• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <limits.h>
60 #include <openssl/err.h>
61 
62 #include "internal.h"
63 
64 
65 #define asm __asm__
66 
67 #if !defined(OPENSSL_NO_ASM)
68 # if defined(__GNUC__) && __GNUC__>=2
69 #  if defined(OPENSSL_X86)
70    /*
71     * There were two reasons for implementing this template:
72     * - GNU C generates a call to a function (__udivdi3 to be exact)
73     *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
74     *   understand why...);
75     * - divl doesn't only calculate quotient, but also leaves
76     *   remainder in %edx which we can definitely use here:-)
77     *
78     *					<appro@fy.chalmers.se>
79     */
80 #undef div_asm
81 #  define div_asm(n0,n1,d0)		\
82 	({  asm volatile (			\
83 		"divl	%4"			\
84 		: "=a"(q), "=d"(rem)		\
85 		: "a"(n1), "d"(n0), "g"(d0)	\
86 		: "cc");			\
87 	    q;					\
88 	})
89 #  define REMAINDER_IS_ALREADY_CALCULATED
90 #  elif defined(OPENSSL_X86_64)
91    /*
92     * Same story here, but it's 128-bit by 64-bit division. Wow!
93     *					<appro@fy.chalmers.se>
94     */
95 #  undef div_asm
96 #  define div_asm(n0,n1,d0)		\
97 	({  asm volatile (			\
98 		"divq	%4"			\
99 		: "=a"(q), "=d"(rem)		\
100 		: "a"(n1), "d"(n0), "g"(d0)	\
101 		: "cc");			\
102 	    q;					\
103 	})
104 #  define REMAINDER_IS_ALREADY_CALCULATED
105 #  endif /* __<cpu> */
106 # endif /* __GNUC__ */
107 #endif /* OPENSSL_NO_ASM */
108 
109 /* BN_div computes  dv := num / divisor,  rounding towards
110  * zero, and sets up rm  such that  dv*divisor + rm = num  holds.
111  * Thus:
112  *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero)
113  *     rm->neg == num->neg                 (unless the remainder is zero)
114  * If 'dv' or 'rm' is NULL, the respective value is not returned. */
BN_div(BIGNUM * dv,BIGNUM * rm,const BIGNUM * num,const BIGNUM * divisor,BN_CTX * ctx)115 int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
116            BN_CTX *ctx) {
117   int norm_shift, i, loop;
118   BIGNUM *tmp, wnum, *snum, *sdiv, *res;
119   BN_ULONG *resp, *wnump;
120   BN_ULONG d0, d1;
121   int num_n, div_n;
122   int no_branch = 0;
123 
124   /* Invalid zero-padding would have particularly bad consequences
125    * so don't just rely on bn_check_top() here */
126   if ((num->top > 0 && num->d[num->top - 1] == 0) ||
127       (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
128     OPENSSL_PUT_ERROR(BN, BN_div, BN_R_NOT_INITIALIZED);
129     return 0;
130   }
131 
132   if ((num->flags & BN_FLG_CONSTTIME) != 0 ||
133       (divisor->flags & BN_FLG_CONSTTIME) != 0) {
134     no_branch = 1;
135   }
136 
137   if (BN_is_zero(divisor)) {
138     OPENSSL_PUT_ERROR(BN, BN_div, BN_R_DIV_BY_ZERO);
139     return 0;
140   }
141 
142   if (!no_branch && BN_ucmp(num, divisor) < 0) {
143     if (rm != NULL) {
144       if (BN_copy(rm, num) == NULL) {
145         return 0;
146       }
147     }
148     if (dv != NULL) {
149       BN_zero(dv);
150     }
151     return 1;
152   }
153 
154   BN_CTX_start(ctx);
155   tmp = BN_CTX_get(ctx);
156   snum = BN_CTX_get(ctx);
157   sdiv = BN_CTX_get(ctx);
158   if (dv == NULL) {
159     res = BN_CTX_get(ctx);
160   } else {
161     res = dv;
162   }
163   if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
164     goto err;
165   }
166 
167   /* First we normalise the numbers */
168   norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
169   if (!(BN_lshift(sdiv, divisor, norm_shift))) {
170     goto err;
171   }
172   sdiv->neg = 0;
173   norm_shift += BN_BITS2;
174   if (!(BN_lshift(snum, num, norm_shift))) {
175     goto err;
176   }
177   snum->neg = 0;
178 
179   if (no_branch) {
180     /* Since we don't know whether snum is larger than sdiv,
181      * we pad snum with enough zeroes without changing its
182      * value.
