1 //
2 // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6
7 #include "compiler/translator/ParseContext.h"
8
9 #include <stdarg.h>
10 #include <stdio.h>
11
12 #include "compiler/translator/glslang.h"
13 #include "compiler/preprocessor/SourceLocation.h"
14
15 ///////////////////////////////////////////////////////////////////////
16 //
17 // Sub- vector and matrix fields
18 //
19 ////////////////////////////////////////////////////////////////////////
20
21 //
22 // Look at a '.' field selector string and change it into offsets
23 // for a vector.
24 //
parseVectorFields(const TString & compString,int vecSize,TVectorFields & fields,const TSourceLoc & line)25 bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc& line)
26 {
27 fields.num = (int) compString.size();
28 if (fields.num > 4) {
29 error(line, "illegal vector field selection", compString.c_str());
30 return false;
31 }
32
33 enum {
34 exyzw,
35 ergba,
36 estpq
37 } fieldSet[4];
38
39 for (int i = 0; i < fields.num; ++i) {
40 switch (compString[i]) {
41 case 'x':
42 fields.offsets[i] = 0;
43 fieldSet[i] = exyzw;
44 break;
45 case 'r':
46 fields.offsets[i] = 0;
47 fieldSet[i] = ergba;
48 break;
49 case 's':
50 fields.offsets[i] = 0;
51 fieldSet[i] = estpq;
52 break;
53 case 'y':
54 fields.offsets[i] = 1;
55 fieldSet[i] = exyzw;
56 break;
57 case 'g':
58 fields.offsets[i] = 1;
59 fieldSet[i] = ergba;
60 break;
61 case 't':
62 fields.offsets[i] = 1;
63 fieldSet[i] = estpq;
64 break;
65 case 'z':
66 fields.offsets[i] = 2;
67 fieldSet[i] = exyzw;
68 break;
69 case 'b':
70 fields.offsets[i] = 2;
71 fieldSet[i] = ergba;
72 break;
73 case 'p':
74 fields.offsets[i] = 2;
75 fieldSet[i] = estpq;
76 break;
77
78 case 'w':
79 fields.offsets[i] = 3;
80 fieldSet[i] = exyzw;
81 break;
82 case 'a':
83 fields.offsets[i] = 3;
84 fieldSet[i] = ergba;
85 break;
86 case 'q':
87 fields.offsets[i] = 3;
88 fieldSet[i] = estpq;
89 break;
90 default:
91 error(line, "illegal vector field selection", compString.c_str());
92 return false;
93 }
94 }
95
96 for (int i = 0; i < fields.num; ++i) {
97 if (fields.offsets[i] >= vecSize) {
98 error(line, "vector field selection out of range", compString.c_str());
99 return false;
100 }
101
102 if (i > 0) {
103 if (fieldSet[i] != fieldSet[i-1]) {
104 error(line, "illegal - vector component fields not from the same set", compString.c_str());
105 return false;
106 }
107 }
108 }
109
110 return true;
111 }
112
113
114 //
115 // Look at a '.' field selector string and change it into offsets
116 // for a matrix.
117 //
parseMatrixFields(const TString & compString,int matCols,int matRows,TMatrixFields & fields,const TSourceLoc & line)118 bool TParseContext::parseMatrixFields(const TString& compString, int matCols, int matRows, TMatrixFields& fields, const TSourceLoc& line)
119 {
120 fields.wholeRow = false;
121 fields.wholeCol = false;
122 fields.row = -1;
123 fields.col = -1;
124
125 if (compString.size() != 2) {
126 error(line, "illegal length of matrix field selection", compString.c_str());
127 return false;
128 }
129
130 if (compString[0] == '_') {
131 if (compString[1] < '0' || compString[1] > '3') {
132 error(line, "illegal matrix field selection", compString.c_str());
133 return false;
134 }
135 fields.wholeCol = true;
136 fields.col = compString[1] - '0';
137 } else if (compString[1] == '_') {
138 if (compString[0] < '0' || compString[0] > '3') {
139 error(line, "illegal matrix field selection", compString.c_str());
140 return false;
141 }
142 fields.wholeRow = true;
143 fields.row = compString[0] - '0';
144 } else {
145 if (compString[0] < '0' || compString[0] > '3' ||
146 compString[1] < '0' || compString[1] > '3') {
147 error(line, "illegal matrix field selection", compString.c_str());
148 return false;
149 }
150 fields.row = compString[0] - '0';
151 fields.col = compString[1] - '0';
152 }
153
154 if (fields.row >= matRows || fields.col >= matCols) {
155 error(line, "matrix field selection out of range", compString.c_str());
156 return false;
157 }
158
159 return true;
160 }
161
162 ///////////////////////////////////////////////////////////////////////
163 //
164 // Errors
165 //
166 ////////////////////////////////////////////////////////////////////////
167
168 //
169 // Track whether errors have occurred.
170 //
recover()171 void TParseContext::recover()
172 {
173 }
174
175 //
176 // Used by flex/bison to output all syntax and parsing errors.
177 //
error(const TSourceLoc & loc,const char * reason,const char * token,const char * extraInfo)178 void TParseContext::error(const TSourceLoc& loc,
179 const char* reason, const char* token,
180 const char* extraInfo)
181 {
182 pp::SourceLocation srcLoc;
183 srcLoc.file = loc.first_file;
184 srcLoc.line = loc.first_line;
185 diagnostics.writeInfo(pp::Diagnostics::PP_ERROR,
186 srcLoc, reason, token, extraInfo);
187
188 }
189
warning(const TSourceLoc & loc,const char * reason,const char * token,const char * extraInfo)190 void TParseContext::warning(const TSourceLoc& loc,
191 const char* reason, const char* token,
192 const char* extraInfo) {
193 pp::SourceLocation srcLoc;
194 srcLoc.file = loc.first_file;
195 srcLoc.line = loc.first_line;
196 diagnostics.writeInfo(pp::Diagnostics::PP_WARNING,
197 srcLoc, reason, token, extraInfo);
198 }
199
trace(const char * str)200 void TParseContext::trace(const char* str)
201 {
202 diagnostics.writeDebug(str);
203 }
204
205 //
206 // Same error message for all places assignments don't work.
207 //
assignError(const TSourceLoc & line,const char * op,TString left,TString right)208 void TParseContext::assignError(const TSourceLoc& line, const char* op, TString left, TString right)
209 {
210 std::stringstream extraInfoStream;
211 extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
212 std::string extraInfo = extraInfoStream.str();
213 error(line, "", op, extraInfo.c_str());
214 }
215
216 //
217 // Same error message for all places unary operations don't work.
218 //
unaryOpError(const TSourceLoc & line,const char * op,TString operand)219 void TParseContext::unaryOpError(const TSourceLoc& line, const char* op, TString operand)
220 {
221 std::stringstream extraInfoStream;
222 extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
223 << " (or there is no acceptable conversion)";
224 std::string extraInfo = extraInfoStream.str();
225 error(line, " wrong operand type", op, extraInfo.c_str());
226 }
227
228 //
229 // Same error message for all binary operations don't work.
230 //
binaryOpError(const TSourceLoc & line,const char * op,TString left,TString right)231 void TParseContext::binaryOpError(const TSourceLoc& line, const char* op, TString left, TString right)
232 {
233 std::stringstream extraInfoStream;
234 extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
235 << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
236 std::string extraInfo = extraInfoStream.str();
237 error(line, " wrong operand types ", op, extraInfo.c_str());
238 }
239
precisionErrorCheck(const TSourceLoc & line,TPrecision precision,TBasicType type)240 bool TParseContext::precisionErrorCheck(const TSourceLoc& line, TPrecision precision, TBasicType type){
241 if (!checksPrecisionErrors)
242 return false;
243 switch( type ){
244 case EbtFloat:
245 if( precision == EbpUndefined ){
246 error( line, "No precision specified for (float)", "" );
247 return true;
248 }
249 break;
250 case EbtInt:
251 if( precision == EbpUndefined ){
252 error( line, "No precision specified (int)", "" );
253 return true;
254 }
255 break;
256 default:
257 return false;
258 }
259 return false;
260 }
261
262 //
263 // Both test and if necessary, spit out an error, to see if the node is really
264 // an l-value that can be operated on this way.
265 //
266 // Returns true if the was an error.
267 //
lValueErrorCheck(const TSourceLoc & line,const char * op,TIntermTyped * node)268 bool TParseContext::lValueErrorCheck(const TSourceLoc& line, const char* op, TIntermTyped* node)
269 {
270 TIntermSymbol* symNode = node->getAsSymbolNode();
271 TIntermBinary* binaryNode = node->getAsBinaryNode();
272
273 if (binaryNode) {
274 bool errorReturn;
275
276 switch(binaryNode->getOp()) {
277 case EOpIndexDirect:
278 case EOpIndexIndirect:
279 case EOpIndexDirectStruct:
280 case EOpIndexDirectInterfaceBlock:
281 return lValueErrorCheck(line, op, binaryNode->getLeft());
282 case EOpVectorSwizzle:
283 errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
284 if (!errorReturn) {
285 int offset[4] = {0,0,0,0};
286
287 TIntermTyped* rightNode = binaryNode->getRight();
288 TIntermAggregate *aggrNode = rightNode->getAsAggregate();
289
290 for (TIntermSequence::iterator p = aggrNode->getSequence()->begin();
291 p != aggrNode->getSequence()->end(); p++) {
292 int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
293 offset[value]++;
294 if (offset[value] > 1) {
295 error(line, " l-value of swizzle cannot have duplicate components", op);
296
297 return true;
298 }
299 }
300 }
301
302 return errorReturn;
303 default:
304 break;
305 }
306 error(line, " l-value required", op);
307
308 return true;
309 }
310
311
312 const char* symbol = 0;
313 if (symNode != 0)
314 symbol = symNode->getSymbol().c_str();
315
316 const char* message = 0;
317 switch (node->getQualifier()) {
318 case EvqConst: message = "can't modify a const"; break;
319 case EvqConstReadOnly: message = "can't modify a const"; break;
320 case EvqAttribute: message = "can't modify an attribute"; break;
321 case EvqFragmentIn: message = "can't modify an input"; break;
322 case EvqVertexIn: message = "can't modify an input"; break;
323 case EvqUniform: message = "can't modify a uniform"; break;
324 case EvqVaryingIn: message = "can't modify a varying"; break;
325 case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
326 case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break;
327 case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
328 default:
329
330 //
331 // Type that can't be written to?
