1 // Copyright 2013, ARM Limited
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 #include "test-utils-a64.h"
28
29 #include <math.h> // Needed for isnan().
30
31 #include "cctest.h"
32 #include "a64/macro-assembler-a64.h"
33 #include "a64/simulator-a64.h"
34 #include "a64/disasm-a64.h"
35 #include "a64/cpu-a64.h"
36
37 #define __ masm->
38
39 namespace vixl {
40
Equal32(uint32_t expected,const RegisterDump *,uint32_t result)41 bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
42 if (result != expected) {
43 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
44 expected, result);
45 }
46
47 return expected == result;
48 }
49
50
Equal64(uint64_t expected,const RegisterDump *,uint64_t result)51 bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) {
52 if (result != expected) {
53 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
54 expected, result);
55 }
56
57 return expected == result;
58 }
59
60
EqualFP32(float expected,const RegisterDump *,float result)61 bool EqualFP32(float expected, const RegisterDump*, float result) {
62 if (float_to_rawbits(expected) == float_to_rawbits(result)) {
63 return true;
64 } else {
65 if (isnan(expected) || (expected == 0.0)) {
66 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
67 float_to_rawbits(expected), float_to_rawbits(result));
68 } else {
69 printf("Expected %.9f (0x%08" PRIx32 ")\t "
70 "Found %.9f (0x%08" PRIx32 ")\n",
71 expected, float_to_rawbits(expected),
72 result, float_to_rawbits(result));
73 }
74 return false;
75 }
76 }
77
78
EqualFP64(double expected,const RegisterDump *,double result)79 bool EqualFP64(double expected, const RegisterDump*, double result) {
80 if (double_to_rawbits(expected) == double_to_rawbits(result)) {
81 return true;
82 }
83
84 if (isnan(expected) || (expected == 0.0)) {
85 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
86 double_to_rawbits(expected), double_to_rawbits(result));
87 } else {
88 printf("Expected %.17f (0x%016" PRIx64 ")\t "
89 "Found %.17f (0x%016" PRIx64 ")\n",
90 expected, double_to_rawbits(expected),
91 result, double_to_rawbits(result));
92 }
93 return false;
94 }
95
96
Equal32(uint32_t expected,const RegisterDump * core,const Register & reg)97 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
98 VIXL_ASSERT(reg.Is32Bits());
99 // Retrieve the corresponding X register so we can check that the upper part
100 // was properly cleared.
101 int64_t result_x = core->xreg(reg.code());
102 if ((result_x & 0xffffffff00000000) != 0) {
103 printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
104 expected, result_x);
105 return false;
106 }
107 uint32_t result_w = core->wreg(reg.code());
108 return Equal32(expected, core, result_w);
109 }
110
111
Equal64(uint64_t expected,const RegisterDump * core,const Register & reg)112 bool Equal64(uint64_t expected,
113 const RegisterDump* core,
114 const Register& reg) {
115 VIXL_ASSERT(reg.Is64Bits());
116 uint64_t result = core->xreg(reg.code());
117 return Equal64(expected, core, result);
118 }
119
120
EqualFP32(float expected,const RegisterDump * core,const FPRegister & fpreg)121 bool EqualFP32(float expected,
122 const RegisterDump* core,
123 const FPRegister& fpreg) {
124 VIXL_ASSERT(fpreg.Is32Bits());
125 // Retrieve the corresponding D register so we can check that the upper part
126 // was properly cleared.
