• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2     SDL - Simple DirectMedia Layer
3     Copyright (C) 1997-2012 Sam Lantinga
4 
5     This library is free software; you can redistribute it and/or
6     modify it under the terms of the GNU Lesser General Public
7     License as published by the Free Software Foundation; either
8     version 2.1 of the License, or (at your option) any later version.
9 
10     This library is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13     Lesser General Public License for more details.
14 
15     You should have received a copy of the GNU Lesser General Public
16     License along with this library; if not, write to the Free Software
17     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18 
19     Sam Lantinga
20     slouken@libsdl.org
21 */
22 #include "SDL_config.h"
23 
24 /* This file contains portable memory management functions for SDL */
25 
26 #include "SDL_stdinc.h"
27 
28 #ifndef HAVE_MALLOC
29 
30 #define LACKS_SYS_TYPES_H
31 #define LACKS_STDIO_H
32 #define LACKS_STRINGS_H
33 #define LACKS_STRING_H
34 #define LACKS_STDLIB_H
35 #define ABORT
36 
37 /*
38   This is a version (aka dlmalloc) of malloc/free/realloc written by
39   Doug Lea and released to the public domain, as explained at
40   http://creativecommons.org/licenses/publicdomain.  Send questions,
41   comments, complaints, performance data, etc to dl@cs.oswego.edu
42 
43 * Version 2.8.3 Thu Sep 22 11:16:15 2005  Doug Lea  (dl at gee)
44 
45    Note: There may be an updated version of this malloc obtainable at
46            ftp://gee.cs.oswego.edu/pub/misc/malloc.c
47          Check before installing!
48 
49 * Quickstart
50 
51   This library is all in one file to simplify the most common usage:
52   ftp it, compile it (-O3), and link it into another program. All of
53   the compile-time options default to reasonable values for use on
54   most platforms.  You might later want to step through various
55   compile-time and dynamic tuning options.
56 
57   For convenience, an include file for code using this malloc is at:
58      ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
59   You don't really need this .h file unless you call functions not
60   defined in your system include files.  The .h file contains only the
61   excerpts from this file needed for using this malloc on ANSI C/C++
62   systems, so long as you haven't changed compile-time options about
63   naming and tuning parameters.  If you do, then you can create your
64   own malloc.h that does include all settings by cutting at the point
65   indicated below. Note that you may already by default be using a C
66   library containing a malloc that is based on some version of this
67   malloc (for example in linux). You might still want to use the one
68   in this file to customize settings or to avoid overheads associated
69   with library versions.
70 
71 * Vital statistics:
72 
73   Supported pointer/size_t representation:       4 or 8 bytes
74        size_t MUST be an unsigned type of the same width as
75        pointers. (If you are using an ancient system that declares
76        size_t as a signed type, or need it to be a different width
77        than pointers, you can use a previous release of this malloc
78        (e.g. 2.7.2) supporting these.)
79 
80   Alignment:                                     8 bytes (default)
81        This suffices for nearly all current machines and C compilers.
82        However, you can define MALLOC_ALIGNMENT to be wider than this
83        if necessary (up to 128bytes), at the expense of using more space.
84 
85   Minimum overhead per allocated chunk:   4 or  8 bytes (if 4byte sizes)
86                                           8 or 16 bytes (if 8byte sizes)
87        Each malloced chunk has a hidden word of overhead holding size
88        and status information, and additional cross-check word
89        if FOOTERS is defined.
90 
91   Minimum allocated size: 4-byte ptrs:  16 bytes    (including overhead)
92                           8-byte ptrs:  32 bytes    (including overhead)
93 
94        Even a request for zero bytes (i.e., malloc(0)) returns a
95        pointer to something of the minimum allocatable size.
96        The maximum overhead wastage (i.e., number of extra bytes
97        allocated than were requested in malloc) is less than or equal
98        to the minimum size, except for requests >= mmap_threshold that
99        are serviced via mmap(), where the worst case wastage is about
100        32 bytes plus the remainder from a system page (the minimal
101        mmap unit); typically 4096 or 8192 bytes.
102 
103   Security: static-safe; optionally more or less
104        The "security" of malloc refers to the ability of malicious
105        code to accentuate the effects of errors (for example, freeing
106        space that is not currently malloc'ed or overwriting past the
107        ends of chunks) in code that calls malloc.  This malloc
108        guarantees not to modify any memory locations below the base of
109        heap, i.e., static variables, even in the presence of usage
110        errors.  The routines additionally detect most improper frees
111        and reallocs.  All this holds as long as the static bookkeeping
112        for malloc itself is not corrupted by some other means.  This
113        is only one aspect of security -- these checks do not, and
114        cannot, detect all possible programming errors.
115 
116        If FOOTERS is defined nonzero, then each allocated chunk
117        carries an additional check word to verify that it was malloced
118        from its space.  These check words are the same within each
119        execution of a program using malloc, but differ across
120        executions, so externally crafted fake chunks cannot be
121        freed. This improves security by rejecting frees/reallocs that
122        could corrupt heap memory, in addition to the checks preventing
123        writes to statics that are always on.  This may further improve
124        security at the expense of time and space overhead.  (Note that
125        FOOTERS may also be worth using with MSPACES.)
126 
127        By default detected errors cause the program to abort (calling
128        "abort()"). You can override this to instead proceed past
129        errors by defining PROCEED_ON_ERROR.  In this case, a bad free
130        has no effect, and a malloc that encounters a bad address
131        caused by user overwrites will ignore the bad address by
132        dropping pointers and indices to all known memory. This may
133        be appropriate for programs that should continue if at all
134        possible in the face of programming errors, although they may
135        run out of memory because dropped memory is never reclaimed.
136 
137        If you don't like either of these options, you can define
138        CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
139        else. And if if you are sure that your program using malloc has
140        no errors or vulnerabilities, you can define INSECURE to 1,
141        which might (or might not) provide a small performance improvement.
142 
143   Thread-safety: NOT thread-safe unless USE_LOCKS defined
144        When USE_LOCKS is defined, each public call to malloc, free,
145        etc is surrounded with either a pthread mutex or a win32
146        spinlock (depending on WIN32). This is not especially fast, and
147        can be a major bottleneck.  It is designed only to provide
148        minimal protection in concurrent environments, and to provide a
149        basis for extensions.  If you are using malloc in a concurrent
150        program, consider instead using ptmalloc, which is derived from
151        a version of this malloc. (See http://www.malloc.de).
152 
153   System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
154        This malloc can use unix sbrk or any emulation (invoked using
155        the CALL_MORECORE macro) and/or mmap/munmap or any emulation
156        (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
157        memory.  On most unix systems, it tends to work best if both
158        MORECORE and MMAP are enabled.  On Win32, it uses emulations
159        based on VirtualAlloc. It also uses common C library functions
160        like memset.
161 
162   Compliance: I believe it is compliant with the Single Unix Specification
163        (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
164        others as well.
165 
166 * Overview of algorithms
167 
168   This is not the fastest, most space-conserving, most portable, or
169   most tunable malloc ever written. However it is among the fastest
170   while also being among the most space-conserving, portable and
171   tunable.  Consistent balance across these factors results in a good
172   general-purpose allocator for malloc-intensive programs.
173 
174   In most ways, this malloc is a best-fit allocator. Generally, it
175   chooses the best-fitting existing chunk for a request, with ties
176   broken in approximately least-recently-used order. (This strategy
177   normally maintains low fragmentation.) However, for requests less
178   than 256bytes, it deviates from best-fit when there is not an
179   exactly fitting available chunk by preferring to use space adjacent
180   to that used for the previous small request, as well as by breaking
181   ties in approximately most-recently-used order. (These enhance
182   locality of series of small allocations.)  And for very large requests
183   (>= 256Kb by default), it relies on system memory mapping
184   facilities, if supported.  (This helps avoid carrying around and
185   possibly fragmenting memory used only for large chunks.)
186 
187   All operations (except malloc_stats and mallinfo) have execution
188   times that are bounded by a constant factor of the number of bits in
189   a size_t, not counting any clearing in calloc or copying in realloc,
190   or actions surrounding MORECORE and MMAP that have times
191   proportional to the number of non-contiguous regions returned by
192   system allocation routines, which is often just 1.
193 
194   The implementation is not very modular and seriously overuses
195   macros. Perhaps someday all C compilers will do as good a job
196   inlining modular code as can now be done by brute-force expansion,
197   but now, enough of them seem not to.
198 
199   Some compilers issue a lot of warnings about code that is
200   dead/unreachable only on some platforms, and also about intentional
201   uses of negation on unsigned types. All known cases of each can be
202   ignored.
203 
204   For a longer but out of date high-level description, see
205      http://gee.cs.oswego.edu/dl/html/malloc.html
206 
207 * MSPACES
208   If MSPACES is defined, then in addition to malloc, free, etc.,
209   this file also defines mspace_malloc, mspace_free, etc. These
210   are versions of malloc routines that take an "mspace" argument
211   obtained using create_mspace, to control all internal bookkeeping.
212   If ONLY_MSPACES is defined, only these versions are compiled.
213   So if you would like to use this allocator for only some allocations,
214   and your system malloc for others, you can compile with
215   ONLY_MSPACES and then do something like...
216     static mspace mymspace = create_mspace(0,0); // for example
217     #define mymalloc(bytes)  mspace_malloc(mymspace, bytes)
218 
219   (Note: If you only need one instance of an mspace, you can instead
220   use "USE_DL_PREFIX" to relabel the global malloc.)
221 
222   You can similarly create thread-local allocators by storing
223   mspaces as thread-locals. For example:
224     static __thread mspace tlms = 0;
225     void*  tlmalloc(size_t bytes) {
226       if (tlms == 0) tlms = create_mspace(0, 0);
227       return mspace_malloc(tlms, bytes);
228     }
229     void  tlfree(void* mem) { mspace_free(tlms, mem); }
230 
231   Unless FOOTERS is defined, each mspace is completely independent.
232   You cannot allocate from one and free to another (although
233   conformance is only weakly checked, so usage errors are not always
234   caught). If FOOTERS is defined, then each chunk carries around a tag
235   indicating its originating mspace, and frees are directed to their
236   originating spaces.
237 
238  -------------------------  Compile-time options ---------------------------
239 
240 Be careful in setting #define values for numerical constants of type
241 size_t. On some systems, literal values are not automatically extended
242 to size_t precision unless they are explicitly casted.
243 
244 WIN32                    default: defined if _WIN32 defined
245   Defining WIN32 sets up defaults for MS environment and compilers.
246   Otherwise defaults are for unix.
247 
248 MALLOC_ALIGNMENT         default: (size_t)8
249   Controls the minimum alignment for malloc'ed chunks.  It must be a
250   power of two and at least 8, even on machines for which smaller
251   alignments would suffice. It may be defined as larger than this
252   though. Note however that code and data structures are optimized for
253   the case of 8-byte alignment.
254 
255 MSPACES                  default: 0 (false)
256   If true, compile in support for independent allocation spaces.
257   This is only supported if HAVE_MMAP is true.
258 
259 ONLY_MSPACES             default: 0 (false)
260   If true, only compile in mspace versions, not regular versions.
261 
262 USE_LOCKS                default: 0 (false)
263   Causes each call to each public routine to be surrounded with
264   pthread or WIN32 mutex lock/unlock. (If set true, this can be
265   overridden on a per-mspace basis for mspace versions.)
266 
267 FOOTERS                  default: 0
268   If true, provide extra checking and dispatching by placing
269   information in the footers of allocated chunks. This adds
270   space and time overhead.
271 
272 INSECURE                 default: 0
273   If true, omit checks for usage errors and heap space overwrites.
274 
275 USE_DL_PREFIX            default: NOT defined
276   Causes compiler to prefix all public routines with the string 'dl'.
277   This can be useful when you only want to use this malloc in one part
278   of a program, using your regular system malloc elsewhere.
279 
280 ABORT                    default: defined as abort()
281   Defines how to abort on failed checks.  On most systems, a failed
282   check cannot die with an "assert" or even print an informative
283   message, because the underlying print routines in turn call malloc,
284   which will fail again.  Generally, the best policy is to simply call
285   abort(). It's not very useful to do more than this because many
286   errors due to overwriting will show up as address faults (null, odd
287   addresses etc) rather than malloc-triggered checks, so will also
288   abort.  Also, most compilers know that abort() does not return, so
289   can better optimize code conditionally calling it.
290 
291 PROCEED_ON_ERROR           default: defined as 0 (false)
292   Controls whether detected bad addresses cause them to bypassed
293   rather than aborting. If set, detected bad arguments to free and
294   realloc are ignored. And all bookkeeping information is zeroed out
295   upon a detected overwrite of freed heap space, thus losing the
296   ability to ever return it from malloc again, but enabling the
297   application to proceed. If PROCEED_ON_ERROR is defined, the
298   static variable malloc_corruption_error_count is compiled in
299   and can be examined to see if errors have occurred. This option
300   generates slower code than the default abort policy.
301 
302 DEBUG                    default: NOT defined
303   The DEBUG setting is mainly intended for people trying to modify
304   this code or diagnose problems when porting to new platforms.
305   However, it may also be able to better isolate user errors than just
306   using runtime checks.  The assertions in the check routines spell
307   out in more detail the assumptions and invariants underlying the
308   algorithms.  The checking is fairly extensive, and will slow down
309   execution noticeably. Calling malloc_stats or mallinfo with DEBUG
310   set will attempt to check every non-mmapped allocated and free chunk
311   in the course of computing the summaries.
312 
313 ABORT_ON_ASSERT_FAILURE   default: defined as 1 (true)
314   Debugging assertion failures can be nearly impossible if your
315   version of the assert macro causes malloc to be called, which will
316   lead to a cascade of further failures, blowing the runtime stack.
317   ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
318   which will usually make debugging easier.
319 
320 MALLOC_FAILURE_ACTION     default: sets errno to ENOMEM, or no-op on win32
321   The action to take before "return 0" when malloc fails to be able to
322   return memory because there is none available.
323 
324 HAVE_MORECORE             default: 1 (true) unless win32 or ONLY_MSPACES
325   True if this system supports sbrk or an emulation of it.
326 
327 MORECORE                  default: sbrk
328   The name of the sbrk-style system routine to call to obtain more
329   memory.  See below for guidance on writing custom MORECORE
330   functions. The type of the argument to sbrk/MORECORE varies across
331   systems.  It cannot be size_t, because it supports negative
332   arguments, so it is normally the signed type of the same width as
333   size_t (sometimes declared as "intptr_t").  It doesn't much matter
334   though. Internally, we only call it with arguments less than half
335   the max value of a size_t, which should work across all reasonable
336   possibilities, although sometimes generating compiler warnings.  See
337   near the end of this file for guidelines for creating a custom
338   version of MORECORE.
339 
340 MORECORE_CONTIGUOUS       default: 1 (true)
341   If true, take advantage of fact that consecutive calls to MORECORE
342   with positive arguments always return contiguous increasing
343   addresses.  This is true of unix sbrk. It does not hurt too much to
344   set it true anyway, since malloc copes with non-contiguities.
345   Setting it false when definitely non-contiguous saves time
346   and possibly wasted space it would take to discover this though.
347 
348 MORECORE_CANNOT_TRIM      default: NOT defined
349   True if MORECORE cannot release space back to the system when given
350   negative arguments. This is generally necessary only if you are
351   using a hand-crafted MORECORE function that cannot handle negative
352   arguments.
353 
354 HAVE_MMAP                 default: 1 (true)
355   True if this system supports mmap or an emulation of it.  If so, and
356   HAVE_MORECORE is not true, MMAP is used for all system
357   allocation. If set and HAVE_MORECORE is true as well, MMAP is
358   primarily used to directly allocate very large blocks. It is also
359   used as a backup strategy in cases where MORECORE fails to provide
360   space from system. Note: A single call to MUNMAP is assumed to be
361   able to unmap memory that may have be allocated using multiple calls
362   to MMAP, so long as they are adjacent.
363 
364 HAVE_MREMAP               default: 1 on linux, else 0
365   If true realloc() uses mremap() to re-allocate large blocks and
366   extend or shrink allocation spaces.
367 
368 MMAP_CLEARS               default: 1 on unix
369   True if mmap clears memory so calloc doesn't need to. This is true
370   for standard unix mmap using /dev/zero.
371 
372 USE_BUILTIN_FFS            default: 0 (i.e., not used)
373   Causes malloc to use the builtin ffs() function to compute indices.
374   Some compilers may recognize and intrinsify ffs to be faster than the
375   supplied C version. Also, the case of x86 using gcc is special-cased
376   to an asm instruction, so is already as fast as it can be, and so
377   this setting has no effect. (On most x86s, the asm version is only
378   slightly faster than the C version.)
379 
380 malloc_getpagesize         default: derive from system includes, or 4096.
381   The system page size. To the extent possible, this malloc manages
382   memory from the system in page-size units.  This may be (and
383   usually is) a function rather than a constant. This is ignored
384   if WIN32, where page size is determined using getSystemInfo during
385   initialization.
386 
387 USE_DEV_RANDOM             default: 0 (i.e., not used)
388   Causes malloc to use /dev/random to initialize secure magic seed for
389   stamping footers. Otherwise, the current time is used.
390 
391 NO_MALLINFO                default: 0
392   If defined, don't compile "mallinfo". This can be a simple way
393   of dealing with mismatches between system declarations and
394   those in this file.
395 
396 MALLINFO_FIELD_TYPE        default: size_t
397   The type of the fields in the mallinfo struct. This was originally
398   defined as "int" in SVID etc, but is more usefully defined as
399   size_t. The value is used only if  HAVE_USR_INCLUDE_MALLOC_H is not set
400 
401 REALLOC_ZERO_BYTES_FREES    default: not defined
402   This should be set if a call to realloc with zero bytes should
403   be the same as a call to free. Some people think it should. Otherwise,
404   since this malloc returns a unique pointer for malloc(0), so does
405   realloc(p, 0).
406 
407 LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
408 LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H,  LACKS_ERRNO_H
409 LACKS_STDLIB_H                default: NOT defined unless on WIN32
410   Define these if your system does not have these header files.
411   You might need to manually insert some of the declarations they provide.
412 
413 DEFAULT_GRANULARITY        default: page size if MORECORE_CONTIGUOUS,
414                                 system_info.dwAllocationGranularity in WIN32,
415                                 otherwise 64K.
416       Also settable using mallopt(M_GRANULARITY, x)
417   The unit for allocating and deallocating memory from the system.  On
418   most systems with contiguous MORECORE, there is no reason to
419   make this more than a page. However, systems with MMAP tend to
420   either require or encourage larger granularities.  You can increase
421   this value to prevent system allocation functions to be called so
422   often, especially if they are slow.  The value must be at least one
423   page and must be a power of two.  Setting to 0 causes initialization
424   to either page size or win32 region size.  (Note: In previous
425   versions of malloc, the equivalent of this option was called
426   "TOP_PAD")
427 
428 DEFAULT_TRIM_THRESHOLD    default: 2MB
429       Also settable using mallopt(M_TRIM_THRESHOLD, x)
430   The maximum amount of unused top-most memory to keep before
431   releasing via malloc_trim in free().  Automatic trimming is mainly
432   useful in long-lived programs using contiguous MORECORE.  Because
433   trimming via sbrk can be slow on some systems, and can sometimes be
434   wasteful (in cases where programs immediately afterward allocate
435   more large chunks) the value should be high enough so that your
436   overall system performance would improve by releasing this much
437   memory.  As a rough guide, you might set to a value close to the
438   average size of a process (program) running on your system.
439   Releasing this much memory would allow such a process to run in
440   memory.  Generally, it is worth tuning trim thresholds when a
441   program undergoes phases where several large chunks are allocated
442   and released in ways that can reuse each other's storage, perhaps
443   mixed with phases where there are no such chunks at all. The trim
444   value must be greater than page size to have any useful effect.  To
445   disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
446   some people use of mallocing a huge space and then freeing it at
447   program startup, in an attempt to reserve system memory, doesn't
448   have the intended effect under automatic trimming, since that memory
449   will immediately be returned to the system.
450 
451 DEFAULT_MMAP_THRESHOLD       default: 256K
452       Also settable using mallopt(M_MMAP_THRESHOLD, x)
453   The request size threshold for using MMAP to directly service a
454   request. Requests of at least this size that cannot be allocated
455   using already-existing space will be serviced via mmap.  (If enough
456   normal freed space already exists it is used instead.)  Using mmap
457   segregates relatively large chunks of memory so that they can be
458   individually obtained and released from the host system. A request
459   serviced through mmap is never reused by any other request (at least
460   not directly; the system may just so happen to remap successive
461   requests to the same locations).  Segregating space in this way has
462   the benefits that: Mmapped space can always be individually released
463   back to the system, which helps keep the system level memory demands
464   of a long-lived program low.  Also, mapped memory doesn't become
465   `locked' between other chunks, as can happen with normally allocated
466   chunks, which means that even trimming via malloc_trim would not
467   release them.  However, it has the disadvantage that the space
468   cannot be reclaimed, consolidated, and then used to service later
469   requests, as happens with normal chunks.  The advantages of mmap
470   nearly always outweigh disadvantages for "large" chunks, but the
471   value of "large" may vary across systems.  The default is an
472   empirically derived value that works well in most systems. You can
473   disable mmap by setting to MAX_SIZE_T.
474 
475 */
476 
477 #ifndef WIN32
478 #ifdef _WIN32
479 #define WIN32 1
480 #endif  /* _WIN32 */
481 #endif  /* WIN32 */
482 #ifdef WIN32
483 #define WIN32_LEAN_AND_MEAN
484 #include <windows.h>
485 #define HAVE_MMAP 1
486 #define HAVE_MORECORE 0
487 #define LACKS_UNISTD_H
488 #define LACKS_SYS_PARAM_H
489 #define LACKS_SYS_MMAN_H
490 #define LACKS_STRING_H
491 #define LACKS_STRINGS_H
492 #define LACKS_SYS_TYPES_H
493 #define LACKS_ERRNO_H
494 #define LACKS_FCNTL_H
495 #define MALLOC_FAILURE_ACTION
496 #define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */
497 #endif  /* WIN32 */
498 
499 #if defined(DARWIN) || defined(_DARWIN)
500 /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
501 #ifndef HAVE_MORECORE
502 #define HAVE_MORECORE 0
503 #define HAVE_MMAP 1
504 #endif  /* HAVE_MORECORE */
505 #endif  /* DARWIN */
506 
507 #ifndef LACKS_SYS_TYPES_H
508 #include <sys/types.h>  /* For size_t */
509 #endif  /* LACKS_SYS_TYPES_H */
510 
511 /* The maximum possible size_t value has all bits set */
512 #define MAX_SIZE_T           (~(size_t)0)
513 
514 #ifndef ONLY_MSPACES
515 #define ONLY_MSPACES 0
516 #endif  /* ONLY_MSPACES */
517 #ifndef MSPACES
518 #if ONLY_MSPACES
519 #define MSPACES 1
520 #else   /* ONLY_MSPACES */
521 #define MSPACES 0
522 #endif  /* ONLY_MSPACES */
523 #endif  /* MSPACES */
524 #ifndef MALLOC_ALIGNMENT
525 #define MALLOC_ALIGNMENT ((size_t)8U)
526 #endif  /* MALLOC_ALIGNMENT */
527 #ifndef FOOTERS
528 #define FOOTERS 0
529 #endif  /* FOOTERS */
530 #ifndef ABORT
531 #define ABORT  abort()
532 #endif  /* ABORT */
533 #ifndef ABORT_ON_ASSERT_FAILURE
534 #define ABORT_ON_ASSERT_FAILURE 1
535 #endif  /* ABORT_ON_ASSERT_FAILURE */
536 #ifndef PROCEED_ON_ERROR
537 #define PROCEED_ON_ERROR 0
538 #endif  /* PROCEED_ON_ERROR */
539 #ifndef USE_LOCKS
540 #define USE_LOCKS 0
541 #endif  /* USE_LOCKS */
542 #ifndef INSECURE
543 #define INSECURE 0
544 #endif  /* INSECURE */
545 #ifndef HAVE_MMAP
546 #define HAVE_MMAP 1
547 #endif  /* HAVE_MMAP */
548 #ifndef MMAP_CLEARS
549 #define MMAP_CLEARS 1
550 #endif  /* MMAP_CLEARS */
551 #ifndef HAVE_MREMAP
552 #ifdef linux
553 #define HAVE_MREMAP 1
554 #else   /* linux */
555 #define HAVE_MREMAP 0
556 #endif  /* linux */
557 #endif  /* HAVE_MREMAP */
558 #ifndef MALLOC_FAILURE_ACTION
559 #define MALLOC_FAILURE_ACTION  errno = ENOMEM;
560 #endif  /* MALLOC_FAILURE_ACTION */
561 #ifndef HAVE_MORECORE
562 #if ONLY_MSPACES
563 #define HAVE_MORECORE 0
564 #else   /* ONLY_MSPACES */
565 #define HAVE_MORECORE 1
566 #endif  /* ONLY_MSPACES */
567 #endif  /* HAVE_MORECORE */
568 #if !HAVE_MORECORE
569 #define MORECORE_CONTIGUOUS 0
570 #else   /* !HAVE_MORECORE */
571 #ifndef MORECORE
572 #define MORECORE sbrk
573 #endif  /* MORECORE */
574 #ifndef MORECORE_CONTIGUOUS
575 #define MORECORE_CONTIGUOUS 1
576 #endif  /* MORECORE_CONTIGUOUS */
577 #endif  /* HAVE_MORECORE */
578 #ifndef DEFAULT_GRANULARITY
579 #if MORECORE_CONTIGUOUS
580 #define DEFAULT_GRANULARITY (0)  /* 0 means to compute in init_mparams */
581 #else   /* MORECORE_CONTIGUOUS */
582 #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
583 #endif  /* MORECORE_CONTIGUOUS */
584 #endif  /* DEFAULT_GRANULARITY */
585 #ifndef DEFAULT_TRIM_THRESHOLD
586 #ifndef MORECORE_CANNOT_TRIM
587 #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
588 #else   /* MORECORE_CANNOT_TRIM */
589 #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
590 #endif  /* MORECORE_CANNOT_TRIM */
591 #endif  /* DEFAULT_TRIM_THRESHOLD */
592 #ifndef DEFAULT_MMAP_THRESHOLD
593 #if HAVE_MMAP
594 #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
595 #else   /* HAVE_MMAP */
596 #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
597 #endif  /* HAVE_MMAP */
598 #endif  /* DEFAULT_MMAP_THRESHOLD */
599 #ifndef USE_BUILTIN_FFS
600 #define USE_BUILTIN_FFS 0
601 #endif  /* USE_BUILTIN_FFS */
602 #ifndef USE_DEV_RANDOM
603 #define USE_DEV_RANDOM 0
604 #endif  /* USE_DEV_RANDOM */
605 #ifndef NO_MALLINFO
606 #define NO_MALLINFO 0
607 #endif  /* NO_MALLINFO */
608 #ifndef MALLINFO_FIELD_TYPE
609 #define MALLINFO_FIELD_TYPE size_t
610 #endif  /* MALLINFO_FIELD_TYPE */
611 
612 #define memset	SDL_memset
613 #define memcpy	SDL_memcpy
614 #define malloc	SDL_malloc
615 #define calloc	SDL_calloc
616 #define realloc	SDL_realloc
617 #define free	SDL_free
618 
619 /*
620   mallopt tuning options.  SVID/XPG defines four standard parameter
621   numbers for mallopt, normally defined in malloc.h.  None of these
622   are used in this malloc, so setting them has no effect. But this
623   malloc does support the following options.