332 //
333 if (node->getBasicType() == EbtVoid) {
334 message = "can't modify void";
335 }
336 if (IsSampler(node->getBasicType())) {
337 message = "can't modify a sampler";
338 }
339 }
340
341 if (message == 0 && binaryNode == 0 && symNode == 0) {
342 error(line, " l-value required", op);
343
344 return true;
345 }
346
347
348 //
349 // Everything else is okay, no error.
350 //
351 if (message == 0)
352 return false;
353
354 //
355 // If we get here, we have an error and a message.
356 //
357 if (symNode) {
358 std::stringstream extraInfoStream;
359 extraInfoStream << "\"" << symbol << "\" (" << message << ")";
360 std::string extraInfo = extraInfoStream.str();
361 error(line, " l-value required", op, extraInfo.c_str());
362 }
363 else {
364 std::stringstream extraInfoStream;
365 extraInfoStream << "(" << message << ")";
366 std::string extraInfo = extraInfoStream.str();
367 error(line, " l-value required", op, extraInfo.c_str());
368 }
369
370 return true;
371 }
372
373 //
374 // Both test, and if necessary spit out an error, to see if the node is really
375 // a constant.
376 //
377 // Returns true if the was an error.
378 //
constErrorCheck(TIntermTyped * node)379 bool TParseContext::constErrorCheck(TIntermTyped* node)
380 {
381 if (node->getQualifier() == EvqConst)
382 return false;
383
384 error(node->getLine(), "constant expression required", "");
385
386 return true;
387 }
388
389 //
390 // Both test, and if necessary spit out an error, to see if the node is really
391 // an integer.
392 //
393 // Returns true if the was an error.
394 //
integerErrorCheck(TIntermTyped * node,const char * token)395 bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
396 {
397 if (node->isScalarInt())
398 return false;
399
400 error(node->getLine(), "integer expression required", token);
401
402 return true;
403 }
404
405 //
406 // Both test, and if necessary spit out an error, to see if we are currently
407 // globally scoped.
408 //
409 // Returns true if the was an error.
410 //
globalErrorCheck(const TSourceLoc & line,bool global,const char * token)411 bool TParseContext::globalErrorCheck(const TSourceLoc& line, bool global, const char* token)
412 {
413 if (global)
414 return false;
415
416 error(line, "only allowed at global scope", token);
417
418 return true;
419 }
420
421 //
422 // For now, keep it simple: if it starts "gl_", it's reserved, independent
423 // of scope. Except, if the symbol table is at the built-in push-level,
424 // which is when we are parsing built-ins.
425 // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
426 // webgl shader.
427 //
428 // Returns true if there was an error.
429 //
reservedErrorCheck(const TSourceLoc & line,const TString & identifier)430 bool TParseContext::reservedErrorCheck(const TSourceLoc& line, const TString& identifier)
431 {
432 static const char* reservedErrMsg = "reserved built-in name";
433 if (!symbolTable.atBuiltInLevel()) {
434 if (identifier.compare(0, 3, "gl_") == 0) {
435 error(line, reservedErrMsg, "gl_");
436 return true;
437 }
438 if (IsWebGLBasedSpec(shaderSpec)) {
439 if (identifier.compare(0, 6, "webgl_") == 0) {
440 error(line, reservedErrMsg, "webgl_");
441 return true;
442 }
443 if (identifier.compare(0, 7, "_webgl_") == 0) {
444 error(line, reservedErrMsg, "_webgl_");
445 return true;
446 }
447 if (shaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) {
448 error(line, reservedErrMsg, "css_");
449 return true;
450 }
451 }
452 if (identifier.find("__") != TString::npos) {
453 error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
454 return true;
455 }
456 }
457
458 return false;
459 }
460
461 //
462 // Make sure there is enough data provided to the constructor to build
463 // something of the type of the constructor. Also returns the type of
464 // the constructor.
465 //
466 // Returns true if there was an error in construction.
467 //
constructorErrorCheck(const TSourceLoc & line,TIntermNode * node,TFunction & function,TOperator op,TType * type)468 bool TParseContext::constructorErrorCheck(const TSourceLoc& line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
469 {
470 *type = function.getReturnType();
471
472 bool constructingMatrix = false;
473 switch(op) {
474 case EOpConstructMat2:
475 case EOpConstructMat3:
476 case EOpConstructMat4:
477 constructingMatrix = true;
478 break;
479 default:
480 break;
481 }
482
483 //
484 // Note: It's okay to have too many components available, but not okay to have unused
485 // arguments. 'full' will go to true when enough args have been seen. If we loop
486 // again, there is an extra argument, so 'overfull' will become true.
487 //
488
489 size_t size = 0;
490 bool constType = true;
491 bool full = false;
492 bool overFull = false;
493 bool matrixInMatrix = false;
494 bool arrayArg = false;
495 for (size_t i = 0; i < function.getParamCount(); ++i) {
496 const TParameter& param = function.getParam(i);
497 size += param.type->getObjectSize();
498
499 if (constructingMatrix && param.type->isMatrix())
500 matrixInMatrix = true;
501 if (full)
502 overFull = true;
503 if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
504 full = true;
505 if (param.type->getQualifier() != EvqConst)
506 constType = false;
507 if (param.type->isArray())
508 arrayArg = true;
509 }
510
511 if (constType)
512 type->setQualifier(EvqConst);
513
514 if (type->isArray() && static_cast<size_t>(type->getArraySize()) != function.getParamCount()) {
515 error(line, "array constructor needs one argument per array element", "constructor");
516 return true;
517 }
518
519 if (arrayArg && op != EOpConstructStruct) {
520 error(line, "constructing from a non-dereferenced array", "constructor");
521 return true;
522 }
523
524 if (matrixInMatrix && !type->isArray()) {
525 if (function.getParamCount() != 1) {
526 error(line, "constructing matrix from matrix can only take one argument", "constructor");
527 return true;
528 }
529 }
530
531 if (overFull) {
532 error(line, "too many arguments", "constructor");
533 return true;
534 }
535
536 if (op == EOpConstructStruct && !type->isArray() && type->getStruct()->fields().size() != function.getParamCount()) {
537 error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
538 return true;
539 }
540
541 if (!type->isMatrix() || !matrixInMatrix) {
542 if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
543 (op == EOpConstructStruct && size < type->getObjectSize())) {
544 error(line, "not enough data provided for construction", "constructor");
545 return true;
546 }
547 }
548
549 TIntermTyped *typed = node ? node->getAsTyped() : 0;
550 if (typed == 0) {
551 error(line, "constructor argument does not have a type", "constructor");
552 return true;
553 }
554 if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
555 error(line, "cannot convert a sampler", "constructor");
556 return true;
557 }
558 if (typed->getBasicType() == EbtVoid) {
559 error(line, "cannot convert a void", "constructor");
560 return true;
561 }
562
563 return false;
564 }
565
566 // This function checks to see if a void variable has been declared and raise an error message for such a case
567 //
568 // returns true in case of an error
569 //
voidErrorCheck(const TSourceLoc & line,const TString & identifier,const TPublicType & pubType)570 bool TParseContext::voidErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& pubType)
571 {
572 if (pubType.type == EbtVoid) {
573 error(line, "illegal use of type 'void'", identifier.c_str());
574 return true;
575 }
576
577 return false;
578 }
579
580 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
581 //
582 // returns true in case of an error
583 //
boolErrorCheck(const TSourceLoc & line,const TIntermTyped * type)584 bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TIntermTyped* type)
585 {
586 if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
587 error(line, "boolean expression expected", "");
588 return true;
589 }
590
591 return false;
592 }
593
594 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
595 //
596 // returns true in case of an error
597 //
boolErrorCheck(const TSourceLoc & line,const TPublicType & pType)598 bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TPublicType& pType)
599 {
600 if (pType.type != EbtBool || pType.isAggregate()) {
601 error(line, "boolean expression expected", "");
602 return true;
603 }
604
605 return false;
606 }
607
samplerErrorCheck(const TSourceLoc & line,const TPublicType & pType,const char * reason)608 bool TParseContext::samplerErrorCheck(const TSourceLoc& line, const TPublicType& pType, const char* reason)
609 {
610 if (pType.type == EbtStruct) {
611 if (containsSampler(*pType.userDef)) {
612 error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
613
614 return true;
615 }
616
617 return false;
618 } else if (IsSampler(pType.type)) {
619 error(line, reason, getBasicString(pType.type));
620
621 return true;
622 }
623
624 return false;
625 }
626
structQualifierErrorCheck(const TSourceLoc & line,const TPublicType & pType)627 bool TParseContext::structQualifierErrorCheck(const TSourceLoc& line, const TPublicType& pType)
628 {
629 switch (pType.qualifier)
630 {
631 case EvqVaryingIn:
632 case EvqVaryingOut:
633 case EvqAttribute:
634 case EvqVertexIn:
635 case EvqFragmentOut:
636 if (pType.type == EbtStruct)
637 {
638 error(line, "cannot be used with a structure", getQualifierString(pType.qualifier));
639 return true;
640 }
641
642 default: break;
643 }
644
645 if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
646 return true;
647
648 return false;
649 }
650
locationDeclaratorListCheck(const TSourceLoc & line,const TPublicType & pType)651 bool TParseContext::locationDeclaratorListCheck(const TSourceLoc& line, const TPublicType &pType)
652 {
653 if (pType.layoutQualifier.location != -1)
654 {
655 error(line, "location must only be specified for a single input or output variable", "location");
656 return true;
657 }
658
659 return false;
660 }
661
parameterSamplerErrorCheck(const TSourceLoc & line,TQualifier qualifier,const TType & type)662 bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc& line, TQualifier qualifier, const TType& type)
663 {
664 if ((qualifier == EvqOut || qualifier == EvqInOut) &&
665 type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
666 error(line, "samplers cannot be output parameters", type.getBasicString());
667 return true;
668 }
669
670 return false;
671 }
672
containsSampler(TType & type)673 bool TParseContext::containsSampler(TType& type)
674 {
675 if (IsSampler(type.getBasicType()))
676 return true;
677
678 if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) {
679 const TFieldList& fields = type.getStruct()->fields();
680 for (unsigned int i = 0; i < fields.size(); ++i) {
681 if (containsSampler(*fields[i]->type()))
682 return true;
683 }
684 }
685
686 return false;
687 }
688
689 //
690 // Do size checking for an array type's size.
