• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013, ARM Limited
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include "test-utils-a64.h"
28 
29 #include <math.h>   // Needed for isnan().
30 
31 #include "cctest.h"
32 #include "a64/macro-assembler-a64.h"
33 #include "a64/simulator-a64.h"
34 #include "a64/disasm-a64.h"
35 #include "a64/cpu-a64.h"
36 
37 #define __ masm->
38 
39 namespace vixl {
40 
Equal32(uint32_t expected,const RegisterDump *,uint32_t result)41 bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
42   if (result != expected) {
43     printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
44            expected, result);
45   }
46 
47   return expected == result;
48 }
49 
50 
Equal64(uint64_t expected,const RegisterDump *,uint64_t result)51 bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) {
52   if (result != expected) {
53     printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
54            expected, result);
55   }
56 
57   return expected == result;
58 }
59 
60 
EqualFP32(float expected,const RegisterDump *,float result)61 bool EqualFP32(float expected, const RegisterDump*, float result) {
62   if (float_to_rawbits(expected) == float_to_rawbits(result)) {
63     return true;
64   } else {
65     if (isnan(expected) || (expected == 0.0)) {
66       printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
67              float_to_rawbits(expected), float_to_rawbits(result));
68     } else {
69       printf("Expected %.9f (0x%08" PRIx32 ")\t "
70              "Found %.9f (0x%08" PRIx32 ")\n",
71              expected, float_to_rawbits(expected),
72              result, float_to_rawbits(result));
73     }
74     return false;
75   }
76 }
77 
78 
EqualFP64(double expected,const RegisterDump *,double result)79 bool EqualFP64(double expected, const RegisterDump*, double result) {
80   if (double_to_rawbits(expected) == double_to_rawbits(result)) {
81     return true;
82   }
83 
84   if (isnan(expected) || (expected == 0.0)) {
85     printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
86            double_to_rawbits(expected), double_to_rawbits(result));
87   } else {
88     printf("Expected %.17f (0x%016" PRIx64 ")\t "
89            "Found %.17f (0x%016" PRIx64 ")\n",
90            expected, double_to_rawbits(expected),
91            result, double_to_rawbits(result));
92   }
93   return false;
94 }
95 
96 
Equal32(uint32_t expected,const RegisterDump * core,const Register & reg)97 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
98   VIXL_ASSERT(reg.Is32Bits());
99   // Retrieve the corresponding X register so we can check that the upper part
100   // was properly cleared.
101   int64_t result_x = core->xreg(reg.code());
102   if ((result_x & 0xffffffff00000000) != 0) {
103     printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
104            expected, result_x);
105     return false;
106   }
107   uint32_t result_w = core->wreg(reg.code());
108   return Equal32(expected, core, result_w);
109 }
110 
111 
Equal64(uint64_t expected,const RegisterDump * core,const Register & reg)112 bool Equal64(uint64_t expected,
113              const RegisterDump* core,
114              const Register& reg) {
115   VIXL_ASSERT(reg.Is64Bits());
116   uint64_t result = core->xreg(reg.code());
117   return Equal64(expected, core, result);
118 }
119 
120 
EqualFP32(float expected,const RegisterDump * core,const FPRegister & fpreg)121 bool EqualFP32(float expected,
122                const RegisterDump* core,
123                const FPRegister& fpreg) {
124   VIXL_ASSERT(fpreg.Is32Bits());
125   // Retrieve the corresponding D register so we can check that the upper part
126   // was properly cleared.