624 */
625 
626 #define M_TRIM_THRESHOLD     (-1)
627 #define M_GRANULARITY        (-2)
628 #define M_MMAP_THRESHOLD     (-3)
629 
630 /* ------------------------ Mallinfo declarations ------------------------ */
631 
632 #if !NO_MALLINFO
633 /*
634   This version of malloc supports the standard SVID/XPG mallinfo
635   routine that returns a struct containing usage properties and
636   statistics. It should work on any system that has a
637   /usr/include/malloc.h defining struct mallinfo.  The main
638   declaration needed is the mallinfo struct that is returned (by-copy)
639   by mallinfo().  The malloinfo struct contains a bunch of fields that
640   are not even meaningful in this version of malloc.  These fields are
641   are instead filled by mallinfo() with other numbers that might be of
642   interest.
643 
644   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
645   /usr/include/malloc.h file that includes a declaration of struct
646   mallinfo.  If so, it is included; else a compliant version is
647   declared below.  These must be precisely the same for mallinfo() to
648   work.  The original SVID version of this struct, defined on most
649   systems with mallinfo, declares all fields as ints. But some others
650   define as unsigned long. If your system defines the fields using a
651   type of different width than listed here, you MUST #include your
652   system version and #define HAVE_USR_INCLUDE_MALLOC_H.
653 */
654 
655 /* #define HAVE_USR_INCLUDE_MALLOC_H */
656 
657 #ifdef HAVE_USR_INCLUDE_MALLOC_H
658 #include "/usr/include/malloc.h"
659 #else /* HAVE_USR_INCLUDE_MALLOC_H */
660 
661 struct mallinfo {
662   MALLINFO_FIELD_TYPE arena;    /* non-mmapped space allocated from system */
663   MALLINFO_FIELD_TYPE ordblks;  /* number of free chunks */
664   MALLINFO_FIELD_TYPE smblks;   /* always 0 */
665   MALLINFO_FIELD_TYPE hblks;    /* always 0 */
666   MALLINFO_FIELD_TYPE hblkhd;   /* space in mmapped regions */
667   MALLINFO_FIELD_TYPE usmblks;  /* maximum total allocated space */
668   MALLINFO_FIELD_TYPE fsmblks;  /* always 0 */
669   MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
670   MALLINFO_FIELD_TYPE fordblks; /* total free space */
671   MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
672 };
673 
674 #endif /* HAVE_USR_INCLUDE_MALLOC_H */
675 #endif /* NO_MALLINFO */
676 
677 #ifdef __cplusplus
678 extern "C" {
679 #endif /* __cplusplus */
680 
681 #if !ONLY_MSPACES
682 
683 /* ------------------- Declarations of public routines ------------------- */
684 
685 #ifndef USE_DL_PREFIX
686 #define dlcalloc               calloc
687 #define dlfree                 free
688 #define dlmalloc               malloc
689 #define dlmemalign             memalign
690 #define dlrealloc              realloc
691 #define dlvalloc               valloc
692 #define dlpvalloc              pvalloc
693 #define dlmallinfo             mallinfo
694 #define dlmallopt              mallopt
695 #define dlmalloc_trim          malloc_trim
696 #define dlmalloc_stats         malloc_stats
697 #define dlmalloc_usable_size   malloc_usable_size
698 #define dlmalloc_footprint     malloc_footprint
699 #define dlmalloc_max_footprint malloc_max_footprint
700 #define dlindependent_calloc   independent_calloc
701 #define dlindependent_comalloc independent_comalloc
702 #endif /* USE_DL_PREFIX */
703 
704 
705 /*
706   malloc(size_t n)
707   Returns a pointer to a newly allocated chunk of at least n bytes, or
708   null if no space is available, in which case errno is set to ENOMEM
709   on ANSI C systems.
710 
711   If n is zero, malloc returns a minimum-sized chunk. (The minimum
712   size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
713   systems.)  Note that size_t is an unsigned type, so calls with
714   arguments that would be negative if signed are interpreted as
715   requests for huge amounts of space, which will often fail. The
716   maximum supported value of n differs across systems, but is in all
717   cases less than the maximum representable value of a size_t.
718 */
719 void* dlmalloc(size_t);
720 
721 /*
722   free(void* p)
723   Releases the chunk of memory pointed to by p, that had been previously
724   allocated using malloc or a related routine such as realloc.
725   It has no effect if p is null. If p was not malloced or already
726   freed, free(p) will by default cause the current program to abort.
727 */
728 void  dlfree(void*);
729 
730 /*
731   calloc(size_t n_elements, size_t element_size);
732   Returns a pointer to n_elements * element_size bytes, with all locations
733   set to zero.
734 */
735 void* dlcalloc(size_t, size_t);
736 
737 /*
738   realloc(void* p, size_t n)
739   Returns a pointer to a chunk of size n that contains the same data
740   as does chunk p up to the minimum of (n, p's size) bytes, or null
741   if no space is available.
742 
743   The returned pointer may or may not be the same as p. The algorithm
744   prefers extending p in most cases when possible, otherwise it
745   employs the equivalent of a malloc-copy-free sequence.
746 
747   If p is null, realloc is equivalent to malloc.
748 
749   If space is not available, realloc returns null, errno is set (if on
750   ANSI) and p is NOT freed.
751 
752   if n is for fewer bytes than already held by p, the newly unused
753   space is lopped off and freed if possible.  realloc with a size
754   argument of zero (re)allocates a minimum-sized chunk.
755 
756   The old unix realloc convention of allowing the last-free'd chunk
757   to be used as an argument to realloc is not supported.
758 */
759 
760 void* dlrealloc(void*, size_t);
761 
762 /*
763   memalign(size_t alignment, size_t n);
764   Returns a pointer to a newly allocated chunk of n bytes, aligned
765   in accord with the alignment argument.
766 
767   The alignment argument should be a power of two. If the argument is
768   not a power of two, the nearest greater power is used.
769   8-byte alignment is guaranteed by normal malloc calls, so don't
770   bother calling memalign with an argument of 8 or less.
771 
772   Overreliance on memalign is a sure way to fragment space.
773 */
774 void* dlmemalign(size_t, size_t);
775 
776 /*
777   valloc(size_t n);
778   Equivalent to memalign(pagesize, n), where pagesize is the page
779   size of the system. If the pagesize is unknown, 4096 is used.
780 */
781 void* dlvalloc(size_t);
782 
783 /*
784   mallopt(int parameter_number, int parameter_value)
785   Sets tunable parameters The format is to provide a
786   (parameter-number, parameter-value) pair.  mallopt then sets the
787   corresponding parameter to the argument value if it can (i.e., so
788   long as the value is meaningful), and returns 1 if successful else
789   0.  SVID/XPG/ANSI defines four standard param numbers for mallopt,
790   normally defined in malloc.h.  None of these are use in this malloc,
791   so setting them has no effect. But this malloc also supports other
792   options in mallopt. See below for details.  Briefly, supported
793   parameters are as follows (listed defaults are for "typical"
794   configurations).
795 
796   Symbol            param #  default    allowed param values
797   M_TRIM_THRESHOLD     -1   2*1024*1024   any   (MAX_SIZE_T disables)
798   M_GRANULARITY        -2     page size   any power of 2 >= page size
799   M_MMAP_THRESHOLD     -3      256*1024   any   (or 0 if no MMAP support)
800 */
801 int dlmallopt(int, int);
802 
803 /*
804   malloc_footprint();
805   Returns the number of bytes obtained from the system.  The total
806   number of bytes allocated by malloc, realloc etc., is less than this
807   value. Unlike mallinfo, this function returns only a precomputed
808   result, so can be called frequently to monitor memory consumption.
809   Even if locks are otherwise defined, this function does not use them,
810   so results might not be up to date.
811 */
812 size_t dlmalloc_footprint(void);
813 
814 /*
815   malloc_max_footprint();
816   Returns the maximum number of bytes obtained from the system. This
817   value will be greater than current footprint if deallocated space
818   has been reclaimed by the system. The peak number of bytes allocated
819   by malloc, realloc etc., is less than this value. Unlike mallinfo,
820   this function returns only a precomputed result, so can be called
821   frequently to monitor memory consumption.  Even if locks are
822   otherwise defined, this function does not use them, so results might
823   not be up to date.
824 */
825 size_t dlmalloc_max_footprint(void);
826 
827 #if !NO_MALLINFO
828 /*
829   mallinfo()
830   Returns (by copy) a struct containing various summary statistics:
831 
832   arena:     current total non-mmapped bytes allocated from system
833   ordblks:   the number of free chunks
834   smblks:    always zero.
835   hblks:     current number of mmapped regions
836   hblkhd:    total bytes held in mmapped regions
837   usmblks:   the maximum total allocated space. This will be greater
838                 than current total if trimming has occurred.
839   fsmblks:   always zero
840   uordblks:  current total allocated space (normal or mmapped)
841   fordblks:  total free space
842   keepcost:  the maximum number of bytes that could ideally be released
843                back to system via malloc_trim. ("ideally" means that
844                it ignores page restrictions etc.)
845 
846   Because these fields are ints, but internal bookkeeping may
847   be kept as longs, the reported values may wrap around zero and
848   thus be inaccurate.
849 */
850 struct mallinfo dlmallinfo(void);
851 #endif /* NO_MALLINFO */
852 
853 /*
854   independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
855 
856   independent_calloc is similar to calloc, but instead of returning a
857   single cleared space, it returns an array of pointers to n_elements
858   independent elements that can hold contents of size elem_size, each
859   of which starts out cleared, and can be independently freed,
860   realloc'ed etc. The elements are guaranteed to be adjacently
861   allocated (this is not guaranteed to occur with multiple callocs or
862   mallocs), which may also improve cache locality in some
863   applications.
864 
865   The "chunks" argument is optional (i.e., may be null, which is
866   probably the most typical usage). If it is null, the returned array
867   is itself dynamically allocated and should also be freed when it is
868   no longer needed. Otherwise, the chunks array must be of at least
869   n_elements in length. It is filled in with the pointers to the
870   chunks.
871 
872   In either case, independent_calloc returns this pointer array, or
873   null if the allocation failed.  If n_elements is zero and "chunks"
874   is null, it returns a chunk representing an array with zero elements
875   (which should be freed if not wanted).
876 
877   Each element must be individually freed when it is no longer
878   needed. If you'd like to instead be able to free all at once, you
879   should instead use regular calloc and assign pointers into this
880   space to represent elements.  (In this case though, you cannot
881   independently free elements.)
882 
883   independent_calloc simplifies and speeds up implementations of many
884   kinds of pools.  It may also be useful when constructing large data
885   structures that initially have a fixed number of fixed-sized nodes,
886   but the number is not known at compile time, and some of the nodes
887   may later need to be freed. For example:
888 
889   struct Node { int item; struct Node* next; };
890 
891   struct Node* build_list() {
892     struct Node** pool;
893     int n = read_number_of_nodes_needed();
894     if (n <= 0) return 0;
895     pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
896     if (pool == 0) die();
897     // organize into a linked list...
898     struct Node* first = pool[0];
899     for (i = 0; i < n-1; ++i)
900       pool[i]->next = pool[i+1];
901     free(pool);     // Can now free the array (or not, if it is needed later)
902     return first;
903   }
904 */
905 void** dlindependent_calloc(size_t, size_t, void**);
906 
907 /*
908   independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
909 
910   independent_comalloc allocates, all at once, a set of n_elements
911   chunks with sizes indicated in the "sizes" array.    It returns
912   an array of pointers to these elements, each of which can be
913   independently freed, realloc'ed etc. The elements are guaranteed to
914   be adjacently allocated (this is not guaranteed to occur with
915   multiple callocs or mallocs), which may also improve cache locality
916   in some applications.
917 
918   The "chunks" argument is optional (i.e., may be null). If it is null
919   the returned array is itself dynamically allocated and should also
920   be freed when it is no longer needed. Otherwise, the chunks array
921   must be of at least n_elements in length. It is filled in with the
922   pointers to the chunks.
923 
924   In either case, independent_comalloc returns this pointer array, or
925   null if the allocation failed.  If n_elements is zero and chunks is
926   null, it returns a chunk representing an array with zero elements
927   (which should be freed if not wanted).
928 
929   Each element must be individually freed when it is no longer
930   needed. If you'd like to instead be able to free all at once, you
931   should instead use a single regular malloc, and assign pointers at
932   particular offsets in the aggregate space. (In this case though, you
933   cannot independently free elements.)
934 
935   independent_comallac differs from independent_calloc in that each
936   element may have a different size, and also that it does not
937   automatically clear elements.
938 
939   independent_comalloc can be used to speed up allocation in cases
940   where several structs or objects must always be allocated at the
941   same time.  For example:
942 
943   struct Head { ... }
944   struct Foot { ... }
945 
946   void send_message(char* msg) {
947     int msglen = strlen(msg);
948     size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
949     void* chunks[3];
950     if (independent_comalloc(3, sizes, chunks) == 0)
951       die();
952     struct Head* head = (struct Head*)(chunks[0]);
953     char*        body = (char*)(chunks[1]);
954     struct Foot* foot = (struct Foot*)(chunks[2]);
955     // ...
956   }
957 
958   In general though, independent_comalloc is worth using only for
959   larger values of n_elements. For small values, you probably won't
960   detect enough difference from series of malloc calls to bother.
961 
962   Overuse of independent_comalloc can increase overall memory usage,
963   since it cannot reuse existing noncontiguous small chunks that
964   might be available for some of the elements.
965 */
966 void** dlindependent_comalloc(size_t, size_t*, void**);
967 
968 
969 /*
970   pvalloc(size_t n);
971   Equivalent to valloc(minimum-page-that-holds(n)), that is,
972   round up n to nearest pagesize.
973  */
974 void*  dlpvalloc(size_t);
975 
976 /*
977   malloc_trim(size_t pad);
978 
979   If possible, gives memory back to the system (via negative arguments
980   to sbrk) if there is unused memory at the `high' end of the malloc
981   pool or in unused MMAP segments. You can call this after freeing
982   large blocks of memory to potentially reduce the system-level memory
983   requirements of a program. However, it cannot guarantee to reduce
984   memory. Under some allocation patterns, some large free blocks of
985   memory will be locked between two used chunks, so they cannot be
986   given back to the system.
987 
988   The `pad' argument to malloc_trim represents the amount of free
989   trailing space to leave untrimmed. If this argument is zero, only
990   the minimum amount of memory to maintain internal data structures
991   will be left. Non-zero arguments can be supplied to maintain enough
992   trailing space to service future expected allocations without having
993   to re-obtain memory from the system.
994 
995   Malloc_trim returns 1 if it actually released any memory, else 0.
996 */
997 int  dlmalloc_trim(size_t);
998 
999 /*
1000   malloc_usable_size(void* p);
1001 
1002   Returns the number of bytes you can actually use in
1003   an allocated chunk, which may be more than you requested (although
1004   often not) due to alignment and minimum size constraints.
1005   You can use this many bytes without worrying about
1006   overwriting other allocated objects. This is not a particularly great
1007   programming practice. malloc_usable_size can be more useful in
1008   debugging and assertions, for example:
1009 
1010   p = malloc(n);
1011   assert(malloc_usable_size(p) >= 256);
1012 */
1013 size_t dlmalloc_usable_size(void*);
1014 
1015 /*
1016   malloc_stats();
1017   Prints on stderr the amount of space obtained from the system (both
1018   via sbrk and mmap), the maximum amount (which may be more than
1019   current if malloc_trim and/or munmap got called), and the current
1020   number of bytes allocated via malloc (or realloc, etc) but not yet
1021   freed. Note that this is the number of bytes allocated, not the
1022   number requested. It will be larger than the number requested
1023   because of alignment and bookkeeping overhead. Because it includes
1024   alignment wastage as being in use, this figure may be greater than
1025   zero even when no user-level chunks are allocated.
1026 
1027   The reported current and maximum system memory can be inaccurate if
1028   a program makes other calls to system memory allocation functions
1029   (normally sbrk) outside of malloc.
1030 
1031   malloc_stats prints only the most commonly interesting statistics.
1032   More information can be obtained by calling mallinfo.
1033 */
1034 void  dlmalloc_stats(void);
1035 
1036 #endif /* ONLY_MSPACES */
1037 
1038 #if MSPACES
1039 
1040 /*
1041   mspace is an opaque type representing an independent
1042   region of space that supports mspace_malloc, etc.
1043 */
1044 typedef void* mspace;
1045 
1046 /*
1047   create_mspace creates and returns a new independent space with the
1048   given initial capacity, or, if 0, the default granularity size.  It
1049   returns null if there is no system memory available to create the
1050   space.  If argument locked is non-zero, the space uses a separate
1051   lock to control access. The capacity of the space will grow
1052   dynamically as needed to service mspace_malloc requests.  You can
1053   control the sizes of incremental increases of this space by
1054   compiling with a different DEFAULT_GRANULARITY or dynamically
1055   setting with mallopt(M_GRANULARITY, value).
1056 */
1057 mspace create_mspace(size_t capacity, int locked);
1058 
1059 /*
1060   destroy_mspace destroys the given space, and attempts to return all
1061   of its memory back to the system, returning the total number of
1062   bytes freed. After destruction, the results of access to all memory
1063   used by the space become undefined.
1064 */
1065 size_t destroy_mspace(mspace msp);
1066 
1067 /*
1068   create_mspace_with_base uses the memory supplied as the initial base
1069   of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
1070   space is used for bookkeeping, so the capacity must be at least this
1071   large. (Otherwise 0 is returned.) When this initial space is
1072   exhausted, additional memory will be obtained from the system.
1073   Destroying this space will deallocate all additionally allocated
1074   space (if possible) but not the initial base.
1075 */
1076 mspace create_mspace_with_base(void* base, size_t capacity, int locked);
1077 
1078 /*
1079   mspace_malloc behaves as malloc, but operates within
1080   the given space.
1081 */
1082 void* mspace_malloc(mspace msp, size_t bytes);
1083 
1084 /*
1085   mspace_free behaves as free, but operates within
1086   the given space.
1087 
1088   If compiled with FOOTERS==1, mspace_free is not actually needed.
1089   free may be called instead of mspace_free because freed chunks from
1090   any space are handled by their originating spaces.
1091 */
1092 void mspace_free(mspace msp, void* mem);
1093 
1094 /*
1095   mspace_realloc behaves as realloc, but operates within
1096   the given space.
1097 
1098   If compiled with FOOTERS==1, mspace_realloc is not actually
1099   needed.  realloc may be called instead of mspace_realloc because
1100   realloced chunks from any space are handled by their originating
1101   spaces.
1102 */
1103 void* mspace_realloc(mspace msp, void* mem, size_t newsize);
1104 
1105 /*
1106   mspace_calloc behaves as calloc, but operates within
1107   the given space.
1108 */
1109 void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
1110 
1111 /*
1112   mspace_memalign behaves as memalign, but operates within
1113   the given space.
1114 */
1115 void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
1116 
1117 /*
1118   mspace_independent_calloc behaves as independent_calloc, but
1119   operates within the given space.
1120 */
1121 void** mspace_independent_calloc(mspace msp, size_t n_elements,
1122                                  size_t elem_size, void* chunks[]);
1123 
1124 /*
1125   mspace_independent_comalloc behaves as independent_comalloc, but
1126   operates within the given space.
1127 */
1128 void** mspace_independent_comalloc(mspace msp, size_t n_elements,
1129                                    size_t sizes[], void* chunks[]);
1130 
1131 /*
1132   mspace_footprint() returns the number of bytes obtained from the
1133   system for this space.
1134 */
1135 size_t mspace_footprint(mspace msp);
1136 
1137 /*
1138   mspace_max_footprint() returns the peak number of bytes obtained from the
1139   system for this space.
1140 */
1141 size_t mspace_max_footprint(mspace msp);
1142 
1143 
1144 #if !NO_MALLINFO
1145 /*
1146   mspace_mallinfo behaves as mallinfo, but reports properties of
1147   the given space.
1148 */
1149 struct mallinfo mspace_mallinfo(mspace msp);
1150 #endif /* NO_MALLINFO */
1151 
1152 /*
1153   mspace_malloc_stats behaves as malloc_stats, but reports
1154   properties of the given space.
1155 */
1156 void mspace_malloc_stats(mspace msp);
1157 
1158 /*
1159   mspace_trim behaves as malloc_trim, but
1160   operates within the given space.
1161 */
1162 int mspace_trim(mspace msp, size_t pad);
1163 
1164 /*
1165   An alias for mallopt.
1166 */
1167 int mspace_mallopt(int, int);
1168 
1169 #endif /* MSPACES */
1170 
1171 #ifdef __cplusplus
1172 };  /* end of extern "C" */
1173 #endif /* __cplusplus */
1174 
1175 /*
1176   ========================================================================
1177   To make a fully customizable malloc.h header file, cut everything
1178   above this line, put into file malloc.h, edit to suit, and #include it
1179   on the next line, as well as in programs that use this malloc.