691 //
692 // Returns true if there was an error.
693 //
arraySizeErrorCheck(const TSourceLoc & line,TIntermTyped * expr,int & size)694 bool TParseContext::arraySizeErrorCheck(const TSourceLoc& line, TIntermTyped* expr, int& size)
695 {
696 TIntermConstantUnion* constant = expr->getAsConstantUnion();
697
698 if (constant == 0 || !constant->isScalarInt())
699 {
700 error(line, "array size must be a constant integer expression", "");
701 return true;
702 }
703
704 unsigned int unsignedSize = 0;
705
706 if (constant->getBasicType() == EbtUInt)
707 {
708 unsignedSize = constant->getUConst(0);
709 size = static_cast<int>(unsignedSize);
710 }
711 else
712 {
713 size = constant->getIConst(0);
714
715 if (size < 0)
716 {
717 error(line, "array size must be non-negative", "");
718 size = 1;
719 return true;
720 }
721
722 unsignedSize = static_cast<unsigned int>(size);
723 }
724
725 if (size == 0)
726 {
727 error(line, "array size must be greater than zero", "");
728 size = 1;
729 return true;
730 }
731
732 // The size of arrays is restricted here to prevent issues further down the
733 // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to
734 // 4096 registers so this should be reasonable even for aggressively optimizable code.
735 const unsigned int sizeLimit = 65536;
736
737 if (unsignedSize > sizeLimit)
738 {
739 error(line, "array size too large", "");
740 size = 1;
741 return true;
742 }
743
744 return false;
745 }
746
747 //
748 // See if this qualifier can be an array.
749 //
750 // Returns true if there is an error.
751 //
arrayQualifierErrorCheck(const TSourceLoc & line,TPublicType type)752 bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc& line, TPublicType type)
753 {
754 if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConst)) {
755 error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
756 return true;
757 }
758
759 return false;
760 }
761
762 //
763 // See if this type can be an array.
764 //
765 // Returns true if there is an error.
766 //
arrayTypeErrorCheck(const TSourceLoc & line,TPublicType type)767 bool TParseContext::arrayTypeErrorCheck(const TSourceLoc& line, TPublicType type)
768 {
769 //
770 // Can the type be an array?
771 //
772 if (type.array) {
773 error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
774 return true;
775 }
776
777 return false;
778 }
779
780 //
781 // Do all the semantic checking for declaring an array, with and
782 // without a size, and make the right changes to the symbol table.
783 //
784 // size == 0 means no specified size.
785 //
786 // Returns true if there was an error.
787 //
arrayErrorCheck(const TSourceLoc & line,const TString & identifier,const TPublicType & type,TVariable * & variable)788 bool TParseContext::arrayErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType &type, TVariable*& variable)
789 {
790 //
791 // Don't check for reserved word use until after we know it's not in the symbol table,
792 // because reserved arrays can be redeclared.
793 //
794
795 bool builtIn = false;
796 bool sameScope = false;
797 TSymbol* symbol = symbolTable.find(identifier, 0, &builtIn, &sameScope);
798 if (symbol == 0 || !sameScope) {
799 if (reservedErrorCheck(line, identifier))
800 return true;
801
802 variable = new TVariable(&identifier, TType(type));
803
804 if (type.arraySize)
805 variable->getType().setArraySize(type.arraySize);
806
807 if (! symbolTable.declare(variable)) {
808 delete variable;
809 error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str());
810 return true;
811 }
812 } else {
813 if (! symbol->isVariable()) {
814 error(line, "variable expected", identifier.c_str());
815 return true;
816 }
817
818 variable = static_cast<TVariable*>(symbol);
819 if (! variable->getType().isArray()) {
820 error(line, "redeclaring non-array as array", identifier.c_str());
821 return true;
822 }
823 if (variable->getType().getArraySize() > 0) {
824 error(line, "redeclaration of array with size", identifier.c_str());
825 return true;
826 }
827
828 if (! variable->getType().sameElementType(TType(type))) {
829 error(line, "redeclaration of array with a different type", identifier.c_str());
830 return true;
831 }
832
833 if (type.arraySize)
834 variable->getType().setArraySize(type.arraySize);
835 }
836
837 if (voidErrorCheck(line, identifier, type))
838 return true;
839
840 return false;
841 }
842
843 //
844 // Enforce non-initializer type/qualifier rules.
845 //
846 // Returns true if there was an error.
847 //
nonInitConstErrorCheck(const TSourceLoc & line,const TString & identifier,TPublicType & type,bool array)848 bool TParseContext::nonInitConstErrorCheck(const TSourceLoc& line, const TString& identifier, TPublicType& type, bool array)
849 {
850 if (type.qualifier == EvqConst)
851 {
852 // Make the qualifier make sense.
853 type.qualifier = EvqTemporary;
854
855 if (array)
856 {
857 error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
858 }
859 else if (type.isStructureContainingArrays())
860 {
861 error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
862 }
863 else
864 {
865 error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
866 }
867
868 return true;
869 }
870
871 return false;
872 }
873
874 //
875 // Do semantic checking for a variable declaration that has no initializer,
876 // and update the symbol table.
877 //
878 // Returns true if there was an error.
879 //
nonInitErrorCheck(const TSourceLoc & line,const TString & identifier,const TPublicType & type,TVariable * & variable)880 bool TParseContext::nonInitErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& type, TVariable*& variable)
881 {
882 if (reservedErrorCheck(line, identifier))
883 recover();
884
885 variable = new TVariable(&identifier, TType(type));
886
887 if (! symbolTable.declare(variable)) {
888 error(line, "redefinition", variable->getName().c_str());
889 delete variable;
890 variable = 0;
891 return true;
892 }
893
894 if (voidErrorCheck(line, identifier, type))
895 return true;
896
897 return false;
898 }
899
paramErrorCheck(const TSourceLoc & line,TQualifier qualifier,TQualifier paramQualifier,TType * type)900 bool TParseContext::paramErrorCheck(const TSourceLoc& line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
901 {
902 if (qualifier != EvqConst && qualifier != EvqTemporary) {
903 error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
904 return true;
905 }
906 if (qualifier == EvqConst && paramQualifier != EvqIn) {
907 error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
908 return true;
909 }
910
911 if (qualifier == EvqConst)
912 type->setQualifier(EvqConstReadOnly);
913 else
914 type->setQualifier(paramQualifier);
915
916 return false;
917 }
918
extensionErrorCheck(const TSourceLoc & line,const TString & extension)919 bool TParseContext::extensionErrorCheck(const TSourceLoc& line, const TString& extension)
920 {
921 const TExtensionBehavior& extBehavior = extensionBehavior();
922 TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
923 if (iter == extBehavior.end()) {
924 error(line, "extension", extension.c_str(), "is not supported");
925 return true;
926 }
927 // In GLSL ES, an extension's default behavior is "disable".
928 if (iter->second == EBhDisable || iter->second == EBhUndefined) {
929 error(line, "extension", extension.c_str(), "is disabled");
930 return true;
931 }
932 if (iter->second == EBhWarn) {
933 warning(line, "extension", extension.c_str(), "is being used");
934 return false;
935 }
936
937 return false;
938 }
939
singleDeclarationErrorCheck(TPublicType & publicType,const TSourceLoc & identifierLocation,const TString & identifier)940 bool TParseContext::singleDeclarationErrorCheck(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier)
941 {
942 if (structQualifierErrorCheck(identifierLocation, publicType))
943 return true;
944
945 // check for layout qualifier issues
946 const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
947
948 if (layoutQualifier.matrixPacking != EmpUnspecified)
949 {
950 error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking), "only valid for interface blocks");
951 return true;
952 }
953
954 if (layoutQualifier.blockStorage != EbsUnspecified)
955 {
956 error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage), "only valid for interface blocks");
957 return true;
958 }
959
960 if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut && layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier))
961 {
962 return true;
963 }
964
965 return false;
966 }
967
layoutLocationErrorCheck(const TSourceLoc & location,const TLayoutQualifier & layoutQualifier)968 bool TParseContext::layoutLocationErrorCheck(const TSourceLoc& location, const TLayoutQualifier &layoutQualifier)
969 {
970 if (layoutQualifier.location != -1)
971 {
972 error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs");
973 return true;
974 }
975
976 return false;
977 }
978
supportsExtension(const char * extension)979 bool TParseContext::supportsExtension(const char* extension)
980 {
981 const TExtensionBehavior& extbehavior = extensionBehavior();
982 TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
983 return (iter != extbehavior.end());
984 }
985
isExtensionEnabled(const char * extension) const986 bool TParseContext::isExtensionEnabled(const char* extension) const
987 {
988 const TExtensionBehavior& extbehavior = extensionBehavior();
989 TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
990
991 if (iter == extbehavior.end())
992 {
993 return false;
994 }
995
996 return (iter->second == EBhEnable || iter->second == EBhRequire);
997 }
998
handleExtensionDirective(const TSourceLoc & loc,const char * extName,const char * behavior)999 void TParseContext::handleExtensionDirective(const TSourceLoc& loc, const char* extName, const char* behavior)
1000 {
1001 pp::SourceLocation srcLoc;
1002 srcLoc.file = loc.first_file;
1003 srcLoc.line = loc.first_line;
1004 directiveHandler.handleExtension(srcLoc, extName, behavior);
1005 }
1006
handlePragmaDirective(const TSourceLoc & loc,const char * name,const char * value)1007 void TParseContext::handlePragmaDirective(const TSourceLoc& loc, const char* name, const char* value)
1008 {
1009 pp::SourceLocation srcLoc;
1010 srcLoc.file = loc.first_file;
1011 srcLoc.line = loc.first_line;
1012 directiveHandler.handlePragma(srcLoc, name, value);
1013 }
1014
1015 /////////////////////////////////////////////////////////////////////////////////
1016 //
1017 // Non-Errors.
