1 /*
2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <limits.h>
12
13 #include "denoising.h"
14
15 #include "vp8/common/reconinter.h"
16 #include "vpx/vpx_integer.h"
17 #include "vpx_mem/vpx_mem.h"
18 #include "vp8_rtcd.h"
19
20 static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25;
21 /* SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming
22 * var(noise) ~= 100.
23 */
24 static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20;
25 static const unsigned int SSE_THRESHOLD = 16 * 16 * 40;
26 static const unsigned int SSE_THRESHOLD_HIGH = 16 * 16 * 60;
27
28 /*
29 * The filter function was modified to reduce the computational complexity.
30 * Step 1:
31 * Instead of applying tap coefficients for each pixel, we calculated the
32 * pixel adjustments vs. pixel diff value ahead of time.
33 * adjustment = filtered_value - current_raw
34 * = (filter_coefficient * diff + 128) >> 8
35 * where
36 * filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
37 * filter_coefficient += filter_coefficient /
38 * (3 + motion_magnitude_adjustment);
39 * filter_coefficient is clamped to 0 ~ 255.
40 *
41 * Step 2:
42 * The adjustment vs. diff curve becomes flat very quick when diff increases.
43 * This allowed us to use only several levels to approximate the curve without
44 * changing the filtering algorithm too much.
45 * The adjustments were further corrected by checking the motion magnitude.
46 * The levels used are:
47 * diff adjustment w/o motion correction adjustment w/ motion correction
48 * [-255, -16] -6 -7
49 * [-15, -8] -4 -5
50 * [-7, -4] -3 -4
51 * [-3, 3] diff diff
52 * [4, 7] 3 4
53 * [8, 15] 4 5
54 * [16, 255] 6 7
55 */
56
vp8_denoiser_filter_c(unsigned char * mc_running_avg_y,int mc_avg_y_stride,unsigned char * running_avg_y,int avg_y_stride,unsigned char * sig,int sig_stride,unsigned int motion_magnitude,int increase_denoising)57 int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride,
58 unsigned char *running_avg_y, int avg_y_stride,
59 unsigned char *sig, int sig_stride,
60 unsigned int motion_magnitude,
61 int increase_denoising)
62 {
63 unsigned char *running_avg_y_start = running_avg_y;
64 unsigned char *sig_start = sig;
65 int sum_diff_thresh;
66 int r, c;
67 int sum_diff = 0;
68 int adj_val[3] = {3, 4, 6};
69 int shift_inc1 = 0;
70 int shift_inc2 = 1;
71 int col_sum[16] = {0, 0, 0, 0,
72 0, 0, 0, 0,
73 0, 0, 0, 0,
74 0, 0, 0, 0};
75 /* If motion_magnitude is small, making the denoiser more aggressive by
76 * increasing the adjustment for each level. Add another increment for
77 * blocks that are labeled for increase denoising. */
78 if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
79 {
80 if (increase_denoising) {
81 shift_inc1 = 1;
82 shift_inc2 = 2;
83 }
84 adj_val[0] += shift_inc2;
85 adj_val[1] += shift_inc2;
86 adj_val[2] += shift_inc2;
87 }
88
89 for (r = 0; r < 16; ++r)
90 {
91 for (c = 0; c < 16; ++c)
92 {
93 int diff = 0;
94 int adjustment = 0;
95 int absdiff = 0;
96
97 diff = mc_running_avg_y[c] - sig[c];
98 absdiff = abs(diff);
99
100 // When |diff| <= |3 + shift_inc1|, use pixel value from
101 // last denoised raw.
102 if (absdiff <= 3 + shift_inc1)
103 {
104 running_avg_y[c] = mc_running_avg_y[c];
105 col_sum[c] += diff;
106 }
107 else
108 {
109 if (absdiff >= 4 + shift_inc1 && absdiff <= 7)
110 adjustment = adj_val[0];
111 else if (absdiff >= 8 && absdiff <= 15)
112 adjustment = adj_val[1];
113 else
114 adjustment = adj_val[2];
115
116 if (diff > 0)
117 {
118 if ((sig[c] + adjustment) > 255)
119 running_avg_y[c] = 255;
120 else
121 running_avg_y[c] = sig[c] + adjustment;
122
123 col_sum[c] += adjustment;
124 }
125 else
126 {
127 if ((sig[c] - adjustment) < 0)
128 running_avg_y[c] = 0;
129 else
130 running_avg_y[c] = sig[c] - adjustment;
131
132 col_sum[c] -= adjustment;
133 }
134 }
135 }
136
137 /* Update pointers for next iteration. */
138 sig += sig_stride;
139 mc_running_avg_y += mc_avg_y_stride;
140 running_avg_y += avg_y_stride;
141 }
142
143 for (c = 0; c < 16; ++c) {
144 // Below we clip the value in the same way which SSE code use.