1180   ========================================================================
1181 */
1182 
1183 /* #include "malloc.h" */
1184 
1185 /*------------------------------ internal #includes ---------------------- */
1186 
1187 #ifdef _MSC_VER
1188 #pragma warning( disable : 4146 ) /* no "unsigned" warnings */
1189 #endif /* _MSC_VER */
1190 
1191 #ifndef LACKS_STDIO_H
1192 #include <stdio.h>       /* for printing in malloc_stats */
1193 #endif
1194 
1195 #ifndef LACKS_ERRNO_H
1196 #include <errno.h>       /* for MALLOC_FAILURE_ACTION */
1197 #endif /* LACKS_ERRNO_H */
1198 #if FOOTERS
1199 #include <time.h>        /* for magic initialization */
1200 #endif /* FOOTERS */
1201 #ifndef LACKS_STDLIB_H
1202 #include <stdlib.h>      /* for abort() */
1203 #endif /* LACKS_STDLIB_H */
1204 #ifdef DEBUG
1205 #if ABORT_ON_ASSERT_FAILURE
1206 #define assert(x) if(!(x)) ABORT
1207 #else /* ABORT_ON_ASSERT_FAILURE */
1208 #include <assert.h>
1209 #endif /* ABORT_ON_ASSERT_FAILURE */
1210 #else  /* DEBUG */
1211 #define assert(x)
1212 #endif /* DEBUG */
1213 #ifndef LACKS_STRING_H
1214 #include <string.h>      /* for memset etc */
1215 #endif  /* LACKS_STRING_H */
1216 #if USE_BUILTIN_FFS
1217 #ifndef LACKS_STRINGS_H
1218 #include <strings.h>     /* for ffs */
1219 #endif /* LACKS_STRINGS_H */
1220 #endif /* USE_BUILTIN_FFS */
1221 #if HAVE_MMAP
1222 #ifndef LACKS_SYS_MMAN_H
1223 #include <sys/mman.h>    /* for mmap */
1224 #endif /* LACKS_SYS_MMAN_H */
1225 #ifndef LACKS_FCNTL_H
1226 #include <fcntl.h>
1227 #endif /* LACKS_FCNTL_H */
1228 #endif /* HAVE_MMAP */
1229 #if HAVE_MORECORE
1230 #ifndef LACKS_UNISTD_H
1231 #include <unistd.h>     /* for sbrk */
1232 #else /* LACKS_UNISTD_H */
1233 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
1234 extern void*     sbrk(ptrdiff_t);
1235 #endif /* FreeBSD etc */
1236 #endif /* LACKS_UNISTD_H */
1237 #endif /* HAVE_MMAP */
1238 
1239 #ifndef WIN32
1240 #ifndef malloc_getpagesize
1241 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
1242 #    ifndef _SC_PAGE_SIZE
1243 #      define _SC_PAGE_SIZE _SC_PAGESIZE
1244 #    endif
1245 #  endif
1246 #  ifdef _SC_PAGE_SIZE
1247 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
1248 #  else
1249 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
1250        extern size_t getpagesize();
1251 #      define malloc_getpagesize getpagesize()
1252 #    else
1253 #      ifdef WIN32 /* use supplied emulation of getpagesize */
1254 #        define malloc_getpagesize getpagesize()
1255 #      else
1256 #        ifndef LACKS_SYS_PARAM_H
1257 #          include <sys/param.h>
1258 #        endif
1259 #        ifdef EXEC_PAGESIZE
1260 #          define malloc_getpagesize EXEC_PAGESIZE
1261 #        else
1262 #          ifdef NBPG
1263 #            ifndef CLSIZE
1264 #              define malloc_getpagesize NBPG
1265 #            else
1266 #              define malloc_getpagesize (NBPG * CLSIZE)
1267 #            endif
1268 #          else
1269 #            ifdef NBPC
1270 #              define malloc_getpagesize NBPC
1271 #            else
1272 #              ifdef PAGESIZE
1273 #                define malloc_getpagesize PAGESIZE
1274 #              else /* just guess */
1275 #                define malloc_getpagesize ((size_t)4096U)
1276 #              endif
1277 #            endif
1278 #          endif
1279 #        endif
1280 #      endif
1281 #    endif
1282 #  endif
1283 #endif
1284 #endif
1285 
1286 /* ------------------- size_t and alignment properties -------------------- */
1287 
1288 /* The byte and bit size of a size_t */
1289 #define SIZE_T_SIZE         (sizeof(size_t))
1290 #define SIZE_T_BITSIZE      (sizeof(size_t) << 3)
1291 
1292 /* Some constants coerced to size_t */
1293 /* Annoying but necessary to avoid errors on some plaftorms */
1294 #define SIZE_T_ZERO         ((size_t)0)
1295 #define SIZE_T_ONE          ((size_t)1)
1296 #define SIZE_T_TWO          ((size_t)2)
1297 #define TWO_SIZE_T_SIZES    (SIZE_T_SIZE<<1)
1298 #define FOUR_SIZE_T_SIZES   (SIZE_T_SIZE<<2)
1299 #define SIX_SIZE_T_SIZES    (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
1300 #define HALF_MAX_SIZE_T     (MAX_SIZE_T / 2U)
1301 
1302 /* The bit mask value corresponding to MALLOC_ALIGNMENT */
1303 #define CHUNK_ALIGN_MASK    (MALLOC_ALIGNMENT - SIZE_T_ONE)
1304 
1305 /* True if address a has acceptable alignment */
1306 #define is_aligned(A)       (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
1307 
1308 /* the number of bytes to offset an address to align it */
1309 #define align_offset(A)\
1310  ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
1311   ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
1312 
1313 /* -------------------------- MMAP preliminaries ------------------------- */
1314 
1315 /*
1316    If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
1317    checks to fail so compiler optimizer can delete code rather than
1318    using so many "#if"s.
1319 */
1320 
1321 
1322 /* MORECORE and MMAP must return MFAIL on failure */
1323 #define MFAIL                ((void*)(MAX_SIZE_T))
1324 #define CMFAIL               ((char*)(MFAIL)) /* defined for convenience */
1325 
1326 #if !HAVE_MMAP
1327 #define IS_MMAPPED_BIT       (SIZE_T_ZERO)
1328 #define USE_MMAP_BIT         (SIZE_T_ZERO)
1329 #define CALL_MMAP(s)         MFAIL
1330 #define CALL_MUNMAP(a, s)    (-1)
1331 #define DIRECT_MMAP(s)       MFAIL
1332 
1333 #else /* HAVE_MMAP */
1334 #define IS_MMAPPED_BIT       (SIZE_T_ONE)
1335 #define USE_MMAP_BIT         (SIZE_T_ONE)
1336 
1337 #ifndef WIN32
1338 #define CALL_MUNMAP(a, s)    munmap((a), (s))
1339 #define MMAP_PROT            (PROT_READ|PROT_WRITE)
1340 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1341 #define MAP_ANONYMOUS        MAP_ANON
1342 #endif /* MAP_ANON */
1343 #ifdef MAP_ANONYMOUS
1344 #define MMAP_FLAGS           (MAP_PRIVATE|MAP_ANONYMOUS)
1345 #define CALL_MMAP(s)         mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
1346 #else /* MAP_ANONYMOUS */
1347 /*
1348    Nearly all versions of mmap support MAP_ANONYMOUS, so the following
1349    is unlikely to be needed, but is supplied just in case.
1350 */
1351 #define MMAP_FLAGS           (MAP_PRIVATE)
1352 static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1353 #define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
1354            (dev_zero_fd = open("/dev/zero", O_RDWR), \
1355             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
1356             mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
1357 #endif /* MAP_ANONYMOUS */
1358 
1359 #define DIRECT_MMAP(s)       CALL_MMAP(s)
1360 #else /* WIN32 */
1361 
1362 /* Win32 MMAP via VirtualAlloc */
win32mmap(size_t size)1363 static void* win32mmap(size_t size) {
1364   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
1365   return (ptr != 0)? ptr: MFAIL;
1366 }
1367 
1368 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
win32direct_mmap(size_t size)1369 static void* win32direct_mmap(size_t size) {
1370   void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
1371                            PAGE_READWRITE);
1372   return (ptr != 0)? ptr: MFAIL;
1373 }
1374 
1375 /* This function supports releasing coalesed segments */
win32munmap(void * ptr,size_t size)1376 static int win32munmap(void* ptr, size_t size) {
1377   MEMORY_BASIC_INFORMATION minfo;
1378   char* cptr = ptr;
1379   while (size) {
1380     if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
1381       return -1;
1382     if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
1383         minfo.State != MEM_COMMIT || minfo.RegionSize > size)
1384       return -1;
1385     if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
1386       return -1;
1387     cptr += minfo.RegionSize;
1388     size -= minfo.RegionSize;
1389   }
1390   return 0;
1391 }
1392 
1393 #define CALL_MMAP(s)         win32mmap(s)
1394 #define CALL_MUNMAP(a, s)    win32munmap((a), (s))
1395 #define DIRECT_MMAP(s)       win32direct_mmap(s)
1396 #endif /* WIN32 */
1397 #endif /* HAVE_MMAP */
1398 
1399 #if HAVE_MMAP && HAVE_MREMAP
1400 #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
1401 #else  /* HAVE_MMAP && HAVE_MREMAP */
1402 #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
1403 #endif /* HAVE_MMAP && HAVE_MREMAP */
1404 
1405 #if HAVE_MORECORE
1406 #define CALL_MORECORE(S)     MORECORE(S)
1407 #else  /* HAVE_MORECORE */
1408 #define CALL_MORECORE(S)     MFAIL
1409 #endif /* HAVE_MORECORE */
1410 
1411 /* mstate bit set if continguous morecore disabled or failed */
1412 #define USE_NONCONTIGUOUS_BIT (4U)
1413 
1414 /* segment bit set in create_mspace_with_base */
1415 #define EXTERN_BIT            (8U)
1416 
1417 
1418 /* --------------------------- Lock preliminaries ------------------------ */
1419 
1420 #if USE_LOCKS
1421 
1422 /*
1423   When locks are defined, there are up to two global locks:
1424 
1425   * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
1426     MORECORE.  In many cases sys_alloc requires two calls, that should
1427     not be interleaved with calls by other threads.  This does not
1428     protect against direct calls to MORECORE by other threads not
1429     using this lock, so there is still code to cope the best we can on
1430     interference.
1431 
1432   * magic_init_mutex ensures that mparams.magic and other
1433     unique mparams values are initialized only once.
1434 */
1435 
1436 #ifndef WIN32
1437 /* By default use posix locks */
1438 #include <pthread.h>
1439 #define MLOCK_T pthread_mutex_t
1440 #define INITIAL_LOCK(l)      pthread_mutex_init(l, NULL)
1441 #define ACQUIRE_LOCK(l)      pthread_mutex_lock(l)
1442 #define RELEASE_LOCK(l)      pthread_mutex_unlock(l)
1443 
1444 #if HAVE_MORECORE
1445 static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
1446 #endif /* HAVE_MORECORE */
1447 
1448 static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
1449 
1450 #else /* WIN32 */
1451 /*
1452    Because lock-protected regions have bounded times, and there
1453    are no recursive lock calls, we can use simple spinlocks.
1454 */
1455 
1456 #define MLOCK_T long
win32_acquire_lock(MLOCK_T * sl)1457 static int win32_acquire_lock (MLOCK_T *sl) {
1458   for (;;) {
1459 #ifdef InterlockedCompareExchangePointer
1460     if (!InterlockedCompareExchange(sl, 1, 0))
1461       return 0;
1462 #else  /* Use older void* version */
1463     if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0))
1464       return 0;
1465 #endif /* InterlockedCompareExchangePointer */
1466     Sleep (0);
1467   }
1468 }
1469 
win32_release_lock(MLOCK_T * sl)1470 static void win32_release_lock (MLOCK_T *sl) {
1471   InterlockedExchange (sl, 0);
1472 }
1473 
1474 #define INITIAL_LOCK(l)      *(l)=0
1475 #define ACQUIRE_LOCK(l)      win32_acquire_lock(l)
1476 #define RELEASE_LOCK(l)      win32_release_lock(l)
1477 #if HAVE_MORECORE
1478 static MLOCK_T morecore_mutex;
1479 #endif /* HAVE_MORECORE */
1480 static MLOCK_T magic_init_mutex;
1481 #endif /* WIN32 */
1482 
1483 #define USE_LOCK_BIT               (2U)
1484 #else  /* USE_LOCKS */
1485 #define USE_LOCK_BIT               (0U)
1486 #define INITIAL_LOCK(l)
1487 #endif /* USE_LOCKS */
1488 
1489 #if USE_LOCKS && HAVE_MORECORE
1490 #define ACQUIRE_MORECORE_LOCK()    ACQUIRE_LOCK(&morecore_mutex);
1491 #define RELEASE_MORECORE_LOCK()    RELEASE_LOCK(&morecore_mutex);
1492 #else /* USE_LOCKS && HAVE_MORECORE */
1493 #define ACQUIRE_MORECORE_LOCK()
1494 #define RELEASE_MORECORE_LOCK()
1495 #endif /* USE_LOCKS && HAVE_MORECORE */
1496 
1497 #if USE_LOCKS
1498 #define ACQUIRE_MAGIC_INIT_LOCK()  ACQUIRE_LOCK(&magic_init_mutex);
1499 #define RELEASE_MAGIC_INIT_LOCK()  RELEASE_LOCK(&magic_init_mutex);
1500 #else  /* USE_LOCKS */
1501 #define ACQUIRE_MAGIC_INIT_LOCK()
1502 #define RELEASE_MAGIC_INIT_LOCK()
1503 #endif /* USE_LOCKS */
1504 
1505 
1506 /* -----------------------  Chunk representations ------------------------ */
1507 
1508 /*
1509   (The following includes lightly edited explanations by Colin Plumb.)
1510 
1511   The malloc_chunk declaration below is misleading (but accurate and
1512   necessary).  It declares a "view" into memory allowing access to
1513   necessary fields at known offsets from a given base.
1514 
1515   Chunks of memory are maintained using a `boundary tag' method as
1516   originally described by Knuth.  (See the paper by Paul Wilson
1517   ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
1518   techniques.)  Sizes of free chunks are stored both in the front of
1519   each chunk and at the end.  This makes consolidating fragmented
1520   chunks into bigger chunks fast.  The head fields also hold bits
1521   representing whether chunks are free or in use.
1522 
1523   Here are some pictures to make it clearer.  They are "exploded" to
1524   show that the state of a chunk can be thought of as extending from
1525   the high 31 bits of the head field of its header through the
1526   prev_foot and PINUSE_BIT bit of the following chunk header.
1527 
1528   A chunk that's in use looks like:
1529 
1530    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1531            | Size of previous chunk (if P = 1)                             |
1532            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1533          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1534          | Size of this chunk                                         1| +-+
1535    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1536          |                                                               |
1537          +-                                                             -+
1538          |                                                               |
1539          +-                                                             -+
1540          |                                                               :
1541          +-      size - sizeof(size_t) available payload bytes          -+
1542          :                                                               |
1543  chunk-> +-                                                             -+
1544          |                                                               |
1545          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1546        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
1547        | Size of next chunk (may or may not be in use)               | +-+
1548  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1549 
1550     And if it's free, it looks like this:
1551 
1552    chunk-> +-                                                             -+
1553            | User payload (must be in use, or we would have merged!)       |
1554            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1555          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1556          | Size of this chunk                                         0| +-+
1557    mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1558          | Next pointer                                                  |
1559          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1560          | Prev pointer                                                  |
1561          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1562          |                                                               :
1563          +-      size - sizeof(struct chunk) unused bytes               -+
1564          :                                                               |
1565  chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1566          | Size of this chunk                                            |
1567          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1568        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
1569        | Size of next chunk (must be in use, or we would have merged)| +-+
1570  mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1571        |                                                               :
1572        +- User payload                                                -+
1573        :                                                               |
1574        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1575                                                                      |0|
1576                                                                      +-+
1577   Note that since we always merge adjacent free chunks, the chunks
1578   adjacent to a free chunk must be in use.
1579 
1580   Given a pointer to a chunk (which can be derived trivially from the
1581   payload pointer) we can, in O(1) time, find out whether the adjacent
1582   chunks are free, and if so, unlink them from the lists that they
1583   are on and merge them with the current chunk.
1584 
1585   Chunks always begin on even word boundaries, so the mem portion
1586   (which is returned to the user) is also on an even word boundary, and
1587   thus at least double-word aligned.
1588 
1589   The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
1590   chunk size (which is always a multiple of two words), is an in-use
1591   bit for the *previous* chunk.  If that bit is *clear*, then the
1592   word before the current chunk size contains the previous chunk
1593   size, and can be used to find the front of the previous chunk.
1594   The very first chunk allocated always has this bit set, preventing
1595   access to non-existent (or non-owned) memory. If pinuse is set for
1596   any given chunk, then you CANNOT determine the size of the
1597   previous chunk, and might even get a memory addressing fault when
1598   trying to do so.
1599 
1600   The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
1601   the chunk size redundantly records whether the current chunk is
1602   inuse. This redundancy enables usage checks within free and realloc,
1603   and reduces indirection when freeing and consolidating chunks.
1604 
1605   Each freshly allocated chunk must have both cinuse and pinuse set.
1606   That is, each allocated chunk borders either a previously allocated
1607   and still in-use chunk, or the base of its memory arena. This is
1608   ensured by making all allocations from the the `lowest' part of any
1609   found chunk.  Further, no free chunk physically borders another one,
1610   so each free chunk is known to be preceded and followed by either
1611   inuse chunks or the ends of memory.
1612 
1613   Note that the `foot' of the current chunk is actually represented
1614   as the prev_foot of the NEXT chunk. This makes it easier to
1615   deal with alignments etc but can be very confusing when trying
1616   to extend or adapt this code.
1617 
1618   The exceptions to all this are
1619 
1620      1. The special chunk `top' is the top-most available chunk (i.e.,
1621         the one bordering the end of available memory). It is treated
1622         specially.  Top is never included in any bin, is used only if
1623         no other chunk is available, and is released back to the
1624         system if it is very large (see M_TRIM_THRESHOLD).  In effect,
1625         the top chunk is treated as larger (and thus less well
1626         fitting) than any other available chunk.  The top chunk
1627         doesn't update its trailing size field since there is no next
1628         contiguous chunk that would have to index off it. However,
1629         space is still allocated for it (TOP_FOOT_SIZE) to enable
1630         separation or merging when space is extended.
1631 
1632      3. Chunks allocated via mmap, which have the lowest-order bit
1633         (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
1634         PINUSE_BIT in their head fields.  Because they are allocated
1635         one-by-one, each must carry its own prev_foot field, which is
1636         also used to hold the offset this chunk has within its mmapped
1637         region, which is needed to preserve alignment. Each mmapped
1638         chunk is trailed by the first two fields of a fake next-chunk
1639         for sake of usage checks.
1640 
1641 */
1642 
1643 struct malloc_chunk {
1644   size_t               prev_foot;  /* Size of previous chunk (if free).  */
1645   size_t               head;       /* Size and inuse bits. */
1646   struct malloc_chunk* fd;         /* double links -- used only if free. */
1647   struct malloc_chunk* bk;
1648 };
1649 
1650 typedef struct malloc_chunk  mchunk;
1651 typedef struct malloc_chunk* mchunkptr;
1652 typedef struct malloc_chunk* sbinptr;  /* The type of bins of chunks */
1653 typedef size_t bindex_t;               /* Described below */
1654 typedef unsigned int binmap_t;         /* Described below */
1655 typedef unsigned int flag_t;           /* The type of various bit flag sets */
1656 
1657 /* ------------------- Chunks sizes and alignments ----------------------- */
1658 
1659 #define MCHUNK_SIZE         (sizeof(mchunk))
1660 
1661 #if FOOTERS
1662 #define CHUNK_OVERHEAD      (TWO_SIZE_T_SIZES)
1663 #else /* FOOTERS */
1664 #define CHUNK_OVERHEAD      (SIZE_T_SIZE)
1665 #endif /* FOOTERS */
1666 
1667 /* MMapped chunks need a second word of overhead ... */
1668 #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
1669 /* ... and additional padding for fake next-chunk at foot */
1670 #define MMAP_FOOT_PAD       (FOUR_SIZE_T_SIZES)
1671 
1672 /* The smallest size we can malloc is an aligned minimal chunk */
1673 #define MIN_CHUNK_SIZE\
1674   ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1675 
1676 /* conversion from malloc headers to user pointers, and back */
1677 #define chunk2mem(p)        ((void*)((char*)(p)       + TWO_SIZE_T_SIZES))
1678 #define mem2chunk(mem)      ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
1679 /* chunk associated with aligned address A */
1680 #define align_as_chunk(A)   (mchunkptr)((A) + align_offset(chunk2mem(A)))
1681 
1682 /* Bounds on request (not chunk) sizes. */
1683 #define MAX_REQUEST         ((-MIN_CHUNK_SIZE) << 2)
1684 #define MIN_REQUEST         (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
1685 
1686 /* pad request bytes into a usable size */
1687 #define pad_request(req) \
1688    (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1689 
1690 /* pad request, checking for minimum (but not maximum) */
1691 #define request2size(req) \
1692   (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
1693 
1694 
1695 /* ------------------ Operations on head and foot fields ----------------- */
1696 
1697 /*
1698   The head field of a chunk is or'ed with PINUSE_BIT when previous
1699   adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
1700   use. If the chunk was obtained with mmap, the prev_foot field has
1701   IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
1702   mmapped region to the base of the chunk.
1703 */
1704 
1705 #define PINUSE_BIT          (SIZE_T_ONE)
1706 #define CINUSE_BIT          (SIZE_T_TWO)
1707 #define INUSE_BITS          (PINUSE_BIT|CINUSE_BIT)
1708 
1709 /* Head value for fenceposts */
1710 #define FENCEPOST_HEAD      (INUSE_BITS|SIZE_T_SIZE)
1711 
1712 /* extraction of fields from head words */
1713 #define cinuse(p)           ((p)->head & CINUSE_BIT)
1714 #define pinuse(p)           ((p)->head & PINUSE_BIT)
1715 #define chunksize(p)        ((p)->head & ~(INUSE_BITS))
1716 
1717 #define clear_pinuse(p)     ((p)->head &= ~PINUSE_BIT)
1718 #define clear_cinuse(p)     ((p)->head &= ~CINUSE_BIT)
1719 
1720 /* Treat space at ptr +/- offset as a chunk */
1721 #define chunk_plus_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1722 #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
1723 
1724 /* Ptr to next or previous physical malloc_chunk. */
1725 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
1726 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
1727 
1728 /* extract next chunk's pinuse bit */
1729 #define next_pinuse(p)  ((next_chunk(p)->head) & PINUSE_BIT)
1730 
1731 /* Get/set size at footer */
1732 #define get_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot)
1733 #define set_foot(p, s)  (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
1734 
1735 /* Set size, pinuse bit, and foot */
1736 #define set_size_and_pinuse_of_free_chunk(p, s)\
1737   ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
1738 
1739 /* Set size, pinuse bit, foot, and clear next pinuse */
1740 #define set_free_with_pinuse(p, s, n)\
1741   (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
1742 
1743 #define is_mmapped(p)\
1744   (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
1745 
1746 /* Get the internal overhead associated with chunk p */
1747 #define overhead_for(p)\
1748  (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
1749 
1750 /* Return true if malloced space is not necessarily cleared */
1751 #if MMAP_CLEARS
1752 #define calloc_must_clear(p) (!is_mmapped(p))
1753 #else /* MMAP_CLEARS */
1754 #define calloc_must_clear(p) (1)
1755 #endif /* MMAP_CLEARS */
1756 
1757 /* ---------------------- Overlaid data structures ----------------------- */
1758 
1759 /*
1760   When chunks are not in use, they are treated as nodes of either
1761   lists or trees.
1762 
1763   "Small"  chunks are stored in circular doubly-linked lists, and look
1764   like this:
1765 
1766     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1767             |             Size of previous chunk                            |
1768             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1769     `head:' |             Size of chunk, in bytes                         |P|
1770       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1771             |             Forward pointer to next chunk in list             |
1772             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1773             |             Back pointer to previous chunk in list            |
1774             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1775             |             Unused space (may be 0 bytes long)                .
1776             .                                                               .
1777             .                                                               |
1778 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1779     `foot:' |             Size of chunk, in bytes                           |
1780             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1781 
1782   Larger chunks are kept in a form of bitwise digital trees (aka
1783   tries) keyed on chunksizes.  Because malloc_tree_chunks are only for
1784   free chunks greater than 256 bytes, their size doesn't impose any
1785   constraints on user chunk sizes.  Each node looks like:
1786 
1787     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1788             |             Size of previous chunk                            |
1789             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1790     `head:' |             Size of chunk, in bytes                         |P|
1791       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1792             |             Forward pointer to next chunk of same size        |
1793             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1794             |             Back pointer to previous chunk of same size       |
1795             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1796             |             Pointer to left child (child[0])                  |
1797             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1798             |             Pointer to right child (child[1])                 |
1799             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1800             |             Pointer to parent                                 |
1801             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1802             |             bin index of this chunk                           |
1803             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1804             |             Unused space                                      .
1805             .                                                               |
1806 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1807     `foot:' |             Size of chunk, in bytes                           |
1808             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1809 
1810   Each tree holding treenodes is a tree of unique chunk sizes.  Chunks
1811   of the same size are arranged in a circularly-linked list, with only
1812   the oldest chunk (the next to be used, in our FIFO ordering)
1813   actually in the tree.  (Tree members are distinguished by a non-null
1814   parent pointer.)  If a chunk with the same size an an existing node
1815   is inserted, it is linked off the existing node using pointers that
1816   work in the same way as fd/bk pointers of small chunks.