1018 //
1019 /////////////////////////////////////////////////////////////////////////////////
1020
getNamedVariable(const TSourceLoc & location,const TString * name,const TSymbol * symbol)1021 const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
1022 const TString *name,
1023 const TSymbol *symbol)
1024 {
1025 const TVariable *variable = NULL;
1026
1027 if (!symbol)
1028 {
1029 error(location, "undeclared identifier", name->c_str());
1030 recover();
1031 }
1032 else if (!symbol->isVariable())
1033 {
1034 error(location, "variable expected", name->c_str());
1035 recover();
1036 }
1037 else
1038 {
1039 variable = static_cast<const TVariable*>(symbol);
1040
1041 if (symbolTable.findBuiltIn(variable->getName(), shaderVersion) &&
1042 !variable->getExtension().empty() &&
1043 extensionErrorCheck(location, variable->getExtension()))
1044 {
1045 recover();
1046 }
1047 }
1048
1049 if (!variable)
1050 {
1051 TType type(EbtFloat, EbpUndefined);
1052 TVariable *fakeVariable = new TVariable(name, type);
1053 symbolTable.declare(fakeVariable);
1054 variable = fakeVariable;
1055 }
1056
1057 return variable;
1058 }
1059
1060 //
1061 // Look up a function name in the symbol table, and make sure it is a function.
1062 //
1063 // Return the function symbol if found, otherwise 0.
1064 //
findFunction(const TSourceLoc & line,TFunction * call,int shaderVersion,bool * builtIn)1065 const TFunction* TParseContext::findFunction(const TSourceLoc& line, TFunction* call, int shaderVersion, bool *builtIn)
1066 {
1067 // First find by unmangled name to check whether the function name has been
1068 // hidden by a variable name or struct typename.
1069 // If a function is found, check for one with a matching argument list.
1070 const TSymbol* symbol = symbolTable.find(call->getName(), shaderVersion, builtIn);
1071 if (symbol == 0 || symbol->isFunction()) {
1072 symbol = symbolTable.find(call->getMangledName(), shaderVersion, builtIn);
1073 }
1074
1075 if (symbol == 0) {
1076 error(line, "no matching overloaded function found", call->getName().c_str());
1077 return 0;
1078 }
1079
1080 if (!symbol->isFunction()) {
1081 error(line, "function name expected", call->getName().c_str());
1082 return 0;
1083 }
1084
1085 return static_cast<const TFunction*>(symbol);
1086 }
1087
1088 //
1089 // Initializers show up in several places in the grammar. Have one set of
1090 // code to handle them here.
1091 //
1092 // Returns true on error, false if no error
1093 //
executeInitializer(const TSourceLoc & line,const TString & identifier,TPublicType & pType,TIntermTyped * initializer,TIntermNode * & intermNode,TVariable * variable)1094 bool TParseContext::executeInitializer(const TSourceLoc& line, const TString& identifier, TPublicType& pType,
1095 TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
1096 {
1097 TType type = TType(pType);
1098
1099 if (variable == 0) {
1100 if (reservedErrorCheck(line, identifier))
1101 return true;
1102
1103 if (voidErrorCheck(line, identifier, pType))
1104 return true;
1105
1106 //
1107 // add variable to symbol table
1108 //
1109 variable = new TVariable(&identifier, type);
1110 if (! symbolTable.declare(variable)) {
1111 error(line, "redefinition", variable->getName().c_str());
1112 return true;
1113 // don't delete variable, it's used by error recovery, and the pool
1114 // pop will take care of the memory
1115 }
1116 }
1117
1118 //
1119 // identifier must be of type constant, a global, or a temporary
1120 //
1121 TQualifier qualifier = variable->getType().getQualifier();
1122 if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
1123 error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
1124 return true;
1125 }
1126 //
1127 // test for and propagate constant
1128 //
1129
1130 if (qualifier == EvqConst) {
1131 if (qualifier != initializer->getType().getQualifier()) {
1132 std::stringstream extraInfoStream;
1133 extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
1134 std::string extraInfo = extraInfoStream.str();
1135 error(line, " assigning non-constant to", "=", extraInfo.c_str());
1136 variable->getType().setQualifier(EvqTemporary);
1137 return true;
1138 }
1139 if (type != initializer->getType()) {
1140 error(line, " non-matching types for const initializer ",
1141 variable->getType().getQualifierString());
1142 variable->getType().setQualifier(EvqTemporary);
1143 return true;
1144 }
1145 if (initializer->getAsConstantUnion()) {
1146 variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
1147 } else if (initializer->getAsSymbolNode()) {
1148 const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
1149 const TVariable* tVar = static_cast<const TVariable*>(symbol);
1150
1151 ConstantUnion* constArray = tVar->getConstPointer();
1152 variable->shareConstPointer(constArray);
1153 } else {
1154 std::stringstream extraInfoStream;
1155 extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
1156 std::string extraInfo = extraInfoStream.str();
1157 error(line, " cannot assign to", "=", extraInfo.c_str());
1158 variable->getType().setQualifier(EvqTemporary);
1159 return true;
1160 }
1161 }
1162
1163 if (qualifier != EvqConst) {
1164 TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
1165 intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
1166 if (intermNode == 0) {
1167 assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
1168 return true;
1169 }
1170 } else
1171 intermNode = 0;
1172
1173 return false;
1174 }
1175
areAllChildConst(TIntermAggregate * aggrNode)1176 bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
1177 {
1178 ASSERT(aggrNode != NULL);
1179 if (!aggrNode->isConstructor())
1180 return false;
1181
1182 bool allConstant = true;
1183
1184 // check if all the child nodes are constants so that they can be inserted into
1185 // the parent node
1186 TIntermSequence *sequence = aggrNode->getSequence() ;
1187 for (TIntermSequence::iterator p = sequence->begin(); p != sequence->end(); ++p) {
1188 if (!(*p)->getAsTyped()->getAsConstantUnion())
1189 return false;
1190 }
1191
1192 return allConstant;
1193 }
1194
addFullySpecifiedType(TQualifier qualifier,TLayoutQualifier layoutQualifier,const TPublicType & typeSpecifier)1195 TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, TLayoutQualifier layoutQualifier, const TPublicType& typeSpecifier)
1196 {
1197 TPublicType returnType = typeSpecifier;
1198 returnType.qualifier = qualifier;
1199 returnType.layoutQualifier = layoutQualifier;
1200
1201 if (typeSpecifier.array)
1202 {
1203 error(typeSpecifier.line, "not supported", "first-class array");
1204 recover();
1205 returnType.setArray(false);
1206 }
1207
1208 if (shaderVersion < 300)
1209 {
1210 if (qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
1211 {
1212 error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
1213 recover();
1214 }
1215
1216 if ((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) &&
1217 (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
1218 {
1219 error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
1220 recover();
1221 }
1222 }
1223 else
1224 {
1225 switch (qualifier)
1226 {
1227 case EvqSmoothIn:
1228 case EvqSmoothOut:
1229 case EvqVertexOut:
1230 case EvqFragmentIn:
1231 case EvqCentroidOut:
1232 case EvqCentroidIn:
1233 if (typeSpecifier.type == EbtBool)
1234 {
1235 error(typeSpecifier.line, "cannot be bool", getQualifierString(qualifier));
1236 recover();
1237 }
1238 if (typeSpecifier.type == EbtInt || typeSpecifier.type == EbtUInt)
1239 {
1240 error(typeSpecifier.line, "must use 'flat' interpolation here", getQualifierString(qualifier));
1241 recover();
1242 }
1243 break;
1244
1245 case EvqVertexIn:
1246 case EvqFragmentOut:
1247 case EvqFlatIn:
1248 case EvqFlatOut:
1249 if (typeSpecifier.type == EbtBool)
1250 {
1251 error(typeSpecifier.line, "cannot be bool", getQualifierString(qualifier));
1252 recover();
1253 }
1254 break;
1255
1256 default: break;
1257 }
1258 }
1259
1260 return returnType;
1261 }
1262
parseSingleDeclaration(TPublicType & publicType,const TSourceLoc & identifierLocation,const TString & identifier)1263 TIntermAggregate* TParseContext::parseSingleDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier)
1264 {
1265 TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
1266 TIntermAggregate* aggregate = intermediate.makeAggregate(symbol, identifierLocation);
1267
1268 if (identifier != "")
1269 {
1270 if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier))
1271 recover();
1272
1273 // this error check can mutate the type
1274 if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, false))
1275 recover();
1276
1277 TVariable* variable = 0;
1278
1279 if (nonInitErrorCheck(identifierLocation, identifier, publicType, variable))
1280 recover();
1281
1282 if (variable && symbol)
1283 {
1284 symbol->setId(variable->getUniqueId());
1285 }
1286 }
1287
1288 return aggregate;
1289 }
1290
parseSingleArrayDeclaration(TPublicType & publicType,const TSourceLoc & identifierLocation,const TString & identifier,const TSourceLoc & indexLocation,TIntermTyped * indexExpression)1291 TIntermAggregate* TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& indexLocation, TIntermTyped *indexExpression)
1292 {
1293 if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier))
1294 recover();
1295
1296 // this error check can mutate the type
1297 if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, true))
1298 recover();
1299
1300 if (arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
1301 {
1302 recover();
1303 }
1304
1305 TPublicType arrayType = publicType;
1306
1307 int size;
1308 if (arraySizeErrorCheck(identifierLocation, indexExpression, size))
1309 {
1310 recover();
1311 }
1312 else
1313 {
1314 arrayType.setArray(true, size);
1315 }
1316
1317 TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(arrayType), identifierLocation);
1318 TIntermAggregate* aggregate = intermediate.makeAggregate(symbol, identifierLocation);
1319 TVariable* variable = 0;
1320
1321 if (arrayErrorCheck(identifierLocation, identifier, arrayType, variable))
1322 recover();
1323
1324 if (variable && symbol)
1325 {
1326 symbol->setId(variable->getUniqueId());
1327 }
1328
1329 return aggregate;
1330 }
1331
parseSingleInitDeclaration(TPublicType & publicType,const TSourceLoc & identifierLocation,const TString & identifier,const TSourceLoc & initLocation,TIntermTyped * initializer)1332 TIntermAggregate* TParseContext::parseSingleInitDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& initLocation, TIntermTyped *initializer)
1333 {
1334 if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier))