145 // When adopting aggressive denoiser, the adj_val for each pixel
146 // could be at most 8 (this is current max adjustment of the map).
147 // In SSE code, we calculate the sum of adj_val for
148 // the columns, so the sum could be upto 128(16 rows). However,
149 // the range of the value is -128 ~ 127 in SSE code, that's why
150 // we do this change in C code.
151 // We don't do this for UV denoiser, since there are only 8 rows,
152 // and max adjustments <= 8, so the sum of the columns will not
153 // exceed 64.
154 if (col_sum[c] >= 128) {
155 col_sum[c] = 127;
156 }
157 sum_diff += col_sum[c];
158 }
159
160 sum_diff_thresh= SUM_DIFF_THRESHOLD;
161 if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH;
162 if (abs(sum_diff) > sum_diff_thresh) {
163 // Before returning to copy the block (i.e., apply no denoising), check
164 // if we can still apply some (weaker) temporal filtering to this block,
165 // that would otherwise not be denoised at all. Simplest is to apply
166 // an additional adjustment to running_avg_y to bring it closer to sig.
167 // The adjustment is capped by a maximum delta, and chosen such that
168 // in most cases the resulting sum_diff will be within the
169 // accceptable range given by sum_diff_thresh.
170
171 // The delta is set by the excess of absolute pixel diff over threshold.
172 int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
173 // Only apply the adjustment for max delta up to 3.
174 if (delta < 4) {
175 sig -= sig_stride * 16;
176 mc_running_avg_y -= mc_avg_y_stride * 16;
177 running_avg_y -= avg_y_stride * 16;
178 for (r = 0; r < 16; ++r) {
179 for (c = 0; c < 16; ++c) {
180 int diff = mc_running_avg_y[c] - sig[c];
181 int adjustment = abs(diff);
182 if (adjustment > delta)
183 adjustment = delta;
184 if (diff > 0) {
185 // Bring denoised signal down.
186 if (running_avg_y[c] - adjustment < 0)
187 running_avg_y[c] = 0;
188 else
189 running_avg_y[c] = running_avg_y[c] - adjustment;
190 col_sum[c] -= adjustment;
191 } else if (diff < 0) {
192 // Bring denoised signal up.
193 if (running_avg_y[c] + adjustment > 255)
194 running_avg_y[c] = 255;
195 else
196 running_avg_y[c] = running_avg_y[c] + adjustment;
197 col_sum[c] += adjustment;
198 }
199 }
200 // TODO(marpan): Check here if abs(sum_diff) has gone below the
201 // threshold sum_diff_thresh, and if so, we can exit the row loop.
202 sig += sig_stride;
203 mc_running_avg_y += mc_avg_y_stride;
204 running_avg_y += avg_y_stride;
205 }
206
207 sum_diff = 0;
208 for (c = 0; c < 16; ++c) {
209 if (col_sum[c] >= 128) {
210 col_sum[c] = 127;
211 }
212 sum_diff += col_sum[c];
213 }
214
215 if (abs(sum_diff) > sum_diff_thresh)
216 return COPY_BLOCK;
217 } else {
218 return COPY_BLOCK;
219 }
220 }
221
222 vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride);
223 return FILTER_BLOCK;
224 }
225
vp8_denoiser_filter_uv_c(unsigned char * mc_running_avg_uv,int mc_avg_uv_stride,unsigned char * running_avg_uv,int avg_uv_stride,unsigned char * sig,int sig_stride,unsigned int motion_magnitude,int increase_denoising)226 int vp8_denoiser_filter_uv_c(unsigned char *mc_running_avg_uv,
227 int mc_avg_uv_stride,
228 unsigned char *running_avg_uv,
229 int avg_uv_stride,
230 unsigned char *sig,
231 int sig_stride,
232 unsigned int motion_magnitude,
233 int increase_denoising) {
234 unsigned char *running_avg_uv_start = running_avg_uv;
235 unsigned char *sig_start = sig;
236 int sum_diff_thresh;
237 int r, c;
238 int sum_diff = 0;
239 int sum_block = 0;
240 int adj_val[3] = {3, 4, 6};
241 int shift_inc1 = 0;
242 int shift_inc2 = 1;
243 /* If motion_magnitude is small, making the denoiser more aggressive by
244 * increasing the adjustment for each level. Add another increment for
245 * blocks that are labeled for increase denoising. */
246 if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) {
247 if (increase_denoising) {
248 shift_inc1 = 1;
249 shift_inc2 = 2;
250 }
251 adj_val[0] += shift_inc2;
252 adj_val[1] += shift_inc2;
253 adj_val[2] += shift_inc2;
254 }
255
256 // Avoid denoising color signal if its close to average level.