127 uint64_t result_64 = core->dreg_bits(fpreg.code());
128 if ((result_64 & 0xffffffff00000000) != 0) {
129 printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
130 float_to_rawbits(expected), expected, result_64);
131 return false;
132 }
133
134 return EqualFP32(expected, core, core->sreg(fpreg.code()));
135 }
136
137
EqualFP64(double expected,const RegisterDump * core,const FPRegister & fpreg)138 bool EqualFP64(double expected,
139 const RegisterDump* core,
140 const FPRegister& fpreg) {
141 VIXL_ASSERT(fpreg.Is64Bits());
142 return EqualFP64(expected, core, core->dreg(fpreg.code()));
143 }
144
145
Equal64(const Register & reg0,const RegisterDump * core,const Register & reg1)146 bool Equal64(const Register& reg0,
147 const RegisterDump* core,
148 const Register& reg1) {
149 VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
150 int64_t expected = core->xreg(reg0.code());
151 int64_t result = core->xreg(reg1.code());
152 return Equal64(expected, core, result);
153 }
154
155
FlagN(uint32_t flags)156 static char FlagN(uint32_t flags) {
157 return (flags & NFlag) ? 'N' : 'n';
158 }
159
160
FlagZ(uint32_t flags)161 static char FlagZ(uint32_t flags) {
162 return (flags & ZFlag) ? 'Z' : 'z';
163 }
164
165
FlagC(uint32_t flags)166 static char FlagC(uint32_t flags) {
167 return (flags & CFlag) ? 'C' : 'c';
168 }
169
170
FlagV(uint32_t flags)171 static char FlagV(uint32_t flags) {
172 return (flags & VFlag) ? 'V' : 'v';
173 }
174
175
EqualNzcv(uint32_t expected,uint32_t result)176 bool EqualNzcv(uint32_t expected, uint32_t result) {
177 VIXL_ASSERT((expected & ~NZCVFlag) == 0);
178 VIXL_ASSERT((result & ~NZCVFlag) == 0);
179 if (result != expected) {
180 printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
181 FlagN(expected), FlagZ(expected), FlagC(expected), FlagV(expected),
182 FlagN(result), FlagZ(result), FlagC(result), FlagV(result));
183 return false;
184 }
185
186 return true;
187 }
188
189
EqualRegisters(const RegisterDump * a,const RegisterDump * b)190 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
191 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
192 if (a->xreg(i) != b->xreg(i)) {
193 printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
194 i, a->xreg(i), b->xreg(i));
195 return false;
196 }
197 }
198
199 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
200 uint64_t a_bits = a->dreg_bits(i);
201 uint64_t b_bits = b->dreg_bits(i);
202 if (a_bits != b_bits) {
203 printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
204 i, a_bits, b_bits);
205 return false;
206 }
207 }
208
209 return true;
210 }
211
212
PopulateRegisterArray(Register * w,Register * x,Register * r,int reg_size,int reg_count,RegList allowed)213 RegList PopulateRegisterArray(Register* w, Register* x, Register* r,
214 int reg_size, int reg_count, RegList allowed) {
215 RegList list = 0;
216 int i = 0;
217 for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
218 if (((UINT64_C(1) << n) & allowed) != 0) {
219 // Only assign allowed registers.
220 if (r) {
221 r[i] = Register(n, reg_size);
222 }
223 if (x) {
224 x[i] = Register(n, kXRegSize);
225 }
226 if (w) {
227 w[i] = Register(n, kWRegSize);
228 }
229 list |= (UINT64_C(1) << n);
230 i++;
231 }
232 }
233 // Check that we got enough registers.
234 VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
235
236 return list;
237 }
238
239
PopulateFPRegisterArray(FPRegister * s,FPRegister * d,FPRegister * v,int reg_size,int reg_count,RegList allowed)240 RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v,
241 int reg_size, int reg_count, RegList allowed) {
242 RegList list = 0;
243 int i = 0;
244 for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) {
245 if (((UINT64_C(1) << n) & allowed) != 0) {
246 // Only assigned allowed registers.
247 if (v) {
248 v[i] = FPRegister(n, reg_size);
249 }
250 if (d) {
251 d[i] = FPRegister(n, kDRegSize);
252 }
253 if (s) {
254 s[i] = FPRegister(n, kSRegSize);
255 }
256 list |= (UINT64_C(1) << n);
257 i++;
258 }
259 }
260 // Check that we got enough registers.
261 VIXL_ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count);
262
263 return list;
264 }
265
266
Clobber(MacroAssembler * masm,RegList reg_list,uint64_t const value)267 void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
268 Register first = NoReg;
269 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
270 if (reg_list & (UINT64_C(1) << i)) {
271 Register xn(i, kXRegSize);
272 // We should never write into sp here.
273 VIXL_ASSERT(!xn.Is(sp));
274 if (!xn.IsZero()) {
275 if (!first.IsValid()) {
276 // This is the first register we've hit, so construct the literal.
277 __ Mov(xn, value);
278 first = xn;
279 } else {
280 // We've already loaded the literal, so re-use the value already
281 // loaded into the first register we hit.
282 __ Mov(xn, first);
283 }
284 }
285 }
286 }
287 }
288
289
ClobberFP(MacroAssembler * masm,RegList reg_list,double const value)290 void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
291 FPRegister first = NoFPReg;
292 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
293 if (reg_list & (UINT64_C(1) << i)) {
294 FPRegister dn(i, kDRegSize);
295 if (!first.IsValid()) {
296 // This is the first register we've hit, so construct the literal.
297 __ Fmov(dn, value);
298 first = dn;
299 } else {
300 // We've already loaded the literal, so re-use the value already loaded
301 // into the first register we hit.
302 __ Fmov(dn, first);
303 }
304 }
305 }
306 }
307
308
Clobber(MacroAssembler * masm,CPURegList reg_list)309 void Clobber(MacroAssembler* masm, CPURegList reg_list) {
310 if (reg_list.type() == CPURegister::kRegister) {
311 // This will always clobber X registers.
