• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <stdarg.h>
6 #include <cmath>
7 
8 #include "src/v8.h"
9 
10 #include "src/bignum.h"
11 #include "src/cached-powers.h"
12 #include "src/double.h"
13 #include "src/globals.h"
14 #include "src/strtod.h"
15 #include "src/utils.h"
16 
17 namespace v8 {
18 namespace internal {
19 
20 // 2^53 = 9007199254740992.
21 // Any integer with at most 15 decimal digits will hence fit into a double
22 // (which has a 53bit significand) without loss of precision.
23 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
24 // 2^64 = 18446744073709551616 > 10^19
25 static const int kMaxUint64DecimalDigits = 19;
26 
27 // Max double: 1.7976931348623157 x 10^308
28 // Min non-zero double: 4.9406564584124654 x 10^-324
29 // Any x >= 10^309 is interpreted as +infinity.
30 // Any x <= 10^-324 is interpreted as 0.
31 // Note that 2.5e-324 (despite being smaller than the min double) will be read
32 // as non-zero (equal to the min non-zero double).
33 static const int kMaxDecimalPower = 309;
34 static const int kMinDecimalPower = -324;
35 
36 // 2^64 = 18446744073709551616
37 static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
38 
39 
40 static const double exact_powers_of_ten[] = {
41   1.0,  // 10^0
42   10.0,
43   100.0,
44   1000.0,
45   10000.0,
46   100000.0,
47   1000000.0,
48   10000000.0,
49   100000000.0,
50   1000000000.0,
51   10000000000.0,  // 10^10
52   100000000000.0,
53   1000000000000.0,
54   10000000000000.0,
55   100000000000000.0,
56   1000000000000000.0,
57   10000000000000000.0,
58   100000000000000000.0,
59   1000000000000000000.0,
60   10000000000000000000.0,
61   100000000000000000000.0,  // 10^20
62   1000000000000000000000.0,
63   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
64   10000000000000000000000.0
65 };
66 static const int kExactPowersOfTenSize = arraysize(exact_powers_of_ten);
67 
68 // Maximum number of significant digits in the decimal representation.
69 // In fact the value is 772 (see conversions.cc), but to give us some margin
70 // we round up to 780.
71 static const int kMaxSignificantDecimalDigits = 780;
72 
TrimLeadingZeros(Vector<const char> buffer)73 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
74   for (int i = 0; i < buffer.length(); i++) {
75     if (buffer[i] != '0') {
76       return buffer.SubVector(i, buffer.length());
77     }
78   }
79   return Vector<const char>(buffer.start(), 0);
80 }
81 
82 
TrimTrailingZeros(Vector<const char> buffer)83 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
84   for (int i = buffer.length() - 1; i >= 0; --i) {
85     if (buffer[i] != '0') {
86       return buffer.SubVector(0, i + 1);
87     }
88   }
89   return Vector<const char>(buffer.start(), 0);
90 }
91 
92 
TrimToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)93 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
94                                        int exponent,
95                                        char* significant_buffer,
96                                        int* significant_exponent) {
97   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
98     significant_buffer[i] = buffer[i];
99   }
100   // The input buffer has been trimmed. Therefore the last digit must be
101   // different from '0'.
102   DCHECK(buffer[buffer.length() - 1] != '0');
103   // Set the last digit to be non-zero. This is sufficient to guarantee
104   // correct rounding.
105   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
106   *significant_exponent =
107       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
108 }
109 
110 
111 // Reads digits from the buffer and converts them to a uint64.
112 // Reads in as many digits as fit into a uint64.
113 // When the string starts with "1844674407370955161" no further digit is read.
114 // Since 2^64 = 18446744073709551616 it would still be possible read another
115 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)116 static uint64_t ReadUint64(Vector<const char> buffer,
117                            int* number_of_read_digits) {
118   uint64_t result = 0;
119   int i = 0;
120   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
121     int digit = buffer[i++] - '0';
122     DCHECK(0 <= digit && digit <= 9);
123     result = 10 * result + digit;
124   }
125   *number_of_read_digits = i;
126   return result;
127 }
128 
129 
130 // Reads a DiyFp from the buffer.
131 // The returned DiyFp is not necessarily normalized.
132 // If remaining_decimals is zero then the returned DiyFp is accurate.
133 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)134 static void ReadDiyFp(Vector<const char> buffer,
135                       DiyFp* result,
136                       int* remaining_decimals) {
137   int read_digits;
138   uint64_t significand = ReadUint64(buffer, &read_digits);
139   if (buffer.length() == read_digits) {
140     *result = DiyFp(significand, 0);
141     *remaining_decimals = 0;
142   } else {
143     // Round the significand.
144     if (buffer[read_digits] >= '5') {
145       significand++;
146     }
147     // Compute the binary exponent.
