080 int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
3081 if (instr->index()->IsConstantOperand()) {
3082 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3083 int index = (const_length - const_index) + 1;
3084 __ lw(result, MemOperand(arguments, index * kPointerSize));
3085 } else {
3086 Register index = ToRegister(instr->index());
3087 __ li(at, Operand(const_length + 1));
3088 __ Subu(result, at, index);
3089 __ sll(at, result, kPointerSizeLog2);
3090 __ Addu(at, arguments, at);
3091 __ lw(result, MemOperand(at));
3092 }
3093 } else if (instr->index()->IsConstantOperand()) {
3094 Register length = ToRegister(instr->length());
3095 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3096 int loc = const_index - 1;
3097 if (loc != 0) {
3098 __ Subu(result, length, Operand(loc));
3099 __ sll(at, result, kPointerSizeLog2);
3100 __ Addu(at, arguments, at);
3101 __ lw(result, MemOperand(at));
3102 } else {
3103 __ sll(at, length, kPointerSizeLog2);
3104 __ Addu(at, arguments, at);
3105 __ lw(result, MemOperand(at));
3106 }
3107 } else {
3108 Register length = ToRegister(instr->length());
3109 Register index = ToRegister(instr->index());
3110 __ Subu(result, length, index);
3111 __ Addu(result, result, 1);
3112 __ sll(at, result, kPointerSizeLog2);
3113 __ Addu(at, arguments, at);
3114 __ lw(result, MemOperand(at));
3115 }
3116 }
3117
3118
DoLoadKeyedExternalArray(LLoadKeyed * instr)3119 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
3120 Register external_pointer = ToRegister(instr->elements());
3121 Register key = no_reg;
3122 ElementsKind elements_kind = instr->elements_kind();
3123 bool key_is_constant = instr->key()->IsConstantOperand();
3124 int constant_key = 0;
3125 if (key_is_constant) {
3126 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3127 if (constant_key & 0xF0000000) {
3128 Abort(kArrayIndexConstantValueTooBig);
3129 }
3130 } else {
3131 key = ToRegister(instr->key());
3132 }
3133 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3134 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3135 ? (element_size_shift - kSmiTagSize) : element_size_shift;
3136 int base_offset = instr->base_offset();
3137
3138 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
3139 elements_kind == FLOAT32_ELEMENTS ||
3140 elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
3141 elements_kind == FLOAT64_ELEMENTS) {
3142 int base_offset = instr->base_offset();
3143 FPURegister result = ToDoubleRegister(instr->result());
3144 if (key_is_constant) {
3145 __ Addu(scratch0(), external_pointer, constant_key << element_size_shift);
3146 } else {
3147 __ sll(scratch0(), key, shift_size);
3148 __ Addu(scratch0(), scratch0(), external_pointer);
3149 }
3150 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
3151 elements_kind == FLOAT32_ELEMENTS) {
3152 __ lwc1(result, MemOperand(scratch0(), base_offset));
3153 __ cvt_d_s(result, result);
3154 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
3155 __ ldc1(result, MemOperand(scratch0(), base_offset));
3156 }
3157 } else {
3158 Register result = ToRegister(instr->result());
3159 MemOperand mem_operand = PrepareKeyedOperand(
3160 key, external_pointer, key_is_constant, constant_key,
3161 element_size_shift, shift_size, base_offset);
3162 switch (elements_kind) {
3163 case EXTERNAL_INT8_ELEMENTS:
3164 case INT8_ELEMENTS:
3165 __ lb(result, mem_operand);
3166 break;
3167 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3168 case EXTERNAL_UINT8_ELEMENTS:
3169 case UINT8_ELEMENTS:
3170 case UINT8_CLAMPED_ELEMENTS:
3171 __ lbu(result, mem_operand);
3172 break;
3173 case EXTERNAL_INT16_ELEMENTS:
3174 case INT16_ELEMENTS:
3175 __ lh(result, mem_operand);
3176 break;
3177 case EXTERNAL_UINT16_ELEMENTS:
3178 case UINT16_ELEMENTS:
3179 __ lhu(result, mem_operand);
3180 break;
3181 case EXTERNAL_INT32_ELEMENTS:
3182 case INT32_ELEMENTS:
3183 __ lw(result, mem_operand);
3184 break;
3185 case EXTERNAL_UINT32_ELEMENTS:
3186 case UINT32_ELEMENTS:
3187 __ lw(result, mem_operand);
3188 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3189 DeoptimizeIf(Ugreater_equal, instr, result, Operand(0x80000000));
3190 }
3191 break;
3192 case FLOAT32_ELEMENTS:
3193 case FLOAT64_ELEMENTS:
3194 case EXTERNAL_FLOAT32_ELEMENTS:
3195 case EXTERNAL_FLOAT64_ELEMENTS:
3196 case FAST_DOUBLE_ELEMENTS:
3197 case FAST_ELEMENTS:
3198 case FAST_SMI_ELEMENTS:
3199 case FAST_HOLEY_DOUBLE_ELEMENTS:
3200 case FAST_HOLEY_ELEMENTS:
3201 case FAST_HOLEY_SMI_ELEMENTS:
3202 case DICTIONARY_ELEMENTS:
3203 case SLOPPY_ARGUMENTS_ELEMENTS:
3204 UNREACHABLE();
3205 break;
3206 }
3207 }
3208 }
3209
3210
DoLoadKeyedFixedDoubleArray(LLoadKeyed * instr)3211 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
3212 Register elements = ToRegister(instr->elements());
3213 bool key_is_constant = instr->key()->IsConstantOperand();
3214 Register key = no_reg;
3215 DoubleRegister result = ToDoubleRegister(instr->result());
3216 Register scratch = scratch0();
3217
3218 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3219
3220 int base_offset = instr->base_offset();
3221 if (key_is_constant) {
3222 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3223 if (constant_key & 0xF0000000) {
3224 Abort(kArrayIndexConstantValueTooBig);
3225 }
3226 base_offset += constant_key * kDoubleSize;
3227 }
3228 __ Addu(scratch, elements, Operand(base_offset));
3229
3230 if (!key_is_constant) {
3231 key = ToRegister(instr->key());
3232 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3233 ? (element_size_shift - kSmiTagSize) : element_size_shift;
3234 __ sll(at, key, shift_size);
3235 __ Addu(scratch, scratch, at);
3236 }
3237
3238 __ ldc1(result, MemOperand(scratch));
3239
3240 if (instr->hydrogen()->RequiresHoleCheck()) {
3241 __ lw(scratch, MemOperand(scratch, kHoleNanUpper32Offset));
3242 DeoptimizeIf(eq, instr, scratch, Operand(kHoleNanUpper32));
3243 }
3244 }
3245
3246
DoLoadKeyedFixedArray(LLoadKeyed * instr)3247 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
3248 Register elements = ToRegister(instr->elements());
3249 Register result = ToRegister(instr->result());
3250 Register scratch = scratch0();
3251 Register store_base = scratch;
3252 int offset = instr->base_offset();
3253
3254 if (instr->key()->IsConstantOperand()) {
3255 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3256 offset += ToInteger32(const_operand) * kPointerSize;
3257 store_base = elements;
3258 } else {
3259 Register key = ToRegister(instr->key());
3260 // Even though the HLoadKeyed instruction forces the input
3261 // representation for the key to be an integer, the input gets replaced
3262 // during bound check elimination with the index argument to the bounds
3263 // check, which can be tagged, so that case must be handled here, too.
3264 if (instr->hydrogen()->key()->representation().IsSmi()) {
3265 __ sll(scratch, key, kPointerSizeLog2 - kSmiTagSize);
3266 __ addu(scratch, elements, scratch);
3267 } else {
3268 __ sll(scratch, key, kPointerSizeLog2);
3269 __ addu(scratch, elements, scratch);
3270 }
3271 }
3272 __ lw(result, MemOperand(store_base, offset));
3273
3274 // Check for the hole value.
3275 if (instr->hydrogen()->RequiresHoleCheck()) {
3276 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3277 __ SmiTst(result, scratch);
3278 DeoptimizeIf(ne, instr, scratch, Operand(zero_reg));
3279 } else {
3280 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
3281 DeoptimizeIf(eq, instr, result, Operand(scratch));
3282 }
3283 }
3284 }
3285
3286
DoLoadKeyed(LLoadKeyed * instr)3287 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
3288 if (instr->is_typed_elements()) {
3289 DoLoadKeyedExternalArray(instr);
3290 } else if (instr->hydrogen()->representation().IsDouble()) {
3291 DoLoadKeyedFixedDoubleArray(instr);
3292 } else {
3293 DoLoadKeyedFixedArray(instr);
3294 }
3295 }
3296
3297
PrepareKeyedOperand(Register key,Register base,bool key_is_constant,int constant_key,int element_size,int shift_size,int base_offset)3298 MemOperand LCodeGen::PrepareKeyedOperand(Register key,
3299 Register base,
3300 bool key_is_constant,
3301 int constant_key,
3302 int element_size,
3303 int shift_size,
3304 int base_offset) {
3305 if (key_is_constant) {
3306 return MemOperand(base, (constant_key << element_size) + base_offset);
3307 }
3308
3309 if (base_offset == 0) {
3310 if (shift_size >= 0) {
3311 __ sll(scratch0(), key, shift_size);
3312 __ Addu(scratch0(), base, scratch0());
3313 return MemOperand(scratch0());
3314 } else {
3315 DCHECK_EQ(-1, shift_size);
3316 __ srl(scratch0(), key, 1);
3317 __ Addu(scratch0(), base, scratch0());
3318 return MemOperand(scratch0());
3319 }
3320 }
3321
3322 if (shift_size >= 0) {
3323 __ sll(scratch0(), key, shift_size);
3324 __ Addu(scratch0(), base, scratch0());
3325 return MemOperand(scratch0(), base_offset);
3326 } else {
3327 DCHECK_EQ(-1, shift_size);
3328 __ sra(scratch0(), key, 1);
3329 __ Addu(scratch0(), base, scratch0());
3330 return MemOperand(scratch0(), base_offset);
3331 }
3332 }
3333
3334
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)3335 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3336 DCHECK(ToRegister(instr->context()).is(cp));
3337 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3338 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3339
3340 if (FLAG_vector_ics) {
3341 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3342 }
3343
3344 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
3345 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3346 }
3347
3348
DoArgumentsElements(LArgumentsElements * instr)3349 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3350 Register scratch = scratch0();
3351 Register temp = scratch1();
3352 Register result = ToRegister(instr->result());
3353
3354 if (instr->hydrogen()->from_inlined()) {
3355 __ Subu(result, sp, 2 * kPointerSize);
3356 } else {
3357 // Check if the calling frame is an arguments adaptor frame.
3358 Label done, adapted;
3359 __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3360 __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
3361 __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3362
3363 // Result is the frame pointer for the frame if not adapted and for the real
3364 // frame below the adaptor frame if adapted.
3365 __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne).
3366 __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq).
3367 }
3368 }
3369
3370
DoArgumentsLength(LArgumentsLength * instr)3371 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3372 Register elem = ToRegister(instr->elements());
3373 Register result = ToRegister(instr->result());
3374
3375 Label done;
3376
3377 // If no arguments adaptor frame the number of arguments is fixed.
3378 __ Addu(result, zero_reg, Operand(scope()->num_parameters()));
3379 __ Branch(&done, eq, fp, Operand(elem));
3380
3381 // Arguments adaptor frame present. Get argument length from there.
3382 __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3383 __ lw(result,
3384 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
3385 __ SmiUntag(result);
3386
3387 // Argument length is in result register.
3388 __ bind(&done);
3389 }
3390
3391
DoWrapReceiver(LWrapReceiver * instr)3392 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3393 Register receiver = ToRegister(instr->receiver());
3394 Register function = ToRegister(instr->function());
3395 Register result = ToRegister(instr->result());
3396 Register scratch = scratch0();
3397
3398 // If the receiver is null or undefined, we have to pass the global
3399 // object as a receiver to normal functions. Values have to be
3400 // passed unchanged to builtins and strict-mode functions.
3401 Label global_object, result_in_receiver;
3402
3403 if (!instr->hydrogen()->known_function()) {
3404 // Do not transform the receiver to object for strict mode
3405 // functions.
3406 __ lw(scratch,
3407 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3408 __ lw(scratch,
3409 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3410
3411 // Do not transform the receiver to object for builtins.
3412 int32_t strict_mode_function_mask =
3413 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
3414 int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize);
3415 __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask));
3416 __ Branch(&result_in_receiver, ne, scratch, Operand(zero_reg));
3417 }
3418
3419 // Normal function. Replace undefined or null with global receiver.
3420 __ LoadRoot(scratch, Heap::kNullValueRootIndex);
3421 __ Branch(&global_object, eq, receiver, Operand(scratch));
3422 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3423 __ Branch(&global_object, eq, receiver, Operand(scratch));
3424
3425 // Deoptimize if the receiver is not a JS object.