1335 recover();
1336
1337 TIntermNode* intermNode;
1338 if (!executeInitializer(identifierLocation, identifier, publicType, initializer, intermNode))
1339 {
1340 //
1341 // Build intermediate representation
1342 //
1343 return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : NULL;
1344 }
1345 else
1346 {
1347 recover();
1348 return NULL;
1349 }
1350 }
1351
parseInvariantDeclaration(const TSourceLoc & invariantLoc,const TSourceLoc & identifierLoc,const TString * identifier,const TSymbol * symbol)1352 TIntermAggregate* TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc,
1353 const TSourceLoc &identifierLoc,
1354 const TString *identifier,
1355 const TSymbol *symbol)
1356 {
1357 // invariant declaration
1358 if (globalErrorCheck(invariantLoc, symbolTable.atGlobalLevel(), "invariant varying"))
1359 {
1360 recover();
1361 }
1362
1363 if (!symbol)
1364 {
1365 error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str());
1366 recover();
1367
1368 return NULL;
1369 }
1370 else
1371 {
1372 const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
1373 ASSERT(variable);
1374 const TType &type = variable->getType();
1375 TIntermSymbol *intermSymbol = intermediate.addSymbol(variable->getUniqueId(),
1376 *identifier, type, identifierLoc);
1377
1378 TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc);
1379 aggregate->setOp(EOpInvariantDeclaration);
1380 return aggregate;
1381 }
1382 }
1383
parseDeclarator(TPublicType & publicType,TIntermAggregate * aggregateDeclaration,TSymbol * identifierSymbol,const TSourceLoc & identifierLocation,const TString & identifier)1384 TIntermAggregate* TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, TSymbol *identifierSymbol, const TSourceLoc& identifierLocation, const TString &identifier)
1385 {
1386 TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
1387 TIntermAggregate* intermAggregate = intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
1388
1389 if (structQualifierErrorCheck(identifierLocation, publicType))
1390 recover();
1391
1392 if (locationDeclaratorListCheck(identifierLocation, publicType))
1393 recover();
1394
1395 if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, false))
1396 recover();
1397
1398 TVariable* variable = 0;
1399 if (nonInitErrorCheck(identifierLocation, identifier, publicType, variable))
1400 recover();
1401 if (symbol && variable)
1402 symbol->setId(variable->getUniqueId());
1403
1404 return intermAggregate;
1405 }
1406
parseArrayDeclarator(TPublicType & publicType,const TSourceLoc & identifierLocation,const TString & identifier,const TSourceLoc & arrayLocation,TIntermNode * declaratorList,TIntermTyped * indexExpression)1407 TIntermAggregate* TParseContext::parseArrayDeclarator(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& arrayLocation, TIntermNode *declaratorList, TIntermTyped *indexExpression)
1408 {
1409 if (structQualifierErrorCheck(identifierLocation, publicType))
1410 recover();
1411
1412 if (locationDeclaratorListCheck(identifierLocation, publicType))
1413 recover();
1414
1415 if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, true))
1416 recover();
1417
1418 if (arrayTypeErrorCheck(arrayLocation, publicType) || arrayQualifierErrorCheck(arrayLocation, publicType))
1419 {
1420 recover();
1421 }
1422 else if (indexExpression)
1423 {
1424 int size;
1425 if (arraySizeErrorCheck(arrayLocation, indexExpression, size))
1426 recover();
1427 TPublicType arrayType(publicType);
1428 arrayType.setArray(true, size);
1429 TVariable* variable = NULL;
1430 if (arrayErrorCheck(arrayLocation, identifier, arrayType, variable))
1431 recover();
1432 TType type = TType(arrayType);
1433 type.setArraySize(size);
1434
1435 return intermediate.growAggregate(declaratorList, intermediate.addSymbol(variable ? variable->getUniqueId() : 0, identifier, type, identifierLocation), identifierLocation);
1436 }
1437 else
1438 {
1439 TPublicType arrayType(publicType);
1440 arrayType.setArray(true);
1441 TVariable* variable = NULL;
1442 if (arrayErrorCheck(arrayLocation, identifier, arrayType, variable))
1443 recover();
1444 }
1445
1446 return NULL;
1447 }
1448
parseInitDeclarator(TPublicType & publicType,TIntermAggregate * declaratorList,const TSourceLoc & identifierLocation,const TString & identifier,const TSourceLoc & initLocation,TIntermTyped * initializer)1449 TIntermAggregate* TParseContext::parseInitDeclarator(TPublicType &publicType, TIntermAggregate *declaratorList, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& initLocation, TIntermTyped *initializer)
1450 {
1451 if (structQualifierErrorCheck(identifierLocation, publicType))
1452 recover();
1453
1454 if (locationDeclaratorListCheck(identifierLocation, publicType))
1455 recover();
1456
1457 TIntermNode* intermNode;
1458 if (!executeInitializer(identifierLocation, identifier, publicType, initializer, intermNode))
1459 {
1460 //
1461 // build the intermediate representation
1462 //
1463 if (intermNode)
1464 {
1465 return intermediate.growAggregate(declaratorList, intermNode, initLocation);
1466 }
1467 else
1468 {
1469 return declaratorList;
1470 }
1471 }
1472 else
1473 {
1474 recover();
1475 return NULL;
1476 }
1477 }
1478
parseGlobalLayoutQualifier(const TPublicType & typeQualifier)1479 void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier)
1480 {
1481 if (typeQualifier.qualifier != EvqUniform)
1482 {
1483 error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform");
1484 recover();
1485 return;
1486 }
1487
1488 const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
1489 ASSERT(!layoutQualifier.isEmpty());
1490
1491 if (shaderVersion < 300)
1492 {
1493 error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout");
1494 recover();
1495 return;
1496 }
1497
1498 if (layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier))
1499 {
1500 recover();
1501 return;
1502 }
1503
1504 if (layoutQualifier.matrixPacking != EmpUnspecified)
1505 {
1506 defaultMatrixPacking = layoutQualifier.matrixPacking;
1507 }
1508
1509 if (layoutQualifier.blockStorage != EbsUnspecified)
1510 {
1511 defaultBlockStorage = layoutQualifier.blockStorage;
1512 }
1513 }
1514
addConstructorFunc(TPublicType publicType)1515 TFunction *TParseContext::addConstructorFunc(TPublicType publicType)
1516 {
1517 TOperator op = EOpNull;
1518 if (publicType.userDef)
1519 {
1520 op = EOpConstructStruct;
1521 }
1522 else
1523 {
1524 switch (publicType.type)
1525 {
1526 case EbtFloat:
1527 if (publicType.isMatrix())
1528 {
1529 // TODO: non-square matrices
1530 switch(publicType.getCols())
1531 {
1532 case 2: op = EOpConstructMat2; break;
1533 case 3: op = EOpConstructMat3; break;
1534 case 4: op = EOpConstructMat4; break;
1535 }
1536 }
1537 else
1538 {
1539 switch(publicType.getNominalSize())
1540 {
1541 case 1: op = EOpConstructFloat; break;
1542 case 2: op = EOpConstructVec2; break;
1543 case 3: op = EOpConstructVec3; break;
1544 case 4: op = EOpConstructVec4; break;
1545 }
1546 }
1547 break;
1548
1549 case EbtInt:
1550 switch(publicType.getNominalSize())
1551 {
1552 case 1: op = EOpConstructInt; break;
1553 case 2: op = EOpConstructIVec2; break;
1554 case 3: op = EOpConstructIVec3; break;
1555 case 4: op = EOpConstructIVec4; break;
1556 }
1557 break;
1558
1559 case EbtUInt:
1560 switch(publicType.getNominalSize())
1561 {
1562 case 1: op = EOpConstructUInt; break;
1563 case 2: op = EOpConstructUVec2; break;
1564 case 3: op = EOpConstructUVec3; break;
1565 case 4: op = EOpConstructUVec4; break;
1566 }
1567 break;
1568
1569 case EbtBool:
1570 switch(publicType.getNominalSize())
1571 {
1572 case 1: op = EOpConstructBool; break;
1573 case 2: op = EOpConstructBVec2; break;
1574 case 3: op = EOpConstructBVec3; break;
1575 case 4: op = EOpConstructBVec4; break;
1576 }
1577 break;
1578
1579 default: break;
1580 }
1581
1582 if (op == EOpNull)
1583 {
1584 error(publicType.line, "cannot construct this type", getBasicString(publicType.type));
1585 recover();
1586 publicType.type = EbtFloat;
1587 op = EOpConstructFloat;
1588 }
1589 }
1590
1591 TString tempString;
1592 TType type(publicType);
1593 return new TFunction(&tempString, type, op);
1594 }
1595
1596 // This function is used to test for the correctness of the parameters passed to various constructor functions
1597 // and also convert them to the right datatype if it is allowed and required.
1598 //
1599 // Returns 0 for an error or the constructed node (aggregate or typed) for no error.
1600 //
addConstructor(TIntermNode * arguments,const TType * type,TOperator op,TFunction * fnCall,const TSourceLoc & line)1601 TIntermTyped *TParseContext::addConstructor(TIntermNode *arguments, const TType *type, TOperator op, TFunction *fnCall, const TSourceLoc &line)
1602 {
1603 TIntermAggregate *aggregateArguments = arguments->getAsAggregate();
1604
1605 if (!aggregateArguments)
1606 {
1607 aggregateArguments = new TIntermAggregate;
1608 aggregateArguments->getSequence()->push_back(arguments);
1609 }
1610
1611 if (op == EOpConstructStruct)
1612 {
1613 const TFieldList &fields = type->getStruct()->fields();
1614 TIntermSequence *args = aggregateArguments->getSequence();
1615
1616 for (size_t i = 0; i < fields.size(); i++)
1617 {
1618 if (i >= args->size() || (*args)[i]->getAsTyped()->getType() != *fields[i]->type())
1619 {
1620 error(line, "Structure constructor arguments do not match structure fields", "Error");
1621 recover();
1622
1623 return 0;
1624 }
1625 }
1626 }
1627
1628 // Turn the argument list itself into a constructor
1629 TIntermTyped *constructor = intermediate.setAggregateOperator(aggregateArguments, op, line);
1630 TIntermTyped *constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
1631 if (constConstructor)
1632 {
1633 return constConstructor;
1634 }
1635
1636 return constructor;
1637 }
1638
foldConstConstructor(TIntermAggregate * aggrNode,const TType & type)1639 TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
1640 {
1641 bool canBeFolded = areAllChildConst(aggrNode);
1642 aggrNode->setType(type);
1643 if (canBeFolded) {
1644 bool returnVal = false;
1645 ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
1646 if (aggrNode->getSequence()->size() == 1) {
1647 returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true);
1648 }
1649 else {
1650 returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type);
1651 }
1652 if (returnVal)
1653 return 0;
1654
1655 return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
1656 }
1657
1658 return 0;
1659 }
1660
1661 //
1662 // This function returns the tree representation for the vector field(s) being accessed from contant vector.