257 for (r = 0; r < 8; ++r) {
258 for (c = 0; c < 8; ++c) {
259 sum_block += sig[c];
260 }
261 sig += sig_stride;
262 }
263 if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) {
264 return COPY_BLOCK;
265 }
266
267 sig -= sig_stride * 8;
268 for (r = 0; r < 8; ++r) {
269 for (c = 0; c < 8; ++c) {
270 int diff = 0;
271 int adjustment = 0;
272 int absdiff = 0;
273
274 diff = mc_running_avg_uv[c] - sig[c];
275 absdiff = abs(diff);
276
277 // When |diff| <= |3 + shift_inc1|, use pixel value from
278 // last denoised raw.
279 if (absdiff <= 3 + shift_inc1) {
280 running_avg_uv[c] = mc_running_avg_uv[c];
281 sum_diff += diff;
282 } else {
283 if (absdiff >= 4 && absdiff <= 7)
284 adjustment = adj_val[0];
285 else if (absdiff >= 8 && absdiff <= 15)
286 adjustment = adj_val[1];
287 else
288 adjustment = adj_val[2];
289 if (diff > 0) {
290 if ((sig[c] + adjustment) > 255)
291 running_avg_uv[c] = 255;
292 else
293 running_avg_uv[c] = sig[c] + adjustment;
294 sum_diff += adjustment;
295 } else {
296 if ((sig[c] - adjustment) < 0)
297 running_avg_uv[c] = 0;
298 else
299 running_avg_uv[c] = sig[c] - adjustment;
300 sum_diff -= adjustment;
301 }
302 }
303 }
304 /* Update pointers for next iteration. */
305 sig += sig_stride;
306 mc_running_avg_uv += mc_avg_uv_stride;
307 running_avg_uv += avg_uv_stride;
308 }
309
310 sum_diff_thresh= SUM_DIFF_THRESHOLD_UV;
311 if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV;
312 if (abs(sum_diff) > sum_diff_thresh) {
313 // Before returning to copy the block (i.e., apply no denoising), check
314 // if we can still apply some (weaker) temporal filtering to this block,
315 // that would otherwise not be denoised at all. Simplest is to apply
316 // an additional adjustment to running_avg_y to bring it closer to sig.
317 // The adjustment is capped by a maximum delta, and chosen such that
318 // in most cases the resulting sum_diff will be within the
319 // accceptable range given by sum_diff_thresh.
320
321 // The delta is set by the excess of absolute pixel diff over threshold.
322 int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1;
323 // Only apply the adjustment for max delta up to 3.
324 if (delta < 4) {
325 sig -= sig_stride * 8;
326 mc_running_avg_uv -= mc_avg_uv_stride * 8;
327 running_avg_uv -= avg_uv_stride * 8;
328 for (r = 0; r < 8; ++r) {
329 for (c = 0; c < 8; ++c) {
330 int diff = mc_running_avg_uv[c] - sig[c];
331 int adjustment = abs(diff);
332 if (adjustment > delta)
333 adjustment = delta;
334 if (diff > 0) {
335 // Bring denoised signal down.
336 if (running_avg_uv[c] - adjustment < 0)
337 running_avg_uv[c] = 0;
338 else
339 running_avg_uv[c] = running_avg_uv[c] - adjustment;
340 sum_diff -= adjustment;
341 } else if (diff < 0) {
342 // Bring denoised signal up.
343 if (running_avg_uv[c] + adjustment > 255)
344 running_avg_uv[c] = 255;
345 else
346 running_avg_uv[c] = running_avg_uv[c] + adjustment;
347 sum_diff += adjustment;
348 }
349 }
350 // TODO(marpan): Check here if abs(sum_diff) has gone below the
351 // threshold sum_diff_thresh, and if so, we can exit the row loop.