3426 __ SmiTst(receiver, scratch);
3427 DeoptimizeIf(eq, instr, scratch, Operand(zero_reg));
3428
3429 __ GetObjectType(receiver, scratch, scratch);
3430 DeoptimizeIf(lt, instr, scratch, Operand(FIRST_SPEC_OBJECT_TYPE));
3431
3432 __ Branch(&result_in_receiver);
3433 __ bind(&global_object);
3434 __ lw(result, FieldMemOperand(function, JSFunction::kContextOffset));
3435 __ lw(result,
3436 ContextOperand(result, Context::GLOBAL_OBJECT_INDEX));
3437 __ lw(result,
3438 FieldMemOperand(result, GlobalObject::kGlobalProxyOffset));
3439
3440 if (result.is(receiver)) {
3441 __ bind(&result_in_receiver);
3442 } else {
3443 Label result_ok;
3444 __ Branch(&result_ok);
3445 __ bind(&result_in_receiver);
3446 __ mov(result, receiver);
3447 __ bind(&result_ok);
3448 }
3449 }
3450
3451
DoApplyArguments(LApplyArguments * instr)3452 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3453 Register receiver = ToRegister(instr->receiver());
3454 Register function = ToRegister(instr->function());
3455 Register length = ToRegister(instr->length());
3456 Register elements = ToRegister(instr->elements());
3457 Register scratch = scratch0();
3458 DCHECK(receiver.is(a0)); // Used for parameter count.
3459 DCHECK(function.is(a1)); // Required by InvokeFunction.
3460 DCHECK(ToRegister(instr->result()).is(v0));
3461
3462 // Copy the arguments to this function possibly from the
3463 // adaptor frame below it.
3464 const uint32_t kArgumentsLimit = 1 * KB;
3465 DeoptimizeIf(hi, instr, length, Operand(kArgumentsLimit));
3466
3467 // Push the receiver and use the register to keep the original
3468 // number of arguments.
3469 __ push(receiver);
3470 __ Move(receiver, length);
3471 // The arguments are at a one pointer size offset from elements.
3472 __ Addu(elements, elements, Operand(1 * kPointerSize));
3473
3474 // Loop through the arguments pushing them onto the execution
3475 // stack.
3476 Label invoke, loop;
3477 // length is a small non-negative integer, due to the test above.
3478 __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
3479 __ sll(scratch, length, 2);
3480 __ bind(&loop);
3481 __ Addu(scratch, elements, scratch);
3482 __ lw(scratch, MemOperand(scratch));
3483 __ push(scratch);
3484 __ Subu(length, length, Operand(1));
3485 __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
3486 __ sll(scratch, length, 2);
3487
3488 __ bind(&invoke);
3489 DCHECK(instr->HasPointerMap());
3490 LPointerMap* pointers = instr->pointer_map();
3491 SafepointGenerator safepoint_generator(
3492 this, pointers, Safepoint::kLazyDeopt);
3493 // The number of arguments is stored in receiver which is a0, as expected
3494 // by InvokeFunction.
3495 ParameterCount actual(receiver);
3496 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
3497 }
3498
3499
DoPushArgument(LPushArgument * instr)3500 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3501 LOperand* argument = instr->value();
3502 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3503 Abort(kDoPushArgumentNotImplementedForDoubleType);
3504 } else {
3505 Register argument_reg = EmitLoadRegister(argument, at);
3506 __ push(argument_reg);
3507 }
3508 }
3509
3510
DoDrop(LDrop * instr)3511 void LCodeGen::DoDrop(LDrop* instr) {
3512 __ Drop(instr->count());
3513 }
3514
3515
DoThisFunction(LThisFunction * instr)3516 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3517 Register result = ToRegister(instr->result());
3518 __ lw(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3519 }
3520
3521
DoContext(LContext * instr)3522 void LCodeGen::DoContext(LContext* instr) {
3523 // If there is a non-return use, the context must be moved to a register.
3524 Register result = ToRegister(instr->result());
3525 if (info()->IsOptimizing()) {
3526 __ lw(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3527 } else {
3528 // If there is no frame, the context must be in cp.
3529 DCHECK(result.is(cp));
3530 }
3531 }
3532
3533
DoDeclareGlobals(LDeclareGlobals * instr)3534 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3535 DCHECK(ToRegister(instr->context()).is(cp));
3536 __ li(scratch0(), instr->hydrogen()->pairs());
3537 __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
3538 // The context is the first argument.
3539 __ Push(cp, scratch0(), scratch1());
3540 CallRuntime(Runtime::kDeclareGlobals, 3, instr);
3541 }
3542
3543
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,LInstruction * instr,A1State a1_state)3544 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3545 int formal_parameter_count,
3546 int arity,
3547 LInstruction* instr,
3548 A1State a1_state) {
3549 bool dont_adapt_arguments =
3550 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3551 bool can_invoke_directly =
3552 dont_adapt_arguments || formal_parameter_count == arity;
3553
3554 LPointerMap* pointers = instr->pointer_map();
3555
3556 if (can_invoke_directly) {
3557 if (a1_state == A1_UNINITIALIZED) {
3558 __ li(a1, function);
3559 }
3560
3561 // Change context.
3562 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
3563
3564 // Set r0 to arguments count if adaption is not needed. Assumes that r0
3565 // is available to write to at this point.
3566 if (dont_adapt_arguments) {
3567 __ li(a0, Operand(arity));
3568 }
3569
3570 // Invoke function.
3571 __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
3572 __ Call(at);
3573
3574 // Set up deoptimization.
3575 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3576 } else {
3577 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3578 ParameterCount count(arity);
3579 ParameterCount expected(formal_parameter_count);
3580 __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator);
3581 }
3582 }
3583
3584
DoDeferredMathAbsTaggedHeapNumber(LMathAbs * instr)3585 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3586 DCHECK(instr->context() != NULL);
3587 DCHECK(ToRegister(instr->context()).is(cp));
3588 Register input = ToRegister(instr->value());
3589 Register result = ToRegister(instr->result());
3590 Register scratch = scratch0();
3591
3592 // Deoptimize if not a heap number.
3593 __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3594 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3595 DeoptimizeIf(ne, instr, scratch, Operand(at));
3596
3597 Label done;
3598 Register exponent = scratch0();
3599 scratch = no_reg;
3600 __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3601 // Check the sign of the argument. If the argument is positive, just
3602 // return it.
3603 __ Move(result, input);
3604 __ And(at, exponent, Operand(HeapNumber::kSignMask));
3605 __ Branch(&done, eq, at, Operand(zero_reg));
3606
3607 // Input is negative. Reverse its sign.
3608 // Preserve the value of all registers.
3609 {
3610 PushSafepointRegistersScope scope(this);
3611
3612 // Registers were saved at the safepoint, so we can use
3613 // many scratch registers.
3614 Register tmp1 = input.is(a1) ? a0 : a1;
3615 Register tmp2 = input.is(a2) ? a0 : a2;
3616 Register tmp3 = input.is(a3) ? a0 : a3;
3617 Register tmp4 = input.is(t0) ? a0 : t0;
3618
3619 // exponent: floating point exponent value.
3620
3621 Label allocated, slow;
3622 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3623 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3624 __ Branch(&allocated);
3625
3626 // Slow case: Call the runtime system to do the number allocation.
3627 __ bind(&slow);
3628
3629 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3630 instr->context());
3631 // Set the pointer to the new heap number in tmp.
3632 if (!tmp1.is(v0))
3633 __ mov(tmp1, v0);
3634 // Restore input_reg after call to runtime.
3635 __ LoadFromSafepointRegisterSlot(input, input);
3636 __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3637
3638 __ bind(&allocated);
3639 // exponent: floating point exponent value.
3640 // tmp1: allocated heap number.
3641 __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
3642 __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3643 __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3644 __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3645
3646 __ StoreToSafepointRegisterSlot(tmp1, result);
3647 }
3648
3649 __ bind(&done);
3650 }
3651
3652
EmitIntegerMathAbs(LMathAbs * instr)3653 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3654 Register input = ToRegister(instr->value());
3655 Register result = ToRegister(instr->result());
3656 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
3657 Label done;
3658 __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
3659 __ mov(result, input);
3660 __ subu(result, zero_reg, input);
3661 // Overflow if result is still negative, i.e. 0x80000000.
3662 DeoptimizeIf(lt, instr, result, Operand(zero_reg));
3663 __ bind(&done);
3664 }
3665
3666
DoMathAbs(LMathAbs * instr)3667 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3668 // Class for deferred case.
3669 class DeferredMathAbsTaggedHeapNumber FINAL : public LDeferredCode {
3670 public:
3671 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3672 : LDeferredCode(codegen), instr_(instr) { }
3673 virtual void Generate() OVERRIDE {
3674 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3675 }
3676 virtual LInstruction* instr() OVERRIDE { return instr_; }
3677 private:
3678 LMathAbs* instr_;
3679 };
3680
3681 Representation r = instr->hydrogen()->value()->representation();
3682 if (r.IsDouble()) {
3683 FPURegister input = ToDoubleRegister(instr->value());
3684 FPURegister result = ToDoubleRegister(instr->result());
3685 __ abs_d(result, input);
3686 } else if (r.IsSmiOrInteger32()) {
3687 EmitIntegerMathAbs(instr);
3688 } else {
3689 // Representation is tagged.
3690 DeferredMathAbsTaggedHeapNumber* deferred =
3691 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3692 Register input = ToRegister(instr->value());
3693 // Smi check.
3694 __ JumpIfNotSmi(input, deferred->entry());
3695 // If smi, handle it directly.
3696 EmitIntegerMathAbs(instr);
3697 __ bind(deferred->exit());
3698 }
3699 }
3700
3701
DoMathFloor(LMathFloor * instr)3702 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3703 DoubleRegister input = ToDoubleRegister(instr->value());
3704 Register result = ToRegister(instr->result());
3705 Register scratch1 = scratch0();
3706 Register except_flag = ToRegister(instr->temp());
3707
3708 __ EmitFPUTruncate(kRoundToMinusInf,
3709 result,
3710 input,
3711 scratch1,
3712 double_scratch0(),
3713 except_flag);
3714
3715 // Deopt if the operation did not succeed.
3716 DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg));
3717
3718 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3719 // Test for -0.
3720 Label done;
3721 __ Branch(&done, ne, result, Operand(zero_reg));
3722 __ Mfhc1(scratch1, input);
3723 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
3724 DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg));
3725 __ bind(&done);
3726 }
3727 }
3728
3729
DoMathRound(LMathRound * instr)3730 void LCodeGen::DoMathRound(LMathRound* instr) {
3731 DoubleRegister input = ToDoubleRegister(instr->value());
3732 Register result = ToRegister(instr->result());
3733 DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
3734 Register scratch = scratch0();
3735 Label done, check_sign_on_zero;
3736
3737 // Extract exponent bits.
3738 __ Mfhc1(result, input);
3739 __ Ext(scratch,
3740 result,
3741 HeapNumber::kExponentShift,
3742 HeapNumber::kExponentBits);
3743
3744 // If the number is in ]-0.5, +0.5[, the result is +/- 0.
3745 Label skip1;
3746 __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
3747 __ mov(result, zero_reg);
3748 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3749 __ Branch(&check_sign_on_zero);
3750 } else {
3751 __ Branch(&done);
3752 }
3753 __ bind(&skip1);
3754
3755 // The following conversion will not work with numbers
3756 // outside of ]-2^32, 2^32[.
3757 DeoptimizeIf(ge, instr, scratch, Operand(HeapNumber::kExponentBias + 32));
3758
3759 // Save the original sign for later comparison.
3760 __ And(scratch, result, Operand(HeapNumber::kSignMask));
3761
3762 __ Move(double_scratch0(), 0.5);
3763 __ add_d(double_scratch0(), input, double_scratch0());
3764
3765 // Check sign of the result: if the sign changed, the input
3766 // value was in ]0.5, 0[ and the result should be -0.
3767 __ Mfhc1(result, double_scratch0());
3768 __ Xor(result, result, Operand(scratch));
3769 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3770 // ARM uses 'mi' here, which is 'lt'
3771 DeoptimizeIf(lt, instr, result, Operand(zero_reg));
3772 } else {
3773 Label skip2;
3774 // ARM uses 'mi' here, which is 'lt'
3775 // Negating it results in 'ge'
3776 __ Branch(&skip2, ge, result, Operand(zero_reg));
3777 __ mov(result, zero_reg);
3778 __ Branch(&done);
3779 __ bind(&skip2);
3780 }
3781
3782 Register except_flag = scratch;
3783 __ EmitFPUTruncate(kRoundToMinusInf,
3784 result,
3785 double_scratch0(),
3786 at,
3787 double_scratch1,
3788 except_flag);
3789
3790 DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg));
3791
3792 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3793 // Test for -0.