1663 // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
1664 // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
1665 // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
1666 // a constant matrix.
1667 //
addConstVectorNode(TVectorFields & fields,TIntermTyped * node,const TSourceLoc & line)1668 TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc& line)
1669 {
1670 TIntermTyped* typedNode;
1671 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1672
1673 ConstantUnion *unionArray;
1674 if (tempConstantNode) {
1675 unionArray = tempConstantNode->getUnionArrayPointer();
1676
1677 if (!unionArray) {
1678 return node;
1679 }
1680 } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
1681 error(line, "Cannot offset into the vector", "Error");
1682 recover();
1683
1684 return 0;
1685 }
1686
1687 ConstantUnion* constArray = new ConstantUnion[fields.num];
1688
1689 for (int i = 0; i < fields.num; i++) {
1690 if (fields.offsets[i] >= node->getType().getNominalSize()) {
1691 std::stringstream extraInfoStream;
1692 extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
1693 std::string extraInfo = extraInfoStream.str();
1694 error(line, "", "[", extraInfo.c_str());
1695 recover();
1696 fields.offsets[i] = 0;
1697 }
1698
1699 constArray[i] = unionArray[fields.offsets[i]];
1700
1701 }
1702 typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
1703 return typedNode;
1704 }
1705
1706 //
1707 // This function returns the column being accessed from a constant matrix. The values are retrieved from
1708 // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
1709 // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
1710 // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
1711 //
addConstMatrixNode(int index,TIntermTyped * node,const TSourceLoc & line)1712 TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc& line)
1713 {
1714 TIntermTyped* typedNode;
1715 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1716
1717 if (index >= node->getType().getCols()) {
1718 std::stringstream extraInfoStream;
1719 extraInfoStream << "matrix field selection out of range '" << index << "'";
1720 std::string extraInfo = extraInfoStream.str();
1721 error(line, "", "[", extraInfo.c_str());
1722 recover();
1723 index = 0;
1724 }
1725
1726 if (tempConstantNode) {
1727 ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
1728 int size = tempConstantNode->getType().getCols();
1729 typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
1730 } else {
1731 error(line, "Cannot offset into the matrix", "Error");
1732 recover();
1733
1734 return 0;
1735 }
1736
1737 return typedNode;
1738 }
1739
1740
1741 //
1742 // This function returns an element of an array accessed from a constant array. The values are retrieved from
1743 // the symbol table and parse-tree is built for the type of the element. The input
1744 // to the function could either be a symbol node (a[0] where a is a constant array)that represents a
1745 // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
1746 //
addConstArrayNode(int index,TIntermTyped * node,const TSourceLoc & line)1747 TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc& line)
1748 {
1749 TIntermTyped* typedNode;
1750 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1751 TType arrayElementType = node->getType();
1752 arrayElementType.clearArrayness();
1753
1754 if (index >= node->getType().getArraySize()) {
1755 std::stringstream extraInfoStream;
1756 extraInfoStream << "array field selection out of range '" << index << "'";
1757 std::string extraInfo = extraInfoStream.str();
1758 error(line, "", "[", extraInfo.c_str());
1759 recover();
1760 index = 0;
1761 }
1762
1763 if (tempConstantNode) {
1764 size_t arrayElementSize = arrayElementType.getObjectSize();
1765 ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
1766 typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
1767 } else {
1768 error(line, "Cannot offset into the array", "Error");
1769 recover();
1770
1771 return 0;
1772 }
1773
1774 return typedNode;
1775 }
1776
1777
1778 //
1779 // This function returns the value of a particular field inside a constant structure from the symbol table.
1780 // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
1781 // function and returns the parse-tree with the values of the embedded/nested struct.
1782 //
addConstStruct(const TString & identifier,TIntermTyped * node,const TSourceLoc & line)1783 TIntermTyped* TParseContext::addConstStruct(const TString &identifier, TIntermTyped *node, const TSourceLoc& line)
1784 {
1785 const TFieldList& fields = node->getType().getStruct()->fields();
1786 size_t instanceSize = 0;
1787
1788 for (size_t index = 0; index < fields.size(); ++index) {
1789 if (fields[index]->name() == identifier) {
1790 break;
1791 } else {
1792 instanceSize += fields[index]->type()->getObjectSize();
1793 }
1794 }
1795
1796 TIntermTyped *typedNode;
1797 TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
1798 if (tempConstantNode) {
1799 ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
1800
1801 typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
1802 } else {
1803 error(line, "Cannot offset into the structure", "Error");
1804 recover();
1805
1806 return 0;
1807 }
1808
1809 return typedNode;
1810 }
1811
1812 //
1813 // Interface/uniform blocks
1814 //
addInterfaceBlock(const TPublicType & typeQualifier,const TSourceLoc & nameLine,const TString & blockName,TFieldList * fieldList,const TString * instanceName,const TSourceLoc & instanceLine,TIntermTyped * arrayIndex,const TSourceLoc & arrayIndexLine)1815 TIntermAggregate* TParseContext::addInterfaceBlock(const TPublicType& typeQualifier, const TSourceLoc& nameLine, const TString& blockName, TFieldList* fieldList,
1816 const TString* instanceName, const TSourceLoc& instanceLine, TIntermTyped* arrayIndex, const TSourceLoc& arrayIndexLine)
1817 {
1818 if (reservedErrorCheck(nameLine, blockName))
1819 recover();
1820
1821 if (typeQualifier.qualifier != EvqUniform)
1822 {
1823 error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform");
1824 recover();
1825 }
1826
1827 TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
1828 if (layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier))
1829 {
1830 recover();
1831 }
1832
1833 if (blockLayoutQualifier.matrixPacking == EmpUnspecified)
1834 {
1835 blockLayoutQualifier.matrixPacking = defaultMatrixPacking;
1836 }
1837
1838 if (blockLayoutQualifier.blockStorage == EbsUnspecified)
1839 {
1840 blockLayoutQualifier.blockStorage = defaultBlockStorage;
1841 }
1842
1843 TSymbol* blockNameSymbol = new TInterfaceBlockName(&blockName);
1844 if (!symbolTable.declare(blockNameSymbol)) {
1845 error(nameLine, "redefinition", blockName.c_str(), "interface block name");
1846 recover();
1847 }
1848
1849 // check for sampler types and apply layout qualifiers
1850 for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) {
1851 TField* field = (*fieldList)[memberIndex];
1852 TType* fieldType = field->type();
1853 if (IsSampler(fieldType->getBasicType())) {
1854 error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks");
1855 recover();
1856 }
1857
1858 const TQualifier qualifier = fieldType->getQualifier();
1859 switch (qualifier)
1860 {
1861 case EvqGlobal:
1862 case EvqUniform:
1863 break;
1864 default:
1865 error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier));
1866 recover();
1867 break;
1868 }
1869
1870 // check layout qualifiers
1871 TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
1872 if (layoutLocationErrorCheck(field->line(), fieldLayoutQualifier))
1873 {
1874 recover();
1875 }
1876
1877 if (fieldLayoutQualifier.blockStorage != EbsUnspecified)
1878 {
1879 error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here");
1880 recover();
1881 }
1882
1883 if (fieldLayoutQualifier.matrixPacking == EmpUnspecified)
1884 {
1885 fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
1886 }
1887 else if (!fieldType->isMatrix())
1888 {
1889 error(field->line(), "invalid layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "can only be used on matrix types");
1890 recover();
1891 }
1892
1893 fieldType->setLayoutQualifier(fieldLayoutQualifier);
1894 }
1895
1896 // add array index
1897 int arraySize = 0;
1898 if (arrayIndex != NULL)
1899 {
1900 if (arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize))
1901 recover();
1902 }
1903
1904 TInterfaceBlock* interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier);
1905 TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize);
1906
1907 TString symbolName = "";
1908 int symbolId = 0;
1909
1910 if (!instanceName)
1911 {
1912 // define symbols for the members of the interface block
1913 for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
1914 {
1915 TField* field = (*fieldList)[memberIndex];
1916 TType* fieldType = field->type();
1917
1918 // set parent pointer of the field variable
1919 fieldType->setInterfaceBlock(interfaceBlock);
1920
1921 TVariable* fieldVariable = new TVariable(&field->name(), *fieldType);
1922 fieldVariable->setQualifier(typeQualifier.qualifier);
1923
1924 if (!symbolTable.declare(fieldVariable)) {
1925 error(field->line(), "redefinition", field->name().c_str(), "interface block member name");
1926 recover();
1927 }
1928 }
1929 }
1930 else
1931 {
1932 // add a symbol for this interface block
1933 TVariable* instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false);
1934 instanceTypeDef->setQualifier(typeQualifier.qualifier);
1935
1936 if (!symbolTable.declare(instanceTypeDef)) {
1937 error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name");
1938 recover();
1939 }
1940
1941 symbolId = instanceTypeDef->getUniqueId();
1942 symbolName = instanceTypeDef->getName();
1943 }
1944
1945 TIntermAggregate *aggregate = intermediate.makeAggregate(intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine);
1946 aggregate->setOp(EOpDeclaration);
1947
1948 exitStructDeclaration();
1949 return aggregate;
1950 }
1951
enterStructDeclaration(const TSourceLoc & line,const TString & identifier)1952 bool TParseContext::enterStructDeclaration(const TSourceLoc& line, const TString& identifier)
1953 {
1954 ++structNestingLevel;
1955
1956 // Embedded structure definitions are not supported per GLSL ES spec.
1957 // They aren't allowed in GLSL either, but we need to detect this here
1958 // so we don't rely on the GLSL compiler to catch it.