127   uint64_t result_64 = core->dreg_bits(fpreg.code());
128   if ((result_64 & 0xffffffff00000000) != 0) {
129     printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
130            float_to_rawbits(expected), expected, result_64);
131     return false;
132   }
133 
134   return EqualFP32(expected, core, core->sreg(fpreg.code()));
135 }
136 
137 
EqualFP64(double expected,const RegisterDump * core,const FPRegister & fpreg)138 bool EqualFP64(double expected,
139                const RegisterDump* core,
140                const FPRegister& fpreg) {
141   VIXL_ASSERT(fpreg.Is64Bits());
142   return EqualFP64(expected, core, core->dreg(fpreg.code()));
143 }
144 
145 
Equal64(const Register & reg0,const RegisterDump * core,const Register & reg1)146 bool Equal64(const Register& reg0,
147              const RegisterDump* core,
148              const Register& reg1) {
149   VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
150   int64_t expected = core->xreg(reg0.code());
151   int64_t result = core->xreg(reg1.code());
152   return Equal64(expected, core, result);
153 }
154 
155 
FlagN(uint32_t flags)156 static char FlagN(uint32_t flags) {
157   return (flags & NFlag) ? 'N' : 'n';
158 }
159 
160 
FlagZ(uint32_t flags)161 static char FlagZ(uint32_t flags) {
162   return (flags & ZFlag) ? 'Z' : 'z';
163 }
164 
165 
FlagC(uint32_t flags)166 static char FlagC(uint32_t flags) {
167   return (flags & CFlag) ? 'C' : 'c';
168 }
169 
170 
FlagV(uint32_t flags)171 static char FlagV(uint32_t flags) {
172   return (flags & VFlag) ? 'V' : 'v';
173 }
174 
175 
EqualNzcv(uint32_t expected,uint32_t result)176 bool EqualNzcv(uint32_t expected, uint32_t result) {
177   VIXL_ASSERT((expected & ~NZCVFlag) == 0);
178   VIXL_ASSERT((result & ~NZCVFlag) == 0);
179   if (result != expected) {
180     printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
181         FlagN(expected), FlagZ(expected), FlagC(expected), FlagV(expected),
182         FlagN(result), FlagZ(result), FlagC(result), FlagV(result));
183     return false;
184   }
185 
186   return true;
187 }
188 
189 
EqualRegisters(const RegisterDump * a,const RegisterDump * b)190 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
191   for (unsigned i = 0; i < kNumberOfRegisters; i++) {
192     if (a->xreg(i) != b->xreg(i)) {
193       printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
194              i, a->xreg(i), b->xreg(i));
195       return false;
196     }
197   }
198 
199   for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
200     uint64_t a_bits = a->dreg_bits(i);
201     uint64_t b_bits = b->dreg_bits(i);
202     if (a_bits != b_bits) {
203       printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
204              i, a_bits, b_bits);
205       return false;
206     }
207   }
208 
209   return true;
210 }
211 
212 
PopulateRegisterArray(Register * w,Register * x,Register * r,int reg_size,int reg_count,RegList allowed)213 RegList PopulateRegisterArray(Register* w, Register* x, Register* r,
214                               int reg_size, int reg_count, RegList allowed) {
215   RegList list = 0;
216   int i = 0;
217   for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
218     if (((UINT64_C(1) << n) & allowed) != 0) {
219       // Only assign allowed registers.
220       if (r) {
221         r[i] = Register(n, reg_size);
222       }
223       if (x) {
224         x[i] = Register(n, kXRegSize);
225       }
226       if (w) {
227         w[i] = Register(n, kWRegSize);
228       }
229       list |= (UINT64_C(1) << n);
230       i++;
231     }
232   }
233   // Check that we got enough registers.
234   VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
235 
236   return list;
237 }
238 
239 
PopulateFPRegisterArray(FPRegister * s,FPRegister * d,FPRegister * v,int reg_size,int reg_count,RegList allowed)240 RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v,
241                                 int reg_size, int reg_count, RegList allowed) {
242   RegList list = 0;
243   int i = 0;
244   for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) {
245     if (((UINT64_C(1) << n) & allowed) != 0) {
246       // Only assigned allowed registers.
247       if (v) {
248         v[i] = FPRegister(n, reg_size);
249       }
250       if (d) {
251         d[i] = FPRegister(n, kDRegSize);
252       }
253       if (s) {
254         s[i] = FPRegister(n, kSRegSize);
255       }
256       list |= (UINT64_C(1) << n);
257       i++;
258     }
259   }
260   // Check that we got enough registers.
261   VIXL_ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count);
262 
263   return list;
264 }
265 
266 
Clobber(MacroAssembler * masm,RegList reg_list,uint64_t const value)267 void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
268   Register first = NoReg;
269   for (unsigned i = 0; i < kNumberOfRegisters; i++) {
270     if (reg_list & (UINT64_C(1) << i)) {
271       Register xn(i, kXRegSize);
272       // We should never write into sp here.
273       VIXL_ASSERT(!xn.Is(sp));
274       if (!xn.IsZero()) {
275         if (!first.IsValid()) {
276           // This is the first register we've hit, so construct the literal.
277           __ Mov(xn, value);
278           first = xn;
279         } else {
280           // We've already loaded the literal, so re-use the value already
281           // loaded into the first register we hit.
282           __ Mov(xn, first);
283         }
284       }
285     }
286   }
287 }
288 
289 
ClobberFP(MacroAssembler * masm,RegList reg_list,double const value)290 void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
291   FPRegister first = NoFPReg;
292   for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
293     if (reg_list & (UINT64_C(1) << i)) {
294       FPRegister dn(i, kDRegSize);
295       if (!first.IsValid()) {
296         // This is the first register we've hit, so construct the literal.
297         __ Fmov(dn, value);
298         first = dn;
299       } else {
300         // We've already loaded the literal, so re-use the value already loaded
301         // into the first register we hit.
302         __ Fmov(dn, first);
303       }
304     }
305   }
306 }
307 
308 
Clobber(MacroAssembler * masm,CPURegList reg_list)309 void Clobber(MacroAssembler* masm, CPURegList reg_list) {
310   if (reg_list.type() == CPURegister::kRegister) {
311     // This will always clobber X registers.