352 sig += sig_stride;
353 mc_running_avg_uv += mc_avg_uv_stride;
354 running_avg_uv += avg_uv_stride;
355 }
356 if (abs(sum_diff) > sum_diff_thresh)
357 return COPY_BLOCK;
358 } else {
359 return COPY_BLOCK;
360 }
361 }
362
363 vp8_copy_mem8x8(running_avg_uv_start, avg_uv_stride, sig_start,
364 sig_stride);
365 return FILTER_BLOCK;
366 }
367
vp8_denoiser_set_parameters(VP8_DENOISER * denoiser,int mode)368 void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode) {
369 assert(mode > 0); // Denoiser is allocated only if mode > 0.
370 if (mode == 1) {
371 denoiser->denoiser_mode = kDenoiserOnYOnly;
372 } else if (mode == 2) {
373 denoiser->denoiser_mode = kDenoiserOnYUV;
374 } else if (mode == 3) {
375 denoiser->denoiser_mode = kDenoiserOnYUVAggressive;
376 } else {
377 denoiser->denoiser_mode = kDenoiserOnAdaptive;
378 }
379 if (denoiser->denoiser_mode != kDenoiserOnYUVAggressive) {
380 denoiser->denoise_pars.scale_sse_thresh = 1;
381 denoiser->denoise_pars.scale_motion_thresh = 8;
382 denoiser->denoise_pars.scale_increase_filter = 0;
383 denoiser->denoise_pars.denoise_mv_bias = 95;
384 denoiser->denoise_pars.pickmode_mv_bias = 100;
385 denoiser->denoise_pars.qp_thresh = 0;
386 denoiser->denoise_pars.consec_zerolast = UINT_MAX;
387 denoiser->denoise_pars.spatial_blur = 0;
388 } else {
389 denoiser->denoise_pars.scale_sse_thresh = 2;
390 denoiser->denoise_pars.scale_motion_thresh = 16;
391 denoiser->denoise_pars.scale_increase_filter = 1;
392 denoiser->denoise_pars.denoise_mv_bias = 60;
393 denoiser->denoise_pars.pickmode_mv_bias = 60;
394 denoiser->denoise_pars.qp_thresh = 100;
395 denoiser->denoise_pars.consec_zerolast = 10;
396 denoiser->denoise_pars.spatial_blur = 20;
397 }
398 }
399
vp8_denoiser_allocate(VP8_DENOISER * denoiser,int width,int height,int num_mb_rows,int num_mb_cols,int mode)400 int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height,
401 int num_mb_rows, int num_mb_cols, int mode)
402 {
403 int i;
404 assert(denoiser);
405 denoiser->num_mb_cols = num_mb_cols;
406
407 for (i = 0; i < MAX_REF_FRAMES; i++)
408 {
409 denoiser->yv12_running_avg[i].flags = 0;
410
411 if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width,
412 height, VP8BORDERINPIXELS)
413 < 0)
414 {
415 vp8_denoiser_free(denoiser);
416 return 1;
417 }
418 vpx_memset(denoiser->yv12_running_avg[i].buffer_alloc, 0,
419 denoiser->yv12_running_avg[i].frame_size);
420
421 }
422 denoiser->yv12_mc_running_avg.flags = 0;
423
424 if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width,
425 height, VP8BORDERINPIXELS) < 0)
426 {
427 vp8_denoiser_free(denoiser);
428 return 1;
429 }
430
431 vpx_memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0,
432 denoiser->yv12_mc_running_avg.frame_size);
433
434 if (vp8_yv12_alloc_frame_buffer(&denoiser->yv12_last_source, width,
435 height, VP8BORDERINPIXELS) < 0) {
436 vp8_denoiser_free(denoiser);
437 return 1;
438 }
439 vpx_memset(denoiser->yv12_last_source.buffer_alloc, 0,
440 denoiser->yv12_last_source.frame_size);
441
442 denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1);
443 vpx_memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols));
444 vp8_denoiser_set_parameters(denoiser, mode);
445 denoiser->nmse_source_diff = 0;
446 denoiser->nmse_source_diff_count = 0;
447 denoiser->qp_avg = 0;
448 // QP threshold below which we can go up to aggressive mode.
449 denoiser->qp_threshold_up = 80;
450 // QP threshold above which we can go back down to normal mode.
451 // For now keep this second threshold high, so not used currently.
452 denoiser->qp_threshold_down = 128;
453 // Bitrate thresholds and noise metric (nmse) thresholds for switching to
454 // aggressive mode.
455 // TODO(marpan): Adjust thresholds, including effect on resolution.
456 denoiser->bitrate_threshold = 200000; // (bits/sec).