1959 if (structNestingLevel > 1) {
1960 error(line, "", "Embedded struct definitions are not allowed");
1961 return true;
1962 }
1963
1964 return false;
1965 }
1966
exitStructDeclaration()1967 void TParseContext::exitStructDeclaration()
1968 {
1969 --structNestingLevel;
1970 }
1971
1972 namespace {
1973
1974 const int kWebGLMaxStructNesting = 4;
1975
1976 } // namespace
1977
structNestingErrorCheck(const TSourceLoc & line,const TField & field)1978 bool TParseContext::structNestingErrorCheck(const TSourceLoc& line, const TField& field)
1979 {
1980 if (!IsWebGLBasedSpec(shaderSpec)) {
1981 return false;
1982 }
1983
1984 if (field.type()->getBasicType() != EbtStruct) {
1985 return false;
1986 }
1987
1988 // We're already inside a structure definition at this point, so add
1989 // one to the field's struct nesting.
1990 if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) {
1991 std::stringstream reasonStream;
1992 reasonStream << "Reference of struct type "
1993 << field.type()->getStruct()->name().c_str()
1994 << " exceeds maximum allowed nesting level of "
1995 << kWebGLMaxStructNesting;
1996 std::string reason = reasonStream.str();
1997 error(line, reason.c_str(), field.name().c_str(), "");
1998 return true;
1999 }
2000
2001 return false;
2002 }
2003
2004 //
2005 // Parse an array index expression
2006 //
addIndexExpression(TIntermTyped * baseExpression,const TSourceLoc & location,TIntermTyped * indexExpression)2007 TIntermTyped* TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc& location, TIntermTyped *indexExpression)
2008 {
2009 TIntermTyped *indexedExpression = NULL;
2010
2011 if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
2012 {
2013 if (baseExpression->getAsSymbolNode())
2014 {
2015 error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getSymbol().c_str());
2016 }
2017 else
2018 {
2019 error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
2020 }
2021 recover();
2022 }
2023
2024 if (indexExpression->getQualifier() == EvqConst)
2025 {
2026 int index = indexExpression->getAsConstantUnion()->getIConst(0);
2027 if (index < 0)
2028 {
2029 std::stringstream infoStream;
2030 infoStream << index;
2031 std::string info = infoStream.str();
2032 error(location, "negative index", info.c_str());
2033 recover();
2034 index = 0;
2035 }
2036 if (baseExpression->getType().getQualifier() == EvqConst)
2037 {
2038 if (baseExpression->isArray())
2039 {
2040 // constant folding for arrays
2041 indexedExpression = addConstArrayNode(index, baseExpression, location);
2042 }
2043 else if (baseExpression->isVector())
2044 {
2045 // constant folding for vectors
2046 TVectorFields fields;
2047 fields.num = 1;
2048 fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array
2049 indexedExpression = addConstVectorNode(fields, baseExpression, location);
2050 }
2051 else if (baseExpression->isMatrix())
2052 {
2053 // constant folding for matrices
2054 indexedExpression = addConstMatrixNode(index, baseExpression, location);
2055 }
2056 }
2057 else
2058 {
2059 if (baseExpression->isArray())
2060 {
2061 if (index >= baseExpression->getType().getArraySize())
2062 {
2063 std::stringstream extraInfoStream;
2064 extraInfoStream << "array index out of range '" << index << "'";
2065 std::string extraInfo = extraInfoStream.str();
2066 error(location, "", "[", extraInfo.c_str());
2067 recover();
2068 index = baseExpression->getType().getArraySize() - 1;
2069 }
2070 else if (baseExpression->getQualifier() == EvqFragData && index > 0 && !isExtensionEnabled("GL_EXT_draw_buffers"))
2071 {
2072 error(location, "", "[", "array indexes for gl_FragData must be zero when GL_EXT_draw_buffers is disabled");
2073 recover();
2074 index = 0;
2075 }
2076 }
2077 else if ((baseExpression->isVector() || baseExpression->isMatrix()) && baseExpression->getType().getNominalSize() <= index)
2078 {
2079 std::stringstream extraInfoStream;
2080 extraInfoStream << "field selection out of range '" << index << "'";
2081 std::string extraInfo = extraInfoStream.str();
2082 error(location, "", "[", extraInfo.c_str());
2083 recover();
2084 index = baseExpression->getType().getNominalSize() - 1;
2085 }
2086
2087 indexExpression->getAsConstantUnion()->getUnionArrayPointer()->setIConst(index);
2088 indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location);
2089 }
2090 }
2091 else
2092 {
2093 if (baseExpression->isInterfaceBlock())
2094 {
2095 error(location, "", "[", "array indexes for interface blocks arrays must be constant integral expressions");
2096 recover();
2097 }
2098 else if (baseExpression->getQualifier() == EvqFragmentOut)
2099 {
2100 error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions");
2101 recover();
2102 }
2103
2104 indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location);
2105 }
2106
2107 if (indexedExpression == 0)
2108 {
2109 ConstantUnion *unionArray = new ConstantUnion[1];
2110 unionArray->setFConst(0.0f);
2111 indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location);
2112 }
2113 else if (baseExpression->isArray())
2114 {
2115 const TType &baseType = baseExpression->getType();
2116 if (baseType.getStruct())
2117 {
2118 TType copyOfType(baseType.getStruct());
2119 indexedExpression->setType(copyOfType);
2120 }
2121 else if (baseType.isInterfaceBlock())
2122 {
2123 TType copyOfType(baseType.getInterfaceBlock(), baseType.getQualifier(), baseType.getLayoutQualifier(), 0);
2124 indexedExpression->setType(copyOfType);
2125 }
2126 else
2127 {
2128 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, baseExpression->getNominalSize(), baseExpression->getSecondarySize()));
2129 }
2130
2131 if (baseExpression->getType().getQualifier() == EvqConst)
2132 {
2133 indexedExpression->getTypePointer()->setQualifier(EvqConst);
2134 }
2135 }
2136 else if (baseExpression->isMatrix())
2137 {
2138 TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
2139 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier, baseExpression->getRows()));
2140 }
2141 else if (baseExpression->isVector())
2142 {
2143 TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
2144 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier));
2145 }
2146 else
2147 {
2148 indexedExpression->setType(baseExpression->getType());
2149 }
2150
2151 return indexedExpression;
2152 }
2153
addFieldSelectionExpression(TIntermTyped * baseExpression,const TSourceLoc & dotLocation,const TString & fieldString,const TSourceLoc & fieldLocation)2154 TIntermTyped* TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc& dotLocation, const TString &fieldString, const TSourceLoc& fieldLocation)
2155 {
2156 TIntermTyped *indexedExpression = NULL;
2157
2158 if (baseExpression->isArray())
2159 {
2160 error(fieldLocation, "cannot apply dot operator to an array", ".");
2161 recover();
2162 }
2163
2164 if (baseExpression->isVector())
2165 {
2166 TVectorFields fields;
2167 if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation))
2168 {
2169 fields.num = 1;
2170 fields.offsets[0] = 0;
2171 recover();
2172 }
2173
2174 if (baseExpression->getType().getQualifier() == EvqConst)
2175 {
2176 // constant folding for vector fields
2177 indexedExpression = addConstVectorNode(fields, baseExpression, fieldLocation);
2178 if (indexedExpression == 0)
2179 {
2180 recover();
2181 indexedExpression = baseExpression;
2182 }
2183 else
2184 {
2185 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqConst, (int) (fieldString).size()));
2186 }
2187 }
2188 else
2189 {
2190 TString vectorString = fieldString;
2191 TIntermTyped* index = intermediate.addSwizzle(fields, fieldLocation);
2192 indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation);
2193 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, (int) vectorString.size()));
2194 }
2195 }
2196 else if (baseExpression->isMatrix())
2197 {
2198 TMatrixFields fields;
2199 if (!parseMatrixFields(fieldString, baseExpression->getCols(), baseExpression->getRows(), fields, fieldLocation))
2200 {
2201 fields.wholeRow = false;
2202 fields.wholeCol = false;
2203 fields.row = 0;
2204 fields.col = 0;
2205 recover();
2206 }
2207
2208 if (fields.wholeRow || fields.wholeCol)
2209 {
2210 error(dotLocation, " non-scalar fields not implemented yet", ".");
2211 recover();
2212 ConstantUnion *unionArray = new ConstantUnion[1];
2213 unionArray->setIConst(0);
2214 TIntermTyped* index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), fieldLocation);
2215 indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation);
2216 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),EvqTemporary, baseExpression->getCols(), baseExpression->getRows()));
2217 }
2218 else
2219 {
2220 ConstantUnion *unionArray = new ConstantUnion[1];
2221 unionArray->setIConst(fields.col * baseExpression->getRows() + fields.row);
2222 TIntermTyped* index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), fieldLocation);
2223 indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation);
2224 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision()));
2225 }
2226 }
2227 else if (baseExpression->getBasicType() == EbtStruct)
2228 {
2229 bool fieldFound = false;
2230 const TFieldList& fields = baseExpression->getType().getStruct()->fields();
2231 if (fields.empty())
2232 {
2233 error(dotLocation, "structure has no fields", "Internal Error");
2234 recover();
2235 indexedExpression = baseExpression;
2236 }
2237 else
2238 {
2239 unsigned int i;
2240 for (i = 0; i < fields.size(); ++i)
2241 {
2242 if (fields[i]->name() == fieldString)
2243 {
2244 fieldFound = true;
2245 break;
2246 }
2247 }
2248 if (fieldFound)
2249 {
2250 if (baseExpression->getType().getQualifier() == EvqConst)
2251 {
2252 indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation);
2253 if (indexedExpression == 0)
2254 {
2255 recover();
2256 indexedExpression = baseExpression;
2257 }
2258 else
2259 {
2260 indexedExpression->setType(*fields[i]->type());
2261 // change the qualifier of the return type, not of the structure field
2262 // as the structure definition is shared between various structures.