3794 __ Branch(&done, ne, result, Operand(zero_reg));
3795 __ bind(&check_sign_on_zero);
3796 __ Mfhc1(scratch, input);
3797 __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
3798 DeoptimizeIf(ne, instr, scratch, Operand(zero_reg));
3799 }
3800 __ bind(&done);
3801 }
3802
3803
DoMathFround(LMathFround * instr)3804 void LCodeGen::DoMathFround(LMathFround* instr) {
3805 DoubleRegister input = ToDoubleRegister(instr->value());
3806 DoubleRegister result = ToDoubleRegister(instr->result());
3807 __ cvt_s_d(result.low(), input);
3808 __ cvt_d_s(result, result.low());
3809 }
3810
3811
DoMathSqrt(LMathSqrt * instr)3812 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3813 DoubleRegister input = ToDoubleRegister(instr->value());
3814 DoubleRegister result = ToDoubleRegister(instr->result());
3815 __ sqrt_d(result, input);
3816 }
3817
3818
DoMathPowHalf(LMathPowHalf * instr)3819 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3820 DoubleRegister input = ToDoubleRegister(instr->value());
3821 DoubleRegister result = ToDoubleRegister(instr->result());
3822 DoubleRegister temp = ToDoubleRegister(instr->temp());
3823
3824 DCHECK(!input.is(result));
3825
3826 // Note that according to ECMA-262 15.8.2.13:
3827 // Math.pow(-Infinity, 0.5) == Infinity
3828 // Math.sqrt(-Infinity) == NaN
3829 Label done;
3830 __ Move(temp, -V8_INFINITY);
3831 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input);
3832 // Set up Infinity in the delay slot.
3833 // result is overwritten if the branch is not taken.
3834 __ neg_d(result, temp);
3835
3836 // Add +0 to convert -0 to +0.
3837 __ add_d(result, input, kDoubleRegZero);
3838 __ sqrt_d(result, result);
3839 __ bind(&done);
3840 }
3841
3842
DoPower(LPower * instr)3843 void LCodeGen::DoPower(LPower* instr) {
3844 Representation exponent_type = instr->hydrogen()->right()->representation();
3845 // Having marked this as a call, we can use any registers.
3846 // Just make sure that the input/output registers are the expected ones.
3847 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3848 DCHECK(!instr->right()->IsDoubleRegister() ||
3849 ToDoubleRegister(instr->right()).is(f4));
3850 DCHECK(!instr->right()->IsRegister() ||
3851 ToRegister(instr->right()).is(tagged_exponent));
3852 DCHECK(ToDoubleRegister(instr->left()).is(f2));
3853 DCHECK(ToDoubleRegister(instr->result()).is(f0));
3854
3855 if (exponent_type.IsSmi()) {
3856 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3857 __ CallStub(&stub);
3858 } else if (exponent_type.IsTagged()) {
3859 Label no_deopt;
3860 __ JumpIfSmi(tagged_exponent, &no_deopt);
3861 DCHECK(!t3.is(tagged_exponent));
3862 __ lw(t3, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3863 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3864 DeoptimizeIf(ne, instr, t3, Operand(at));
3865 __ bind(&no_deopt);
3866 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3867 __ CallStub(&stub);
3868 } else if (exponent_type.IsInteger32()) {
3869 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3870 __ CallStub(&stub);
3871 } else {
3872 DCHECK(exponent_type.IsDouble());
3873 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3874 __ CallStub(&stub);
3875 }
3876 }
3877
3878
DoMathExp(LMathExp * instr)3879 void LCodeGen::DoMathExp(LMathExp* instr) {
3880 DoubleRegister input = ToDoubleRegister(instr->value());
3881 DoubleRegister result = ToDoubleRegister(instr->result());
3882 DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
3883 DoubleRegister double_scratch2 = double_scratch0();
3884 Register temp1 = ToRegister(instr->temp1());
3885 Register temp2 = ToRegister(instr->temp2());
3886
3887 MathExpGenerator::EmitMathExp(
3888 masm(), input, result, double_scratch1, double_scratch2,
3889 temp1, temp2, scratch0());
3890 }
3891
3892
DoMathLog(LMathLog * instr)3893 void LCodeGen::DoMathLog(LMathLog* instr) {
3894 __ PrepareCallCFunction(0, 1, scratch0());
3895 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3896 __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
3897 0, 1);
3898 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3899 }
3900
3901
DoMathClz32(LMathClz32 * instr)3902 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3903 Register input = ToRegister(instr->value());
3904 Register result = ToRegister(instr->result());
3905 __ Clz(result, input);
3906 }
3907
3908
DoInvokeFunction(LInvokeFunction * instr)3909 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3910 DCHECK(ToRegister(instr->context()).is(cp));
3911 DCHECK(ToRegister(instr->function()).is(a1));
3912 DCHECK(instr->HasPointerMap());
3913
3914 Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3915 if (known_function.is_null()) {
3916 LPointerMap* pointers = instr->pointer_map();
3917 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3918 ParameterCount count(instr->arity());
3919 __ InvokeFunction(a1, count, CALL_FUNCTION, generator);
3920 } else {
3921 CallKnownFunction(known_function,
3922 instr->hydrogen()->formal_parameter_count(),
3923 instr->arity(),
3924 instr,
3925 A1_CONTAINS_TARGET);
3926 }
3927 }
3928
3929
DoTailCallThroughMegamorphicCache(LTailCallThroughMegamorphicCache * instr)3930 void LCodeGen::DoTailCallThroughMegamorphicCache(
3931 LTailCallThroughMegamorphicCache* instr) {
3932 Register receiver = ToRegister(instr->receiver());
3933 Register name = ToRegister(instr->name());
3934 DCHECK(receiver.is(LoadDescriptor::ReceiverRegister()));
3935 DCHECK(name.is(LoadDescriptor::NameRegister()));
3936 DCHECK(receiver.is(a1));
3937 DCHECK(name.is(a2));
3938
3939 Register scratch = a3;
3940 Register extra = t0;
3941 Register extra2 = t1;
3942 Register extra3 = t2;
3943
3944 // Important for the tail-call.
3945 bool must_teardown_frame = NeedsEagerFrame();
3946
3947 // The probe will tail call to a handler if found.
3948 isolate()->stub_cache()->GenerateProbe(masm(), instr->hydrogen()->flags(),
3949 must_teardown_frame, receiver, name,
3950 scratch, extra, extra2, extra3);
3951
3952 // Tail call to miss if we ended up here.
3953 if (must_teardown_frame) __ LeaveFrame(StackFrame::INTERNAL);
3954 LoadIC::GenerateMiss(masm());
3955 }
3956
3957
DoCallWithDescriptor(LCallWithDescriptor * instr)3958 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3959 DCHECK(ToRegister(instr->result()).is(v0));
3960
3961 LPointerMap* pointers = instr->pointer_map();
3962 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3963
3964 if (instr->target()->IsConstantOperand()) {
3965 LConstantOperand* target = LConstantOperand::cast(instr->target());
3966 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3967 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3968 __ Call(code, RelocInfo::CODE_TARGET);
3969 } else {
3970 DCHECK(instr->target()->IsRegister());
3971 Register target = ToRegister(instr->target());
3972 generator.BeforeCall(__ CallSize(target));
3973 __ Addu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3974 __ Call(target);
3975 }
3976 generator.AfterCall();
3977 }
3978
3979
DoCallJSFunction(LCallJSFunction * instr)3980 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
3981 DCHECK(ToRegister(instr->function()).is(a1));
3982 DCHECK(ToRegister(instr->result()).is(v0));
3983
3984 if (instr->hydrogen()->pass_argument_count()) {
3985 __ li(a0, Operand(instr->arity()));
3986 }
3987
3988 // Change context.
3989 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
3990
3991 // Load the code entry address
3992 __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
3993 __ Call(at);
3994
3995 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3996 }
3997
3998
DoCallFunction(LCallFunction * instr)3999 void LCodeGen::DoCallFunction(LCallFunction* instr) {
4000 DCHECK(ToRegister(instr->context()).is(cp));
4001 DCHECK(ToRegister(instr->function()).is(a1));
4002 DCHECK(ToRegister(instr->result()).is(v0));
4003
4004 int arity = instr->arity();
4005 CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
4006 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4007 }
4008
4009
DoCallNew(LCallNew * instr)4010 void LCodeGen::DoCallNew(LCallNew* instr) {
4011 DCHECK(ToRegister(instr->context()).is(cp));
4012 DCHECK(ToRegister(instr->constructor()).is(a1));
4013 DCHECK(ToRegister(instr->result()).is(v0));
4014
4015 __ li(a0, Operand(instr->arity()));
4016 // No cell in a2 for construct type feedback in optimized code
4017 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
4018 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
4019 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4020 }
4021
4022
DoCallNewArray(LCallNewArray * instr)4023 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
4024 DCHECK(ToRegister(instr->context()).is(cp));
4025 DCHECK(ToRegister(instr->constructor()).is(a1));
4026 DCHECK(ToRegister(instr->result()).is(v0));
4027
4028 __ li(a0, Operand(instr->arity()));
4029 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
4030 ElementsKind kind = instr->hydrogen()->elements_kind();
4031 AllocationSiteOverrideMode override_mode =
4032 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
4033 ? DISABLE_ALLOCATION_SITES
4034 : DONT_OVERRIDE;
4035
4036 if (instr->arity() == 0) {
4037 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
4038 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4039 } else if (instr->arity() == 1) {
4040 Label done;
4041 if (IsFastPackedElementsKind(kind)) {
4042 Label packed_case;
4043 // We might need a change here,
4044 // look at the first argument.
4045 __ lw(t1, MemOperand(sp, 0));
4046 __ Branch(&packed_case, eq, t1, Operand(zero_reg));
4047
4048 ElementsKind holey_kind = GetHoleyElementsKind(kind);
4049 ArraySingleArgumentConstructorStub stub(isolate(),
4050 holey_kind,
4051 override_mode);
4052 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4053 __ jmp(&done);
4054 __ bind(&packed_case);
4055 }
4056
4057 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
4058 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4059 __ bind(&done);
4060 } else {
4061 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
4062 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4063 }
4064 }
4065
4066
DoCallRuntime(LCallRuntime * instr)4067 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
4068 CallRuntime(instr->function(), instr->arity(), instr);
4069 }
4070
4071
DoStoreCodeEntry(LStoreCodeEntry * instr)4072 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
4073 Register function = ToRegister(instr->function());
4074 Register code_object = ToRegister(instr->code_object());
4075 __ Addu(code_object, code_object,
4076 Operand(Code::kHeaderSize - kHeapObjectTag));
4077 __ sw(code_object,
4078 FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4079 }
4080
4081
DoInnerAllocatedObject(LInnerAllocatedObject * instr)4082 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
4083 Register result = ToRegister(instr->result());
4084 Register base = ToRegister(instr->base_object());
4085 if (instr->offset()->IsConstantOperand()) {
4086 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
4087 __ Addu(result, base, Operand(ToInteger32(offset)));
4088 } else {
4089 Register offset = ToRegister(instr->offset());
4090 __ Addu(result, base, offset);
4091 }
4092 }
4093
4094
DoStoreNamedField(LStoreNamedField * instr)4095 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
4096 Representation representation = instr->representation();
4097
4098 Register object = ToRegister(instr->object());
4099 Register scratch = scratch0();
4100 HObjectAccess access = instr->hydrogen()->access();
4101 int offset = access.offset();
4102
4103 if (access.IsExternalMemory()) {
4104 Register value = ToRegister(instr->value());
4105 MemOperand operand = MemOperand(object, offset);
4106 __ Store(value, operand, representation);
4107 return;
4108 }
4109
4110 __ AssertNotSmi(object);
4111
4112 DCHECK(!representation.IsSmi() ||
4113 !instr->value()->IsConstantOperand() ||
4114 IsSmi(LConstantOperand::cast(instr->value())));
4115 if (representation.IsDouble()) {
4116 DCHECK(access.IsInobject());
4117 DCHECK(!instr->hydrogen()->has_transition());
4118 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4119 DoubleRegister value = ToDoubleRegister(instr->value());
4120 __ sdc1(value, FieldMemOperand(object, offset));
4121 return;
4122 }
4123
4124 if (instr->hydrogen()->has_transition()) {
4125 Handle<Map> transition = instr->hydrogen()->transition_map();
4126 AddDeprecationDependency(transition);
4127 __ li(scratch, Operand(transition));
4128 __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
4129 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
4130 Register temp = ToRegister(instr->temp());
4131 // Update the write barrier for the map field.
4132 __ RecordWriteForMap(object,
4133 scratch,
4134 temp,
4135 GetRAState(),
4136 kSaveFPRegs);
4137 }
4138 }
4139
4140 // Do the store.