457 denoiser->threshold_aggressive_mode = 35;
458 if (width * height > 640 * 480) {
459 denoiser->bitrate_threshold = 500000;
460 denoiser->threshold_aggressive_mode = 100;
461 } else if (width * height > 960 * 540) {
462 denoiser->bitrate_threshold = 800000;
463 denoiser->threshold_aggressive_mode = 150;
464 } else if (width * height > 1280 * 720) {
465 denoiser->bitrate_threshold = 2000000;
466 denoiser->threshold_aggressive_mode = 1400;
467 }
468 return 0;
469 }
470
471
vp8_denoiser_free(VP8_DENOISER * denoiser)472 void vp8_denoiser_free(VP8_DENOISER *denoiser)
473 {
474 int i;
475 assert(denoiser);
476
477 for (i = 0; i < MAX_REF_FRAMES ; i++)
478 {
479 vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]);
480 }
481 vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg);
482 vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_last_source);
483 vpx_free(denoiser->denoise_state);
484 }
485
486
vp8_denoiser_denoise_mb(VP8_DENOISER * denoiser,MACROBLOCK * x,unsigned int best_sse,unsigned int zero_mv_sse,int recon_yoffset,int recon_uvoffset,loop_filter_info_n * lfi_n,int mb_row,int mb_col,int block_index)487 void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
488 MACROBLOCK *x,
489 unsigned int best_sse,
490 unsigned int zero_mv_sse,
491 int recon_yoffset,
492 int recon_uvoffset,
493 loop_filter_info_n *lfi_n,
494 int mb_row,
495 int mb_col,
496 int block_index)
497
498 {
499 int mv_row;
500 int mv_col;
501 unsigned int motion_threshold;
502 unsigned int motion_magnitude2;
503 unsigned int sse_thresh;
504 int sse_diff_thresh = 0;
505 // Spatial loop filter: only applied selectively based on
506 // temporal filter state of block relative to top/left neighbors.
507 int apply_spatial_loop_filter = 1;
508 MV_REFERENCE_FRAME frame = x->best_reference_frame;
509 MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame;
510
511 enum vp8_denoiser_decision decision = FILTER_BLOCK;
512 enum vp8_denoiser_decision decision_u = COPY_BLOCK;
513 enum vp8_denoiser_decision decision_v = COPY_BLOCK;
514
515 if (zero_frame)
516 {
517 YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame];
518 YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg;
519 YV12_BUFFER_CONFIG saved_pre,saved_dst;
520 MB_MODE_INFO saved_mbmi;
521 MACROBLOCKD *filter_xd = &x->e_mbd;
522 MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi;
523 int sse_diff = 0;
524 // Bias on zero motion vector sse.
525 const int zero_bias = denoiser->denoise_pars.denoise_mv_bias;
526 zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100);
527 sse_diff = zero_mv_sse - best_sse;
528
529 saved_mbmi = *mbmi;
530
531 /* Use the best MV for the compensation. */
532 mbmi->ref_frame = x->best_reference_frame;
533 mbmi->mode = x->best_sse_inter_mode;
534 mbmi->mv = x->best_sse_mv;
535 mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs;
536 mv_col = x->best_sse_mv.as_mv.col;
537 mv_row = x->best_sse_mv.as_mv.row;
538 // Bias to zero_mv if small amount of motion.
539 // Note sse_diff_thresh is intialized to zero, so this ensures
540 // we will always choose zero_mv for denoising if
541 // zero_mv_see <= best_sse (i.e., sse_diff <= 0).
542 if ((unsigned int)(mv_row * mv_row + mv_col * mv_col)
543 <= NOISE_MOTION_THRESHOLD)
544 sse_diff_thresh = (int)SSE_DIFF_THRESHOLD;
545
546 if (frame == INTRA_FRAME ||
547 sse_diff <= sse_diff_thresh)
548 {
549 /*
550 * Handle intra blocks as referring to last frame with zero motion
551 * and let the absolute pixel difference affect the filter factor.
552 * Also consider small amount of motion as being random walk due
553 * to noise, if it doesn't mean that we get a much bigger error.
554 * Note that any changes to the mode info only affects the
555 * denoising.