1817 
1818   Each tree contains a power of 2 sized range of chunk sizes (the
1819   smallest is 0x100 <= x < 0x180), which is is divided in half at each
1820   tree level, with the chunks in the smaller half of the range (0x100
1821   <= x < 0x140 for the top nose) in the left subtree and the larger
1822   half (0x140 <= x < 0x180) in the right subtree.  This is, of course,
1823   done by inspecting individual bits.
1824 
1825   Using these rules, each node's left subtree contains all smaller
1826   sizes than its right subtree.  However, the node at the root of each
1827   subtree has no particular ordering relationship to either.  (The
1828   dividing line between the subtree sizes is based on trie relation.)
1829   If we remove the last chunk of a given size from the interior of the
1830   tree, we need to replace it with a leaf node.  The tree ordering
1831   rules permit a node to be replaced by any leaf below it.
1832 
1833   The smallest chunk in a tree (a common operation in a best-fit
1834   allocator) can be found by walking a path to the leftmost leaf in
1835   the tree.  Unlike a usual binary tree, where we follow left child
1836   pointers until we reach a null, here we follow the right child
1837   pointer any time the left one is null, until we reach a leaf with
1838   both child pointers null. The smallest chunk in the tree will be
1839   somewhere along that path.
1840 
1841   The worst case number of steps to add, find, or remove a node is
1842   bounded by the number of bits differentiating chunks within
1843   bins. Under current bin calculations, this ranges from 6 up to 21
1844   (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
1845   is of course much better.
1846 */
1847 
1848 struct malloc_tree_chunk {
1849   /* The first four fields must be compatible with malloc_chunk */
1850   size_t                    prev_foot;
1851   size_t                    head;
1852   struct malloc_tree_chunk* fd;
1853   struct malloc_tree_chunk* bk;
1854 
1855   struct malloc_tree_chunk* child[2];
1856   struct malloc_tree_chunk* parent;
1857   bindex_t                  index;
1858 };
1859 
1860 typedef struct malloc_tree_chunk  tchunk;
1861 typedef struct malloc_tree_chunk* tchunkptr;
1862 typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
1863 
1864 /* A little helper macro for trees */
1865 #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
1866 
1867 /* ----------------------------- Segments -------------------------------- */
1868 
1869 /*
1870   Each malloc space may include non-contiguous segments, held in a
1871   list headed by an embedded malloc_segment record representing the
1872   top-most space. Segments also include flags holding properties of
1873   the space. Large chunks that are directly allocated by mmap are not
1874   included in this list. They are instead independently created and
1875   destroyed without otherwise keeping track of them.
1876 
1877   Segment management mainly comes into play for spaces allocated by
1878   MMAP.  Any call to MMAP might or might not return memory that is
1879   adjacent to an existing segment.  MORECORE normally contiguously
1880   extends the current space, so this space is almost always adjacent,
1881   which is simpler and faster to deal with. (This is why MORECORE is
1882   used preferentially to MMAP when both are available -- see
1883   sys_alloc.)  When allocating using MMAP, we don't use any of the
1884   hinting mechanisms (inconsistently) supported in various
1885   implementations of unix mmap, or distinguish reserving from
1886   committing memory. Instead, we just ask for space, and exploit
1887   contiguity when we get it.  It is probably possible to do
1888   better than this on some systems, but no general scheme seems
1889   to be significantly better.
1890 
1891   Management entails a simpler variant of the consolidation scheme
1892   used for chunks to reduce fragmentation -- new adjacent memory is
1893   normally prepended or appended to an existing segment. However,
1894   there are limitations compared to chunk consolidation that mostly
1895   reflect the fact that segment processing is relatively infrequent
1896   (occurring only when getting memory from system) and that we
1897   don't expect to have huge numbers of segments:
1898 
1899   * Segments are not indexed, so traversal requires linear scans.  (It
1900     would be possible to index these, but is not worth the extra
1901     overhead and complexity for most programs on most platforms.)
1902   * New segments are only appended to old ones when holding top-most
1903     memory; if they cannot be prepended to others, they are held in
1904     different segments.
1905 
1906   Except for the top-most segment of an mstate, each segment record
1907   is kept at the tail of its segment. Segments are added by pushing
1908   segment records onto the list headed by &mstate.seg for the
1909   containing mstate.
1910 
1911   Segment flags control allocation/merge/deallocation policies:
1912   * If EXTERN_BIT set, then we did not allocate this segment,
1913     and so should not try to deallocate or merge with others.
1914     (This currently holds only for the initial segment passed
1915     into create_mspace_with_base.)
1916   * If IS_MMAPPED_BIT set, the segment may be merged with
1917     other surrounding mmapped segments and trimmed/de-allocated
1918     using munmap.
1919   * If neither bit is set, then the segment was obtained using
1920     MORECORE so can be merged with surrounding MORECORE'd segments
1921     and deallocated/trimmed using MORECORE with negative arguments.
1922 */
1923 
1924 struct malloc_segment {
1925   char*        base;             /* base address */
1926   size_t       size;             /* allocated size */
1927   struct malloc_segment* next;   /* ptr to next segment */
1928   flag_t       sflags;           /* mmap and extern flag */
1929 };
1930 
1931 #define is_mmapped_segment(S)  ((S)->sflags & IS_MMAPPED_BIT)
1932 #define is_extern_segment(S)   ((S)->sflags & EXTERN_BIT)
1933 
1934 typedef struct malloc_segment  msegment;
1935 typedef struct malloc_segment* msegmentptr;
1936 
1937 /* ---------------------------- malloc_state ----------------------------- */
1938 
1939 /*
1940    A malloc_state holds all of the bookkeeping for a space.
1941    The main fields are:
1942 
1943   Top
1944     The topmost chunk of the currently active segment. Its size is
1945     cached in topsize.  The actual size of topmost space is
1946     topsize+TOP_FOOT_SIZE, which includes space reserved for adding
1947     fenceposts and segment records if necessary when getting more
1948     space from the system.  The size at which to autotrim top is
1949     cached from mparams in trim_check, except that it is disabled if
1950     an autotrim fails.
1951 
1952   Designated victim (dv)
1953     This is the preferred chunk for servicing small requests that
1954     don't have exact fits.  It is normally the chunk split off most
1955     recently to service another small request.  Its size is cached in
1956     dvsize. The link fields of this chunk are not maintained since it
1957     is not kept in a bin.
1958 
1959   SmallBins
1960     An array of bin headers for free chunks.  These bins hold chunks
1961     with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
1962     chunks of all the same size, spaced 8 bytes apart.  To simplify
1963     use in double-linked lists, each bin header acts as a malloc_chunk
1964     pointing to the real first node, if it exists (else pointing to
1965     itself).  This avoids special-casing for headers.  But to avoid
1966     waste, we allocate only the fd/bk pointers of bins, and then use
1967     repositioning tricks to treat these as the fields of a chunk.
1968 
1969   TreeBins
1970     Treebins are pointers to the roots of trees holding a range of
1971     sizes. There are 2 equally spaced treebins for each power of two
1972     from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
1973     larger.
1974 
1975   Bin maps
1976     There is one bit map for small bins ("smallmap") and one for
1977     treebins ("treemap).  Each bin sets its bit when non-empty, and
1978     clears the bit when empty.  Bit operations are then used to avoid
1979     bin-by-bin searching -- nearly all "search" is done without ever
1980     looking at bins that won't be selected.  The bit maps
1981     conservatively use 32 bits per map word, even if on 64bit system.
1982     For a good description of some of the bit-based techniques used
1983     here, see Henry S. Warren Jr's book "Hacker's Delight" (and
1984     supplement at http://hackersdelight.org/). Many of these are
1985     intended to reduce the branchiness of paths through malloc etc, as
1986     well as to reduce the number of memory locations read or written.
1987 
1988   Segments
1989     A list of segments headed by an embedded malloc_segment record
1990     representing the initial space.
1991 
1992   Address check support
1993     The least_addr field is the least address ever obtained from
1994     MORECORE or MMAP. Attempted frees and reallocs of any address less
1995     than this are trapped (unless INSECURE is defined).
1996 
1997   Magic tag
1998     A cross-check field that should always hold same value as mparams.magic.
1999 
2000   Flags
2001     Bits recording whether to use MMAP, locks, or contiguous MORECORE
2002 
2003   Statistics
2004     Each space keeps track of current and maximum system memory
2005     obtained via MORECORE or MMAP.
2006 
2007   Locking
2008     If USE_LOCKS is defined, the "mutex" lock is acquired and released
2009     around every public call using this mspace.
2010 */
2011 
2012 /* Bin types, widths and sizes */
2013 #define NSMALLBINS        (32U)
2014 #define NTREEBINS         (32U)
2015 #define SMALLBIN_SHIFT    (3U)
2016 #define SMALLBIN_WIDTH    (SIZE_T_ONE << SMALLBIN_SHIFT)
2017 #define TREEBIN_SHIFT     (8U)
2018 #define MIN_LARGE_SIZE    (SIZE_T_ONE << TREEBIN_SHIFT)
2019 #define MAX_SMALL_SIZE    (MIN_LARGE_SIZE - SIZE_T_ONE)
2020 #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
2021 
2022 struct malloc_state {
2023   binmap_t   smallmap;
2024   binmap_t   treemap;
2025   size_t     dvsize;
2026   size_t     topsize;
2027   char*      least_addr;
2028   mchunkptr  dv;
2029   mchunkptr  top;
2030   size_t     trim_check;
2031   size_t     magic;
2032   mchunkptr  smallbins[(NSMALLBINS+1)*2];
2033   tbinptr    treebins[NTREEBINS];
2034   size_t     footprint;
2035   size_t     max_footprint;
2036   flag_t     mflags;
2037 #if USE_LOCKS
2038   MLOCK_T    mutex;     /* locate lock among fields that rarely change */
2039 #endif /* USE_LOCKS */
2040   msegment   seg;
2041 };
2042 
2043 typedef struct malloc_state*    mstate;
2044 
2045 /* ------------- Global malloc_state and malloc_params ------------------- */
2046 
2047 /*
2048   malloc_params holds global properties, including those that can be
2049   dynamically set using mallopt. There is a single instance, mparams,
2050   initialized in init_mparams.
2051 */
2052 
2053 struct malloc_params {
2054   size_t magic;
2055   size_t page_size;
2056   size_t granularity;
2057   size_t mmap_threshold;
2058   size_t trim_threshold;
2059   flag_t default_mflags;
2060 };
2061 
2062 static struct malloc_params mparams;
2063 
2064 /* The global malloc_state used for all non-"mspace" calls */
2065 static struct malloc_state _gm_;
2066 #define gm                 (&_gm_)
2067 #define is_global(M)       ((M) == &_gm_)
2068 #define is_initialized(M)  ((M)->top != 0)
2069 
2070 /* -------------------------- system alloc setup ------------------------- */
2071 
2072 /* Operations on mflags */
2073 
2074 #define use_lock(M)           ((M)->mflags &   USE_LOCK_BIT)
2075 #define enable_lock(M)        ((M)->mflags |=  USE_LOCK_BIT)
2076 #define disable_lock(M)       ((M)->mflags &= ~USE_LOCK_BIT)
2077 
2078 #define use_mmap(M)           ((M)->mflags &   USE_MMAP_BIT)
2079 #define enable_mmap(M)        ((M)->mflags |=  USE_MMAP_BIT)
2080 #define disable_mmap(M)       ((M)->mflags &= ~USE_MMAP_BIT)
2081 
2082 #define use_noncontiguous(M)  ((M)->mflags &   USE_NONCONTIGUOUS_BIT)
2083 #define disable_contiguous(M) ((M)->mflags |=  USE_NONCONTIGUOUS_BIT)
2084 
2085 #define set_lock(M,L)\
2086  ((M)->mflags = (L)?\
2087   ((M)->mflags | USE_LOCK_BIT) :\
2088   ((M)->mflags & ~USE_LOCK_BIT))
2089 
2090 /* page-align a size */
2091 #define page_align(S)\
2092  (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
2093 
2094 /* granularity-align a size */
2095 #define granularity_align(S)\
2096   (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
2097 
2098 #define is_page_aligned(S)\
2099    (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
2100 #define is_granularity_aligned(S)\
2101    (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
2102 
2103 /*  True if segment S holds address A */
2104 #define segment_holds(S, A)\
2105   ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
2106 
2107 /* Return segment holding given address */
segment_holding(mstate m,char * addr)2108 static msegmentptr segment_holding(mstate m, char* addr) {
2109   msegmentptr sp = &m->seg;
2110   for (;;) {
2111     if (addr >= sp->base && addr < sp->base + sp->size)
2112       return sp;
2113     if ((sp = sp->next) == 0)
2114       return 0;
2115   }
2116 }
2117 
2118 /* Return true if segment contains a segment link */
has_segment_link(mstate m,msegmentptr ss)2119 static int has_segment_link(mstate m, msegmentptr ss) {
2120   msegmentptr sp = &m->seg;
2121   for (;;) {
2122     if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
2123       return 1;
2124     if ((sp = sp->next) == 0)
2125       return 0;
2126   }
2127 }
2128 
2129 #ifndef MORECORE_CANNOT_TRIM
2130 #define should_trim(M,s)  ((s) > (M)->trim_check)
2131 #else  /* MORECORE_CANNOT_TRIM */
2132 #define should_trim(M,s)  (0)
2133 #endif /* MORECORE_CANNOT_TRIM */
2134 
2135 /*
2136   TOP_FOOT_SIZE is padding at the end of a segment, including space
2137   that may be needed to place segment records and fenceposts when new
2138   noncontiguous segments are added.
2139 */
2140 #define TOP_FOOT_SIZE\
2141   (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
2142 
2143 
2144 /* -------------------------------  Hooks -------------------------------- */
2145 
2146 /*
2147   PREACTION should be defined to return 0 on success, and nonzero on
2148   failure. If you are not using locking, you can redefine these to do
2149   anything you like.
2150 */
2151 
2152 #if USE_LOCKS
2153 
2154 /* Ensure locks are initialized */
2155 #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
2156 
2157 #define PREACTION(M)  ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
2158 #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
2159 #else /* USE_LOCKS */
2160 
2161 #ifndef PREACTION
2162 #define PREACTION(M) (0)
2163 #endif  /* PREACTION */
2164 
2165 #ifndef POSTACTION
2166 #define POSTACTION(M)
2167 #endif  /* POSTACTION */
2168 
2169 #endif /* USE_LOCKS */
2170 
2171 /*
2172   CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
2173   USAGE_ERROR_ACTION is triggered on detected bad frees and
2174   reallocs. The argument p is an address that might have triggered the
2175   fault. It is ignored by the two predefined actions, but might be
2176   useful in custom actions that try to help diagnose errors.
2177 */
2178 
2179 #if PROCEED_ON_ERROR
2180 
2181 /* A count of the number of corruption errors causing resets */
2182 int malloc_corruption_error_count;
2183 
2184 /* default corruption action */
2185 static void reset_on_error(mstate m);
2186 
2187 #define CORRUPTION_ERROR_ACTION(m)  reset_on_error(m)
2188 #define USAGE_ERROR_ACTION(m, p)
2189 
2190 #else /* PROCEED_ON_ERROR */
2191 
2192 #ifndef CORRUPTION_ERROR_ACTION
2193 #define CORRUPTION_ERROR_ACTION(m) ABORT
2194 #endif /* CORRUPTION_ERROR_ACTION */
2195 
2196 #ifndef USAGE_ERROR_ACTION
2197 #define USAGE_ERROR_ACTION(m,p) ABORT
2198 #endif /* USAGE_ERROR_ACTION */
2199 
2200 #endif /* PROCEED_ON_ERROR */
2201 
2202 /* -------------------------- Debugging setup ---------------------------- */
2203 
2204 #if ! DEBUG
2205 
2206 #define check_free_chunk(M,P)
2207 #define check_inuse_chunk(M,P)
2208 #define check_malloced_chunk(M,P,N)
2209 #define check_mmapped_chunk(M,P)
2210 #define check_malloc_state(M)
2211 #define check_top_chunk(M,P)
2212 
2213 #else /* DEBUG */
2214 #define check_free_chunk(M,P)       do_check_free_chunk(M,P)
2215 #define check_inuse_chunk(M,P)      do_check_inuse_chunk(M,P)
2216 #define check_top_chunk(M,P)        do_check_top_chunk(M,P)
2217 #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
2218 #define check_mmapped_chunk(M,P)    do_check_mmapped_chunk(M,P)
2219 #define check_malloc_state(M)       do_check_malloc_state(M)
2220 
2221 static void   do_check_any_chunk(mstate m, mchunkptr p);
2222 static void   do_check_top_chunk(mstate m, mchunkptr p);
2223 static void   do_check_mmapped_chunk(mstate m, mchunkptr p);
2224 static void   do_check_inuse_chunk(mstate m, mchunkptr p);
2225 static void   do_check_free_chunk(mstate m, mchunkptr p);
2226 static void   do_check_malloced_chunk(mstate m, void* mem, size_t s);
2227 static void   do_check_tree(mstate m, tchunkptr t);
2228 static void   do_check_treebin(mstate m, bindex_t i);
2229 static void   do_check_smallbin(mstate m, bindex_t i);
2230 static void   do_check_malloc_state(mstate m);
2231 static int    bin_find(mstate m, mchunkptr x);
2232 static size_t traverse_and_check(mstate m);
2233 #endif /* DEBUG */
2234 
2235 /* ---------------------------- Indexing Bins ---------------------------- */
2236 
2237 #define is_small(s)         (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
2238 #define small_index(s)      ((s)  >> SMALLBIN_SHIFT)
2239 #define small_index2size(i) ((i)  << SMALLBIN_SHIFT)
2240 #define MIN_SMALL_INDEX     (small_index(MIN_CHUNK_SIZE))
2241 
2242 /* addressing by index. See above about smallbin repositioning */
2243 #define smallbin_at(M, i)   ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
2244 #define treebin_at(M,i)     (&((M)->treebins[i]))
2245 
2246 /* assign tree index for size S to variable I */
2247 #if defined(__GNUC__) && defined(i386)
2248 #define compute_tree_index(S, I)\
2249 {\
2250   size_t X = S >> TREEBIN_SHIFT;\
2251   if (X == 0)\
2252     I = 0;\
2253   else if (X > 0xFFFF)\
2254     I = NTREEBINS-1;\
2255   else {\
2256     unsigned int K;\
2257     __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm"  (X));\
2258     I =  (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2259   }\
2260 }
2261 #else /* GNUC */
2262 #define compute_tree_index(S, I)\
2263 {\
2264   size_t X = S >> TREEBIN_SHIFT;\
2265   if (X == 0)\
2266     I = 0;\
2267   else if (X > 0xFFFF)\
2268     I = NTREEBINS-1;\
2269   else {\
2270     unsigned int Y = (unsigned int)X;\
2271     unsigned int N = ((Y - 0x100) >> 16) & 8;\
2272     unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
2273     N += K;\
2274     N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
2275     K = 14 - N + ((Y <<= K) >> 15);\
2276     I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
2277   }\
2278 }
2279 #endif /* GNUC */
2280 
2281 /* Bit representing maximum resolved size in a treebin at i */
2282 #define bit_for_tree_index(i) \
2283    (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
2284 
2285 /* Shift placing maximum resolved bit in a treebin at i as sign bit */
2286 #define leftshift_for_tree_index(i) \
2287    ((i == NTREEBINS-1)? 0 : \
2288     ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
2289 
2290 /* The size of the smallest chunk held in bin with index i */
2291 #define minsize_for_tree_index(i) \
2292    ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) |  \
2293    (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
2294 
2295 
2296 /* ------------------------ Operations on bin maps ----------------------- */
2297 
2298 /* bit corresponding to given index */
2299 #define idx2bit(i)              ((binmap_t)(1) << (i))
2300 
2301 /* Mark/Clear bits with given index */
2302 #define mark_smallmap(M,i)      ((M)->smallmap |=  idx2bit(i))
2303 #define clear_smallmap(M,i)     ((M)->smallmap &= ~idx2bit(i))
2304 #define smallmap_is_marked(M,i) ((M)->smallmap &   idx2bit(i))
2305 
2306 #define mark_treemap(M,i)       ((M)->treemap  |=  idx2bit(i))
2307 #define clear_treemap(M,i)      ((M)->treemap  &= ~idx2bit(i))
2308 #define treemap_is_marked(M,i)  ((M)->treemap  &   idx2bit(i))
2309 
2310 /* index corresponding to given bit */
2311 
2312 #if defined(__GNUC__) && defined(i386)
2313 #define compute_bit2idx(X, I)\
2314 {\
2315   unsigned int J;\
2316   __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
2317   I = (bindex_t)J;\
2318 }
2319 
2320 #else /* GNUC */
2321 #if  USE_BUILTIN_FFS
2322 #define compute_bit2idx(X, I) I = ffs(X)-1
2323 
2324 #else /* USE_BUILTIN_FFS */
2325 #define compute_bit2idx(X, I)\
2326 {\
2327   unsigned int Y = X - 1;\
2328   unsigned int K = Y >> (16-4) & 16;\
2329   unsigned int N = K;        Y >>= K;\
2330   N += K = Y >> (8-3) &  8;  Y >>= K;\
2331   N += K = Y >> (4-2) &  4;  Y >>= K;\
2332   N += K = Y >> (2-1) &  2;  Y >>= K;\
2333   N += K = Y >> (1-0) &  1;  Y >>= K;\
2334   I = (bindex_t)(N + Y);\
2335 }
2336 #endif /* USE_BUILTIN_FFS */
2337 #endif /* GNUC */
2338 
2339 /* isolate the least set bit of a bitmap */
2340 #define least_bit(x)         ((x) & -(x))
2341 
2342 /* mask with all bits to left of least bit of x on */
2343 #define left_bits(x)         ((x<<1) | -(x<<1))
2344 
2345 /* mask with all bits to left of or equal to least bit of x on */
2346 #define same_or_left_bits(x) ((x) | -(x))
2347 
2348 
2349 /* ----------------------- Runtime Check Support ------------------------- */
2350 
2351 /*
2352   For security, the main invariant is that malloc/free/etc never
2353   writes to a static address other than malloc_state, unless static
2354   malloc_state itself has been corrupted, which cannot occur via
2355   malloc (because of these checks). In essence this means that we
2356   believe all pointers, sizes, maps etc held in malloc_state, but
2357   check all of those linked or offsetted from other embedded data
2358   structures.  These checks are interspersed with main code in a way
2359   that tends to minimize their run-time cost.
2360 
2361   When FOOTERS is defined, in addition to range checking, we also
2362   verify footer fields of inuse chunks, which can be used guarantee
2363   that the mstate controlling malloc/free is intact.  This is a
2364   streamlined version of the approach described by William Robertson
2365   et al in "Run-time Detection of Heap-based Overflows" LISA'03
2366   http://www.usenix.org/events/lisa03/tech/robertson.html The footer
2367   of an inuse chunk holds the xor of its mstate and a random seed,
2368   that is checked upon calls to free() and realloc().  This is
2369   (probablistically) unguessable from outside the program, but can be
2370   computed by any code successfully malloc'ing any chunk, so does not
2371   itself provide protection against code that has already broken
2372   security through some other means.  Unlike Robertson et al, we
2373   always dynamically check addresses of all offset chunks (previous,
2374   next, etc). This turns out to be cheaper than relying on hashes.