312 Clobber(masm, reg_list.list());
313 } else if (reg_list.type() == CPURegister::kFPRegister) {
314 // This will always clobber D registers.
315 ClobberFP(masm, reg_list.list());
316 } else {
317 VIXL_UNREACHABLE();
318 }
319 }
320
321
Dump(MacroAssembler * masm)322 void RegisterDump::Dump(MacroAssembler* masm) {
323 VIXL_ASSERT(__ StackPointer().Is(sp));
324
325 // Ensure that we don't unintentionally clobber any registers.
326 UseScratchRegisterScope temps(masm);
327 temps.ExcludeAll();
328
329 // Preserve some temporary registers.
330 Register dump_base = x0;
331 Register dump = x1;
332 Register tmp = x2;
333 Register dump_base_w = dump_base.W();
334 Register dump_w = dump.W();
335 Register tmp_w = tmp.W();
336
337 // Offsets into the dump_ structure.
338 const int x_offset = offsetof(dump_t, x_);
339 const int w_offset = offsetof(dump_t, w_);
340 const int d_offset = offsetof(dump_t, d_);
341 const int s_offset = offsetof(dump_t, s_);
342 const int sp_offset = offsetof(dump_t, sp_);
343 const int wsp_offset = offsetof(dump_t, wsp_);
344 const int flags_offset = offsetof(dump_t, flags_);
345
346 __ Push(xzr, dump_base, dump, tmp);
347
348 // Load the address where we will dump the state.
349 __ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_));
350
351 // Dump the stack pointer (sp and wsp).
352 // The stack pointer cannot be stored directly; it needs to be moved into
353 // another register first. Also, we pushed four X registers, so we need to
354 // compensate here.
355 __ Add(tmp, sp, 4 * kXRegSizeInBytes);
356 __ Str(tmp, MemOperand(dump_base, sp_offset));
357 __ Add(tmp_w, wsp, 4 * kXRegSizeInBytes);
358 __ Str(tmp_w, MemOperand(dump_base, wsp_offset));
359
360 // Dump X registers.
361 __ Add(dump, dump_base, x_offset);
362 for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
363 __ Stp(Register::XRegFromCode(i), Register::XRegFromCode(i + 1),
364 MemOperand(dump, i * kXRegSizeInBytes));
365 }
366
367 // Dump W registers.
368 __ Add(dump, dump_base, w_offset);
369 for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
370 __ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1),
371 MemOperand(dump, i * kWRegSizeInBytes));
372 }
373
374 // Dump D registers.
375 __ Add(dump, dump_base, d_offset);
376 for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
377 __ Stp(FPRegister::DRegFromCode(i), FPRegister::DRegFromCode(i + 1),
378 MemOperand(dump, i * kDRegSizeInBytes));
379 }
380
381 // Dump S registers.
382 __ Add(dump, dump_base, s_offset);
383 for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
384 __ Stp(FPRegister::SRegFromCode(i), FPRegister::SRegFromCode(i + 1),
385 MemOperand(dump, i * kSRegSizeInBytes));
386 }
387
388 // Dump the flags.
389 __ Mrs(tmp, NZCV);
390 __ Str(tmp, MemOperand(dump_base, flags_offset));
391
392 // To dump the values that were in tmp amd dump, we need a new scratch
393 // register. We can use any of the already dumped registers since we can
394 // easily restore them.
395 Register dump2_base = x10;
396 Register dump2 = x11;
397 VIXL_ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2));
398
399 // Don't lose the dump_ address.
400 __ Mov(dump2_base, dump_base);
401
402 __ Pop(tmp, dump, dump_base, xzr);
403
404 __ Add(dump2, dump2_base, w_offset);
405 __ Str(dump_base_w, MemOperand(dump2, dump_base.code() * kWRegSizeInBytes));
406 __ Str(dump_w, MemOperand(dump2, dump.code() * kWRegSizeInBytes));
407 __ Str(tmp_w, MemOperand(dump2, tmp.code() * kWRegSizeInBytes));
408
409 __ Add(dump2, dump2_base, x_offset);
410 __ Str(dump_base, MemOperand(dump2, dump_base.code() * kXRegSizeInBytes));
411 __ Str(dump, MemOperand(dump2, dump.code() * kXRegSizeInBytes));
412 __ Str(tmp, MemOperand(dump2, tmp.code() * kXRegSizeInBytes));
413
414 // Finally, restore dump2_base and dump2.
415 __ Ldr(dump2_base, MemOperand(dump2, dump2_base.code() * kXRegSizeInBytes));
416 __ Ldr(dump2, MemOperand(dump2, dump2.code() * kXRegSizeInBytes));
417
418 completed_ = true;
419 }
420
421 } // namespace vixl
422