183      */
184     if (snum->top <= sdiv->top + 1) {
185       if (bn_wexpand(snum, sdiv->top + 2) == NULL) {
186         goto err;
187       }
188       for (i = snum->top; i < sdiv->top + 2; i++) {
189         snum->d[i] = 0;
190       }
191       snum->top = sdiv->top + 2;
192     } else {
193       if (bn_wexpand(snum, snum->top + 1) == NULL) {
194         goto err;
195       }
196       snum->d[snum->top] = 0;
197       snum->top++;
198     }
199   }
200 
201   div_n = sdiv->top;
202   num_n = snum->top;
203   loop = num_n - div_n;
204   /* Lets setup a 'window' into snum
205    * This is the part that corresponds to the current
206    * 'area' being divided */
207   wnum.neg = 0;
208   wnum.d = &(snum->d[loop]);
209   wnum.top = div_n;
210   /* only needed when BN_ucmp messes up the values between top and max */
211   wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
212 
213   /* Get the top 2 words of sdiv */
214   /* div_n=sdiv->top; */
215   d0 = sdiv->d[div_n - 1];
216   d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
217 
218   /* pointer to the 'top' of snum */
219   wnump = &(snum->d[num_n - 1]);
220 
221   /* Setup to 'res' */
222   res->neg = (num->neg ^ divisor->neg);
223   if (!bn_wexpand(res, (loop + 1))) {
224     goto err;
225   }
226   res->top = loop - no_branch;
227   resp = &(res->d[loop - 1]);
228 
229   /* space for temp */
230   if (!bn_wexpand(tmp, (div_n + 1))) {
231     goto err;
232   }
233 
234   if (!no_branch) {
235     if (BN_ucmp(&wnum, sdiv) >= 0) {
236       bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
237       *resp = 1;
238     } else {
239       res->top--;
240     }
241   }
242 
243   /* if res->top == 0 then clear the neg value otherwise decrease
244    * the resp pointer */
245   if (res->top == 0) {
246     res->neg = 0;
247   } else {
248     resp--;
249   }
250 
251   for (i = 0; i < loop - 1; i++, wnump--, resp--) {
252     BN_ULONG q, l0;
253     /* the first part of the loop uses the top two words of snum and sdiv to
254      * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */
255     BN_ULONG n0, n1, rem = 0;
256 
257     n0 = wnump[0];
258     n1 = wnump[-1];
259     if (n0 == d0) {
260       q = BN_MASK2;
261     } else {
262       /* n0 < d0 */
263 #ifdef BN_LLONG
264       BN_ULLONG t2;
265 
266 #if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(div_asm)
267       q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0);
268 #else
269       q = div_asm(n0, n1, d0);
270 #endif
271 
272 #ifndef REMAINDER_IS_ALREADY_CALCULATED
273       /* rem doesn't have to be BN_ULLONG. The least we know it's less that d0,
274        * isn't it? */
275       rem = (n1 - q * d0) & BN_MASK2;
276 #endif
277 
278       t2 = (BN_ULLONG)d1 * q;
279 
280       for (;;) {
281         if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2]))
282           break;
283         q--;
284         rem += d0;
285         if (rem < d0)
286           break; /* don't let rem overflow */
287         t2 -= d1;
288       }
289 #else /* !BN_LLONG */
290       BN_ULONG t2l, t2h;
291 
292 #if defined(div_asm)
293       q = div_asm(n0, n1, d0);
294 #else
295       q = bn_div_words(n0, n1, d0);
296 #endif
297 
298 #ifndef REMAINDER_IS_ALREADY_CALCULATED
299       rem = (n1 - q * d0) & BN_MASK2;
300 #endif
301 
302 #if defined(BN_UMULT_LOHI)
303       BN_UMULT_LOHI(t2l, t2h, d1, q);
304 #elif defined(BN_UMULT_HIGH)
305       t2l = d1 * q;
306       t2h = BN_UMULT_HIGH(d1, q);
307 #else
308       {
309         BN_ULONG ql, qh;
310         t2l = LBITS(d1);
311         t2h = HBITS(d1);
312         ql = LBITS(q);
313         qh = HBITS(q);
314         mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
315       }
316 #endif
317 
318       for (;;) {
319         if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2])))
320           break;
321         q--;