4141 Register value = ToRegister(instr->value());
4142 if (access.IsInobject()) {
4143 MemOperand operand = FieldMemOperand(object, offset);
4144 __ Store(value, operand, representation);
4145 if (instr->hydrogen()->NeedsWriteBarrier()) {
4146 // Update the write barrier for the object for in-object properties.
4147 __ RecordWriteField(object,
4148 offset,
4149 value,
4150 scratch,
4151 GetRAState(),
4152 kSaveFPRegs,
4153 EMIT_REMEMBERED_SET,
4154 instr->hydrogen()->SmiCheckForWriteBarrier(),
4155 instr->hydrogen()->PointersToHereCheckForValue());
4156 }
4157 } else {
4158 __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
4159 MemOperand operand = FieldMemOperand(scratch, offset);
4160 __ Store(value, operand, representation);
4161 if (instr->hydrogen()->NeedsWriteBarrier()) {
4162 // Update the write barrier for the properties array.
4163 // object is used as a scratch register.
4164 __ RecordWriteField(scratch,
4165 offset,
4166 value,
4167 object,
4168 GetRAState(),
4169 kSaveFPRegs,
4170 EMIT_REMEMBERED_SET,
4171 instr->hydrogen()->SmiCheckForWriteBarrier(),
4172 instr->hydrogen()->PointersToHereCheckForValue());
4173 }
4174 }
4175 }
4176
4177
DoStoreNamedGeneric(LStoreNamedGeneric * instr)4178 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
4179 DCHECK(ToRegister(instr->context()).is(cp));
4180 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4181 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4182
4183 __ li(StoreDescriptor::NameRegister(), Operand(instr->name()));
4184 Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
4185 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4186 }
4187
4188
DoBoundsCheck(LBoundsCheck * instr)4189 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
4190 Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
4191 Operand operand(0);
4192 Register reg;
4193 if (instr->index()->IsConstantOperand()) {
4194 operand = ToOperand(instr->index());
4195 reg = ToRegister(instr->length());
4196 cc = CommuteCondition(cc);
4197 } else {
4198 reg = ToRegister(instr->index());
4199 operand = ToOperand(instr->length());
4200 }
4201 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
4202 Label done;
4203 __ Branch(&done, NegateCondition(cc), reg, operand);
4204 __ stop("eliminated bounds check failed");
4205 __ bind(&done);
4206 } else {
4207 DeoptimizeIf(cc, instr, reg, operand);
4208 }
4209 }
4210
4211
DoStoreKeyedExternalArray(LStoreKeyed * instr)4212 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
4213 Register external_pointer = ToRegister(instr->elements());
4214 Register key = no_reg;
4215 ElementsKind elements_kind = instr->elements_kind();
4216 bool key_is_constant = instr->key()->IsConstantOperand();
4217 int constant_key = 0;
4218 if (key_is_constant) {
4219 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4220 if (constant_key & 0xF0000000) {
4221 Abort(kArrayIndexConstantValueTooBig);
4222 }
4223 } else {
4224 key = ToRegister(instr->key());
4225 }
4226 int element_size_shift = ElementsKindToShiftSize(elements_kind);
4227 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
4228 ? (element_size_shift - kSmiTagSize) : element_size_shift;
4229 int base_offset = instr->base_offset();
4230
4231 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
4232 elements_kind == FLOAT32_ELEMENTS ||
4233 elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
4234 elements_kind == FLOAT64_ELEMENTS) {
4235 Register address = scratch0();
4236 FPURegister value(ToDoubleRegister(instr->value()));
4237 if (key_is_constant) {
4238 if (constant_key != 0) {
4239 __ Addu(address, external_pointer,
4240 Operand(constant_key << element_size_shift));
4241 } else {
4242 address = external_pointer;
4243 }
4244 } else {
4245 __ sll(address, key, shift_size);
4246 __ Addu(address, external_pointer, address);
4247 }
4248
4249 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
4250 elements_kind == FLOAT32_ELEMENTS) {
4251 __ cvt_s_d(double_scratch0(), value);
4252 __ swc1(double_scratch0(), MemOperand(address, base_offset));
4253 } else { // Storing doubles, not floats.
4254 __ sdc1(value, MemOperand(address, base_offset));
4255 }
4256 } else {
4257 Register value(ToRegister(instr->value()));
4258 MemOperand mem_operand = PrepareKeyedOperand(
4259 key, external_pointer, key_is_constant, constant_key,
4260 element_size_shift, shift_size,
4261 base_offset);
4262 switch (elements_kind) {
4263 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
4264 case EXTERNAL_INT8_ELEMENTS:
4265 case EXTERNAL_UINT8_ELEMENTS:
4266 case UINT8_ELEMENTS:
4267 case UINT8_CLAMPED_ELEMENTS:
4268 case INT8_ELEMENTS:
4269 __ sb(value, mem_operand);
4270 break;
4271 case EXTERNAL_INT16_ELEMENTS:
4272 case EXTERNAL_UINT16_ELEMENTS:
4273 case INT16_ELEMENTS:
4274 case UINT16_ELEMENTS:
4275 __ sh(value, mem_operand);
4276 break;
4277 case EXTERNAL_INT32_ELEMENTS:
4278 case EXTERNAL_UINT32_ELEMENTS:
4279 case INT32_ELEMENTS:
4280 case UINT32_ELEMENTS:
4281 __ sw(value, mem_operand);
4282 break;
4283 case FLOAT32_ELEMENTS:
4284 case FLOAT64_ELEMENTS:
4285 case EXTERNAL_FLOAT32_ELEMENTS:
4286 case EXTERNAL_FLOAT64_ELEMENTS:
4287 case FAST_DOUBLE_ELEMENTS:
4288 case FAST_ELEMENTS:
4289 case FAST_SMI_ELEMENTS:
4290 case FAST_HOLEY_DOUBLE_ELEMENTS:
4291 case FAST_HOLEY_ELEMENTS:
4292 case FAST_HOLEY_SMI_ELEMENTS:
4293 case DICTIONARY_ELEMENTS:
4294 case SLOPPY_ARGUMENTS_ELEMENTS:
4295 UNREACHABLE();
4296 break;
4297 }
4298 }
4299 }
4300
4301
DoStoreKeyedFixedDoubleArray(LStoreKeyed * instr)4302 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4303 DoubleRegister value = ToDoubleRegister(instr->value());
4304 Register elements = ToRegister(instr->elements());
4305 Register scratch = scratch0();
4306 DoubleRegister double_scratch = double_scratch0();
4307 bool key_is_constant = instr->key()->IsConstantOperand();
4308 int base_offset = instr->base_offset();
4309 Label not_nan, done;
4310
4311 // Calculate the effective address of the slot in the array to store the
4312 // double value.
4313 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
4314 if (key_is_constant) {
4315 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4316 if (constant_key & 0xF0000000) {
4317 Abort(kArrayIndexConstantValueTooBig);
4318 }
4319 __ Addu(scratch, elements,
4320 Operand((constant_key << element_size_shift) + base_offset));
4321 } else {
4322 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
4323 ? (element_size_shift - kSmiTagSize) : element_size_shift;
4324 __ Addu(scratch, elements, Operand(base_offset));
4325 __ sll(at, ToRegister(instr->key()), shift_size);
4326 __ Addu(scratch, scratch, at);
4327 }
4328
4329 if (instr->NeedsCanonicalization()) {
4330 Label is_nan;
4331 // Check for NaN. All NaNs must be canonicalized.
4332 __ BranchF(NULL, &is_nan, eq, value, value);
4333 __ Branch(¬_nan);
4334
4335 // Only load canonical NaN if the comparison above set the overflow.
4336 __ bind(&is_nan);
4337 __ LoadRoot(at, Heap::kNanValueRootIndex);
4338 __ ldc1(double_scratch, FieldMemOperand(at, HeapNumber::kValueOffset));
4339 __ sdc1(double_scratch, MemOperand(scratch, 0));
4340 __ Branch(&done);
4341 }
4342
4343 __ bind(¬_nan);
4344 __ sdc1(value, MemOperand(scratch, 0));
4345 __ bind(&done);
4346 }
4347
4348
DoStoreKeyedFixedArray(LStoreKeyed * instr)4349 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4350 Register value = ToRegister(instr->value());
4351 Register elements = ToRegister(instr->elements());
4352 Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
4353 : no_reg;
4354 Register scratch = scratch0();
4355 Register store_base = scratch;
4356 int offset = instr->base_offset();
4357
4358 // Do the store.
4359 if (instr->key()->IsConstantOperand()) {
4360 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4361 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4362 offset += ToInteger32(const_operand) * kPointerSize;
4363 store_base = elements;
4364 } else {
4365 // Even though the HLoadKeyed instruction forces the input
4366 // representation for the key to be an integer, the input gets replaced
4367 // during bound check elimination with the index argument to the bounds
4368 // check, which can be tagged, so that case must be handled here, too.
4369 if (instr->hydrogen()->key()->representation().IsSmi()) {
4370 __ sll(scratch, key, kPointerSizeLog2 - kSmiTagSize);
4371 __ addu(scratch, elements, scratch);
4372 } else {
4373 __ sll(scratch, key, kPointerSizeLog2);
4374 __ addu(scratch, elements, scratch);
4375 }
4376 }
4377 __ sw(value, MemOperand(store_base, offset));
4378
4379 if (instr->hydrogen()->NeedsWriteBarrier()) {
4380 SmiCheck check_needed =
4381 instr->hydrogen()->value()->type().IsHeapObject()
4382 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4383 // Compute address of modified element and store it into key register.
4384 __ Addu(key, store_base, Operand(offset));
4385 __ RecordWrite(elements,
4386 key,
4387 value,
4388 GetRAState(),
4389 kSaveFPRegs,
4390 EMIT_REMEMBERED_SET,
4391 check_needed,
4392 instr->hydrogen()->PointersToHereCheckForValue());
4393 }
4394 }
4395
4396
DoStoreKeyed(LStoreKeyed * instr)4397 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4398 // By cases: external, fast double
4399 if (instr->is_typed_elements()) {
4400 DoStoreKeyedExternalArray(instr);
4401 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4402 DoStoreKeyedFixedDoubleArray(instr);
4403 } else {
4404 DoStoreKeyedFixedArray(instr);
4405 }
4406 }
4407
4408
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)4409 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4410 DCHECK(ToRegister(instr->context()).is(cp));
4411 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4412 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4413 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4414
4415 Handle<Code> ic =
4416 CodeFactory::KeyedStoreIC(isolate(), instr->strict_mode()).code();
4417 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4418 }
4419
4420
DoTransitionElementsKind(LTransitionElementsKind * instr)4421 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4422 Register object_reg = ToRegister(instr->object());
4423 Register scratch = scratch0();
4424
4425 Handle<Map> from_map = instr->original_map();
4426 Handle<Map> to_map = instr->transitioned_map();
4427 ElementsKind from_kind = instr->from_kind();
4428 ElementsKind to_kind = instr->to_kind();
4429
4430 Label not_applicable;
4431 __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4432 __ Branch(¬_applicable, ne, scratch, Operand(from_map));
4433
4434 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4435 Register new_map_reg = ToRegister(instr->new_map_temp());
4436 __ li(new_map_reg, Operand(to_map));
4437 __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4438 // Write barrier.
4439 __ RecordWriteForMap(object_reg,
4440 new_map_reg,
4441 scratch,
4442 GetRAState(),
4443 kDontSaveFPRegs);
4444 } else {
4445 DCHECK(object_reg.is(a0));
4446 DCHECK(ToRegister(instr->context()).is(cp));
4447 PushSafepointRegistersScope scope(this);
4448 __ li(a1, Operand(to_map));
4449 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4450 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4451 __ CallStub(&stub);
4452 RecordSafepointWithRegisters(
4453 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
4454 }
4455 __ bind(¬_applicable);
4456 }
4457
4458
DoTrapAllocationMemento(LTrapAllocationMemento * instr)4459 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4460 Register object = ToRegister(instr->object());
4461 Register temp = ToRegister(instr->temp());
4462 Label no_memento_found;
4463 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found,
4464 ne, &no_memento_found);
4465 DeoptimizeIf(al, instr);
4466 __ bind(&no_memento_found);
4467 }
4468
4469
DoStringAdd(LStringAdd * instr)4470 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4471 DCHECK(ToRegister(instr->context()).is(cp));
4472 DCHECK(ToRegister(instr->left()).is(a1));
4473 DCHECK(ToRegister(instr->right()).is(a0));
4474 StringAddStub stub(isolate(),
4475 instr->hydrogen()->flags(),
4476 instr->hydrogen()->pretenure_flag());
4477 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4478 }
4479
4480
DoStringCharCodeAt(LStringCharCodeAt * instr)4481 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4482 class DeferredStringCharCodeAt FINAL : public LDeferredCode {
4483 public:
4484 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4485 : LDeferredCode(codegen), instr_(instr) { }
4486 virtual void Generate() OVERRIDE {
4487 codegen()->DoDeferredStringCharCodeAt(instr_);
4488 }
4489 virtual LInstruction* instr() OVERRIDE { return instr_; }
4490 private:
4491 LStringCharCodeAt* instr_;
4492 };
4493
4494 DeferredStringCharCodeAt* deferred =
4495 new(zone()) DeferredStringCharCodeAt(this, instr);
4496 StringCharLoadGenerator::Generate(masm(),
4497 ToRegister(instr->string()),
4498 ToRegister(instr->index()),
4499 ToRegister(instr->result()),
4500 deferred->entry());
4501 __ bind(deferred->exit());
4502 }
4503
4504
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)4505 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4506 Register string = ToRegister(instr->string());
4507 Register result = ToRegister(instr->result());
4508 Register scratch = scratch0();
4509
4510 // TODO(3095996): Get rid of this. For now, we need to make the
4511 // result register contain a valid pointer because it is already
4512 // contained in the register pointer map.