2375 */
2376 
2377 #if !INSECURE
2378 /* Check if address a is at least as high as any from MORECORE or MMAP */
2379 #define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
2380 /* Check if address of next chunk n is higher than base chunk p */
2381 #define ok_next(p, n)    ((char*)(p) < (char*)(n))
2382 /* Check if p has its cinuse bit on */
2383 #define ok_cinuse(p)     cinuse(p)
2384 /* Check if p has its pinuse bit on */
2385 #define ok_pinuse(p)     pinuse(p)
2386 
2387 #else /* !INSECURE */
2388 #define ok_address(M, a) (1)
2389 #define ok_next(b, n)    (1)
2390 #define ok_cinuse(p)     (1)
2391 #define ok_pinuse(p)     (1)
2392 #endif /* !INSECURE */
2393 
2394 #if (FOOTERS && !INSECURE)
2395 /* Check if (alleged) mstate m has expected magic field */
2396 #define ok_magic(M)      ((M)->magic == mparams.magic)
2397 #else  /* (FOOTERS && !INSECURE) */
2398 #define ok_magic(M)      (1)
2399 #endif /* (FOOTERS && !INSECURE) */
2400 
2401 
2402 /* In gcc, use __builtin_expect to minimize impact of checks */
2403 #if !INSECURE
2404 #if defined(__GNUC__) && __GNUC__ >= 3
2405 #define RTCHECK(e)  __builtin_expect(e, 1)
2406 #else /* GNUC */
2407 #define RTCHECK(e)  (e)
2408 #endif /* GNUC */
2409 #else /* !INSECURE */
2410 #define RTCHECK(e)  (1)
2411 #endif /* !INSECURE */
2412 
2413 /* macros to set up inuse chunks with or without footers */
2414 
2415 #if !FOOTERS
2416 
2417 #define mark_inuse_foot(M,p,s)
2418 
2419 /* Set cinuse bit and pinuse bit of next chunk */
2420 #define set_inuse(M,p,s)\
2421   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2422   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2423 
2424 /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
2425 #define set_inuse_and_pinuse(M,p,s)\
2426   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2427   ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2428 
2429 /* Set size, cinuse and pinuse bit of this chunk */
2430 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2431   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
2432 
2433 #else /* FOOTERS */
2434 
2435 /* Set foot of inuse chunk to be xor of mstate and seed */
2436 #define mark_inuse_foot(M,p,s)\
2437   (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
2438 
2439 #define get_mstate_for(p)\
2440   ((mstate)(((mchunkptr)((char*)(p) +\
2441     (chunksize(p))))->prev_foot ^ mparams.magic))
2442 
2443 #define set_inuse(M,p,s)\
2444   ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2445   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
2446   mark_inuse_foot(M,p,s))
2447 
2448 #define set_inuse_and_pinuse(M,p,s)\
2449   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2450   (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
2451  mark_inuse_foot(M,p,s))
2452 
2453 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2454   ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2455   mark_inuse_foot(M, p, s))
2456 
2457 #endif /* !FOOTERS */
2458 
2459 /* ---------------------------- setting mparams -------------------------- */
2460 
2461 /* Initialize mparams */
init_mparams(void)2462 static int init_mparams(void) {
2463   if (mparams.page_size == 0) {
2464     size_t s;
2465 
2466     mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
2467     mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
2468 #if MORECORE_CONTIGUOUS
2469     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
2470 #else  /* MORECORE_CONTIGUOUS */
2471     mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
2472 #endif /* MORECORE_CONTIGUOUS */
2473 
2474 #if (FOOTERS && !INSECURE)
2475     {
2476 #if USE_DEV_RANDOM
2477       int fd;
2478       unsigned char buf[sizeof(size_t)];
2479       /* Try to use /dev/urandom, else fall back on using time */
2480       if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
2481           read(fd, buf, sizeof(buf)) == sizeof(buf)) {
2482         s = *((size_t *) buf);
2483         close(fd);
2484       }
2485       else
2486 #endif /* USE_DEV_RANDOM */
2487         s = (size_t)(time(0) ^ (size_t)0x55555555U);
2488 
2489       s |= (size_t)8U;    /* ensure nonzero */
2490       s &= ~(size_t)7U;   /* improve chances of fault for bad values */
2491 
2492     }
2493 #else /* (FOOTERS && !INSECURE) */
2494     s = (size_t)0x58585858U;
2495 #endif /* (FOOTERS && !INSECURE) */
2496     ACQUIRE_MAGIC_INIT_LOCK();
2497     if (mparams.magic == 0) {
2498       mparams.magic = s;
2499       /* Set up lock for main malloc area */
2500       INITIAL_LOCK(&gm->mutex);
2501       gm->mflags = mparams.default_mflags;
2502     }
2503     RELEASE_MAGIC_INIT_LOCK();
2504 
2505 #ifndef WIN32
2506     mparams.page_size = malloc_getpagesize;
2507     mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
2508                            DEFAULT_GRANULARITY : mparams.page_size);
2509 #else /* WIN32 */
2510     {
2511       SYSTEM_INFO system_info;
2512       GetSystemInfo(&system_info);
2513       mparams.page_size = system_info.dwPageSize;
2514       mparams.granularity = system_info.dwAllocationGranularity;
2515     }
2516 #endif /* WIN32 */
2517 
2518     /* Sanity-check configuration:
2519        size_t must be unsigned and as wide as pointer type.
2520        ints must be at least 4 bytes.
2521        alignment must be at least 8.
2522        Alignment, min chunk size, and page size must all be powers of 2.
2523     */
2524     if ((sizeof(size_t) != sizeof(char*)) ||
2525         (MAX_SIZE_T < MIN_CHUNK_SIZE)  ||
2526         (sizeof(int) < 4)  ||
2527         (MALLOC_ALIGNMENT < (size_t)8U) ||
2528         ((MALLOC_ALIGNMENT    & (MALLOC_ALIGNMENT-SIZE_T_ONE))    != 0) ||
2529         ((MCHUNK_SIZE         & (MCHUNK_SIZE-SIZE_T_ONE))         != 0) ||
2530         ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
2531         ((mparams.page_size   & (mparams.page_size-SIZE_T_ONE))   != 0))
2532       ABORT;
2533   }
2534   return 0;
2535 }
2536 
2537 /* support for mallopt */
change_mparam(int param_number,int value)2538 static int change_mparam(int param_number, int value) {
2539   size_t val = (size_t)value;
2540   init_mparams();
2541   switch(param_number) {
2542   case M_TRIM_THRESHOLD:
2543     mparams.trim_threshold = val;
2544     return 1;
2545   case M_GRANULARITY:
2546     if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
2547       mparams.granularity = val;
2548       return 1;
2549     }
2550     else
2551       return 0;
2552   case M_MMAP_THRESHOLD:
2553     mparams.mmap_threshold = val;
2554     return 1;
2555   default:
2556     return 0;
2557   }
2558 }
2559 
2560 #if DEBUG
2561 /* ------------------------- Debugging Support --------------------------- */
2562 
2563 /* Check properties of any chunk, whether free, inuse, mmapped etc  */
do_check_any_chunk(mstate m,mchunkptr p)2564 static void do_check_any_chunk(mstate m, mchunkptr p) {
2565   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2566   assert(ok_address(m, p));
2567 }
2568 
2569 /* Check properties of top chunk */
do_check_top_chunk(mstate m,mchunkptr p)2570 static void do_check_top_chunk(mstate m, mchunkptr p) {
2571   msegmentptr sp = segment_holding(m, (char*)p);
2572   size_t  sz = chunksize(p);
2573   assert(sp != 0);
2574   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2575   assert(ok_address(m, p));
2576   assert(sz == m->topsize);
2577   assert(sz > 0);
2578   assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
2579   assert(pinuse(p));
2580   assert(!next_pinuse(p));
2581 }
2582 
2583 /* Check properties of (inuse) mmapped chunks */
do_check_mmapped_chunk(mstate m,mchunkptr p)2584 static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
2585   size_t  sz = chunksize(p);
2586   size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
2587   assert(is_mmapped(p));
2588   assert(use_mmap(m));
2589   assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2590   assert(ok_address(m, p));
2591   assert(!is_small(sz));
2592   assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
2593   assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
2594   assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
2595 }
2596 
2597 /* Check properties of inuse chunks */
do_check_inuse_chunk(mstate m,mchunkptr p)2598 static void do_check_inuse_chunk(mstate m, mchunkptr p) {
2599   do_check_any_chunk(m, p);
2600   assert(cinuse(p));
2601   assert(next_pinuse(p));
2602   /* If not pinuse and not mmapped, previous chunk has OK offset */
2603   assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
2604   if (is_mmapped(p))
2605     do_check_mmapped_chunk(m, p);
2606 }
2607 
2608 /* Check properties of free chunks */
do_check_free_chunk(mstate m,mchunkptr p)2609 static void do_check_free_chunk(mstate m, mchunkptr p) {
2610   size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2611   mchunkptr next = chunk_plus_offset(p, sz);
2612   do_check_any_chunk(m, p);
2613   assert(!cinuse(p));
2614   assert(!next_pinuse(p));
2615   assert (!is_mmapped(p));
2616   if (p != m->dv && p != m->top) {
2617     if (sz >= MIN_CHUNK_SIZE) {
2618       assert((sz & CHUNK_ALIGN_MASK) == 0);
2619       assert(is_aligned(chunk2mem(p)));
2620       assert(next->prev_foot == sz);
2621       assert(pinuse(p));
2622       assert (next == m->top || cinuse(next));
2623       assert(p->fd->bk == p);
2624       assert(p->bk->fd == p);
2625     }
2626     else  /* markers are always of size SIZE_T_SIZE */
2627       assert(sz == SIZE_T_SIZE);
2628   }
2629 }
2630 
2631 /* Check properties of malloced chunks at the point they are malloced */
do_check_malloced_chunk(mstate m,void * mem,size_t s)2632 static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
2633   if (mem != 0) {
2634     mchunkptr p = mem2chunk(mem);
2635     size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2636     do_check_inuse_chunk(m, p);
2637     assert((sz & CHUNK_ALIGN_MASK) == 0);
2638     assert(sz >= MIN_CHUNK_SIZE);
2639     assert(sz >= s);
2640     /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
2641     assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
2642   }
2643 }
2644 
2645 /* Check a tree and its subtrees.  */
do_check_tree(mstate m,tchunkptr t)2646 static void do_check_tree(mstate m, tchunkptr t) {
2647   tchunkptr head = 0;
2648   tchunkptr u = t;
2649   bindex_t tindex = t->index;
2650   size_t tsize = chunksize(t);
2651   bindex_t idx;
2652   compute_tree_index(tsize, idx);
2653   assert(tindex == idx);
2654   assert(tsize >= MIN_LARGE_SIZE);
2655   assert(tsize >= minsize_for_tree_index(idx));
2656   assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
2657 
2658   do { /* traverse through chain of same-sized nodes */
2659     do_check_any_chunk(m, ((mchunkptr)u));
2660     assert(u->index == tindex);
2661     assert(chunksize(u) == tsize);
2662     assert(!cinuse(u));
2663     assert(!next_pinuse(u));
2664     assert(u->fd->bk == u);
2665     assert(u->bk->fd == u);
2666     if (u->parent == 0) {
2667       assert(u->child[0] == 0);
2668       assert(u->child[1] == 0);
2669     }
2670     else {
2671       assert(head == 0); /* only one node on chain has parent */
2672       head = u;
2673       assert(u->parent != u);
2674       assert (u->parent->child[0] == u ||
2675               u->parent->child[1] == u ||
2676               *((tbinptr*)(u->parent)) == u);
2677       if (u->child[0] != 0) {
2678         assert(u->child[0]->parent == u);
2679         assert(u->child[0] != u);
2680         do_check_tree(m, u->child[0]);
2681       }
2682       if (u->child[1] != 0) {
2683         assert(u->child[1]->parent == u);
2684         assert(u->child[1] != u);
2685         do_check_tree(m, u->child[1]);
2686       }
2687       if (u->child[0] != 0 && u->child[1] != 0) {
2688         assert(chunksize(u->child[0]) < chunksize(u->child[1]));
2689       }
2690     }
2691     u = u->fd;
2692   } while (u != t);
2693   assert(head != 0);
2694 }
2695 
2696 /*  Check all the chunks in a treebin.  */
do_check_treebin(mstate m,bindex_t i)2697 static void do_check_treebin(mstate m, bindex_t i) {
2698   tbinptr* tb = treebin_at(m, i);
2699   tchunkptr t = *tb;
2700   int empty = (m->treemap & (1U << i)) == 0;
2701   if (t == 0)
2702     assert(empty);
2703   if (!empty)
2704     do_check_tree(m, t);
2705 }
2706 
2707 /*  Check all the chunks in a smallbin.  */
do_check_smallbin(mstate m,bindex_t i)2708 static void do_check_smallbin(mstate m, bindex_t i) {
2709   sbinptr b = smallbin_at(m, i);
2710   mchunkptr p = b->bk;
2711   unsigned int empty = (m->smallmap & (1U << i)) == 0;
2712   if (p == b)
2713     assert(empty);
2714   if (!empty) {
2715     for (; p != b; p = p->bk) {
2716       size_t size = chunksize(p);
2717       mchunkptr q;
2718       /* each chunk claims to be free */
2719       do_check_free_chunk(m, p);
2720       /* chunk belongs in bin */
2721       assert(small_index(size) == i);
2722       assert(p->bk == b || chunksize(p->bk) == chunksize(p));
2723       /* chunk is followed by an inuse chunk */
2724       q = next_chunk(p);
2725       if (q->head != FENCEPOST_HEAD)
2726         do_check_inuse_chunk(m, q);
2727     }
2728   }
2729 }
2730 
2731 /* Find x in a bin. Used in other check functions. */
bin_find(mstate m,mchunkptr x)2732 static int bin_find(mstate m, mchunkptr x) {
2733   size_t size = chunksize(x);
2734   if (is_small(size)) {
2735     bindex_t sidx = small_index(size);
2736     sbinptr b = smallbin_at(m, sidx);
2737     if (smallmap_is_marked(m, sidx)) {
2738       mchunkptr p = b;
2739       do {
2740         if (p == x)
2741           return 1;
2742       } while ((p = p->fd) != b);
2743     }
2744   }
2745   else {
2746     bindex_t tidx;
2747     compute_tree_index(size, tidx);
2748     if (treemap_is_marked(m, tidx)) {
2749       tchunkptr t = *treebin_at(m, tidx);
2750       size_t sizebits = size << leftshift_for_tree_index(tidx);
2751       while (t != 0 && chunksize(t) != size) {
2752         t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2753         sizebits <<= 1;
2754       }
2755       if (t != 0) {
2756         tchunkptr u = t;
2757         do {
2758           if (u == (tchunkptr)x)
2759             return 1;
2760         } while ((u = u->fd) != t);
2761       }
2762     }
2763   }
2764   return 0;
2765 }
2766 
2767 /* Traverse each chunk and check it; return total */
traverse_and_check(mstate m)2768 static size_t traverse_and_check(mstate m) {
2769   size_t sum = 0;
2770   if (is_initialized(m)) {
2771     msegmentptr s = &m->seg;
2772     sum += m->topsize + TOP_FOOT_SIZE;
2773     while (s != 0) {
2774       mchunkptr q = align_as_chunk(s->base);
2775       mchunkptr lastq = 0;
2776       assert(pinuse(q));
2777       while (segment_holds(s, q) &&
2778              q != m->top && q->head != FENCEPOST_HEAD) {
2779         sum += chunksize(q);
2780         if (cinuse(q)) {
2781           assert(!bin_find(m, q));
2782           do_check_inuse_chunk(m, q);
2783         }
2784         else {
2785           assert(q == m->dv || bin_find(m, q));
2786           assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
2787           do_check_free_chunk(m, q);
2788         }
2789         lastq = q;
2790         q = next_chunk(q);
2791       }
2792       s = s->next;
2793     }
2794   }
2795   return sum;
2796 }
2797 
2798 /* Check all properties of malloc_state. */
do_check_malloc_state(mstate m)2799 static void do_check_malloc_state(mstate m) {
2800   bindex_t i;
2801   size_t total;
2802   /* check bins */
2803   for (i = 0; i < NSMALLBINS; ++i)
2804     do_check_smallbin(m, i);
2805   for (i = 0; i < NTREEBINS; ++i)
2806     do_check_treebin(m, i);
2807 
2808   if (m->dvsize != 0) { /* check dv chunk */
2809     do_check_any_chunk(m, m->dv);
2810     assert(m->dvsize == chunksize(m->dv));
2811     assert(m->dvsize >= MIN_CHUNK_SIZE);
2812     assert(bin_find(m, m->dv) == 0);
2813   }
2814 
2815   if (m->top != 0) {   /* check top chunk */
2816     do_check_top_chunk(m, m->top);
2817     assert(m->topsize == chunksize(m->top));
2818     assert(m->topsize > 0);
2819     assert(bin_find(m, m->top) == 0);
2820   }
2821 
2822   total = traverse_and_check(m);
2823   assert(total <= m->footprint);
2824   assert(m->footprint <= m->max_footprint);
2825 }
2826 #endif /* DEBUG */
2827 
2828 /* ----------------------------- statistics ------------------------------ */
2829 
2830 #if !NO_MALLINFO
internal_mallinfo(mstate m)2831 static struct mallinfo internal_mallinfo(mstate m) {
2832   struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2833   if (!PREACTION(m)) {
2834     check_malloc_state(m);
2835     if (is_initialized(m)) {
2836       size_t nfree = SIZE_T_ONE; /* top always free */
2837       size_t mfree = m->topsize + TOP_FOOT_SIZE;
2838       size_t sum = mfree;
2839       msegmentptr s = &m->seg;
2840       while (s != 0) {
2841         mchunkptr q = align_as_chunk(s->base);
2842         while (segment_holds(s, q) &&
2843                q != m->top && q->head != FENCEPOST_HEAD) {
2844           size_t sz = chunksize(q);
2845           sum += sz;
2846           if (!cinuse(q)) {
2847             mfree += sz;
2848             ++nfree;
2849           }
2850           q = next_chunk(q);
2851         }
2852         s = s->next;
2853       }
2854 
2855       nm.arena    = sum;
2856       nm.ordblks  = nfree;
2857       nm.hblkhd   = m->footprint - sum;
2858       nm.usmblks  = m->max_footprint;
2859       nm.uordblks = m->footprint - mfree;
2860       nm.fordblks = mfree;
2861       nm.keepcost = m->topsize;
2862     }
2863 
2864     POSTACTION(m);
2865   }
2866   return nm;
2867 }
2868 #endif /* !NO_MALLINFO */
2869 
internal_malloc_stats(mstate m)2870 static void internal_malloc_stats(mstate m) {
2871   if (!PREACTION(m)) {
2872     size_t maxfp = 0;
2873     size_t fp = 0;
2874     size_t used = 0;
2875     check_malloc_state(m);
2876     if (is_initialized(m)) {
2877       msegmentptr s = &m->seg;
2878       maxfp = m->max_footprint;
2879       fp = m->footprint;
2880       used = fp - (m->topsize + TOP_FOOT_SIZE);
2881 
2882       while (s != 0) {
2883         mchunkptr q = align_as_chunk(s->base);
2884         while (segment_holds(s, q) &&
2885                q != m->top && q->head != FENCEPOST_HEAD) {
2886           if (!cinuse(q))
2887             used -= chunksize(q);
2888           q = next_chunk(q);
2889         }
2890         s = s->next;
2891       }
2892     }
2893 
2894 #ifndef LACKS_STDIO_H
2895     fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
2896     fprintf(stderr, "system bytes     = %10lu\n", (unsigned long)(fp));
2897     fprintf(stderr, "in use bytes     = %10lu\n", (unsigned long)(used));
2898 #endif
2899 
2900     POSTACTION(m);
2901   }
2902 }
2903 
2904 /* ----------------------- Operations on smallbins ----------------------- */
2905 
2906 /*
2907   Various forms of linking and unlinking are defined as macros.  Even
2908   the ones for trees, which are very long but have very short typical
2909   paths.  This is ugly but reduces reliance on inlining support of
2910   compilers.
2911 */
2912 
2913 /* Link a free chunk into a smallbin  */
2914 #define insert_small_chunk(M, P, S) {\
2915   bindex_t I  = small_index(S);\
2916   mchunkptr B = smallbin_at(M, I);\
2917   mchunkptr F = B;\
2918   assert(S >= MIN_CHUNK_SIZE);\
2919   if (!smallmap_is_marked(M, I))\
2920     mark_smallmap(M, I);\
2921   else if (RTCHECK(ok_address(M, B->fd)))\
2922     F = B->fd;\
2923   else {\
2924     CORRUPTION_ERROR_ACTION(M);\
2925   }\
2926   B->fd = P;\
2927   F->bk = P;\
2928   P->fd = F;\
2929   P->bk = B;\
2930 }
2931 
2932 /* Unlink a chunk from a smallbin  */
2933 #define unlink_small_chunk(M, P, S) {\
2934   mchunkptr F = P->fd;\
2935   mchunkptr B = P->bk;\
2936   bindex_t I = small_index(S);\
2937   assert(P != B);\
2938   assert(P != F);\
2939   assert(chunksize(P) == small_index2size(I));\
2940   if (F == B)\
2941     clear_smallmap(M, I);\
2942   else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
2943                    (B == smallbin_at(M,I) || ok_address(M, B)))) {\
2944     F->bk = B;\
2945     B->fd = F;\
2946   }\
2947   else {\
2948     CORRUPTION_ERROR_ACTION(M);\
2949   }\
2950 }
2951 
2952 /* Unlink the first chunk from a smallbin */
2953 #define unlink_first_small_chunk(M, B, P, I) {\
2954   mchunkptr F = P->fd;\
2955   assert(P != B);\
2956   assert(P != F);\
2957   assert(chunksize(P) == small_index2size(I));\
2958   if (B == F)\
2959     clear_smallmap(M, I);\
2960   else if (RTCHECK(ok_address(M, F))) {\
2961     B->fd = F;\
2962     F->bk = B;\
2963   }\
2964   else {\
2965     CORRUPTION_ERROR_ACTION(M);\
2966   }\
2967 }
2968 
2969 /* Replace dv node, binning the old one */
2970 /* Used only when dvsize known to be small */
2971 #define replace_dv(M, P, S) {\
2972   size_t DVS = M->dvsize;\
2973   if (DVS != 0) {\
2974     mchunkptr DV = M->dv;\
2975     assert(is_small(DVS));\
2976     insert_small_chunk(M, DV, DVS);\
2977   }\
2978   M->dvsize = S;\
2979   M->dv = P;\
2980 }
2981 
2982 /* ------------------------- Operations on trees ------------------------- */
2983 
2984 /* Insert chunk into tree */
2985 #define insert_large_chunk(M, X, S) {\
2986   tbinptr* H;\
2987   bindex_t I;\
2988   compute_tree_index(S, I);\
2989   H = treebin_at(M, I);\
2990   X->index = I;\
2991   X->child[0] = X->child[1] = 0;\
2992   if (!treemap_is_marked(M, I)) {\
2993     mark_treemap(M, I);\
2994     *H = X;\
2995     X->parent = (tchunkptr)H;\
2996     X->fd = X->bk = X;\
2997   }\
2998   else {\
2999     tchunkptr T = *H;\
3000     size_t K = S << leftshift_for_tree_index(I);\
3001     for (;;) {\
3002       if (chunksize(T) != S) {\
3003         tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
3004         K <<= 1;\
3005         if (*C != 0)\
3006           T = *C;\
3007         else if (RTCHECK(ok_address(M, C))) {\
3008           *C = X;\
3009           X->parent = T;\
3010           X->fd = X->bk = X;\
3011           break;\
3012         }\
3013         else {\
3014           CORRUPTION_ERROR_ACTION(M);\
3015           break;\
3016         }\
3017       }\
3018       else {\
3019         tchunkptr F = T->fd;\
3020         if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
3021           T->fd = F->bk = X;\
3022           X->fd = F;\
3023           X->bk = T;\
3024           X->parent = 0;\
3025           break;\
3026         }\
3027         else {\
3028           CORRUPTION_ERROR_ACTION(M);\
3029           break;\
3030         }\
3031       }\
3032     }\
3033   }\
3034 }
3035 
3036 /*
3037   Unlink steps:
3038 
3039   1. If x is a chained node, unlink it from its same-sized fd/bk links
3040      and choose its bk node as its replacement.
3041   2. If x was the last node of its size, but not a leaf node, it must
3042      be replaced with a leaf node (not merely one with an open left or
3043      right), to make sure that lefts and rights of descendents
3044      correspond properly to bit masks.  We use the rightmost descendent
3045      of x.  We could use any other leaf, but this is easy to locate and
3046      tends to counteract removal of leftmosts elsewhere, and so keeps
3047      paths shorter than minimally guaranteed.  This doesn't loop much
3048      because on average a node in a tree is near the bottom.
3049   3. If x is the base of a chain (i.e., has parent links) relink
3050      x's parent and children to x's replacement (or null if none).