322         rem += d0;
323         if (rem < d0)
324           break; /* don't let rem overflow */
325         if (t2l < d1)
326           t2h--;
327         t2l -= d1;
328       }
329 #endif /* !BN_LLONG */
330     }
331 
332     l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
333     tmp->d[div_n] = l0;
334     wnum.d--;
335     /* ingore top values of the bignums just sub the two
336      * BN_ULONG arrays with bn_sub_words */
337     if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
338       /* Note: As we have considered only the leading
339        * two BN_ULONGs in the calculation of q, sdiv * q
340        * might be greater than wnum (but then (q-1) * sdiv
341        * is less or equal than wnum)
342        */
343       q--;
344       if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
345         /* we can't have an overflow here (assuming
346          * that q != 0, but if q == 0 then tmp is
347          * zero anyway) */
348         (*wnump)++;
349       }
350     }
351     /* store part of the result */
352     *resp = q;
353   }
354   bn_correct_top(snum);
355   if (rm != NULL) {
356     /* Keep a copy of the neg flag in num because if rm==num
357      * BN_rshift() will overwrite it.
358      */
359     int neg = num->neg;
360     BN_rshift(rm, snum, norm_shift);
361     if (!BN_is_zero(rm)) {
362       rm->neg = neg;
363     }
364   }
365   if (no_branch) {
366     bn_correct_top(res);
367   }
368   BN_CTX_end(ctx);
369   return 1;
370 
371 err:
372   BN_CTX_end(ctx);
373   return 0;
374 }
375 
BN_nnmod(BIGNUM * r,const BIGNUM * m,const BIGNUM * d,BN_CTX * ctx)376 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
377   if (!(BN_mod(r, m, d, ctx))) {
378     return 0;
379   }
380   if (!r->neg) {
381     return 1;
382   }
383 
384   /* now -|d| < r < 0, so we have to set r := r + |d|. */
385   return (d->neg ? BN_sub : BN_add)(r, r, d);
386 }
387 
BN_mod_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)388 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
389                BN_CTX *ctx) {
390   if (!BN_add(r, a, b)) {
391     return 0;
392   }
393   return BN_nnmod(r, r, m, ctx);
394 }
395 
BN_mod_add_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m)396 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
397                      const BIGNUM *m) {
398   if (!BN_uadd(r, a, b)) {
399     return 0;
400   }
401   if (BN_ucmp(r, m) >= 0) {
402     return BN_usub(r, r, m);
403   }
404   return 1;
405 }
406 
BN_mod_sub(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)407 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
408                BN_CTX *ctx) {
409   if (!BN_sub(r, a, b)) {
410     return 0;
411   }
412   return BN_nnmod(r, r, m, ctx);
413 }
414 
415 /* BN_mod_sub variant that may be used if both  a  and  b  are non-negative
416  * and less than  m */
BN_mod_sub_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m)417 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
418                      const BIGNUM *m) {
419   if (!BN_sub(r, a, b)) {
420     return 0;
421   }
422   if (r->neg) {
423     return BN_add(r, r, m);
424   }
425   return 1;
426 }
427 
BN_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)428 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
429                BN_CTX *ctx) {
430   BIGNUM *t;
431   int ret = 0;
432 
433   BN_CTX_start(ctx);
434   t = BN_CTX_get(ctx);
435   if (t == NULL) {
436     goto err;
437   }
438 
439   if (a == b) {
440     if (!BN_sqr(t, a, ctx)) {
441       goto err;
442     }
443   } else {
444     if (!BN_mul(t, a, b, ctx)) {
445       goto err;
446     }
447   }
448 
449   if (!BN_nnmod(r, t, m, ctx)) {
450     goto err;
451   }
452 
453   ret = 1;
454 
455 err:
456   BN_CTX_end(ctx);
457   return ret;
458 }
459 
BN_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)460 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