4513 __ mov(result, zero_reg);
4514
4515 PushSafepointRegistersScope scope(this);
4516 __ push(string);
4517 // Push the index as a smi. This is safe because of the checks in
4518 // DoStringCharCodeAt above.
4519 if (instr->index()->IsConstantOperand()) {
4520 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4521 __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
4522 __ push(scratch);
4523 } else {
4524 Register index = ToRegister(instr->index());
4525 __ SmiTag(index);
4526 __ push(index);
4527 }
4528 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4529 instr->context());
4530 __ AssertSmi(v0);
4531 __ SmiUntag(v0);
4532 __ StoreToSafepointRegisterSlot(v0, result);
4533 }
4534
4535
DoStringCharFromCode(LStringCharFromCode * instr)4536 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4537 class DeferredStringCharFromCode FINAL : public LDeferredCode {
4538 public:
4539 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4540 : LDeferredCode(codegen), instr_(instr) { }
4541 virtual void Generate() OVERRIDE {
4542 codegen()->DoDeferredStringCharFromCode(instr_);
4543 }
4544 virtual LInstruction* instr() OVERRIDE { return instr_; }
4545 private:
4546 LStringCharFromCode* instr_;
4547 };
4548
4549 DeferredStringCharFromCode* deferred =
4550 new(zone()) DeferredStringCharFromCode(this, instr);
4551
4552 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4553 Register char_code = ToRegister(instr->char_code());
4554 Register result = ToRegister(instr->result());
4555 Register scratch = scratch0();
4556 DCHECK(!char_code.is(result));
4557
4558 __ Branch(deferred->entry(), hi,
4559 char_code, Operand(String::kMaxOneByteCharCode));
4560 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4561 __ sll(scratch, char_code, kPointerSizeLog2);
4562 __ Addu(result, result, scratch);
4563 __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4564 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4565 __ Branch(deferred->entry(), eq, result, Operand(scratch));
4566 __ bind(deferred->exit());
4567 }
4568
4569
DoDeferredStringCharFromCode(LStringCharFromCode * instr)4570 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4571 Register char_code = ToRegister(instr->char_code());
4572 Register result = ToRegister(instr->result());
4573
4574 // TODO(3095996): Get rid of this. For now, we need to make the
4575 // result register contain a valid pointer because it is already
4576 // contained in the register pointer map.
4577 __ mov(result, zero_reg);
4578
4579 PushSafepointRegistersScope scope(this);
4580 __ SmiTag(char_code);
4581 __ push(char_code);
4582 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
4583 __ StoreToSafepointRegisterSlot(v0, result);
4584 }
4585
4586
DoInteger32ToDouble(LInteger32ToDouble * instr)4587 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4588 LOperand* input = instr->value();
4589 DCHECK(input->IsRegister() || input->IsStackSlot());
4590 LOperand* output = instr->result();
4591 DCHECK(output->IsDoubleRegister());
4592 FPURegister single_scratch = double_scratch0().low();
4593 if (input->IsStackSlot()) {
4594 Register scratch = scratch0();
4595 __ lw(scratch, ToMemOperand(input));
4596 __ mtc1(scratch, single_scratch);
4597 } else {
4598 __ mtc1(ToRegister(input), single_scratch);
4599 }
4600 __ cvt_d_w(ToDoubleRegister(output), single_scratch);
4601 }
4602
4603
DoUint32ToDouble(LUint32ToDouble * instr)4604 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4605 LOperand* input = instr->value();
4606 LOperand* output = instr->result();
4607
4608 FPURegister dbl_scratch = double_scratch0();
4609 __ mtc1(ToRegister(input), dbl_scratch);
4610 __ Cvt_d_uw(ToDoubleRegister(output), dbl_scratch, f22);
4611 }
4612
4613
DoNumberTagI(LNumberTagI * instr)4614 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4615 class DeferredNumberTagI FINAL : public LDeferredCode {
4616 public:
4617 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4618 : LDeferredCode(codegen), instr_(instr) { }
4619 virtual void Generate() OVERRIDE {
4620 codegen()->DoDeferredNumberTagIU(instr_,
4621 instr_->value(),
4622 instr_->temp1(),
4623 instr_->temp2(),
4624 SIGNED_INT32);
4625 }
4626 virtual LInstruction* instr() OVERRIDE { return instr_; }
4627 private:
4628 LNumberTagI* instr_;
4629 };
4630
4631 Register src = ToRegister(instr->value());
4632 Register dst = ToRegister(instr->result());
4633 Register overflow = scratch0();
4634
4635 DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
4636 __ SmiTagCheckOverflow(dst, src, overflow);
4637 __ BranchOnOverflow(deferred->entry(), overflow);
4638 __ bind(deferred->exit());
4639 }
4640
4641
DoNumberTagU(LNumberTagU * instr)4642 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4643 class DeferredNumberTagU FINAL : public LDeferredCode {
4644 public:
4645 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4646 : LDeferredCode(codegen), instr_(instr) { }
4647 virtual void Generate() OVERRIDE {
4648 codegen()->DoDeferredNumberTagIU(instr_,
4649 instr_->value(),
4650 instr_->temp1(),
4651 instr_->temp2(),
4652 UNSIGNED_INT32);
4653 }
4654 virtual LInstruction* instr() OVERRIDE { return instr_; }
4655 private:
4656 LNumberTagU* instr_;
4657 };
4658
4659 Register input = ToRegister(instr->value());
4660 Register result = ToRegister(instr->result());
4661
4662 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4663 __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue));
4664 __ SmiTag(result, input);
4665 __ bind(deferred->exit());
4666 }
4667
4668
DoDeferredNumberTagIU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2,IntegerSignedness signedness)4669 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4670 LOperand* value,
4671 LOperand* temp1,
4672 LOperand* temp2,
4673 IntegerSignedness signedness) {
4674 Label done, slow;
4675 Register src = ToRegister(value);
4676 Register dst = ToRegister(instr->result());
4677 Register tmp1 = scratch0();
4678 Register tmp2 = ToRegister(temp1);
4679 Register tmp3 = ToRegister(temp2);
4680 DoubleRegister dbl_scratch = double_scratch0();
4681
4682 if (signedness == SIGNED_INT32) {
4683 // There was overflow, so bits 30 and 31 of the original integer
4684 // disagree. Try to allocate a heap number in new space and store
4685 // the value in there. If that fails, call the runtime system.
4686 if (dst.is(src)) {
4687 __ SmiUntag(src, dst);
4688 __ Xor(src, src, Operand(0x80000000));
4689 }
4690 __ mtc1(src, dbl_scratch);
4691 __ cvt_d_w(dbl_scratch, dbl_scratch);
4692 } else {
4693 __ mtc1(src, dbl_scratch);
4694 __ Cvt_d_uw(dbl_scratch, dbl_scratch, f22);
4695 }
4696
4697 if (FLAG_inline_new) {
4698 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4699 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, DONT_TAG_RESULT);
4700 __ Branch(&done);
4701 }
4702
4703 // Slow case: Call the runtime system to do the number allocation.
4704 __ bind(&slow);
4705 {
4706 // TODO(3095996): Put a valid pointer value in the stack slot where the
4707 // result register is stored, as this register is in the pointer map, but
4708 // contains an integer value.
4709 __ mov(dst, zero_reg);
4710
4711 // Preserve the value of all registers.
4712 PushSafepointRegistersScope scope(this);
4713
4714 // NumberTagI and NumberTagD use the context from the frame, rather than
4715 // the environment's HContext or HInlinedContext value.
4716 // They only call Runtime::kAllocateHeapNumber.
4717 // The corresponding HChange instructions are added in a phase that does
4718 // not have easy access to the local context.
4719 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4720 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4721 RecordSafepointWithRegisters(
4722 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4723 __ Subu(v0, v0, kHeapObjectTag);
4724 __ StoreToSafepointRegisterSlot(v0, dst);
4725 }
4726
4727
4728 // Done. Put the value in dbl_scratch into the value of the allocated heap
4729 // number.
4730 __ bind(&done);
4731 __ sdc1(dbl_scratch, MemOperand(dst, HeapNumber::kValueOffset));
4732 __ Addu(dst, dst, kHeapObjectTag);
4733 }
4734
4735
DoNumberTagD(LNumberTagD * instr)4736 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4737 class DeferredNumberTagD FINAL : public LDeferredCode {
4738 public:
4739 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4740 : LDeferredCode(codegen), instr_(instr) { }
4741 virtual void Generate() OVERRIDE {
4742 codegen()->DoDeferredNumberTagD(instr_);
4743 }
4744 virtual LInstruction* instr() OVERRIDE { return instr_; }
4745 private:
4746 LNumberTagD* instr_;
4747 };
4748
4749 DoubleRegister input_reg = ToDoubleRegister(instr->value());
4750 Register scratch = scratch0();
4751 Register reg = ToRegister(instr->result());
4752 Register temp1 = ToRegister(instr->temp());
4753 Register temp2 = ToRegister(instr->temp2());
4754
4755 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4756 if (FLAG_inline_new) {
4757 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4758 // We want the untagged address first for performance
4759 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(),
4760 DONT_TAG_RESULT);
4761 } else {
4762 __ Branch(deferred->entry());
4763 }
4764 __ bind(deferred->exit());
4765 __ sdc1(input_reg, MemOperand(reg, HeapNumber::kValueOffset));
4766 // Now that we have finished with the object's real address tag it
4767 __ Addu(reg, reg, kHeapObjectTag);
4768 }
4769
4770
DoDeferredNumberTagD(LNumberTagD * instr)4771 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4772 // TODO(3095996): Get rid of this. For now, we need to make the
4773 // result register contain a valid pointer because it is already
4774 // contained in the register pointer map.
4775 Register reg = ToRegister(instr->result());
4776 __ mov(reg, zero_reg);
4777
4778 PushSafepointRegistersScope scope(this);
4779 // NumberTagI and NumberTagD use the context from the frame, rather than
4780 // the environment's HContext or HInlinedContext value.
4781 // They only call Runtime::kAllocateHeapNumber.
4782 // The corresponding HChange instructions are added in a phase that does
4783 // not have easy access to the local context.
4784 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4785 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4786 RecordSafepointWithRegisters(
4787 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4788 __ Subu(v0, v0, kHeapObjectTag);
4789 __ StoreToSafepointRegisterSlot(v0, reg);
4790 }
4791
4792
DoSmiTag(LSmiTag * instr)4793 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4794 HChange* hchange = instr->hydrogen();
4795 Register input = ToRegister(instr->value());
4796 Register output = ToRegister(instr->result());
4797 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4798 hchange->value()->CheckFlag(HValue::kUint32)) {
4799 __ And(at, input, Operand(0xc0000000));
4800 DeoptimizeIf(ne, instr, at, Operand(zero_reg));
4801 }
4802 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4803 !hchange->value()->CheckFlag(HValue::kUint32)) {
4804 __ SmiTagCheckOverflow(output, input, at);
4805 DeoptimizeIf(lt, instr, at, Operand(zero_reg));
4806 } else {
4807 __ SmiTag(output, input);
4808 }
4809 }
4810
4811
DoSmiUntag(LSmiUntag * instr)4812 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4813 Register scratch = scratch0();
4814 Register input = ToRegister(instr->value());
4815 Register result = ToRegister(instr->result());
4816 if (instr->needs_check()) {
4817 STATIC_ASSERT(kHeapObjectTag == 1);
4818 // If the input is a HeapObject, value of scratch won't be zero.