3051 */
3052 
3053 #define unlink_large_chunk(M, X) {\
3054   tchunkptr XP = X->parent;\
3055   tchunkptr R;\
3056   if (X->bk != X) {\
3057     tchunkptr F = X->fd;\
3058     R = X->bk;\
3059     if (RTCHECK(ok_address(M, F))) {\
3060       F->bk = R;\
3061       R->fd = F;\
3062     }\
3063     else {\
3064       CORRUPTION_ERROR_ACTION(M);\
3065     }\
3066   }\
3067   else {\
3068     tchunkptr* RP;\
3069     if (((R = *(RP = &(X->child[1]))) != 0) ||\
3070         ((R = *(RP = &(X->child[0]))) != 0)) {\
3071       tchunkptr* CP;\
3072       while ((*(CP = &(R->child[1])) != 0) ||\
3073              (*(CP = &(R->child[0])) != 0)) {\
3074         R = *(RP = CP);\
3075       }\
3076       if (RTCHECK(ok_address(M, RP)))\
3077         *RP = 0;\
3078       else {\
3079         CORRUPTION_ERROR_ACTION(M);\
3080       }\
3081     }\
3082   }\
3083   if (XP != 0) {\
3084     tbinptr* H = treebin_at(M, X->index);\
3085     if (X == *H) {\
3086       if ((*H = R) == 0) \
3087         clear_treemap(M, X->index);\
3088     }\
3089     else if (RTCHECK(ok_address(M, XP))) {\
3090       if (XP->child[0] == X) \
3091         XP->child[0] = R;\
3092       else \
3093         XP->child[1] = R;\
3094     }\
3095     else\
3096       CORRUPTION_ERROR_ACTION(M);\
3097     if (R != 0) {\
3098       if (RTCHECK(ok_address(M, R))) {\
3099         tchunkptr C0, C1;\
3100         R->parent = XP;\
3101         if ((C0 = X->child[0]) != 0) {\
3102           if (RTCHECK(ok_address(M, C0))) {\
3103             R->child[0] = C0;\
3104             C0->parent = R;\
3105           }\
3106           else\
3107             CORRUPTION_ERROR_ACTION(M);\
3108         }\
3109         if ((C1 = X->child[1]) != 0) {\
3110           if (RTCHECK(ok_address(M, C1))) {\
3111             R->child[1] = C1;\
3112             C1->parent = R;\
3113           }\
3114           else\
3115             CORRUPTION_ERROR_ACTION(M);\
3116         }\
3117       }\
3118       else\
3119         CORRUPTION_ERROR_ACTION(M);\
3120     }\
3121   }\
3122 }
3123 
3124 /* Relays to large vs small bin operations */
3125 
3126 #define insert_chunk(M, P, S)\
3127   if (is_small(S)) insert_small_chunk(M, P, S)\
3128   else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
3129 
3130 #define unlink_chunk(M, P, S)\
3131   if (is_small(S)) unlink_small_chunk(M, P, S)\
3132   else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
3133 
3134 
3135 /* Relays to internal calls to malloc/free from realloc, memalign etc */
3136 
3137 #if ONLY_MSPACES
3138 #define internal_malloc(m, b) mspace_malloc(m, b)
3139 #define internal_free(m, mem) mspace_free(m,mem);
3140 #else /* ONLY_MSPACES */
3141 #if MSPACES
3142 #define internal_malloc(m, b)\
3143    (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
3144 #define internal_free(m, mem)\
3145    if (m == gm) dlfree(mem); else mspace_free(m,mem);
3146 #else /* MSPACES */
3147 #define internal_malloc(m, b) dlmalloc(b)
3148 #define internal_free(m, mem) dlfree(mem)
3149 #endif /* MSPACES */
3150 #endif /* ONLY_MSPACES */
3151 
3152 /* -----------------------  Direct-mmapping chunks ----------------------- */
3153 
3154 /*
3155   Directly mmapped chunks are set up with an offset to the start of
3156   the mmapped region stored in the prev_foot field of the chunk. This
3157   allows reconstruction of the required argument to MUNMAP when freed,
3158   and also allows adjustment of the returned chunk to meet alignment
3159   requirements (especially in memalign).  There is also enough space
3160   allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
3161   the PINUSE bit so frees can be checked.
3162 */
3163 
3164 /* Malloc using mmap */
mmap_alloc(mstate m,size_t nb)3165 static void* mmap_alloc(mstate m, size_t nb) {
3166   size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3167   if (mmsize > nb) {     /* Check for wrap around 0 */
3168     char* mm = (char*)(DIRECT_MMAP(mmsize));
3169     if (mm != CMFAIL) {
3170       size_t offset = align_offset(chunk2mem(mm));
3171       size_t psize = mmsize - offset - MMAP_FOOT_PAD;
3172       mchunkptr p = (mchunkptr)(mm + offset);
3173       p->prev_foot = offset | IS_MMAPPED_BIT;
3174       (p)->head = (psize|CINUSE_BIT);
3175       mark_inuse_foot(m, p, psize);
3176       chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
3177       chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
3178 
3179       if (mm < m->least_addr)
3180         m->least_addr = mm;
3181       if ((m->footprint += mmsize) > m->max_footprint)
3182         m->max_footprint = m->footprint;
3183       assert(is_aligned(chunk2mem(p)));
3184       check_mmapped_chunk(m, p);
3185       return chunk2mem(p);
3186     }
3187   }
3188   return 0;
3189 }
3190 
3191 /* Realloc using mmap */
mmap_resize(mstate m,mchunkptr oldp,size_t nb)3192 static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
3193   size_t oldsize = chunksize(oldp);
3194   if (is_small(nb)) /* Can't shrink mmap regions below small size */
3195     return 0;
3196   /* Keep old chunk if big enough but not too big */
3197   if (oldsize >= nb + SIZE_T_SIZE &&
3198       (oldsize - nb) <= (mparams.granularity << 1))
3199     return oldp;
3200   else {
3201     size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
3202     size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
3203     size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
3204                                          CHUNK_ALIGN_MASK);
3205     char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
3206                                   oldmmsize, newmmsize, 1);
3207     if (cp != CMFAIL) {
3208       mchunkptr newp = (mchunkptr)(cp + offset);
3209       size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
3210       newp->head = (psize|CINUSE_BIT);
3211       mark_inuse_foot(m, newp, psize);
3212       chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
3213       chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
3214 
3215       if (cp < m->least_addr)
3216         m->least_addr = cp;
3217       if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
3218         m->max_footprint = m->footprint;
3219       check_mmapped_chunk(m, newp);
3220       return newp;
3221     }
3222   }
3223   return 0;
3224 }
3225 
3226 /* -------------------------- mspace management -------------------------- */
3227 
3228 /* Initialize top chunk and its size */
init_top(mstate m,mchunkptr p,size_t psize)3229 static void init_top(mstate m, mchunkptr p, size_t psize) {
3230   /* Ensure alignment */
3231   size_t offset = align_offset(chunk2mem(p));
3232   p = (mchunkptr)((char*)p + offset);
3233   psize -= offset;
3234 
3235   m->top = p;
3236   m->topsize = psize;
3237   p->head = psize | PINUSE_BIT;
3238   /* set size of fake trailing chunk holding overhead space only once */
3239   chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
3240   m->trim_check = mparams.trim_threshold; /* reset on each update */
3241 }
3242 
3243 /* Initialize bins for a new mstate that is otherwise zeroed out */
init_bins(mstate m)3244 static void init_bins(mstate m) {
3245   /* Establish circular links for smallbins */
3246   bindex_t i;
3247   for (i = 0; i < NSMALLBINS; ++i) {
3248     sbinptr bin = smallbin_at(m,i);
3249     bin->fd = bin->bk = bin;
3250   }
3251 }
3252 
3253 #if PROCEED_ON_ERROR
3254 
3255 /* default corruption action */
reset_on_error(mstate m)3256 static void reset_on_error(mstate m) {
3257   int i;
3258   ++malloc_corruption_error_count;
3259   /* Reinitialize fields to forget about all memory */
3260   m->smallbins = m->treebins = 0;
3261   m->dvsize = m->topsize = 0;
3262   m->seg.base = 0;
3263   m->seg.size = 0;
3264   m->seg.next = 0;
3265   m->top = m->dv = 0;
3266   for (i = 0; i < NTREEBINS; ++i)
3267     *treebin_at(m, i) = 0;
3268   init_bins(m);
3269 }
3270 #endif /* PROCEED_ON_ERROR */
3271 
3272 /* Allocate chunk and prepend remainder with chunk in successor base. */
prepend_alloc(mstate m,char * newbase,char * oldbase,size_t nb)3273 static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
3274                            size_t nb) {
3275   mchunkptr p = align_as_chunk(newbase);
3276   mchunkptr oldfirst = align_as_chunk(oldbase);
3277   size_t psize = (char*)oldfirst - (char*)p;
3278   mchunkptr q = chunk_plus_offset(p, nb);
3279   size_t qsize = psize - nb;
3280   set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3281 
3282   assert((char*)oldfirst > (char*)q);
3283   assert(pinuse(oldfirst));
3284   assert(qsize >= MIN_CHUNK_SIZE);
3285 
3286   /* consolidate remainder with first chunk of old base */
3287   if (oldfirst == m->top) {
3288     size_t tsize = m->topsize += qsize;
3289     m->top = q;
3290     q->head = tsize | PINUSE_BIT;
3291     check_top_chunk(m, q);
3292   }
3293   else if (oldfirst == m->dv) {
3294     size_t dsize = m->dvsize += qsize;
3295     m->dv = q;
3296     set_size_and_pinuse_of_free_chunk(q, dsize);
3297   }
3298   else {
3299     if (!cinuse(oldfirst)) {
3300       size_t nsize = chunksize(oldfirst);
3301       unlink_chunk(m, oldfirst, nsize);
3302       oldfirst = chunk_plus_offset(oldfirst, nsize);
3303       qsize += nsize;
3304     }
3305     set_free_with_pinuse(q, qsize, oldfirst);
3306     insert_chunk(m, q, qsize);
3307     check_free_chunk(m, q);
3308   }
3309 
3310   check_malloced_chunk(m, chunk2mem(p), nb);
3311   return chunk2mem(p);
3312 }
3313 
3314 
3315 /* Add a segment to hold a new noncontiguous region */
add_segment(mstate m,char * tbase,size_t tsize,flag_t mmapped)3316 static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
3317   /* Determine locations and sizes of segment, fenceposts, old top */
3318   char* old_top = (char*)m->top;
3319   msegmentptr oldsp = segment_holding(m, old_top);
3320   char* old_end = oldsp->base + oldsp->size;
3321   size_t ssize = pad_request(sizeof(struct malloc_segment));
3322   char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3323   size_t offset = align_offset(chunk2mem(rawsp));
3324   char* asp = rawsp + offset;
3325   char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
3326   mchunkptr sp = (mchunkptr)csp;
3327   msegmentptr ss = (msegmentptr)(chunk2mem(sp));
3328   mchunkptr tnext = chunk_plus_offset(sp, ssize);
3329   mchunkptr p = tnext;
3330   int nfences = 0;
3331 
3332   /* reset top to new space */
3333   init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3334 
3335   /* Set up segment record */
3336   assert(is_aligned(ss));
3337   set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
3338   *ss = m->seg; /* Push current record */
3339   m->seg.base = tbase;
3340   m->seg.size = tsize;
3341   m->seg.sflags = mmapped;
3342   m->seg.next = ss;
3343 
3344   /* Insert trailing fenceposts */
3345   for (;;) {
3346     mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
3347     p->head = FENCEPOST_HEAD;
3348     ++nfences;
3349     if ((char*)(&(nextp->head)) < old_end)
3350       p = nextp;
3351     else
3352       break;
3353   }
3354   assert(nfences >= 2);
3355 
3356   /* Insert the rest of old top into a bin as an ordinary free chunk */
3357   if (csp != old_top) {
3358     mchunkptr q = (mchunkptr)old_top;
3359     size_t psize = csp - old_top;
3360     mchunkptr tn = chunk_plus_offset(q, psize);
3361     set_free_with_pinuse(q, psize, tn);
3362     insert_chunk(m, q, psize);
3363   }
3364 
3365   check_top_chunk(m, m->top);
3366 }
3367 
3368 /* -------------------------- System allocation -------------------------- */
3369 
3370 /* Get memory from system using MORECORE or MMAP */
sys_alloc(mstate m,size_t nb)3371 static void* sys_alloc(mstate m, size_t nb) {
3372   char* tbase = CMFAIL;
3373   size_t tsize = 0;
3374   flag_t mmap_flag = 0;
3375 
3376   init_mparams();
3377 
3378   /* Directly map large chunks */
3379   if (use_mmap(m) && nb >= mparams.mmap_threshold) {
3380     void* mem = mmap_alloc(m, nb);
3381     if (mem != 0)
3382       return mem;
3383   }
3384 
3385   /*
3386     Try getting memory in any of three ways (in most-preferred to
3387     least-preferred order):
3388     1. A call to MORECORE that can normally contiguously extend memory.
3389        (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
3390        or main space is mmapped or a previous contiguous call failed)
3391     2. A call to MMAP new space (disabled if not HAVE_MMAP).
3392        Note that under the default settings, if MORECORE is unable to
3393        fulfill a request, and HAVE_MMAP is true, then mmap is
3394        used as a noncontiguous system allocator. This is a useful backup
3395        strategy for systems with holes in address spaces -- in this case
3396        sbrk cannot contiguously expand the heap, but mmap may be able to
3397        find space.
3398     3. A call to MORECORE that cannot usually contiguously extend memory.
3399        (disabled if not HAVE_MORECORE)
3400   */
3401 
3402   if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
3403     char* br = CMFAIL;
3404     msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
3405     size_t asize = 0;
3406     ACQUIRE_MORECORE_LOCK();
3407 
3408     if (ss == 0) {  /* First time through or recovery */
3409       char* base = (char*)CALL_MORECORE(0);
3410       if (base != CMFAIL) {
3411         asize = granularity_align(nb + TOP_FOOT_SIZE + MALLOC_ALIGNMENT + SIZE_T_ONE);
3412         /* Adjust to end on a page boundary */
3413         if (!is_page_aligned(base))
3414           asize += (page_align((size_t)base) - (size_t)base);
3415         /* Can't call MORECORE if size is negative when treated as signed */
3416         if (asize < HALF_MAX_SIZE_T &&
3417             (br = (char*)(CALL_MORECORE(asize))) == base) {
3418           tbase = base;
3419           tsize = asize;
3420         }
3421       }
3422     }
3423     else {
3424       /* Subtract out existing available top space from MORECORE request. */
3425       asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + MALLOC_ALIGNMENT + SIZE_T_ONE);
3426       /* Use mem here only if it did continuously extend old space */
3427       if (asize < HALF_MAX_SIZE_T &&
3428           (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
3429         tbase = br;
3430         tsize = asize;
3431       }
3432     }
3433 
3434     if (tbase == CMFAIL) {    /* Cope with partial failure */
3435       if (br != CMFAIL) {    /* Try to use/extend the space we did get */
3436         if (asize < HALF_MAX_SIZE_T &&
3437             asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
3438           size_t esize = granularity_align(nb + TOP_FOOT_SIZE + MALLOC_ALIGNMENT + SIZE_T_ONE - asize);
3439           if (esize < HALF_MAX_SIZE_T) {
3440             char* end = (char*)CALL_MORECORE(esize);
3441             if (end != CMFAIL)
3442               asize += esize;
3443             else {            /* Can't use; try to release */
3444               end = (char*)CALL_MORECORE(-asize);
3445               br = CMFAIL;
3446             }
3447           }
3448         }
3449       }
3450       if (br != CMFAIL) {    /* Use the space we did get */
3451         tbase = br;
3452         tsize = asize;
3453       }
3454       else
3455         disable_contiguous(m); /* Don't try contiguous path in the future */
3456     }
3457 
3458     RELEASE_MORECORE_LOCK();
3459   }
3460 
3461   if (HAVE_MMAP && tbase == CMFAIL) {  /* Try MMAP */
3462     size_t req = nb + TOP_FOOT_SIZE + MALLOC_ALIGNMENT + SIZE_T_ONE;
3463     size_t rsize = granularity_align(req);
3464     if (rsize > nb) { /* Fail if wraps around zero */
3465       char* mp = (char*)(CALL_MMAP(rsize));
3466       if (mp != CMFAIL) {
3467         tbase = mp;
3468         tsize = rsize;
3469         mmap_flag = IS_MMAPPED_BIT;
3470       }
3471     }
3472   }
3473 
3474   if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
3475     size_t asize = granularity_align(nb + TOP_FOOT_SIZE + MALLOC_ALIGNMENT + SIZE_T_ONE);
3476     if (asize < HALF_MAX_SIZE_T) {
3477       char* br = CMFAIL;
3478       char* end = CMFAIL;
3479       ACQUIRE_MORECORE_LOCK();
3480       br = (char*)(CALL_MORECORE(asize));
3481       end = (char*)(CALL_MORECORE(0));
3482       RELEASE_MORECORE_LOCK();
3483       if (br != CMFAIL && end != CMFAIL && br < end) {
3484         size_t ssize = end - br;
3485         if (ssize > nb + TOP_FOOT_SIZE) {
3486           tbase = br;
3487           tsize = ssize;
3488         }
3489       }
3490     }
3491   }
3492 
3493   if (tbase != CMFAIL) {
3494 
3495     if ((m->footprint += tsize) > m->max_footprint)
3496       m->max_footprint = m->footprint;
3497 
3498     if (!is_initialized(m)) { /* first-time initialization */
3499       m->seg.base = m->least_addr = tbase;
3500       m->seg.size = tsize;
3501       m->seg.sflags = mmap_flag;
3502       m->magic = mparams.magic;
3503       init_bins(m);
3504       if (is_global(m))
3505         init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3506       else {
3507         /* Offset top by embedded malloc_state */
3508         mchunkptr mn = next_chunk(mem2chunk(m));
3509         init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
3510       }
3511     }
3512 
3513     else {
3514       /* Try to merge with an existing segment */
3515       msegmentptr sp = &m->seg;
3516       while (sp != 0 && tbase != sp->base + sp->size)
3517         sp = sp->next;
3518       if (sp != 0 &&
3519           !is_extern_segment(sp) &&
3520           (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
3521           segment_holds(sp, m->top)) { /* append */
3522         sp->size += tsize;
3523         init_top(m, m->top, m->topsize + tsize);
3524       }
3525       else {
3526         if (tbase < m->least_addr)
3527           m->least_addr = tbase;
3528         sp = &m->seg;
3529         while (sp != 0 && sp->base != tbase + tsize)
3530           sp = sp->next;
3531         if (sp != 0 &&
3532             !is_extern_segment(sp) &&
3533             (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
3534           char* oldbase = sp->base;
3535           sp->base = tbase;
3536           sp->size += tsize;
3537           return prepend_alloc(m, tbase, oldbase, nb);
3538         }
3539         else
3540           add_segment(m, tbase, tsize, mmap_flag);
3541       }
3542     }
3543 
3544     if (nb < m->topsize) { /* Allocate from new or extended top space */
3545       size_t rsize = m->topsize -= nb;
3546       mchunkptr p = m->top;
3547       mchunkptr r = m->top = chunk_plus_offset(p, nb);
3548       r->head = rsize | PINUSE_BIT;
3549       set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3550       check_top_chunk(m, m->top);
3551       check_malloced_chunk(m, chunk2mem(p), nb);
3552       return chunk2mem(p);
3553     }
3554   }
3555 
3556   MALLOC_FAILURE_ACTION;
3557   return 0;
3558 }
3559 
3560 /* -----------------------  system deallocation -------------------------- */
3561 
3562 /* Unmap and unlink any mmapped segments that don't contain used chunks */
release_unused_segments(mstate m)3563 static size_t release_unused_segments(mstate m) {
3564   size_t released = 0;
3565   msegmentptr pred = &m->seg;
3566   msegmentptr sp = pred->next;
3567   while (sp != 0) {
3568     char* base = sp->base;
3569     size_t size = sp->size;
3570     msegmentptr next = sp->next;
3571     if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
3572       mchunkptr p = align_as_chunk(base);
3573       size_t psize = chunksize(p);
3574       /* Can unmap if first chunk holds entire segment and not pinned */
3575       if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
3576         tchunkptr tp = (tchunkptr)p;
3577         assert(segment_holds(sp, (char*)sp));
3578         if (p == m->dv) {
3579           m->dv = 0;
3580           m->dvsize = 0;
3581         }
3582         else {
3583           unlink_large_chunk(m, tp);
3584         }
3585         if (CALL_MUNMAP(base, size) == 0) {
3586           released += size;
3587           m->footprint -= size;
3588           /* unlink obsoleted record */
3589           sp = pred;
3590           sp->next = next;
3591         }
3592         else { /* back out if cannot unmap */
3593           insert_large_chunk(m, tp, psize);
3594         }
3595       }
3596     }
3597     pred = sp;
3598     sp = next;
3599   }
3600   return released;
3601 }
3602 
sys_trim(mstate m,size_t pad)3603 static int sys_trim(mstate m, size_t pad) {
3604   size_t released = 0;
3605   if (pad < MAX_REQUEST && is_initialized(m)) {
3606     pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
3607 
3608     if (m->topsize > pad) {
3609       /* Shrink top space in granularity-size units, keeping at least one */
3610       size_t unit = mparams.granularity;
3611       size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
3612                       SIZE_T_ONE) * unit;
3613       msegmentptr sp = segment_holding(m, (char*)m->top);
3614 
3615       if (!is_extern_segment(sp)) {
3616         if (is_mmapped_segment(sp)) {
3617           if (HAVE_MMAP &&
3618               sp->size >= extra &&
3619               !has_segment_link(m, sp)) { /* can't shrink if pinned */
3620             size_t newsize = sp->size - extra;
3621             /* Prefer mremap, fall back to munmap */
3622             if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
3623                 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
3624               released = extra;
3625             }
3626           }
3627         }
3628         else if (HAVE_MORECORE) {
3629           if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
3630             extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
3631           ACQUIRE_MORECORE_LOCK();
3632           {
3633             /* Make sure end of memory is where we last set it. */
3634             char* old_br = (char*)(CALL_MORECORE(0));
3635             if (old_br == sp->base + sp->size) {
3636               char* rel_br = (char*)(CALL_MORECORE(-extra));
3637               char* new_br = (char*)(CALL_MORECORE(0));
3638               if (rel_br != CMFAIL && new_br < old_br)
3639                 released = old_br - new_br;
3640             }
3641           }
3642           RELEASE_MORECORE_LOCK();
3643         }
3644       }
3645 
3646       if (released != 0) {
3647         sp->size -= released;
3648         m->footprint -= released;
3649         init_top(m, m->top, m->topsize - released);
3650         check_top_chunk(m, m->top);
3651       }
3652     }
3653 
3654     /* Unmap any unused mmapped segments */
3655     if (HAVE_MMAP)
3656       released += release_unused_segments(m);
3657 
3658     /* On failure, disable autotrim to avoid repeated failed future calls */
3659     if (released == 0)
3660       m->trim_check = MAX_SIZE_T;
3661   }
3662 
3663   return (released != 0)? 1 : 0;
3664 }
3665 
3666 /* ---------------------------- malloc support --------------------------- */
3667 
3668 /* allocate a large request from the best fitting chunk in a treebin */
tmalloc_large(mstate m,size_t nb)3669 static void* tmalloc_large(mstate m, size_t nb) {
3670   tchunkptr v = 0;
3671   size_t rsize = -nb; /* Unsigned negation */
3672   tchunkptr t;
3673   bindex_t idx;
3674   compute_tree_index(nb, idx);
3675 
3676   if ((t = *treebin_at(m, idx)) != 0) {
3677     /* Traverse tree for this bin looking for node with size == nb */
3678     size_t sizebits = nb << leftshift_for_tree_index(idx);
3679     tchunkptr rst = 0;  /* The deepest untaken right subtree */
3680     for (;;) {
3681       tchunkptr rt;
3682       size_t trem = chunksize(t) - nb;
3683       if (trem < rsize) {
3684         v = t;
3685         if ((rsize = trem) == 0)
3686           break;
3687       }
3688       rt = t->child[1];
3689       t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3690       if (rt != 0 && rt != t)
3691         rst = rt;
3692       if (t == 0) {
3693         t = rst; /* set t to least subtree holding sizes > nb */
3694         break;
3695       }
3696       sizebits <<= 1;
3697     }
3698   }
3699 
3700   if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
3701     binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
3702     if (leftbits != 0) {
3703       bindex_t i;
3704       binmap_t leastbit = least_bit(leftbits);
3705       compute_bit2idx(leastbit, i);
3706       t = *treebin_at(m, i);
3707     }
3708   }
3709 
3710   while (t != 0) { /* find smallest of tree or subtree */
3711     size_t trem = chunksize(t) - nb;
3712     if (trem < rsize) {
3713       rsize = trem;
3714       v = t;
3715     }
3716     t = leftmost_child(t);
3717   }
3718 
3719   /*  If dv is a better fit, return 0 so malloc will use it */
3720   if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
3721     if (RTCHECK(ok_address(m, v))) { /* split */
3722       mchunkptr r = chunk_plus_offset(v, nb);
3723       assert(chunksize(v) == rsize + nb);
3724       if (RTCHECK(ok_next(v, r))) {
3725         unlink_large_chunk(m, v);
3726         if (rsize < MIN_CHUNK_SIZE)
3727           set_inuse_and_pinuse(m, v, (rsize + nb));
3728         else {
3729           set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3730           set_size_and_pinuse_of_free_chunk(r, rsize);
3731           insert_chunk(m, r, rsize);
3732         }
3733         return chunk2mem(v);
3734       }
3735     }
3736     CORRUPTION_ERROR_ACTION(m);
3737   }
3738   return 0;
3739 }
3740 
3741 /* allocate a small request from the best fitting chunk in a treebin */
tmalloc_small(mstate m,size_t nb)3742 static void* tmalloc_small(mstate m, size_t nb) {
3743   tchunkptr t, v;
3744   size_t rsize;
3745   bindex_t i;
3746   binmap_t leastbit = least_bit(m->treemap);
3747   compute_bit2idx(leastbit, i);
3748 
3749   v = t = *treebin_at(m, i);
3750   rsize = chunksize(t) - nb;
3751 
3752   while ((t = leftmost_child(t)) != 0) {
3753     size_t trem = chunksize(t) - nb;
3754     if (trem < rsize) {
3755       rsize = trem;
3756       v = t;
3757     }
3758   }
3759 
3760   if (RTCHECK(ok_address(m, v))) {
3761     mchunkptr r = chunk_plus_offset(v, nb);
3762     assert(chunksize(v) == rsize + nb);
3763     if (RTCHECK(ok_next(v, r))) {
3764       unlink_large_chunk(m, v);
3765       if (rsize < MIN_CHUNK_SIZE)
3766         set_inuse_and_pinuse(m, v, (rsize + nb));
3767       else {
3768         set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3769         set_size_and_pinuse_of_free_chunk(r, rsize);
3770         replace_dv(m, r, rsize);
3771       }
3772       return chunk2mem(v);
3773     }
3774   }
3775 
3776   CORRUPTION_ERROR_ACTION(m);
3777   return 0;
3778 }
3779 
3780 /* --------------------------- realloc support --------------------------- */
3781 
internal_realloc(mstate m,void * oldmem,size_t bytes)3782 static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
3783   if (bytes >= MAX_REQUEST) {
3784     MALLOC_FAILURE_ACTION;
3785     return 0;
3786   }
3787   if (!PREACTION(m)) {
3788     mchunkptr oldp = mem2chunk(oldmem);
3789     size_t oldsize = chunksize(oldp);
3790     mchunkptr next = chunk_plus_offset(oldp, oldsize);
3791     mchunkptr newp = 0;
3792     void* extra = 0;
3793 
3794     /* Try to either shrink or extend into top. Else malloc-copy-free */
3795 
3796     if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
3797                 ok_next(oldp, next) && ok_pinuse(next))) {
3798       size_t nb = request2size(bytes);
3799       if (is_mmapped(oldp))
3800         newp = mmap_resize(m, oldp, nb);
3801       else if (oldsize >= nb) { /* already big enough */
3802         size_t rsize = oldsize - nb;
3803         newp = oldp;
3804         if (rsize >= MIN_CHUNK_SIZE) {
3805           mchunkptr remainder = chunk_plus_offset(newp, nb);
3806           set_inuse(m, newp, nb);
3807           set_inuse(m, remainder, rsize);
3808           extra = chunk2mem(remainder);
3809         }
3810       }
3811       else if (next == m->top && oldsize + m->topsize > nb) {
3812         /* Expand into top */
3813         size_t newsize = oldsize + m->topsize;
3814         size_t newtopsize = newsize - nb;
3815         mchunkptr newtop = chunk_plus_offset(oldp, nb);
3816         set_inuse(m, oldp, nb);
3817         newtop->head = newtopsize |PINUSE_BIT;
3818         m->top = newtop;
3819         m->topsize = newtopsize;
3820         newp = oldp;
3821       }
3822     }
3823     else {
3824       USAGE_ERROR_ACTION(m, oldmem);
3825       POSTACTION(m);
3826       return 0;
3827     }
3828 
3829     POSTACTION(m);
3830 
3831     if (newp != 0) {
3832       if (extra != 0) {
3833         internal_free(m, extra);
3834       }
3835       check_inuse_chunk(m, newp);
3836       return chunk2mem(newp);
3837     }
3838     else {
3839       void* newmem = internal_malloc(m, bytes);
3840       if (newmem != 0) {
3841         size_t oc = oldsize - overhead_for(oldp);
3842         memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
3843         internal_free(m, oldmem);
3844       }
3845       return newmem;
3846     }
3847   }
3848   return 0;
3849 }
3850 
3851 /* --------------------------- memalign support -------------------------- */
3852 
internal_memalign(mstate m,size_t alignment,size_t bytes)3853 static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
3854   if (alignment <= MALLOC_ALIGNMENT)    /* Can just use malloc */
3855     return internal_malloc(m, bytes);
3856   if (alignment <  MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
3857     alignment = MIN_CHUNK_SIZE;
3858   if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
3859     size_t a = MALLOC_ALIGNMENT << 1;
3860     while (a < alignment) a <<= 1;
3861     alignment = a;
3862   }
3863 
3864   if (bytes >= MAX_REQUEST - alignment) {
3865     if (m != 0)  { /* Test isn't needed but avoids compiler warning */
3866       MALLOC_FAILURE_ACTION;
3867     }
3868   }
3869   else {
3870     size_t nb = request2size(bytes);
3871     size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
3872     char* mem = (char*)internal_malloc(m, req);
3873     if (mem != 0) {
3874       void* leader = 0;
3875       void* trailer = 0;
3876       mchunkptr p = mem2chunk(mem);
3877 
3878       if (PREACTION(m)) return 0;
3879       if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
3880         /*
3881           Find an aligned spot inside chunk.  Since we need to give
3882           back leading space in a chunk of at least MIN_CHUNK_SIZE, if
3883           the first calculation places us at a spot with less than
3884           MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
3885           We've allocated enough total room so that this is always
3886           possible.