461   if (!BN_sqr(r, a, ctx)) {
462     return 0;
463   }
464 
465   /* r->neg == 0,  thus we don't need BN_nnmod */
466   return BN_mod(r, r, m, ctx);
467 }
468 
BN_mod_lshift(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m,BN_CTX * ctx)469 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
470                   BN_CTX *ctx) {
471   BIGNUM *abs_m = NULL;
472   int ret;
473 
474   if (!BN_nnmod(r, a, m, ctx)) {
475     return 0;
476   }
477 
478   if (m->neg) {
479     abs_m = BN_dup(m);
480     if (abs_m == NULL) {
481       return 0;
482     }
483     abs_m->neg = 0;
484   }
485 
486   ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
487 
488   if (abs_m) {
489     BN_free(abs_m);
490   }
491   return ret;
492 }
493 
BN_mod_lshift_quick(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m)494 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
495   if (r != a) {
496     if (BN_copy(r, a) == NULL) {
497       return 0;
498     }
499   }
500 
501   while (n > 0) {
502     int max_shift;
503 
504     /* 0 < r < m */
505     max_shift = BN_num_bits(m) - BN_num_bits(r);
506     /* max_shift >= 0 */
507 
508     if (max_shift < 0) {
509       OPENSSL_PUT_ERROR(BN, BN_mod_lshift_quick, BN_R_INPUT_NOT_REDUCED);
510       return 0;
511     }
512 
513     if (max_shift > n) {
514       max_shift = n;
515     }
516 
517     if (max_shift) {
518       if (!BN_lshift(r, r, max_shift)) {
519         return 0;
520       }
521       n -= max_shift;
522     } else {
523       if (!BN_lshift1(r, r)) {
524         return 0;
525       }
526       --n;
527     }
528 
529     /* BN_num_bits(r) <= BN_num_bits(m) */
530     if (BN_cmp(r, m) >= 0) {
531       if (!BN_sub(r, r, m)) {
532         return 0;
533       }
534     }
535   }
536 
537   return 1;
538 }
539 
BN_mod_lshift1(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)540 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
541   if (!BN_lshift1(r, a)) {
542     return 0;
543   }
544 
545   return BN_nnmod(r, r, m, ctx);
546 }
547 
BN_mod_lshift1_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * m)548 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
549   if (!BN_lshift1(r, a)) {
550     return 0;
551   }
552   if (BN_cmp(r, m) >= 0) {
553     return BN_sub(r, r, m);
554   }
555 
556   return 1;
557 }
558 
BN_div_word(BIGNUM * a,BN_ULONG w)559 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
560   BN_ULONG ret = 0;
561   int i, j;
562 
563   w &= BN_MASK2;
564 
565   if (!w) {
566     /* actually this an error (division by zero) */
567     return (BN_ULONG) - 1;
568   }
569 
570   if (a->top == 0) {
571     return 0;
572   }
573 
574   /* normalize input (so bn_div_words doesn't complain) */
575   j = BN_BITS2 - BN_num_bits_word(w);
576   w <<= j;
577   if (!BN_lshift(a, a, j)) {
578     return (BN_ULONG) - 1;
579   }
580 
581   for (i = a->top - 1; i >= 0; i--) {
582     BN_ULONG l, d;
583 
584     l = a->d[i];
585     d = bn_div_words(ret, l, w);
586     ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
587     a->d[i] = d;
588   }
589 
590   if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
591     a->top--;
592   }
593 
594   ret >>= j;
595   return ret;
596 }
597 
BN_mod_word(const BIGNUM * a,BN_ULONG w)598 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
599 #ifndef BN_LLONG
600   BN_ULONG ret = 0;
601 #else
602   BN_ULLONG ret = 0;
603 #endif
604   int i;
605 
606   if (w == 0) {
607     return (BN_ULONG) -1;
608   }
609 
610   w &= BN_MASK2;
611   for (i = a->top - 1; i >= 0; i--) {
612 #ifndef BN_LLONG
613     ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
614     ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
615 #else
616     ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
617 #endif
618   }
619   return (BN_ULONG)ret;
620 }
621