4819 __ And(scratch, input, Operand(kHeapObjectTag));
4820 __ SmiUntag(result, input);
4821 DeoptimizeIf(ne, instr, scratch, Operand(zero_reg));
4822 } else {
4823 __ SmiUntag(result, input);
4824 }
4825 }
4826
4827
EmitNumberUntagD(LNumberUntagD * instr,Register input_reg,DoubleRegister result_reg,NumberUntagDMode mode)4828 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4829 DoubleRegister result_reg,
4830 NumberUntagDMode mode) {
4831 bool can_convert_undefined_to_nan =
4832 instr->hydrogen()->can_convert_undefined_to_nan();
4833 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4834
4835 Register scratch = scratch0();
4836 Label convert, load_smi, done;
4837 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4838 // Smi check.
4839 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4840 // Heap number map check.
4841 __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4842 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4843 if (can_convert_undefined_to_nan) {
4844 __ Branch(&convert, ne, scratch, Operand(at));
4845 } else {
4846 DeoptimizeIf(ne, instr, scratch, Operand(at));
4847 }
4848 // Load heap number.
4849 __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4850 if (deoptimize_on_minus_zero) {
4851 __ mfc1(at, result_reg.low());
4852 __ Branch(&done, ne, at, Operand(zero_reg));
4853 __ Mfhc1(scratch, result_reg);
4854 DeoptimizeIf(eq, instr, scratch, Operand(HeapNumber::kSignMask));
4855 }
4856 __ Branch(&done);
4857 if (can_convert_undefined_to_nan) {
4858 __ bind(&convert);
4859 // Convert undefined (and hole) to NaN.
4860 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4861 DeoptimizeIf(ne, instr, input_reg, Operand(at));
4862 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4863 __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4864 __ Branch(&done);
4865 }
4866 } else {
4867 __ SmiUntag(scratch, input_reg);
4868 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4869 }
4870 // Smi to double register conversion
4871 __ bind(&load_smi);
4872 // scratch: untagged value of input_reg
4873 __ mtc1(scratch, result_reg);
4874 __ cvt_d_w(result_reg, result_reg);
4875 __ bind(&done);
4876 }
4877
4878
DoDeferredTaggedToI(LTaggedToI * instr)4879 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4880 Register input_reg = ToRegister(instr->value());
4881 Register scratch1 = scratch0();
4882 Register scratch2 = ToRegister(instr->temp());
4883 DoubleRegister double_scratch = double_scratch0();
4884 DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4885
4886 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4887 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4888
4889 Label done;
4890
4891 // The input is a tagged HeapObject.
4892 // Heap number map check.
4893 __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4894 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4895 // This 'at' value and scratch1 map value are used for tests in both clauses
4896 // of the if.
4897
4898 if (instr->truncating()) {
4899 // Performs a truncating conversion of a floating point number as used by
4900 // the JS bitwise operations.
4901 Label no_heap_number, check_bools, check_false;
4902 // Check HeapNumber map.
4903 __ Branch(USE_DELAY_SLOT, &no_heap_number, ne, scratch1, Operand(at));
4904 __ mov(scratch2, input_reg); // In delay slot.
4905 __ TruncateHeapNumberToI(input_reg, scratch2);
4906 __ Branch(&done);
4907
4908 // Check for Oddballs. Undefined/False is converted to zero and True to one
4909 // for truncating conversions.
4910 __ bind(&no_heap_number);
4911 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4912 __ Branch(&check_bools, ne, input_reg, Operand(at));
4913 DCHECK(ToRegister(instr->result()).is(input_reg));
4914 __ Branch(USE_DELAY_SLOT, &done);
4915 __ mov(input_reg, zero_reg); // In delay slot.
4916
4917 __ bind(&check_bools);
4918 __ LoadRoot(at, Heap::kTrueValueRootIndex);
4919 __ Branch(&check_false, ne, scratch2, Operand(at));
4920 __ Branch(USE_DELAY_SLOT, &done);
4921 __ li(input_reg, Operand(1)); // In delay slot.
4922
4923 __ bind(&check_false);
4924 __ LoadRoot(at, Heap::kFalseValueRootIndex);
4925 DeoptimizeIf(ne, instr, scratch2, Operand(at), "cannot truncate");
4926 __ Branch(USE_DELAY_SLOT, &done);
4927 __ mov(input_reg, zero_reg); // In delay slot.
4928 } else {
4929 DeoptimizeIf(ne, instr, scratch1, Operand(at), "not a heap number");
4930
4931 // Load the double value.
4932 __ ldc1(double_scratch,
4933 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4934
4935 Register except_flag = scratch2;
4936 __ EmitFPUTruncate(kRoundToZero,
4937 input_reg,
4938 double_scratch,
4939 scratch1,
4940 double_scratch2,
4941 except_flag,
4942 kCheckForInexactConversion);
4943
4944 DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg),
4945 "lost precision or NaN");
4946
4947 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4948 __ Branch(&done, ne, input_reg, Operand(zero_reg));
4949
4950 __ Mfhc1(scratch1, double_scratch);
4951 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4952 DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg), "minus zero");
4953 }
4954 }
4955 __ bind(&done);
4956 }
4957
4958
DoTaggedToI(LTaggedToI * instr)4959 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4960 class DeferredTaggedToI FINAL : public LDeferredCode {
4961 public:
4962 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4963 : LDeferredCode(codegen), instr_(instr) { }
4964 virtual void Generate() OVERRIDE {
4965 codegen()->DoDeferredTaggedToI(instr_);
4966 }
4967 virtual LInstruction* instr() OVERRIDE { return instr_; }
4968 private:
4969 LTaggedToI* instr_;
4970 };
4971
4972 LOperand* input = instr->value();
4973 DCHECK(input->IsRegister());
4974 DCHECK(input->Equals(instr->result()));
4975
4976 Register input_reg = ToRegister(input);
4977
4978 if (instr->hydrogen()->value()->representation().IsSmi()) {
4979 __ SmiUntag(input_reg);
4980 } else {
4981 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4982
4983 // Let the deferred code handle the HeapObject case.
4984 __ JumpIfNotSmi(input_reg, deferred->entry());
4985
4986 // Smi to int32 conversion.
4987 __ SmiUntag(input_reg);
4988 __ bind(deferred->exit());
4989 }
4990 }
4991
4992
DoNumberUntagD(LNumberUntagD * instr)4993 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4994 LOperand* input = instr->value();
4995 DCHECK(input->IsRegister());
4996 LOperand* result = instr->result();
4997 DCHECK(result->IsDoubleRegister());
4998
4999 Register input_reg = ToRegister(input);
5000 DoubleRegister result_reg = ToDoubleRegister(result);
5001
5002 HValue* value = instr->hydrogen()->value();
5003 NumberUntagDMode mode = value->representation().IsSmi()
5004 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
5005
5006 EmitNumberUntagD(instr, input_reg, result_reg, mode);
5007 }
5008
5009
DoDoubleToI(LDoubleToI * instr)5010 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
5011 Register result_reg = ToRegister(instr->result());
5012 Register scratch1 = scratch0();
5013 DoubleRegister double_input = ToDoubleRegister(instr->value());
5014
5015 if (instr->truncating()) {
5016 __ TruncateDoubleToI(result_reg, double_input);
5017 } else {
5018 Register except_flag = LCodeGen::scratch1();
5019
5020 __ EmitFPUTruncate(kRoundToMinusInf,
5021 result_reg,
5022 double_input,
5023 scratch1,
5024 double_scratch0(),
5025 except_flag,
5026 kCheckForInexactConversion);
5027
5028 // Deopt if the operation did not succeed (except_flag != 0).
5029 DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg));
5030
5031 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5032 Label done;
5033 __ Branch(&done, ne, result_reg, Operand(zero_reg));
5034 __ Mfhc1(scratch1, double_input);
5035 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
5036 DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg));
5037 __ bind(&done);
5038 }
5039 }
5040 }
5041
5042
DoDoubleToSmi(LDoubleToSmi * instr)5043 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
5044 Register result_reg = ToRegister(instr->result());
5045 Register scratch1 = LCodeGen::scratch0();
5046 DoubleRegister double_input = ToDoubleRegister(instr->value());
5047
5048 if (instr->truncating()) {
5049 __ TruncateDoubleToI(result_reg, double_input);
5050 } else {
5051 Register except_flag = LCodeGen::scratch1();
5052
5053 __ EmitFPUTruncate(kRoundToMinusInf,
5054 result_reg,
5055 double_input,
5056 scratch1,
5057 double_scratch0(),
5058 except_flag,
5059 kCheckForInexactConversion);
5060
5061 // Deopt if the operation did not succeed (except_flag != 0).
5062 DeoptimizeIf(ne, instr, except_flag, Operand(zero_reg));
5063
5064 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5065 Label done;
5066 __ Branch(&done, ne, result_reg, Operand(zero_reg));
5067 __ Mfhc1(scratch1, double_input);
5068 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
5069 DeoptimizeIf(ne, instr, scratch1, Operand(zero_reg));
5070 __ bind(&done);
5071 }
5072 }
5073 __ SmiTagCheckOverflow(result_reg, result_reg, scratch1);
5074 DeoptimizeIf(lt, instr, scratch1, Operand(zero_reg));
5075 }
5076
5077
DoCheckSmi(LCheckSmi * instr)5078 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
5079 LOperand* input = instr->value();
5080 __ SmiTst(ToRegister(input), at);
5081 DeoptimizeIf(ne, instr, at, Operand(zero_reg));
5082 }
5083
5084
DoCheckNonSmi(LCheckNonSmi * instr)5085 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
5086 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
5087 LOperand* input = instr->value();
5088 __ SmiTst(ToRegister(input), at);
5089 DeoptimizeIf(eq, instr, at, Operand(zero_reg));
5090 }
5091 }
5092
5093
DoCheckInstanceType(LCheckInstanceType * instr)5094 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
5095 Register input = ToRegister(instr->value());
5096 Register scratch = scratch0();
5097
5098 __ GetObjectType(input, scratch, scratch);
5099
5100 if (instr->hydrogen()->is_interval_check()) {
5101 InstanceType first;
5102 InstanceType last;
5103 instr->hydrogen()->GetCheckInterval(&first, &last);
5104
5105 // If there is only one type in the interval check for equality.
5106 if (first == last) {
5107 DeoptimizeIf(ne, instr, scratch, Operand(first));
5108 } else {
5109 DeoptimizeIf(lo, instr, scratch, Operand(first));
5110 // Omit check for the last type.
5111 if (last != LAST_TYPE) {
5112 DeoptimizeIf(hi, instr, scratch, Operand(last));
5113 }
5114 }
5115 } else {
5116 uint8_t mask;
5117 uint8_t tag;
5118 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
5119
5120 if (base::bits::IsPowerOfTwo32(mask)) {
5121 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
5122 __ And(at, scratch, mask);
5123 DeoptimizeIf(tag == 0 ? ne : eq, instr, at, Operand(zero_reg));
5124 } else {
5125 __ And(scratch, scratch, Operand(mask));
5126 DeoptimizeIf(ne, instr, scratch, Operand(tag));
5127 }
5128 }
5129 }
5130
5131
DoCheckValue(LCheckValue * instr)5132 void LCodeGen::DoCheckValue(LCheckValue* instr) {
5133 Register reg = ToRegister(instr->value());
5134 Handle<HeapObject> object = instr->hydrogen()->object().handle();
5135 AllowDeferredHandleDereference smi_check;
5136 if (isolate()->heap()->InNewSpace(*object)) {
5137 Register reg = ToRegister(instr->value());
5138 Handle<Cell> cell = isolate()->factory()->NewCell(object);
5139 __ li(at, Operand(Handle<Object>(cell)));
5140 __ lw(at, FieldMemOperand(at, Cell::kValueOffset));
5141 DeoptimizeIf(ne, instr, reg, Operand(at));
5142 } else {
5143 DeoptimizeIf(ne, instr, reg, Operand(object));
5144 }
5145 }
5146
5147
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)5148 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
5149 {
5150 PushSafepointRegistersScope scope(this);
5151 __ push(object);
5152 __ mov(cp, zero_reg);
5153 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
5154 RecordSafepointWithRegisters(
5155 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
5156 __ StoreToSafepointRegisterSlot(v0, scratch0());
5157 }
5158 __ SmiTst(scratch0(), at);
5159 DeoptimizeIf(eq, instr, at, Operand(zero_reg));
5160 }
5161
5162
DoCheckMaps(LCheckMaps * instr)5163 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
5164 class DeferredCheckMaps FINAL : public LDeferredCode {
5165 public:
5166 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
5167 : LDeferredCode(codegen), instr_(instr), object_(object) {
5168 SetExit(check_maps());
5169 }
5170 virtual void Generate() OVERRIDE {
5171 codegen()->DoDeferredInstanceMigration(instr_, object_);
5172 }
5173 Label* check_maps() { return &check_maps_; }
5174 virtual LInstruction* instr() OVERRIDE { return instr_; }
5175 private:
5176 LCheckMaps* instr_;
5177 Label check_maps_;
5178 Register object_;
5179 };
5180
5181 if (instr->hydrogen()->IsStabilityCheck()) {
5182 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5183 for (int i = 0; i < maps->size(); ++i) {
5184 AddStabilityDependency(maps->at(i).handle());
5185 }
5186 return;
5187 }
5188
5189 Register map_reg = scratch0();
5190 LOperand* input = instr->value();
5191 DCHECK(input->IsRegister());
5192 Register reg = ToRegister(input);
5193 __ lw(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
5194
5195 DeferredCheckMaps* deferred = NULL;
5196 if (instr->hydrogen()->HasMigrationTarget()) {
5197 deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
5198 __ bind(deferred->check_maps());
5199 }
5200
5201 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5202 Label success;
5203 for (int i = 0; i < maps->size() - 1; i++) {
5204 Handle<Map> map = maps->at(i).handle();
5205 __ CompareMapAndBranch(map_reg, map, &success, eq, &success);
5206 }
5207 Handle<Map> map = maps->at(maps->size() - 1).handle();
5208 // Do the CompareMap() directly within the Branch() and DeoptimizeIf().