3887         */
3888         char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
3889                                                        alignment -
3890                                                        SIZE_T_ONE)) &
3891                                              -alignment));
3892         char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
3893           br : br+alignment;
3894         mchunkptr newp = (mchunkptr)pos;
3895         size_t leadsize = pos - (char*)(p);
3896         size_t newsize = chunksize(p) - leadsize;
3897 
3898         if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
3899           newp->prev_foot = p->prev_foot + leadsize;
3900           newp->head = (newsize|CINUSE_BIT);
3901         }
3902         else { /* Otherwise, give back leader, use the rest */
3903           set_inuse(m, newp, newsize);
3904           set_inuse(m, p, leadsize);
3905           leader = chunk2mem(p);
3906         }
3907         p = newp;
3908       }
3909 
3910       /* Give back spare room at the end */
3911       if (!is_mmapped(p)) {
3912         size_t size = chunksize(p);
3913         if (size > nb + MIN_CHUNK_SIZE) {
3914           size_t remainder_size = size - nb;
3915           mchunkptr remainder = chunk_plus_offset(p, nb);
3916           set_inuse(m, p, nb);
3917           set_inuse(m, remainder, remainder_size);
3918           trailer = chunk2mem(remainder);
3919         }
3920       }
3921 
3922       assert (chunksize(p) >= nb);
3923       assert((((size_t)(chunk2mem(p))) % alignment) == 0);
3924       check_inuse_chunk(m, p);
3925       POSTACTION(m);
3926       if (leader != 0) {
3927         internal_free(m, leader);
3928       }
3929       if (trailer != 0) {
3930         internal_free(m, trailer);
3931       }
3932       return chunk2mem(p);
3933     }
3934   }
3935   return 0;
3936 }
3937 
3938 /* ------------------------ comalloc/coalloc support --------------------- */
3939 
ialloc(mstate m,size_t n_elements,size_t * sizes,int opts,void * chunks[])3940 static void** ialloc(mstate m,
3941                      size_t n_elements,
3942                      size_t* sizes,
3943                      int opts,
3944                      void* chunks[]) {
3945   /*
3946     This provides common support for independent_X routines, handling
3947     all of the combinations that can result.
3948 
3949     The opts arg has:
3950     bit 0 set if all elements are same size (using sizes[0])
3951     bit 1 set if elements should be zeroed
3952   */
3953 
3954   size_t    element_size;   /* chunksize of each element, if all same */
3955   size_t    contents_size;  /* total size of elements */
3956   size_t    array_size;     /* request size of pointer array */
3957   void*     mem;            /* malloced aggregate space */
3958   mchunkptr p;              /* corresponding chunk */
3959   size_t    remainder_size; /* remaining bytes while splitting */
3960   void**    marray;         /* either "chunks" or malloced ptr array */
3961   mchunkptr array_chunk;    /* chunk for malloced ptr array */
3962   flag_t    was_enabled;    /* to disable mmap */
3963   size_t    size;
3964   size_t    i;
3965 
3966   /* compute array length, if needed */
3967   if (chunks != 0) {
3968     if (n_elements == 0)
3969       return chunks; /* nothing to do */
3970     marray = chunks;
3971     array_size = 0;
3972   }
3973   else {
3974     /* if empty req, must still return chunk representing empty array */
3975     if (n_elements == 0)
3976       return (void**)internal_malloc(m, 0);
3977     marray = 0;
3978     array_size = request2size(n_elements * (sizeof(void*)));
3979   }
3980 
3981   /* compute total element size */
3982   if (opts & 0x1) { /* all-same-size */
3983     element_size = request2size(*sizes);
3984     contents_size = n_elements * element_size;
3985   }
3986   else { /* add up all the sizes */
3987     element_size = 0;
3988     contents_size = 0;
3989     for (i = 0; i != n_elements; ++i)
3990       contents_size += request2size(sizes[i]);
3991   }
3992 
3993   size = contents_size + array_size;
3994 
3995   /*
3996      Allocate the aggregate chunk.  First disable direct-mmapping so
3997      malloc won't use it, since we would not be able to later
3998      free/realloc space internal to a segregated mmap region.
3999   */
4000   was_enabled = use_mmap(m);
4001   disable_mmap(m);
4002   mem = internal_malloc(m, size - CHUNK_OVERHEAD);
4003   if (was_enabled)
4004     enable_mmap(m);
4005   if (mem == 0)
4006     return 0;
4007 
4008   if (PREACTION(m)) return 0;
4009   p = mem2chunk(mem);
4010   remainder_size = chunksize(p);
4011 
4012   assert(!is_mmapped(p));
4013 
4014   if (opts & 0x2) {       /* optionally clear the elements */
4015     memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
4016   }
4017 
4018   /* If not provided, allocate the pointer array as final part of chunk */
4019   if (marray == 0) {
4020     size_t  array_chunk_size;
4021     array_chunk = chunk_plus_offset(p, contents_size);
4022     array_chunk_size = remainder_size - contents_size;
4023     marray = (void**) (chunk2mem(array_chunk));
4024     set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
4025     remainder_size = contents_size;
4026   }
4027 
4028   /* split out elements */
4029   for (i = 0; ; ++i) {
4030     marray[i] = chunk2mem(p);
4031     if (i != n_elements-1) {
4032       if (element_size != 0)
4033         size = element_size;
4034       else
4035         size = request2size(sizes[i]);
4036       remainder_size -= size;
4037       set_size_and_pinuse_of_inuse_chunk(m, p, size);
4038       p = chunk_plus_offset(p, size);
4039     }
4040     else { /* the final element absorbs any overallocation slop */
4041       set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
4042       break;
4043     }
4044   }
4045 
4046 #if DEBUG
4047   if (marray != chunks) {
4048     /* final element must have exactly exhausted chunk */
4049     if (element_size != 0) {
4050       assert(remainder_size == element_size);
4051     }
4052     else {
4053       assert(remainder_size == request2size(sizes[i]));
4054     }
4055     check_inuse_chunk(m, mem2chunk(marray));
4056   }
4057   for (i = 0; i != n_elements; ++i)
4058     check_inuse_chunk(m, mem2chunk(marray[i]));
4059 
4060 #endif /* DEBUG */
4061 
4062   POSTACTION(m);
4063   return marray;
4064 }
4065 
4066 
4067 /* -------------------------- public routines ---------------------------- */
4068 
4069 #if !ONLY_MSPACES
4070 
dlmalloc(size_t bytes)4071 void* dlmalloc(size_t bytes) {
4072   /*
4073      Basic algorithm:
4074      If a small request (< 256 bytes minus per-chunk overhead):
4075        1. If one exists, use a remainderless chunk in associated smallbin.
4076           (Remainderless means that there are too few excess bytes to
4077           represent as a chunk.)
4078        2. If it is big enough, use the dv chunk, which is normally the
4079           chunk adjacent to the one used for the most recent small request.
4080        3. If one exists, split the smallest available chunk in a bin,
4081           saving remainder in dv.
4082        4. If it is big enough, use the top chunk.
4083        5. If available, get memory from system and use it
4084      Otherwise, for a large request:
4085        1. Find the smallest available binned chunk that fits, and use it
4086           if it is better fitting than dv chunk, splitting if necessary.
4087        2. If better fitting than any binned chunk, use the dv chunk.
4088        3. If it is big enough, use the top chunk.
4089        4. If request size >= mmap threshold, try to directly mmap this chunk.
4090        5. If available, get memory from system and use it
4091 
4092      The ugly goto's here ensure that postaction occurs along all paths.
4093   */
4094 
4095   if (!PREACTION(gm)) {
4096     void* mem;
4097     size_t nb;
4098     if (bytes <= MAX_SMALL_REQUEST) {
4099       bindex_t idx;
4100       binmap_t smallbits;
4101       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4102       idx = small_index(nb);
4103       smallbits = gm->smallmap >> idx;
4104 
4105       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4106         mchunkptr b, p;
4107         idx += ~smallbits & 1;       /* Uses next bin if idx empty */
4108         b = smallbin_at(gm, idx);
4109         p = b->fd;
4110         assert(chunksize(p) == small_index2size(idx));
4111         unlink_first_small_chunk(gm, b, p, idx);
4112         set_inuse_and_pinuse(gm, p, small_index2size(idx));
4113         mem = chunk2mem(p);
4114         check_malloced_chunk(gm, mem, nb);
4115         goto postaction;
4116       }
4117 
4118       else if (nb > gm->dvsize) {
4119         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4120           mchunkptr b, p, r;
4121           size_t rsize;
4122           bindex_t i;
4123           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4124           binmap_t leastbit = least_bit(leftbits);
4125           compute_bit2idx(leastbit, i);
4126           b = smallbin_at(gm, i);
4127           p = b->fd;
4128           assert(chunksize(p) == small_index2size(i));
4129           unlink_first_small_chunk(gm, b, p, i);
4130           rsize = small_index2size(i) - nb;
4131           /* Fit here cannot be remainderless if 4byte sizes */
4132           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4133             set_inuse_and_pinuse(gm, p, small_index2size(i));
4134           else {
4135             set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4136             r = chunk_plus_offset(p, nb);
4137             set_size_and_pinuse_of_free_chunk(r, rsize);
4138             replace_dv(gm, r, rsize);
4139           }
4140           mem = chunk2mem(p);
4141           check_malloced_chunk(gm, mem, nb);
4142           goto postaction;
4143         }
4144 
4145         else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
4146           check_malloced_chunk(gm, mem, nb);
4147           goto postaction;
4148         }
4149       }
4150     }
4151     else if (bytes >= MAX_REQUEST)
4152       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4153     else {
4154       nb = pad_request(bytes);
4155       if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
4156         check_malloced_chunk(gm, mem, nb);
4157         goto postaction;
4158       }
4159     }
4160 
4161     if (nb <= gm->dvsize) {
4162       size_t rsize = gm->dvsize - nb;
4163       mchunkptr p = gm->dv;
4164       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4165         mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
4166         gm->dvsize = rsize;
4167         set_size_and_pinuse_of_free_chunk(r, rsize);
4168         set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4169       }
4170       else { /* exhaust dv */
4171         size_t dvs = gm->dvsize;
4172         gm->dvsize = 0;
4173         gm->dv = 0;
4174         set_inuse_and_pinuse(gm, p, dvs);
4175       }
4176       mem = chunk2mem(p);
4177       check_malloced_chunk(gm, mem, nb);
4178       goto postaction;
4179     }
4180 
4181     else if (nb < gm->topsize) { /* Split top */
4182       size_t rsize = gm->topsize -= nb;
4183       mchunkptr p = gm->top;
4184       mchunkptr r = gm->top = chunk_plus_offset(p, nb);
4185       r->head = rsize | PINUSE_BIT;
4186       set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4187       mem = chunk2mem(p);
4188       check_top_chunk(gm, gm->top);
4189       check_malloced_chunk(gm, mem, nb);
4190       goto postaction;
4191     }
4192 
4193     mem = sys_alloc(gm, nb);
4194 
4195   postaction:
4196     POSTACTION(gm);
4197     return mem;
4198   }
4199 
4200   return 0;
4201 }
4202 
dlfree(void * mem)4203 void dlfree(void* mem) {
4204   /*
4205      Consolidate freed chunks with preceeding or succeeding bordering
4206      free chunks, if they exist, and then place in a bin.  Intermixed
4207      with special cases for top, dv, mmapped chunks, and usage errors.
4208   */
4209 
4210   if (mem != 0) {
4211     mchunkptr p  = mem2chunk(mem);
4212 #if FOOTERS
4213     mstate fm = get_mstate_for(p);
4214     if (!ok_magic(fm)) {
4215       USAGE_ERROR_ACTION(fm, p);
4216       return;
4217     }
4218 #else /* FOOTERS */
4219 #define fm gm
4220 #endif /* FOOTERS */
4221     if (!PREACTION(fm)) {
4222       check_inuse_chunk(fm, p);
4223       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4224         size_t psize = chunksize(p);
4225         mchunkptr next = chunk_plus_offset(p, psize);
4226         if (!pinuse(p)) {
4227           size_t prevsize = p->prev_foot;
4228           if ((prevsize & IS_MMAPPED_BIT) != 0) {
4229             prevsize &= ~IS_MMAPPED_BIT;
4230             psize += prevsize + MMAP_FOOT_PAD;
4231             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4232               fm->footprint -= psize;
4233             goto postaction;
4234           }
4235           else {
4236             mchunkptr prev = chunk_minus_offset(p, prevsize);
4237             psize += prevsize;
4238             p = prev;
4239             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4240               if (p != fm->dv) {
4241                 unlink_chunk(fm, p, prevsize);
4242               }
4243               else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4244                 fm->dvsize = psize;
4245                 set_free_with_pinuse(p, psize, next);
4246                 goto postaction;
4247               }
4248             }
4249             else
4250               goto erroraction;
4251           }
4252         }
4253 
4254         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4255           if (!cinuse(next)) {  /* consolidate forward */
4256             if (next == fm->top) {
4257               size_t tsize = fm->topsize += psize;
4258               fm->top = p;
4259               p->head = tsize | PINUSE_BIT;
4260               if (p == fm->dv) {
4261                 fm->dv = 0;
4262                 fm->dvsize = 0;
4263               }
4264               if (should_trim(fm, tsize))
4265                 sys_trim(fm, 0);
4266               goto postaction;
4267             }
4268             else if (next == fm->dv) {
4269               size_t dsize = fm->dvsize += psize;
4270               fm->dv = p;
4271               set_size_and_pinuse_of_free_chunk(p, dsize);
4272               goto postaction;
4273             }
4274             else {
4275               size_t nsize = chunksize(next);
4276               psize += nsize;
4277               unlink_chunk(fm, next, nsize);
4278               set_size_and_pinuse_of_free_chunk(p, psize);
4279               if (p == fm->dv) {
4280                 fm->dvsize = psize;
4281                 goto postaction;
4282               }
4283             }
4284           }
4285           else
4286             set_free_with_pinuse(p, psize, next);
4287           insert_chunk(fm, p, psize);
4288           check_free_chunk(fm, p);
4289           goto postaction;
4290         }
4291       }
4292     erroraction:
4293       USAGE_ERROR_ACTION(fm, p);
4294     postaction:
4295       POSTACTION(fm);
4296     }
4297   }
4298 #if !FOOTERS
4299 #undef fm
4300 #endif /* FOOTERS */
4301 }
4302 
dlcalloc(size_t n_elements,size_t elem_size)4303 void* dlcalloc(size_t n_elements, size_t elem_size) {
4304   void* mem;
4305   size_t req = 0;
4306   if (n_elements != 0) {
4307     req = n_elements * elem_size;
4308     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4309         (req / n_elements != elem_size))
4310       req = MAX_SIZE_T; /* force downstream failure on overflow */
4311   }
4312   mem = dlmalloc(req);
4313   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4314     memset(mem, 0, req);
4315   return mem;
4316 }
4317 
dlrealloc(void * oldmem,size_t bytes)4318 void* dlrealloc(void* oldmem, size_t bytes) {
4319   if (oldmem == 0)
4320     return dlmalloc(bytes);
4321 #ifdef REALLOC_ZERO_BYTES_FREES
4322   if (bytes == 0) {
4323     dlfree(oldmem);
4324     return 0;
4325   }
4326 #endif /* REALLOC_ZERO_BYTES_FREES */
4327   else {
4328 #if ! FOOTERS
4329     mstate m = gm;
4330 #else /* FOOTERS */
4331     mstate m = get_mstate_for(mem2chunk(oldmem));
4332     if (!ok_magic(m)) {
4333       USAGE_ERROR_ACTION(m, oldmem);
4334       return 0;
4335     }
4336 #endif /* FOOTERS */
4337     return internal_realloc(m, oldmem, bytes);
4338   }
4339 }
4340 
dlmemalign(size_t alignment,size_t bytes)4341 void* dlmemalign(size_t alignment, size_t bytes) {
4342   return internal_memalign(gm, alignment, bytes);
4343 }
4344 
dlindependent_calloc(size_t n_elements,size_t elem_size,void * chunks[])4345 void** dlindependent_calloc(size_t n_elements, size_t elem_size,
4346                                  void* chunks[]) {
4347   size_t sz = elem_size; /* serves as 1-element array */
4348   return ialloc(gm, n_elements, &sz, 3, chunks);
4349 }
4350 
dlindependent_comalloc(size_t n_elements,size_t sizes[],void * chunks[])4351 void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
4352                                    void* chunks[]) {
4353   return ialloc(gm, n_elements, sizes, 0, chunks);
4354 }
4355 
dlvalloc(size_t bytes)4356 void* dlvalloc(size_t bytes) {
4357   size_t pagesz;
4358   init_mparams();
4359   pagesz = mparams.page_size;
4360   return dlmemalign(pagesz, bytes);
4361 }
4362 
dlpvalloc(size_t bytes)4363 void* dlpvalloc(size_t bytes) {
4364   size_t pagesz;
4365   init_mparams();
4366   pagesz = mparams.page_size;
4367   return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
4368 }
4369 
dlmalloc_trim(size_t pad)4370 int dlmalloc_trim(size_t pad) {
4371   int result = 0;
4372   if (!PREACTION(gm)) {
4373     result = sys_trim(gm, pad);
4374     POSTACTION(gm);
4375   }
4376   return result;
4377 }
4378 
dlmalloc_footprint(void)4379 size_t dlmalloc_footprint(void) {
4380   return gm->footprint;
4381 }
4382 
dlmalloc_max_footprint(void)4383 size_t dlmalloc_max_footprint(void) {
4384   return gm->max_footprint;
4385 }
4386 
4387 #if !NO_MALLINFO
dlmallinfo(void)4388 struct mallinfo dlmallinfo(void) {
4389   return internal_mallinfo(gm);
4390 }
4391 #endif /* NO_MALLINFO */
4392 
dlmalloc_stats()4393 void dlmalloc_stats() {
4394   internal_malloc_stats(gm);
4395 }
4396 
dlmalloc_usable_size(void * mem)4397 size_t dlmalloc_usable_size(void* mem) {
4398   if (mem != 0) {
4399     mchunkptr p = mem2chunk(mem);
4400     if (cinuse(p))
4401       return chunksize(p) - overhead_for(p);
4402   }
4403   return 0;
4404 }
4405 
dlmallopt(int param_number,int value)4406 int dlmallopt(int param_number, int value) {
4407   return change_mparam(param_number, value);
4408 }
4409 
4410 #endif /* !ONLY_MSPACES */
4411 
4412 /* ----------------------------- user mspaces ---------------------------- */
4413 
4414 #if MSPACES
4415 
init_user_mstate(char * tbase,size_t tsize)4416 static mstate init_user_mstate(char* tbase, size_t tsize) {
4417   size_t msize = pad_request(sizeof(struct malloc_state));
4418   mchunkptr mn;
4419   mchunkptr msp = align_as_chunk(tbase);
4420   mstate m = (mstate)(chunk2mem(msp));
4421   memset(m, 0, msize);
4422   INITIAL_LOCK(&m->mutex);
4423   msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
4424   m->seg.base = m->least_addr = tbase;
4425   m->seg.size = m->footprint = m->max_footprint = tsize;
4426   m->magic = mparams.magic;
4427   m->mflags = mparams.default_mflags;
4428   disable_contiguous(m);
4429   init_bins(m);
4430   mn = next_chunk(mem2chunk(m));
4431   init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
4432   check_top_chunk(m, m->top);
4433   return m;
4434 }
4435 
create_mspace(size_t capacity,int locked)4436 mspace create_mspace(size_t capacity, int locked) {
4437   mstate m = 0;
4438   size_t msize = pad_request(sizeof(struct malloc_state));
4439   init_mparams(); /* Ensure pagesize etc initialized */
4440 
4441   if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
4442     size_t rs = ((capacity == 0)? mparams.granularity :
4443                  (capacity + TOP_FOOT_SIZE + msize));
4444     size_t tsize = granularity_align(rs);
4445     char* tbase = (char*)(CALL_MMAP(tsize));
4446     if (tbase != CMFAIL) {
4447       m = init_user_mstate(tbase, tsize);
4448       m->seg.sflags = IS_MMAPPED_BIT;
4449       set_lock(m, locked);
4450     }
4451   }
4452   return (mspace)m;
4453 }
4454 
create_mspace_with_base(void * base,size_t capacity,int locked)4455 mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
4456   mstate m = 0;
4457   size_t msize = pad_request(sizeof(struct malloc_state));
4458   init_mparams(); /* Ensure pagesize etc initialized */
4459 
4460   if (capacity > msize + TOP_FOOT_SIZE &&
4461       capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
4462     m = init_user_mstate((char*)base, capacity);
4463     m->seg.sflags = EXTERN_BIT;
4464     set_lock(m, locked);
4465   }
4466   return (mspace)m;
4467 }
4468 
destroy_mspace(mspace msp)4469 size_t destroy_mspace(mspace msp) {
4470   size_t freed = 0;
4471   mstate ms = (mstate)msp;
4472   if (ok_magic(ms)) {
4473     msegmentptr sp = &ms->seg;
4474     while (sp != 0) {
4475       char* base = sp->base;
4476       size_t size = sp->size;
4477       flag_t flag = sp->sflags;
4478       sp = sp->next;
4479       if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
4480           CALL_MUNMAP(base, size) == 0)
4481         freed += size;
4482     }
4483   }
4484   else {
4485     USAGE_ERROR_ACTION(ms,ms);
4486   }
4487   return freed;
4488 }
4489 
4490 /*
4491   mspace versions of routines are near-clones of the global
4492   versions. This is not so nice but better than the alternatives.