2263 indexedExpression->getTypePointer()->setQualifier(EvqConst);
2264 }
2265 }
2266 else
2267 {
2268 ConstantUnion *unionArray = new ConstantUnion[1];
2269 unionArray->setIConst(i);
2270 TIntermTyped* index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation);
2271 indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation);
2272 indexedExpression->setType(*fields[i]->type());
2273 }
2274 }
2275 else
2276 {
2277 error(dotLocation, " no such field in structure", fieldString.c_str());
2278 recover();
2279 indexedExpression = baseExpression;
2280 }
2281 }
2282 }
2283 else if (baseExpression->isInterfaceBlock())
2284 {
2285 bool fieldFound = false;
2286 const TFieldList& fields = baseExpression->getType().getInterfaceBlock()->fields();
2287 if (fields.empty())
2288 {
2289 error(dotLocation, "interface block has no fields", "Internal Error");
2290 recover();
2291 indexedExpression = baseExpression;
2292 }
2293 else
2294 {
2295 unsigned int i;
2296 for (i = 0; i < fields.size(); ++i)
2297 {
2298 if (fields[i]->name() == fieldString)
2299 {
2300 fieldFound = true;
2301 break;
2302 }
2303 }
2304 if (fieldFound)
2305 {
2306 ConstantUnion *unionArray = new ConstantUnion[1];
2307 unionArray->setIConst(i);
2308 TIntermTyped* index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation);
2309 indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index, dotLocation);
2310 indexedExpression->setType(*fields[i]->type());
2311 }
2312 else
2313 {
2314 error(dotLocation, " no such field in interface block", fieldString.c_str());
2315 recover();
2316 indexedExpression = baseExpression;
2317 }
2318 }
2319 }
2320 else
2321 {
2322 if (shaderVersion < 300)
2323 {
2324 error(dotLocation, " field selection requires structure, vector, or matrix on left hand side", fieldString.c_str());
2325 }
2326 else
2327 {
2328 error(dotLocation, " field selection requires structure, vector, matrix, or interface block on left hand side", fieldString.c_str());
2329 }
2330 recover();
2331 indexedExpression = baseExpression;
2332 }
2333
2334 return indexedExpression;
2335 }
2336
parseLayoutQualifier(const TString & qualifierType,const TSourceLoc & qualifierTypeLine)2337 TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine)
2338 {
2339 TLayoutQualifier qualifier;
2340
2341 qualifier.location = -1;
2342 qualifier.matrixPacking = EmpUnspecified;
2343 qualifier.blockStorage = EbsUnspecified;
2344
2345 if (qualifierType == "shared")
2346 {
2347 qualifier.blockStorage = EbsShared;
2348 }
2349 else if (qualifierType == "packed")
2350 {
2351 qualifier.blockStorage = EbsPacked;
2352 }
2353 else if (qualifierType == "std140")
2354 {
2355 qualifier.blockStorage = EbsStd140;
2356 }
2357 else if (qualifierType == "row_major")
2358 {
2359 qualifier.matrixPacking = EmpRowMajor;
2360 }
2361 else if (qualifierType == "column_major")
2362 {
2363 qualifier.matrixPacking = EmpColumnMajor;
2364 }
2365 else if (qualifierType == "location")
2366 {
2367 error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument");
2368 recover();
2369 }
2370 else
2371 {
2372 error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
2373 recover();
2374 }
2375
2376 return qualifier;
2377 }
2378
parseLayoutQualifier(const TString & qualifierType,const TSourceLoc & qualifierTypeLine,const TString & intValueString,int intValue,const TSourceLoc & intValueLine)2379 TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc& intValueLine)
2380 {
2381 TLayoutQualifier qualifier;
2382
2383 qualifier.location = -1;
2384 qualifier.matrixPacking = EmpUnspecified;
2385 qualifier.blockStorage = EbsUnspecified;
2386
2387 if (qualifierType != "location")
2388 {
2389 error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments");
2390 recover();
2391 }
2392 else
2393 {
2394 // must check that location is non-negative
2395 if (intValue < 0)
2396 {
2397 error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative");
2398 recover();
2399 }
2400 else
2401 {
2402 qualifier.location = intValue;
2403 }
2404 }
2405
2406 return qualifier;
2407 }
2408
joinLayoutQualifiers(TLayoutQualifier leftQualifier,TLayoutQualifier rightQualifier)2409 TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier)
2410 {
2411 TLayoutQualifier joinedQualifier = leftQualifier;
2412
2413 if (rightQualifier.location != -1)
2414 {
2415 joinedQualifier.location = rightQualifier.location;
2416 }
2417 if (rightQualifier.matrixPacking != EmpUnspecified)
2418 {
2419 joinedQualifier.matrixPacking = rightQualifier.matrixPacking;
2420 }
2421 if (rightQualifier.blockStorage != EbsUnspecified)
2422 {
2423 joinedQualifier.blockStorage = rightQualifier.blockStorage;
2424 }
2425
2426 return joinedQualifier;
2427 }
2428
joinInterpolationQualifiers(const TSourceLoc & interpolationLoc,TQualifier interpolationQualifier,const TSourceLoc & storageLoc,TQualifier storageQualifier)2429 TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier,
2430 const TSourceLoc &storageLoc, TQualifier storageQualifier)
2431 {
2432 TQualifier mergedQualifier = EvqSmoothIn;
2433
2434 if (storageQualifier == EvqFragmentIn) {
2435 if (interpolationQualifier == EvqSmooth)
2436 mergedQualifier = EvqSmoothIn;
2437 else if (interpolationQualifier == EvqFlat)
2438 mergedQualifier = EvqFlatIn;
2439 else UNREACHABLE();
2440 }
2441 else if (storageQualifier == EvqCentroidIn) {
2442 if (interpolationQualifier == EvqSmooth)
2443 mergedQualifier = EvqCentroidIn;
2444 else if (interpolationQualifier == EvqFlat)
2445 mergedQualifier = EvqFlatIn;
2446 else UNREACHABLE();
2447 }
2448 else if (storageQualifier == EvqVertexOut) {
2449 if (interpolationQualifier == EvqSmooth)
2450 mergedQualifier = EvqSmoothOut;
2451 else if (interpolationQualifier == EvqFlat)
2452 mergedQualifier = EvqFlatOut;
2453 else UNREACHABLE();
2454 }
2455 else if (storageQualifier == EvqCentroidOut) {
2456 if (interpolationQualifier == EvqSmooth)
2457 mergedQualifier = EvqCentroidOut;
2458 else if (interpolationQualifier == EvqFlat)
2459 mergedQualifier = EvqFlatOut;
2460 else UNREACHABLE();
2461 }
2462 else {
2463 error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getInterpolationString(interpolationQualifier));
2464 recover();
2465
2466 mergedQualifier = storageQualifier;
2467 }
2468
2469 TPublicType type;
2470 type.setBasic(EbtVoid, mergedQualifier, storageLoc);
2471 return type;
2472 }
2473
addStructDeclaratorList(const TPublicType & typeSpecifier,TFieldList * fieldList)2474 TFieldList *TParseContext::addStructDeclaratorList(const TPublicType& typeSpecifier, TFieldList *fieldList)
2475 {
2476 if (voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier)) {
2477 recover();
2478 }
2479
2480 for (unsigned int i = 0; i < fieldList->size(); ++i) {
2481 //
2482 // Careful not to replace already known aspects of type, like array-ness
2483 //
2484 TType* type = (*fieldList)[i]->type();
2485 type->setBasicType(typeSpecifier.type);
2486 type->setPrimarySize(typeSpecifier.primarySize);
2487 type->setSecondarySize(typeSpecifier.secondarySize);
2488 type->setPrecision(typeSpecifier.precision);
2489 type->setQualifier(typeSpecifier.qualifier);
2490 type->setLayoutQualifier(typeSpecifier.layoutQualifier);
2491
2492 // don't allow arrays of arrays
2493 if (type->isArray()) {
2494 if (arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier))
2495 recover();
2496 }
2497 if (typeSpecifier.array)
2498 type->setArraySize(typeSpecifier.arraySize);
2499 if (typeSpecifier.userDef) {
2500 type->setStruct(typeSpecifier.userDef->getStruct());
2501 }
2502
2503 if (structNestingErrorCheck(typeSpecifier.line, *(*fieldList)[i])) {
2504 recover();
2505 }
2506 }
2507
2508 return fieldList;
2509 }
2510
addStructure(const TSourceLoc & structLine,const TSourceLoc & nameLine,const TString * structName,TFieldList * fieldList)2511 TPublicType TParseContext::addStructure(const TSourceLoc& structLine, const TSourceLoc& nameLine, const TString *structName, TFieldList* fieldList)
2512 {
2513 TStructure* structure = new TStructure(structName, fieldList);
2514 TType* structureType = new TType(structure);
2515
2516 structure->setUniqueId(TSymbolTable::nextUniqueId());
2517
2518 if (!structName->empty())
2519 {
2520 if (reservedErrorCheck(nameLine, *structName))
2521 {
2522 recover();
2523 }
2524 TVariable* userTypeDef = new TVariable(structName, *structureType, true);
2525 if (!symbolTable.declare(userTypeDef)) {
2526 error(nameLine, "redefinition", structName->c_str(), "struct");
2527 recover();
2528 }
2529 }
2530
2531 // ensure we do not specify any storage qualifiers on the struct members
2532 for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
2533 {
2534 const TField &field = *(*fieldList)[typeListIndex];
2535 const TQualifier qualifier = field.type()->getQualifier();
2536 switch (qualifier)
2537 {
2538 case EvqGlobal:
2539 case EvqTemporary:
2540 break;
2541 default:
2542 error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier));
2543 recover();
2544 break;
2545 }
2546 }
2547
2548 TPublicType publicType;
2549 publicType.setBasic(EbtStruct, EvqTemporary, structLine);
2550 publicType.userDef = structureType;
2551 exitStructDeclaration();
2552
2553 return publicType;
2554 }
2555
2556 //
2557 // Parse an array of strings using yyparse.
2558 //
2559 // Returns 0 for success.
2560 //
PaParseStrings(size_t count,const char * const string[],const int length[],TParseContext * context)2561 int PaParseStrings(size_t count, const char* const string[], const int length[],
2562 TParseContext* context) {
2563 if ((count == 0) || (string == NULL))
2564 return 1;
2565
2566 if (glslang_initialize(context))
2567 return 1;
2568
2569 int error = glslang_scan(count, string, length, context);
2570 if (!error)
2571 error = glslang_parse(context);
2572
2573 glslang_finalize(context);
2574
2575 return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
2576 }
2577
2578
2579
2580