5209 if (instr->hydrogen()->HasMigrationTarget()) {
5210 __ Branch(deferred->entry(), ne, map_reg, Operand(map));
5211 } else {
5212 DeoptimizeIf(ne, instr, map_reg, Operand(map));
5213 }
5214
5215 __ bind(&success);
5216 }
5217
5218
DoClampDToUint8(LClampDToUint8 * instr)5219 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5220 DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
5221 Register result_reg = ToRegister(instr->result());
5222 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5223 __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
5224 }
5225
5226
DoClampIToUint8(LClampIToUint8 * instr)5227 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5228 Register unclamped_reg = ToRegister(instr->unclamped());
5229 Register result_reg = ToRegister(instr->result());
5230 __ ClampUint8(result_reg, unclamped_reg);
5231 }
5232
5233
DoClampTToUint8(LClampTToUint8 * instr)5234 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5235 Register scratch = scratch0();
5236 Register input_reg = ToRegister(instr->unclamped());
5237 Register result_reg = ToRegister(instr->result());
5238 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5239 Label is_smi, done, heap_number;
5240
5241 // Both smi and heap number cases are handled.
5242 __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);
5243
5244 // Check for heap number
5245 __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5246 __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
5247
5248 // Check for undefined. Undefined is converted to zero for clamping
5249 // conversions.
5250 DeoptimizeIf(ne, instr, input_reg, Operand(factory()->undefined_value()));
5251 __ mov(result_reg, zero_reg);
5252 __ jmp(&done);
5253
5254 // Heap number
5255 __ bind(&heap_number);
5256 __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
5257 HeapNumber::kValueOffset));
5258 __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
5259 __ jmp(&done);
5260
5261 __ bind(&is_smi);
5262 __ ClampUint8(result_reg, scratch);
5263
5264 __ bind(&done);
5265 }
5266
5267
DoDoubleBits(LDoubleBits * instr)5268 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5269 DoubleRegister value_reg = ToDoubleRegister(instr->value());
5270 Register result_reg = ToRegister(instr->result());
5271 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5272 __ FmoveHigh(result_reg, value_reg);
5273 } else {
5274 __ FmoveLow(result_reg, value_reg);
5275 }
5276 }
5277
5278
DoConstructDouble(LConstructDouble * instr)5279 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5280 Register hi_reg = ToRegister(instr->hi());
5281 Register lo_reg = ToRegister(instr->lo());
5282 DoubleRegister result_reg = ToDoubleRegister(instr->result());
5283 __ Move(result_reg, lo_reg, hi_reg);
5284 }
5285
5286
DoAllocate(LAllocate * instr)5287 void LCodeGen::DoAllocate(LAllocate* instr) {
5288 class DeferredAllocate FINAL : public LDeferredCode {
5289 public:
5290 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5291 : LDeferredCode(codegen), instr_(instr) { }
5292 virtual void Generate() OVERRIDE {
5293 codegen()->DoDeferredAllocate(instr_);
5294 }
5295 virtual LInstruction* instr() OVERRIDE { return instr_; }
5296 private:
5297 LAllocate* instr_;
5298 };
5299
5300 DeferredAllocate* deferred =
5301 new(zone()) DeferredAllocate(this, instr);
5302
5303 Register result = ToRegister(instr->result());
5304 Register scratch = ToRegister(instr->temp1());
5305 Register scratch2 = ToRegister(instr->temp2());
5306
5307 // Allocate memory for the object.
5308 AllocationFlags flags = TAG_OBJECT;
5309 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5310 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5311 }
5312 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
5313 DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
5314 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5315 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
5316 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
5317 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5318 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
5319 }
5320 if (instr->size()->IsConstantOperand()) {
5321 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5322 if (size <= Page::kMaxRegularHeapObjectSize) {
5323 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5324 } else {
5325 __ jmp(deferred->entry());
5326 }
5327 } else {
5328 Register size = ToRegister(instr->size());
5329 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5330 }
5331
5332 __ bind(deferred->exit());
5333
5334 if (instr->hydrogen()->MustPrefillWithFiller()) {
5335 STATIC_ASSERT(kHeapObjectTag == 1);
5336 if (instr->size()->IsConstantOperand()) {
5337 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5338 __ li(scratch, Operand(size - kHeapObjectTag));
5339 } else {
5340 __ Subu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
5341 }
5342 __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
5343 Label loop;
5344 __ bind(&loop);
5345 __ Subu(scratch, scratch, Operand(kPointerSize));
5346 __ Addu(at, result, Operand(scratch));
5347 __ sw(scratch2, MemOperand(at));
5348 __ Branch(&loop, ge, scratch, Operand(zero_reg));
5349 }
5350 }
5351
5352
DoDeferredAllocate(LAllocate * instr)5353 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5354 Register result = ToRegister(instr->result());
5355
5356 // TODO(3095996): Get rid of this. For now, we need to make the
5357 // result register contain a valid pointer because it is already
5358 // contained in the register pointer map.
5359 __ mov(result, zero_reg);
5360
5361 PushSafepointRegistersScope scope(this);
5362 if (instr->size()->IsRegister()) {
5363 Register size = ToRegister(instr->size());
5364 DCHECK(!size.is(result));
5365 __ SmiTag(size);
5366 __ push(size);
5367 } else {
5368 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5369 if (size >= 0 && size <= Smi::kMaxValue) {
5370 __ Push(Smi::FromInt(size));
5371 } else {
5372 // We should never get here at runtime => abort
5373 __ stop("invalid allocation size");
5374 return;
5375 }
5376 }
5377
5378 int flags = AllocateDoubleAlignFlag::encode(
5379 instr->hydrogen()->MustAllocateDoubleAligned());
5380 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
5381 DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
5382 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5383 flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
5384 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
5385 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5386 flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
5387 } else {
5388 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5389 }
5390 __ Push(Smi::FromInt(flags));
5391
5392 CallRuntimeFromDeferred(
5393 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5394 __ StoreToSafepointRegisterSlot(v0, result);
5395 }
5396
5397
DoToFastProperties(LToFastProperties * instr)5398 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5399 DCHECK(ToRegister(instr->value()).is(a0));
5400 DCHECK(ToRegister(instr->result()).is(v0));
5401 __ push(a0);
5402 CallRuntime(Runtime::kToFastProperties, 1, instr);
5403 }
5404
5405
DoRegExpLiteral(LRegExpLiteral * instr)5406 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5407 DCHECK(ToRegister(instr->context()).is(cp));
5408 Label materialized;
5409 // Registers will be used as follows:
5410 // t3 = literals array.
5411 // a1 = regexp literal.
5412 // a0 = regexp literal clone.
5413 // a2 and t0-t2 are used as temporaries.
5414 int literal_offset =
5415 FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
5416 __ li(t3, instr->hydrogen()->literals());
5417 __ lw(a1, FieldMemOperand(t3, literal_offset));
5418 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5419 __ Branch(&materialized, ne, a1, Operand(at));
5420
5421 // Create regexp literal using runtime function
5422 // Result will be in v0.
5423 __ li(t2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
5424 __ li(t1, Operand(instr->hydrogen()->pattern()));
5425 __ li(t0, Operand(instr->hydrogen()->flags()));
5426 __ Push(t3, t2, t1, t0);
5427 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
5428 __ mov(a1, v0);
5429
5430 __ bind(&materialized);
5431 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
5432 Label allocated, runtime_allocate;
5433
5434 __ Allocate(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
5435 __ jmp(&allocated);
5436
5437 __ bind(&runtime_allocate);
5438 __ li(a0, Operand(Smi::FromInt(size)));
5439 __ Push(a1, a0);
5440 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
5441 __ pop(a1);
5442
5443 __ bind(&allocated);
5444 // Copy the content into the newly allocated memory.
5445 // (Unroll copy loop once for better throughput).
5446 for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
5447 __ lw(a3, FieldMemOperand(a1, i));
5448 __ lw(a2, FieldMemOperand(a1, i + kPointerSize));
5449 __ sw(a3, FieldMemOperand(v0, i));
5450 __ sw(a2, FieldMemOperand(v0, i + kPointerSize));
5451 }
5452 if ((size % (2 * kPointerSize)) != 0) {
5453 __ lw(a3, FieldMemOperand(a1, size - kPointerSize));
5454 __ sw(a3, FieldMemOperand(v0, size - kPointerSize));
5455 }
5456 }
5457
5458
DoFunctionLiteral(LFunctionLiteral * instr)5459 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
5460 DCHECK(ToRegister(instr->context()).is(cp));
5461 // Use the fast case closure allocation code that allocates in new
5462 // space for nested functions that don't need literals cloning.
5463 bool pretenure = instr->hydrogen()->pretenure();
5464 if (!pretenure && instr->hydrogen()->has_no_literals()) {
5465 FastNewClosureStub stub(isolate(), instr->hydrogen()->strict_mode(),
5466 instr->hydrogen()->kind());
5467 __ li(a2, Operand(instr->hydrogen()->shared_info()));
5468 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5469 } else {
5470 __ li(a2, Operand(instr->hydrogen()->shared_info()));
5471 __ li(a1, Operand(pretenure ? factory()->true_value()
5472 : factory()->false_value()));
5473 __ Push(cp, a2, a1);
5474 CallRuntime(Runtime::kNewClosure, 3, instr);
5475 }
5476 }
5477
5478
DoTypeof(LTypeof * instr)5479 void LCodeGen::DoTypeof(LTypeof* instr) {
5480 DCHECK(ToRegister(instr->result()).is(v0));
5481 Register input = ToRegister(instr->value());
5482 __ push(input);
5483 CallRuntime(Runtime::kTypeof, 1, instr);
5484 }
5485
5486
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5487 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5488 Register input = ToRegister(instr->value());
5489
5490 Register cmp1 = no_reg;
5491 Operand cmp2 = Operand(no_reg);
5492
5493 Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
5494 instr->FalseLabel(chunk_),
5495 input,
5496 instr->type_literal(),
5497 &cmp1,
5498 &cmp2);
5499
5500 DCHECK(cmp1.is_valid());
5501 DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid());
5502
5503 if (final_branch_condition != kNoCondition) {
5504 EmitBranch(instr, final_branch_condition, cmp1, cmp2);
5505 }
5506 }
5507
5508
EmitTypeofIs(Label * true_label,Label * false_label,Register input,Handle<String> type_name,Register * cmp1,Operand * cmp2)5509 Condition LCodeGen::EmitTypeofIs(Label* true_label,
5510 Label* false_label,
5511 Register input,
5512 Handle<String> type_name,
5513 Register* cmp1,
5514 Operand* cmp2) {
5515 // This function utilizes the delay slot heavily. This is used to load
5516 // values that are always usable without depending on the type of the input
5517 // register.
5518 Condition final_branch_condition = kNoCondition;
5519 Register scratch = scratch0();
5520 Factory* factory = isolate()->factory();
5521 if (String::Equals(type_name, factory->number_string())) {
5522 __ JumpIfSmi(input, true_label);
5523 __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
5524 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
5525 *cmp1 = input;
5526 *cmp2 = Operand(at);
5527 final_branch_condition = eq;
5528
5529 } else if (String::Equals(type_name, factory->string_string())) {
5530 __ JumpIfSmi(input, false_label);
5531 __ GetObjectType(input, input, scratch);
5532 __ Branch(USE_DELAY_SLOT, false_label,
5533 ge, scratch, Operand(FIRST_NONSTRING_TYPE));
5534 // input is an object so we can load the BitFieldOffset even if we take the
5535 // other branch.