4493 */
4494 
4495 
mspace_malloc(mspace msp,size_t bytes)4496 void* mspace_malloc(mspace msp, size_t bytes) {
4497   mstate ms = (mstate)msp;
4498   if (!ok_magic(ms)) {
4499     USAGE_ERROR_ACTION(ms,ms);
4500     return 0;
4501   }
4502   if (!PREACTION(ms)) {
4503     void* mem;
4504     size_t nb;
4505     if (bytes <= MAX_SMALL_REQUEST) {
4506       bindex_t idx;
4507       binmap_t smallbits;
4508       nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4509       idx = small_index(nb);
4510       smallbits = ms->smallmap >> idx;
4511 
4512       if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4513         mchunkptr b, p;
4514         idx += ~smallbits & 1;       /* Uses next bin if idx empty */
4515         b = smallbin_at(ms, idx);
4516         p = b->fd;
4517         assert(chunksize(p) == small_index2size(idx));
4518         unlink_first_small_chunk(ms, b, p, idx);
4519         set_inuse_and_pinuse(ms, p, small_index2size(idx));
4520         mem = chunk2mem(p);
4521         check_malloced_chunk(ms, mem, nb);
4522         goto postaction;
4523       }
4524 
4525       else if (nb > ms->dvsize) {
4526         if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4527           mchunkptr b, p, r;
4528           size_t rsize;
4529           bindex_t i;
4530           binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4531           binmap_t leastbit = least_bit(leftbits);
4532           compute_bit2idx(leastbit, i);
4533           b = smallbin_at(ms, i);
4534           p = b->fd;
4535           assert(chunksize(p) == small_index2size(i));
4536           unlink_first_small_chunk(ms, b, p, i);
4537           rsize = small_index2size(i) - nb;
4538           /* Fit here cannot be remainderless if 4byte sizes */
4539           if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4540             set_inuse_and_pinuse(ms, p, small_index2size(i));
4541           else {
4542             set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4543             r = chunk_plus_offset(p, nb);
4544             set_size_and_pinuse_of_free_chunk(r, rsize);
4545             replace_dv(ms, r, rsize);
4546           }
4547           mem = chunk2mem(p);
4548           check_malloced_chunk(ms, mem, nb);
4549           goto postaction;
4550         }
4551 
4552         else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
4553           check_malloced_chunk(ms, mem, nb);
4554           goto postaction;
4555         }
4556       }
4557     }
4558     else if (bytes >= MAX_REQUEST)
4559       nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4560     else {
4561       nb = pad_request(bytes);
4562       if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
4563         check_malloced_chunk(ms, mem, nb);
4564         goto postaction;
4565       }
4566     }
4567 
4568     if (nb <= ms->dvsize) {
4569       size_t rsize = ms->dvsize - nb;
4570       mchunkptr p = ms->dv;
4571       if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4572         mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
4573         ms->dvsize = rsize;
4574         set_size_and_pinuse_of_free_chunk(r, rsize);
4575         set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4576       }
4577       else { /* exhaust dv */
4578         size_t dvs = ms->dvsize;
4579         ms->dvsize = 0;
4580         ms->dv = 0;
4581         set_inuse_and_pinuse(ms, p, dvs);
4582       }
4583       mem = chunk2mem(p);
4584       check_malloced_chunk(ms, mem, nb);
4585       goto postaction;
4586     }
4587 
4588     else if (nb < ms->topsize) { /* Split top */
4589       size_t rsize = ms->topsize -= nb;
4590       mchunkptr p = ms->top;
4591       mchunkptr r = ms->top = chunk_plus_offset(p, nb);
4592       r->head = rsize | PINUSE_BIT;
4593       set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4594       mem = chunk2mem(p);
4595       check_top_chunk(ms, ms->top);
4596       check_malloced_chunk(ms, mem, nb);
4597       goto postaction;
4598     }
4599 
4600     mem = sys_alloc(ms, nb);
4601 
4602   postaction:
4603     POSTACTION(ms);
4604     return mem;
4605   }
4606 
4607   return 0;
4608 }
4609 
mspace_free(mspace msp,void * mem)4610 void mspace_free(mspace msp, void* mem) {
4611   if (mem != 0) {
4612     mchunkptr p  = mem2chunk(mem);
4613 #if FOOTERS
4614     mstate fm = get_mstate_for(p);
4615 #else /* FOOTERS */
4616     mstate fm = (mstate)msp;
4617 #endif /* FOOTERS */
4618     if (!ok_magic(fm)) {
4619       USAGE_ERROR_ACTION(fm, p);
4620       return;
4621     }
4622     if (!PREACTION(fm)) {
4623       check_inuse_chunk(fm, p);
4624       if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4625         size_t psize = chunksize(p);
4626         mchunkptr next = chunk_plus_offset(p, psize);
4627         if (!pinuse(p)) {
4628           size_t prevsize = p->prev_foot;
4629           if ((prevsize & IS_MMAPPED_BIT) != 0) {
4630             prevsize &= ~IS_MMAPPED_BIT;
4631             psize += prevsize + MMAP_FOOT_PAD;
4632             if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4633               fm->footprint -= psize;
4634             goto postaction;
4635           }
4636           else {
4637             mchunkptr prev = chunk_minus_offset(p, prevsize);
4638             psize += prevsize;
4639             p = prev;
4640             if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4641               if (p != fm->dv) {
4642                 unlink_chunk(fm, p, prevsize);
4643               }
4644               else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4645                 fm->dvsize = psize;
4646                 set_free_with_pinuse(p, psize, next);
4647                 goto postaction;
4648               }
4649             }
4650             else
4651               goto erroraction;
4652           }
4653         }
4654 
4655         if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4656           if (!cinuse(next)) {  /* consolidate forward */
4657             if (next == fm->top) {
4658               size_t tsize = fm->topsize += psize;
4659               fm->top = p;
4660               p->head = tsize | PINUSE_BIT;
4661               if (p == fm->dv) {
4662                 fm->dv = 0;
4663                 fm->dvsize = 0;
4664               }
4665               if (should_trim(fm, tsize))
4666                 sys_trim(fm, 0);
4667               goto postaction;
4668             }
4669             else if (next == fm->dv) {
4670               size_t dsize = fm->dvsize += psize;
4671               fm->dv = p;
4672               set_size_and_pinuse_of_free_chunk(p, dsize);
4673               goto postaction;
4674             }
4675             else {
4676               size_t nsize = chunksize(next);
4677               psize += nsize;
4678               unlink_chunk(fm, next, nsize);
4679               set_size_and_pinuse_of_free_chunk(p, psize);
4680               if (p == fm->dv) {
4681                 fm->dvsize = psize;
4682                 goto postaction;
4683               }
4684             }
4685           }
4686           else
4687             set_free_with_pinuse(p, psize, next);
4688           insert_chunk(fm, p, psize);
4689           check_free_chunk(fm, p);
4690           goto postaction;
4691         }
4692       }
4693     erroraction:
4694       USAGE_ERROR_ACTION(fm, p);
4695     postaction:
4696       POSTACTION(fm);
4697     }
4698   }
4699 }
4700 
mspace_calloc(mspace msp,size_t n_elements,size_t elem_size)4701 void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
4702   void* mem;
4703   size_t req = 0;
4704   mstate ms = (mstate)msp;
4705   if (!ok_magic(ms)) {
4706     USAGE_ERROR_ACTION(ms,ms);
4707     return 0;
4708   }
4709   if (n_elements != 0) {
4710     req = n_elements * elem_size;
4711     if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4712         (req / n_elements != elem_size))
4713       req = MAX_SIZE_T; /* force downstream failure on overflow */
4714   }
4715   mem = internal_malloc(ms, req);
4716   if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4717     memset(mem, 0, req);
4718   return mem;
4719 }
4720 
mspace_realloc(mspace msp,void * oldmem,size_t bytes)4721 void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
4722   if (oldmem == 0)
4723     return mspace_malloc(msp, bytes);
4724 #ifdef REALLOC_ZERO_BYTES_FREES
4725   if (bytes == 0) {
4726     mspace_free(msp, oldmem);
4727     return 0;
4728   }
4729 #endif /* REALLOC_ZERO_BYTES_FREES */
4730   else {
4731 #if FOOTERS
4732     mchunkptr p  = mem2chunk(oldmem);
4733     mstate ms = get_mstate_for(p);
4734 #else /* FOOTERS */
4735     mstate ms = (mstate)msp;
4736 #endif /* FOOTERS */
4737     if (!ok_magic(ms)) {
4738       USAGE_ERROR_ACTION(ms,ms);
4739       return 0;
4740     }
4741     return internal_realloc(ms, oldmem, bytes);
4742   }
4743 }
4744 
mspace_memalign(mspace msp,size_t alignment,size_t bytes)4745 void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
4746   mstate ms = (mstate)msp;
4747   if (!ok_magic(ms)) {
4748     USAGE_ERROR_ACTION(ms,ms);
4749     return 0;
4750   }
4751   return internal_memalign(ms, alignment, bytes);
4752 }
4753 
mspace_independent_calloc(mspace msp,size_t n_elements,size_t elem_size,void * chunks[])4754 void** mspace_independent_calloc(mspace msp, size_t n_elements,
4755                                  size_t elem_size, void* chunks[]) {
4756   size_t sz = elem_size; /* serves as 1-element array */
4757   mstate ms = (mstate)msp;
4758   if (!ok_magic(ms)) {
4759     USAGE_ERROR_ACTION(ms,ms);
4760     return 0;
4761   }
4762   return ialloc(ms, n_elements, &sz, 3, chunks);
4763 }
4764 
mspace_independent_comalloc(mspace msp,size_t n_elements,size_t sizes[],void * chunks[])4765 void** mspace_independent_comalloc(mspace msp, size_t n_elements,
4766                                    size_t sizes[], void* chunks[]) {
4767   mstate ms = (mstate)msp;
4768   if (!ok_magic(ms)) {
4769     USAGE_ERROR_ACTION(ms,ms);
4770     return 0;
4771   }
4772   return ialloc(ms, n_elements, sizes, 0, chunks);
4773 }
4774 
mspace_trim(mspace msp,size_t pad)4775 int mspace_trim(mspace msp, size_t pad) {
4776   int result = 0;
4777   mstate ms = (mstate)msp;
4778   if (ok_magic(ms)) {
4779     if (!PREACTION(ms)) {
4780       result = sys_trim(ms, pad);
4781       POSTACTION(ms);
4782     }
4783   }
4784   else {
4785     USAGE_ERROR_ACTION(ms,ms);
4786   }
4787   return result;
4788 }
4789 
mspace_malloc_stats(mspace msp)4790 void mspace_malloc_stats(mspace msp) {
4791   mstate ms = (mstate)msp;
4792   if (ok_magic(ms)) {
4793     internal_malloc_stats(ms);
4794   }
4795   else {
4796     USAGE_ERROR_ACTION(ms,ms);
4797   }
4798 }
4799 
mspace_footprint(mspace msp)4800 size_t mspace_footprint(mspace msp) {
4801   size_t result;
4802   mstate ms = (mstate)msp;
4803   if (ok_magic(ms)) {
4804     result = ms->footprint;
4805   }
4806   USAGE_ERROR_ACTION(ms,ms);
4807   return result;
4808 }
4809 
4810 
mspace_max_footprint(mspace msp)4811 size_t mspace_max_footprint(mspace msp) {
4812   size_t result;
4813   mstate ms = (mstate)msp;
4814   if (ok_magic(ms)) {
4815     result = ms->max_footprint;
4816   }
4817   USAGE_ERROR_ACTION(ms,ms);
4818   return result;
4819 }
4820 
4821 
4822 #if !NO_MALLINFO
mspace_mallinfo(mspace msp)4823 struct mallinfo mspace_mallinfo(mspace msp) {
4824   mstate ms = (mstate)msp;
4825   if (!ok_magic(ms)) {
4826     USAGE_ERROR_ACTION(ms,ms);
4827   }
4828   return internal_mallinfo(ms);
4829 }
4830 #endif /* NO_MALLINFO */
4831 
mspace_mallopt(int param_number,int value)4832 int mspace_mallopt(int param_number, int value) {
4833   return change_mparam(param_number, value);
4834 }
4835 
4836 #endif /* MSPACES */
4837 
4838 /* -------------------- Alternative MORECORE functions ------------------- */
4839 
4840 /*
4841   Guidelines for creating a custom version of MORECORE:
4842 
4843   * For best performance, MORECORE should allocate in multiples of pagesize.
4844   * MORECORE may allocate more memory than requested. (Or even less,
4845       but this will usually result in a malloc failure.)
4846   * MORECORE must not allocate memory when given argument zero, but
4847       instead return one past the end address of memory from previous
4848       nonzero call.
4849   * For best performance, consecutive calls to MORECORE with positive
4850       arguments should return increasing addresses, indicating that
4851       space has been contiguously extended.
4852   * Even though consecutive calls to MORECORE need not return contiguous
4853       addresses, it must be OK for malloc'ed chunks to span multiple
4854       regions in those cases where they do happen to be contiguous.
4855   * MORECORE need not handle negative arguments -- it may instead
4856       just return MFAIL when given negative arguments.
4857       Negative arguments are always multiples of pagesize. MORECORE
4858       must not misinterpret negative args as large positive unsigned
4859       args. You can suppress all such calls from even occurring by defining
4860       MORECORE_CANNOT_TRIM,
4861 
4862   As an example alternative MORECORE, here is a custom allocator
4863   kindly contributed for pre-OSX macOS.  It uses virtually but not
4864   necessarily physically contiguous non-paged memory (locked in,
4865   present and won't get swapped out).  You can use it by uncommenting
4866   this section, adding some #includes, and setting up the appropriate
4867   defines above:
4868 
4869       #define MORECORE osMoreCore
4870 
4871   There is also a shutdown routine that should somehow be called for
4872   cleanup upon program exit.
4873 
4874   #define MAX_POOL_ENTRIES 100
4875   #define MINIMUM_MORECORE_SIZE  (64 * 1024U)
4876   static int next_os_pool;
4877   void *our_os_pools[MAX_POOL_ENTRIES];
4878 
4879   void *osMoreCore(int size)
4880   {
4881     void *ptr = 0;
4882     static void *sbrk_top = 0;
4883 
4884     if (size > 0)
4885     {
4886       if (size < MINIMUM_MORECORE_SIZE)
4887          size = MINIMUM_MORECORE_SIZE;
4888       if (CurrentExecutionLevel() == kTaskLevel)
4889          ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4890       if (ptr == 0)
4891       {
4892         return (void *) MFAIL;
4893       }
4894       // save ptrs so they can be freed during cleanup
4895       our_os_pools[next_os_pool] = ptr;
4896       next_os_pool++;
4897       ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4898       sbrk_top = (char *) ptr + size;
4899       return ptr;
4900     }
4901     else if (size < 0)
4902     {
4903       // we don't currently support shrink behavior
4904       return (void *) MFAIL;
4905     }
4906     else
4907     {
4908       return sbrk_top;
4909     }
4910   }
4911 
4912   // cleanup any allocated memory pools
4913   // called as last thing before shutting down driver
4914 
4915   void osCleanupMem(void)
4916   {
4917     void **ptr;
4918 
4919     for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4920       if (*ptr)
4921       {
4922          PoolDeallocate(*ptr);
4923          *ptr = 0;
4924       }
4925   }
4926 
4927 */
4928 
4929 
4930 /* -----------------------------------------------------------------------
4931 History:
4932     V2.8.3 Thu Sep 22 11:16:32 2005  Doug Lea  (dl at gee)
4933       * Add max_footprint functions
4934       * Ensure all appropriate literals are size_t
4935       * Fix conditional compilation problem for some #define settings
4936       * Avoid concatenating segments with the one provided
4937         in create_mspace_with_base
4938       * Rename some variables to avoid compiler shadowing warnings
4939       * Use explicit lock initialization.
4940       * Better handling of sbrk interference.
4941       * Simplify and fix segment insertion, trimming and mspace_destroy
4942       * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
4943       * Thanks especially to Dennis Flanagan for help on these.
4944 
4945     V2.8.2 Sun Jun 12 16:01:10 2005  Doug Lea  (dl at gee)
4946       * Fix memalign brace error.
4947 
4948     V2.8.1 Wed Jun  8 16:11:46 2005  Doug Lea  (dl at gee)
4949       * Fix improper #endif nesting in C++
4950       * Add explicit casts needed for C++
4951 
4952     V2.8.0 Mon May 30 14:09:02 2005  Doug Lea  (dl at gee)
4953       * Use trees for large bins
4954       * Support mspaces
4955       * Use segments to unify sbrk-based and mmap-based system allocation,
4956         removing need for emulation on most platforms without sbrk.
4957       * Default safety checks
4958       * Optional footer checks. Thanks to William Robertson for the idea.
4959       * Internal code refactoring
4960       * Incorporate suggestions and platform-specific changes.
4961         Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
4962         Aaron Bachmann,  Emery Berger, and others.
4963       * Speed up non-fastbin processing enough to remove fastbins.
4964       * Remove useless cfree() to avoid conflicts with other apps.
4965       * Remove internal memcpy, memset. Compilers handle builtins better.
4966       * Remove some options that no one ever used and rename others.
4967 
4968     V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)
4969       * Fix malloc_state bitmap array misdeclaration
4970 
4971     V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
4972       * Allow tuning of FIRST_SORTED_BIN_SIZE
4973       * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
4974       * Better detection and support for non-contiguousness of MORECORE.
4975         Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
4976       * Bypass most of malloc if no frees. Thanks To Emery Berger.
4977       * Fix freeing of old top non-contiguous chunk im sysmalloc.
4978       * Raised default trim and map thresholds to 256K.
4979       * Fix mmap-related #defines. Thanks to Lubos Lunak.
4980       * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
4981       * Branch-free bin calculation
4982       * Default trim and mmap thresholds now 256K.
4983 
4984     V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
4985       * Introduce independent_comalloc and independent_calloc.
4986         Thanks to Michael Pachos for motivation and help.
4987       * Make optional .h file available
4988       * Allow > 2GB requests on 32bit systems.
4989       * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
4990         Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
4991         and Anonymous.
4992       * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
4993         helping test this.)
4994       * memalign: check alignment arg
4995       * realloc: don't try to shift chunks backwards, since this
4996         leads to  more fragmentation in some programs and doesn't
4997         seem to help in any others.
4998       * Collect all cases in malloc requiring system memory into sysmalloc
4999       * Use mmap as backup to sbrk
5000       * Place all internal state in malloc_state
5001       * Introduce fastbins (although similar to 2.5.1)
5002       * Many minor tunings and cosmetic improvements
5003       * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
5004       * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
5005         Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
5006       * Include errno.h to support default failure action.
5007 
5008     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
5009       * return null for negative arguments
5010       * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
5011          * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
5012           (e.g. WIN32 platforms)
5013          * Cleanup header file inclusion for WIN32 platforms
5014          * Cleanup code to avoid Microsoft Visual C++ compiler complaints
5015          * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
5016            memory allocation routines
5017          * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
5018          * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
5019            usage of 'assert' in non-WIN32 code
5020          * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
5021            avoid infinite loop
5022       * Always call 'fREe()' rather than 'free()'
5023 
5024     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
5025       * Fixed ordering problem with boundary-stamping
5026 
5027     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
5028       * Added pvalloc, as recommended by H.J. Liu
5029       * Added 64bit pointer support mainly from Wolfram Gloger
5030       * Added anonymously donated WIN32 sbrk emulation
5031       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
5032       * malloc_extend_top: fix mask error that caused wastage after
5033         foreign sbrks
5034       * Add linux mremap support code from HJ Liu
5035 
5036     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
5037       * Integrated most documentation with the code.
5038       * Add support for mmap, with help from
5039         Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5040       * Use last_remainder in more cases.
5041       * Pack bins using idea from  colin@nyx10.cs.du.edu
5042       * Use ordered bins instead of best-fit threshhold
5043       * Eliminate block-local decls to simplify tracing and debugging.
5044       * Support another case of realloc via move into top
5045       * Fix error occuring when initial sbrk_base not word-aligned.
5046       * Rely on page size for units instead of SBRK_UNIT to
5047         avoid surprises about sbrk alignment conventions.
5048       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
5049         (raymond@es.ele.tue.nl) for the suggestion.
5050       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
5051       * More precautions for cases where other routines call sbrk,
5052         courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5053       * Added macros etc., allowing use in linux libc from
5054         H.J. Lu (hjl@gnu.ai.mit.edu)
5055       * Inverted this history list
5056 
5057     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
5058       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
5059       * Removed all preallocation code since under current scheme
5060         the work required to undo bad preallocations exceeds
5061         the work saved in good cases for most test programs.
5062       * No longer use return list or unconsolidated bins since
5063         no scheme using them consistently outperforms those that don't
5064         given above changes.
5065       * Use best fit for very large chunks to prevent some worst-cases.
5066       * Added some support for debugging
5067 
5068     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
5069       * Removed footers when chunks are in use. Thanks to
5070         Paul Wilson (wilson@cs.texas.edu) for the suggestion.
5071 
5072     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
5073       * Added malloc_trim, with help from Wolfram Gloger
5074         (wmglo@Dent.MED.Uni-Muenchen.DE).
5075 
5076     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
5077 
5078     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
5079       * realloc: try to expand in both directions
5080       * malloc: swap order of clean-bin strategy;
5081       * realloc: only conditionally expand backwards
5082       * Try not to scavenge used bins
5083       * Use bin counts as a guide to preallocation
5084       * Occasionally bin return list chunks in first scan
5085       * Add a few optimizations from colin@nyx10.cs.du.edu
5086 
5087     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
5088       * faster bin computation & slightly different binning
5089       * merged all consolidations to one part of malloc proper
5090          (eliminating old malloc_find_space & malloc_clean_bin)
5091       * Scan 2 returns chunks (not just 1)
5092       * Propagate failure in realloc if malloc returns 0
5093       * Add stuff to allow compilation on non-ANSI compilers
5094           from kpv@research.att.com
5095 
5096     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
5097       * removed potential for odd address access in prev_chunk
5098       * removed dependency on getpagesize.h
5099       * misc cosmetics and a bit more internal documentation
5100       * anticosmetics: mangled names in macros to evade debugger strangeness
5101       * tested on sparc, hp-700, dec-mips, rs6000
5102           with gcc & native cc (hp, dec only) allowing
5103           Detlefs & Zorn comparison study (in SIGPLAN Notices.)
5104 
5105     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
5106       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
5107          structure of old version,  but most details differ.)
5108 
5109 */
5110 
5111 #endif /* !HAVE_MALLOC */
5112