312     Clobber(masm, reg_list.list());
313   } else if (reg_list.type() == CPURegister::kFPRegister) {
314     // This will always clobber D registers.
315     ClobberFP(masm, reg_list.list());
316   } else {
317     VIXL_UNREACHABLE();
318   }
319 }
320 
321 
Dump(MacroAssembler * masm)322 void RegisterDump::Dump(MacroAssembler* masm) {
323   VIXL_ASSERT(__ StackPointer().Is(sp));
324 
325   // Ensure that we don't unintentionally clobber any registers.
326   UseScratchRegisterScope temps(masm);
327   temps.ExcludeAll();
328 
329   // Preserve some temporary registers.
330   Register dump_base = x0;
331   Register dump = x1;
332   Register tmp = x2;
333   Register dump_base_w = dump_base.W();
334   Register dump_w = dump.W();
335   Register tmp_w = tmp.W();
336 
337   // Offsets into the dump_ structure.
338   const int x_offset = offsetof(dump_t, x_);
339   const int w_offset = offsetof(dump_t, w_);
340   const int d_offset = offsetof(dump_t, d_);
341   const int s_offset = offsetof(dump_t, s_);
342   const int sp_offset = offsetof(dump_t, sp_);
343   const int wsp_offset = offsetof(dump_t, wsp_);
344   const int flags_offset = offsetof(dump_t, flags_);
345 
346   __ Push(xzr, dump_base, dump, tmp);
347 
348   // Load the address where we will dump the state.
349   __ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_));
350 
351   // Dump the stack pointer (sp and wsp).
352   // The stack pointer cannot be stored directly; it needs to be moved into
353   // another register first. Also, we pushed four X registers, so we need to
354   // compensate here.
355   __ Add(tmp, sp, 4 * kXRegSizeInBytes);
356   __ Str(tmp, MemOperand(dump_base, sp_offset));
357   __ Add(tmp_w, wsp, 4 * kXRegSizeInBytes);
358   __ Str(tmp_w, MemOperand(dump_base, wsp_offset));
359 
360   // Dump X registers.
361   __ Add(dump, dump_base, x_offset);
362   for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
363     __ Stp(Register::XRegFromCode(i), Register::XRegFromCode(i + 1),
364            MemOperand(dump, i * kXRegSizeInBytes));
365   }
366 
367   // Dump W registers.
368   __ Add(dump, dump_base, w_offset);
369   for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
370     __ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1),
371            MemOperand(dump, i * kWRegSizeInBytes));
372   }
373 
374   // Dump D registers.
375   __ Add(dump, dump_base, d_offset);
376   for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
377     __ Stp(FPRegister::DRegFromCode(i), FPRegister::DRegFromCode(i + 1),
378            MemOperand(dump, i * kDRegSizeInBytes));
379   }
380 
381   // Dump S registers.
382   __ Add(dump, dump_base, s_offset);
383   for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
384     __ Stp(FPRegister::SRegFromCode(i), FPRegister::SRegFromCode(i + 1),
385            MemOperand(dump, i * kSRegSizeInBytes));
386   }
387 
388   // Dump the flags.
389   __ Mrs(tmp, NZCV);
390   __ Str(tmp, MemOperand(dump_base, flags_offset));
391 
392   // To dump the values that were in tmp amd dump, we need a new scratch
393   // register.  We can use any of the already dumped registers since we can
394   // easily restore them.
395   Register dump2_base = x10;
396   Register dump2 = x11;
397   VIXL_ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2));
398 
399   // Don't lose the dump_ address.
400   __ Mov(dump2_base, dump_base);
401 
402   __ Pop(tmp, dump, dump_base, xzr);
403 
404   __ Add(dump2, dump2_base, w_offset);
405   __ Str(dump_base_w, MemOperand(dump2, dump_base.code() * kWRegSizeInBytes));
406   __ Str(dump_w, MemOperand(dump2, dump.code() * kWRegSizeInBytes));
407   __ Str(tmp_w, MemOperand(dump2, tmp.code() * kWRegSizeInBytes));
408 
409   __ Add(dump2, dump2_base, x_offset);
410   __ Str(dump_base, MemOperand(dump2, dump_base.code() * kXRegSizeInBytes));
411   __ Str(dump, MemOperand(dump2, dump.code() * kXRegSizeInBytes));
412   __ Str(tmp, MemOperand(dump2, tmp.code() * kXRegSizeInBytes));
413 
414   // Finally, restore dump2_base and dump2.
415   __ Ldr(dump2_base, MemOperand(dump2, dump2_base.code() * kXRegSizeInBytes));
416   __ Ldr(dump2, MemOperand(dump2, dump2.code() * kXRegSizeInBytes));
417 
418   completed_ = true;
419 }
420 
421 }  // namespace vixl
422