5536 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
5537 __ And(at, at, 1 << Map::kIsUndetectable);
5538 *cmp1 = at;
5539 *cmp2 = Operand(zero_reg);
5540 final_branch_condition = eq;
5541
5542 } else if (String::Equals(type_name, factory->symbol_string())) {
5543 __ JumpIfSmi(input, false_label);
5544 __ GetObjectType(input, input, scratch);
5545 *cmp1 = scratch;
5546 *cmp2 = Operand(SYMBOL_TYPE);
5547 final_branch_condition = eq;
5548
5549 } else if (String::Equals(type_name, factory->boolean_string())) {
5550 __ LoadRoot(at, Heap::kTrueValueRootIndex);
5551 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5552 __ LoadRoot(at, Heap::kFalseValueRootIndex);
5553 *cmp1 = at;
5554 *cmp2 = Operand(input);
5555 final_branch_condition = eq;
5556
5557 } else if (String::Equals(type_name, factory->undefined_string())) {
5558 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5559 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5560 // The first instruction of JumpIfSmi is an And - it is safe in the delay
5561 // slot.
5562 __ JumpIfSmi(input, false_label);
5563 // Check for undetectable objects => true.
5564 __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
5565 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
5566 __ And(at, at, 1 << Map::kIsUndetectable);
5567 *cmp1 = at;
5568 *cmp2 = Operand(zero_reg);
5569 final_branch_condition = ne;
5570
5571 } else if (String::Equals(type_name, factory->function_string())) {
5572 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
5573 __ JumpIfSmi(input, false_label);
5574 __ GetObjectType(input, scratch, input);
5575 __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE));
5576 *cmp1 = input;
5577 *cmp2 = Operand(JS_FUNCTION_PROXY_TYPE);
5578 final_branch_condition = eq;
5579
5580 } else if (String::Equals(type_name, factory->object_string())) {
5581 __ JumpIfSmi(input, false_label);
5582 __ LoadRoot(at, Heap::kNullValueRootIndex);
5583 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5584 Register map = input;
5585 __ GetObjectType(input, map, scratch);
5586 __ Branch(false_label,
5587 lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
5588 __ Branch(USE_DELAY_SLOT, false_label,
5589 gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
5590 // map is still valid, so the BitField can be loaded in delay slot.
5591 // Check for undetectable objects => false.
5592 __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
5593 __ And(at, at, 1 << Map::kIsUndetectable);
5594 *cmp1 = at;
5595 *cmp2 = Operand(zero_reg);
5596 final_branch_condition = eq;
5597
5598 } else {
5599 *cmp1 = at;
5600 *cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion.
5601 __ Branch(false_label);
5602 }
5603
5604 return final_branch_condition;
5605 }
5606
5607
DoIsConstructCallAndBranch(LIsConstructCallAndBranch * instr)5608 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
5609 Register temp1 = ToRegister(instr->temp());
5610
5611 EmitIsConstructCall(temp1, scratch0());
5612
5613 EmitBranch(instr, eq, temp1,
5614 Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
5615 }
5616
5617
EmitIsConstructCall(Register temp1,Register temp2)5618 void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
5619 DCHECK(!temp1.is(temp2));
5620 // Get the frame pointer for the calling frame.
5621 __ lw(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
5622
5623 // Skip the arguments adaptor frame if it exists.
5624 Label check_frame_marker;
5625 __ lw(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
5626 __ Branch(&check_frame_marker, ne, temp2,
5627 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
5628 __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
5629
5630 // Check the marker in the calling frame.
5631 __ bind(&check_frame_marker);
5632 __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
5633 }
5634
5635
EnsureSpaceForLazyDeopt(int space_needed)5636 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5637 if (!info()->IsStub()) {
5638 // Ensure that we have enough space after the previous lazy-bailout
5639 // instruction for patching the code here.
5640 int current_pc = masm()->pc_offset();
5641 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5642 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5643 DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5644 while (padding_size > 0) {
5645 __ nop();
5646 padding_size -= Assembler::kInstrSize;
5647 }
5648 }
5649 }
5650 last_lazy_deopt_pc_ = masm()->pc_offset();
5651 }
5652
5653
DoLazyBailout(LLazyBailout * instr)5654 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5655 last_lazy_deopt_pc_ = masm()->pc_offset();
5656 DCHECK(instr->HasEnvironment());
5657 LEnvironment* env = instr->environment();
5658 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5659 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5660 }
5661
5662
DoDeoptimize(LDeoptimize * instr)5663 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5664 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5665 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5666 // needed return address), even though the implementation of LAZY and EAGER is
5667 // now identical. When LAZY is eventually completely folded into EAGER, remove
5668 // the special case below.
5669 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5670 type = Deoptimizer::LAZY;
5671 }
5672
5673 DeoptimizeIf(al, instr, type, zero_reg, Operand(zero_reg),
5674 instr->hydrogen()->reason());
5675 }
5676
5677
DoDummy(LDummy * instr)5678 void LCodeGen::DoDummy(LDummy* instr) {
5679 // Nothing to see here, move on!
5680 }
5681
5682
DoDummyUse(LDummyUse * instr)5683 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5684 // Nothing to see here, move on!
5685 }
5686
5687
DoDeferredStackCheck(LStackCheck * instr)5688 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5689 PushSafepointRegistersScope scope(this);
5690 LoadContextFromDeferred(instr->context());
5691 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5692 RecordSafepointWithLazyDeopt(
5693 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5694 DCHECK(instr->HasEnvironment());
5695 LEnvironment* env = instr->environment();
5696 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5697 }
5698
5699
DoStackCheck(LStackCheck * instr)5700 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5701 class DeferredStackCheck FINAL : public LDeferredCode {
5702 public:
5703 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5704 : LDeferredCode(codegen), instr_(instr) { }
5705 virtual void Generate() OVERRIDE {
5706 codegen()->DoDeferredStackCheck(instr_);
5707 }
5708 virtual LInstruction* instr() OVERRIDE { return instr_; }
5709 private:
5710 LStackCheck* instr_;
5711 };
5712
5713 DCHECK(instr->HasEnvironment());
5714 LEnvironment* env = instr->environment();
5715 // There is no LLazyBailout instruction for stack-checks. We have to
5716 // prepare for lazy deoptimization explicitly here.
5717 if (instr->hydrogen()->is_function_entry()) {
5718 // Perform stack overflow check.
5719 Label done;
5720 __ LoadRoot(at, Heap::kStackLimitRootIndex);
5721 __ Branch(&done, hs, sp, Operand(at));
5722 DCHECK(instr->context()->IsRegister());
5723 DCHECK(ToRegister(instr->context()).is(cp));
5724 CallCode(isolate()->builtins()->StackCheck(),
5725 RelocInfo::CODE_TARGET,
5726 instr);
5727 __ bind(&done);
5728 } else {
5729 DCHECK(instr->hydrogen()->is_backwards_branch());
5730 // Perform stack overflow check if this goto needs it before jumping.
5731 DeferredStackCheck* deferred_stack_check =
5732 new(zone()) DeferredStackCheck(this, instr);
5733 __ LoadRoot(at, Heap::kStackLimitRootIndex);
5734 __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
5735 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5736 __ bind(instr->done_label());
5737 deferred_stack_check->SetExit(instr->done_label());
5738 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5739 // Don't record a deoptimization index for the safepoint here.
5740 // This will be done explicitly when emitting call and the safepoint in
5741 // the deferred code.
5742 }
5743 }
5744
5745
DoOsrEntry(LOsrEntry * instr)5746 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5747 // This is a pseudo-instruction that ensures that the environment here is
5748 // properly registered for deoptimization and records the assembler's PC
5749 // offset.
5750 LEnvironment* environment = instr->environment();
5751
5752 // If the environment were already registered, we would have no way of
5753 // backpatching it with the spill slot operands.
5754 DCHECK(!environment->HasBeenRegistered());
5755 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5756
5757 GenerateOsrPrologue();
5758 }
5759
5760
DoForInPrepareMap(LForInPrepareMap * instr)5761 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5762 Register result = ToRegister(instr->result());
5763 Register object = ToRegister(instr->object());
5764 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5765 DeoptimizeIf(eq, instr, object, Operand(at));
5766
5767 Register null_value = t1;
5768 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
5769 DeoptimizeIf(eq, instr, object, Operand(null_value));
5770
5771 __ And(at, object, kSmiTagMask);
5772 DeoptimizeIf(eq, instr, at, Operand(zero_reg));
5773
5774 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
5775 __ GetObjectType(object, a1, a1);
5776 DeoptimizeIf(le, instr, a1, Operand(LAST_JS_PROXY_TYPE));
5777
5778 Label use_cache, call_runtime;
5779 DCHECK(object.is(a0));
5780 __ CheckEnumCache(null_value, &call_runtime);
5781
5782 __ lw(result, FieldMemOperand(object, HeapObject::kMapOffset));
5783 __ Branch(&use_cache);
5784
5785 // Get the set of properties to enumerate.
5786 __ bind(&call_runtime);
5787 __ push(object);
5788 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
5789
5790 __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
5791 DCHECK(result.is(v0));
5792 __ LoadRoot(at, Heap::kMetaMapRootIndex);
5793 DeoptimizeIf(ne, instr, a1, Operand(at));
5794 __ bind(&use_cache);
5795 }
5796
5797
DoForInCacheArray(LForInCacheArray * instr)5798 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5799 Register map = ToRegister(instr->map());
5800 Register result = ToRegister(instr->result());
5801 Label load_cache, done;
5802 __ EnumLength(result, map);
5803 __ Branch(&load_cache, ne, result, Operand(Smi::FromInt(0)));
5804 __ li(result, Operand(isolate()->factory()->empty_fixed_array()));
5805 __ jmp(&done);
5806
5807 __ bind(&load_cache);
5808 __ LoadInstanceDescriptors(map, result);
5809 __ lw(result,
5810 FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5811 __ lw(result,
5812 FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5813 DeoptimizeIf(eq, instr, result, Operand(zero_reg));
5814
5815 __ bind(&done);
5816 }
5817
5818
DoCheckMapValue(LCheckMapValue * instr)5819 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5820 Register object = ToRegister(instr->value());
5821 Register map = ToRegister(instr->map());
5822 __ lw(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5823 DeoptimizeIf(ne, instr, map, Operand(scratch0()));
5824 }
5825
5826
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register result,Register object,Register index)5827 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5828 Register result,
5829 Register object,
5830 Register index) {
5831 PushSafepointRegistersScope scope(this);
5832 __ Push(object, index);
5833 __ mov(cp, zero_reg);
5834 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5835 RecordSafepointWithRegisters(
5836 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5837 __ StoreToSafepointRegisterSlot(v0, result);
5838 }
5839
5840
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5841 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5842 class DeferredLoadMutableDouble FINAL : public LDeferredCode {
5843 public:
5844 DeferredLoadMutableDouble(LCodeGen* codegen,
5845 LLoadFieldByIndex* instr,
5846 Register result,
5847 Register object,
5848 Register index)
5849 : LDeferredCode(codegen),
5850 instr_(instr),
5851 result_(result),
5852 object_(object),
5853 index_(index) {
5854 }
5855 virtual void Generate() OVERRIDE {
5856 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5857 }
5858 virtual LInstruction* instr() OVERRIDE { return instr_; }
5859 private:
5860 LLoadFieldByIndex* instr_;
5861 Register result_;
5862 Register object_;
5863 Register index_;
5864 };
5865
5866 Register object = ToRegister(instr->object());
5867 Register index = ToRegister(instr->index());
5868 Register result = ToRegister(instr->result());
5869 Register scratch = scratch0();
5870
5871 DeferredLoadMutableDouble* deferred;
5872 deferred = new(zone()) DeferredLoadMutableDouble(
5873 this, instr, result, object, index);
5874
5875 Label out_of_object, done;
5876
5877 __ And(scratch, index, Operand(Smi::FromInt(1)));
5878 __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg));
5879 __ sra(index, index, 1);
5880
5881 __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
5882 __ sll(scratch, index, kPointerSizeLog2 - kSmiTagSize); // In delay slot.
5883
5884 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5885 __ Addu(scratch, object, scratch);
5886 __ lw(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5887
5888 __ Branch(&done);
5889
5890 __ bind(&out_of_object);
5891 __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5892 // Index is equal to negated out of object property index plus 1.
5893 __ Subu(scratch, result, scratch);
5894 __ lw(result, FieldMemOperand(scratch,
5895 FixedArray::kHeaderSize - kPointerSize));
5896 __ bind(deferred->exit());
5897 __ bind(&done);
5898 }
5899
5900
DoStoreFrameContext(LStoreFrameContext * instr)5901 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
5902 Register context = ToRegister(instr->context());
5903 __ sw(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
5904 }
5905
5906
DoAllocateBlockContext(LAllocateBlockContext * instr)5907 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
5908 Handle<ScopeInfo> scope_info = instr->scope_info();
5909 __ li(at, scope_info);
5910 __ Push(at, ToRegister(instr->function()));
5911 CallRuntime(Runtime::kPushBlockContext, 2, instr);
5912 RecordSafepoint(Safepoint::kNoLazyDeopt);
5913 }
5914
5915
5916 #undef __
5917
5918 } } // namespace v8::internal
5919