148     int exponent = 0;
149     *result = DiyFp(significand, exponent);
150     *remaining_decimals = buffer.length() - read_digits;
151   }
152 }
153 
154 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)155 static bool DoubleStrtod(Vector<const char> trimmed,
156                          int exponent,
157                          double* result) {
158 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 || defined(USE_SIMULATOR)) && \
159     !defined(_MSC_VER)
160   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
161   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
162   // result is not accurate.
163   // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
164   // therefore accurate.
165   // Note that the ARM and MIPS simulators are compiled for 32bits. They
166   // therefore exhibit the same problem.
167   return false;
168 #endif
169   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
170     int read_digits;
171     // The trimmed input fits into a double.
172     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
173     // can compute the result-double simply by multiplying (resp. dividing) the
174     // two numbers.
175     // This is possible because IEEE guarantees that floating-point operations
176     // return the best possible approximation.
177     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
178       // 10^-exponent fits into a double.
179       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
180       DCHECK(read_digits == trimmed.length());
181       *result /= exact_powers_of_ten[-exponent];
182       return true;
183     }
184     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
185       // 10^exponent fits into a double.
186       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
187       DCHECK(read_digits == trimmed.length());
188       *result *= exact_powers_of_ten[exponent];
189       return true;
190     }
191     int remaining_digits =
192         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
193     if ((0 <= exponent) &&
194         (exponent - remaining_digits < kExactPowersOfTenSize)) {
195       // The trimmed string was short and we can multiply it with
196       // 10^remaining_digits. As a result the remaining exponent now fits
197       // into a double too.
198       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
199       DCHECK(read_digits == trimmed.length());
200       *result *= exact_powers_of_ten[remaining_digits];
201       *result *= exact_powers_of_ten[exponent - remaining_digits];
202       return true;
203     }
204   }
205   return false;
206 }
207 
208 
209 // Returns 10^exponent as an exact DiyFp.
210 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)211 static DiyFp AdjustmentPowerOfTen(int exponent) {
212   DCHECK(0 < exponent);
213   DCHECK(exponent < PowersOfTenCache::kDecimalExponentDistance);
214   // Simply hardcode the remaining powers for the given decimal exponent
215   // distance.
216   DCHECK(PowersOfTenCache::kDecimalExponentDistance == 8);
217   switch (exponent) {
218     case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
219     case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
220     case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
221     case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
222     case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
223     case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
224     case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
225     default:
226       UNREACHABLE();
227       return DiyFp(0, 0);
228   }
229 }
230 
231 
232 // If the function returns true then the result is the correct double.
233 // Otherwise it is either the correct double or the double that is just below
234 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)235 static bool DiyFpStrtod(Vector<const char> buffer,
236                         int exponent,
237                         double* result) {
238   DiyFp input;
239   int remaining_decimals;
240   ReadDiyFp(buffer, &input, &remaining_decimals);
241   // Since we may have dropped some digits the input is not accurate.
242   // If remaining_decimals is different than 0 than the error is at most
243   // .5 ulp (unit in the last place).
244   // We don't want to deal with fractions and therefore keep a common
245   // denominator.
246   const int kDenominatorLog = 3;
247   const int kDenominator = 1 << kDenominatorLog;
248   // Move the remaining decimals into the exponent.
249   exponent += remaining_decimals;
250   int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
251 
252   int old_e = input.e();
253   input.Normalize();
254   error <<= old_e - input.e();
255 
256   DCHECK(exponent <= PowersOfTenCache::kMaxDecimalExponent);
257   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
258     *result = 0.0;
259     return true;
260   }
261   DiyFp cached_power;
262   int cached_decimal_exponent;
263   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
264                                                      &cached_power,
265                                                      &cached_decimal_exponent);
266 
267   if (cached_decimal_exponent != exponent) {
268     int adjustment_exponent = exponent - cached_decimal_exponent;
269     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
270     input.Multiply(adjustment_power);
271     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
272       // The product of input with the adjustment power fits into a 64 bit
273       // integer.
274       DCHECK(DiyFp::kSignificandSize == 64);
275     } else {
276       // The adjustment power is exact. There is hence only an error of 0.5.
277       error += kDenominator / 2;
278     }
279   }
280 
281   input.Multiply(cached_power);
282   // The error introduced by a multiplication of a*b equals
283   //   error_a + error_b + error_a*error_b/2^64 + 0.5
284   // Substituting a with 'input' and b with 'cached_power' we have
285   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
286   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
287   int error_b = kDenominator / 2;
288   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
289   int fixed_error = kDenominator / 2;
290   error += error_b + error_ab + fixed_error;
291 
292   old_e = input.e();
293   input.Normalize();
294   error <<= old_e - input.e();
295 
296   // See if the double's significand changes if we add/subtract the error.
297   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
298   int effective_significand_size =
299       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
300   int precision_digits_count =
301       DiyFp::kSignificandSize - effective_significand_size;
302   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
303     // This can only happen for very small denormals. In this case the
304     // half-way multiplied by the denominator exceeds the range of an uint64.
305     // Simply shift everything to the right.
306     int shift_amount = (precision_digits_count + kDenominatorLog) -
307         DiyFp::kSignificandSize + 1;
308     input.set_f(input.f() >> shift_amount);
309     input.set_e(input.e() + shift_amount);
310     // We add 1 for the lost precision of error, and kDenominator for
311     // the lost precision of input.f().
312     error = (error >> shift_amount) + 1 + kDenominator;
313     precision_digits_count -= shift_amount;
314   }
315   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
316   DCHECK(DiyFp::kSignificandSize == 64);
317   DCHECK(precision_digits_count < 64);
318   uint64_t one64 = 1;
319   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
320   uint64_t precision_bits = input.f() & precision_bits_mask;
321   uint64_t half_way = one64 << (precision_digits_count - 1);
322   precision_bits *= kDenominator;
323   half_way *= kDenominator;
324   DiyFp rounded_input(input.f() >> precision_digits_count,
325                       input.e() + precision_digits_count);
326   if (precision_bits >= half_way + error) {
327     rounded_input.set_f(rounded_input.f() + 1);
328   }
329   // If the last_bits are too close to the half-way case than we are too
330   // inaccurate and round down. In this case we return false so that we can
331   // fall back to a more precise algorithm.
332 
333   *result = Double(rounded_input).value();
334   if (half_way - error < precision_bits && precision_bits < half_way + error) {
335     // Too imprecise. The caller will have to fall back to a slower version.
336     // However the returned number is guaranteed to be either the correct
337     // double, or the next-lower double.
338     return false;
339   } else {
340     return true;
341   }
342 }
343 
344 
345 // Returns the correct double for the buffer*10^exponent.
346 // The variable guess should be a close guess that is either the correct double
347 // or its lower neighbor (the nearest double less than the correct one).
348 // Preconditions:
349 //   buffer.length() + exponent <= kMaxDecimalPower + 1
350 //   buffer.length() + exponent > kMinDecimalPower
351 //   buffer.length() <= kMaxDecimalSignificantDigits
BignumStrtod(Vector<const char> buffer,int exponent,double guess)352 static double BignumStrtod(Vector<const char> buffer,
353                            int exponent,
354                            double guess) {
355   if (guess == V8_INFINITY) {
356     return guess;
357   }
358 
359   DiyFp upper_boundary = Double(guess).UpperBoundary();
360 
361   DCHECK(buffer.length() + exponent <= kMaxDecimalPower + 1);
362   DCHECK(buffer.length() + exponent > kMinDecimalPower);
363   DCHECK(buffer.length() <= kMaxSignificantDecimalDigits);
364   // Make sure that the Bignum will be able to hold all our numbers.
365   // Our Bignum implementation has a separate field for exponents. Shifts will
366   // consume at most one bigit (< 64 bits).
367   // ln(10) == 3.3219...
368   DCHECK(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
369   Bignum input;
370   Bignum boundary;
371   input.AssignDecimalString(buffer);
372   boundary.AssignUInt64(upper_boundary.f());
373   if (exponent >= 0) {
374     input.MultiplyByPowerOfTen(exponent);
375   } else {
376     boundary.MultiplyByPowerOfTen(-exponent);
377   }
378   if (upper_boundary.e() > 0) {
379     boundary.ShiftLeft(upper_boundary.e());
380   } else {
381     input.ShiftLeft(-upper_boundary.e());
382   }
383   int comparison = Bignum::Compare(input, boundary);
384   if (comparison < 0) {
385     return guess;
386   } else if (comparison > 0) {
387     return Double(guess).NextDouble();
388   } else if ((Double(guess).Significand() & 1) == 0) {
389     // Round towards even.
390     return guess;
391   } else {
392     return Double(guess).NextDouble();
393   }
394 }
395 
396 
Strtod(Vector<const char> buffer,int exponent)397 double Strtod(Vector<const char> buffer, int exponent) {
398   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
399   Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
400   exponent += left_trimmed.length() - trimmed.length();
401   if (trimmed.length() == 0) return 0.0;
402   if (trimmed.length() > kMaxSignificantDecimalDigits) {
403     char significant_buffer[kMaxSignificantDecimalDigits];
404     int significant_exponent;
405     TrimToMaxSignificantDigits(trimmed, exponent,
406                                significant_buffer, &significant_exponent);
407     return Strtod(Vector<const char>(significant_buffer,
408                                      kMaxSignificantDecimalDigits),
409                   significant_exponent);
410   }
411   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
412   if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
413 
414   double guess;
415   if (DoubleStrtod(trimmed, exponent, &guess) ||
416       DiyFpStrtod(trimmed, exponent, &guess)) {
417     return guess;
418   }
419   return BignumStrtod(trimmed, exponent, guess);
420 }
421 
422 } }  // namespace v8::internal
423