556 */
557 mbmi->ref_frame =
558 x->best_zeromv_reference_frame;
559
560 src = &denoiser->yv12_running_avg[zero_frame];
561
562 mbmi->mode = ZEROMV;
563 mbmi->mv.as_int = 0;
564 x->best_sse_inter_mode = ZEROMV;
565 x->best_sse_mv.as_int = 0;
566 best_sse = zero_mv_sse;
567 }
568
569 saved_pre = filter_xd->pre;
570 saved_dst = filter_xd->dst;
571
572 /* Compensate the running average. */
573 filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset;
574 filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset;
575 filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset;
576 /* Write the compensated running average to the destination buffer. */
577 filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset;
578 filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset;
579 filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset;
580
581 if (!x->skip)
582 {
583 vp8_build_inter_predictors_mb(filter_xd);
584 }
585 else
586 {
587 vp8_build_inter16x16_predictors_mb(filter_xd,
588 filter_xd->dst.y_buffer,
589 filter_xd->dst.u_buffer,
590 filter_xd->dst.v_buffer,
591 filter_xd->dst.y_stride,
592 filter_xd->dst.uv_stride);
593 }
594 filter_xd->pre = saved_pre;
595 filter_xd->dst = saved_dst;
596 *mbmi = saved_mbmi;
597
598 }
599
600 mv_row = x->best_sse_mv.as_mv.row;
601 mv_col = x->best_sse_mv.as_mv.col;
602 motion_magnitude2 = mv_row * mv_row + mv_col * mv_col;
603 motion_threshold = denoiser->denoise_pars.scale_motion_thresh *
604 NOISE_MOTION_THRESHOLD;
605
606 if (motion_magnitude2 <
607 denoiser->denoise_pars.scale_increase_filter * NOISE_MOTION_THRESHOLD)
608 x->increase_denoising = 1;
609
610 sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD;
611 if (x->increase_denoising)
612 sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD_HIGH;
613
614 if (best_sse > sse_thresh || motion_magnitude2 > motion_threshold)
615 decision = COPY_BLOCK;
616
617 if (decision == FILTER_BLOCK)
618 {
619 unsigned char *mc_running_avg_y =
620 denoiser->yv12_mc_running_avg.y_buffer + recon_yoffset;
621 int mc_avg_y_stride = denoiser->yv12_mc_running_avg.y_stride;
622 unsigned char *running_avg_y =
623 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset;
624 int avg_y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
625
626 /* Filter. */
627 decision = vp8_denoiser_filter(mc_running_avg_y, mc_avg_y_stride,
628 running_avg_y, avg_y_stride,
629 x->thismb, 16, motion_magnitude2,
630 x->increase_denoising);
631 denoiser->denoise_state[block_index] = motion_magnitude2 > 0 ?
632 kFilterNonZeroMV : kFilterZeroMV;
633 // Only denoise UV for zero motion, and if y channel was denoised.
634 if (denoiser->denoiser_mode != kDenoiserOnYOnly &&
635 motion_magnitude2 == 0 &&
636 decision == FILTER_BLOCK) {
637 unsigned char *mc_running_avg_u =
638 denoiser->yv12_mc_running_avg.u_buffer + recon_uvoffset;
639 unsigned char *running_avg_u =
640 denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset;
641 unsigned char *mc_running_avg_v =
642 denoiser->yv12_mc_running_avg.v_buffer + recon_uvoffset;
643 unsigned char *running_avg_v =
644 denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset;
645 int mc_avg_uv_stride = denoiser->yv12_mc_running_avg.uv_stride;
646 int avg_uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
647 int signal_stride = x->block[16].src_stride;
648 decision_u =
649 vp8_denoiser_filter_uv(mc_running_avg_u, mc_avg_uv_stride,
650 running_avg_u, avg_uv_stride,
651 x->block[16].src + *x->block[16].base_src,
652 signal_stride, motion_magnitude2, 0);
653 decision_v =
654 vp8_denoiser_filter_uv(mc_running_avg_v, mc_avg_uv_stride,
655 running_avg_v, avg_uv_stride,
656 x->block[20].src + *x->block[20].base_src,
657 signal_stride, motion_magnitude2, 0);
658 }
659 }
660 if (decision == COPY_BLOCK)
661 {
662 /* No filtering of this block; it differs too much from the predictor,
663 * or the motion vector magnitude is considered too big.
664 */
665 vp8_copy_mem16x16(
666 x->thismb, 16,
667 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
668 denoiser->yv12_running_avg[INTRA_FRAME].y_stride);
669 denoiser->denoise_state[block_index] = kNoFilter;
670 }
671 if (denoiser->denoiser_mode != kDenoiserOnYOnly) {
672 if (decision_u == COPY_BLOCK) {
673 vp8_copy_mem8x8(
674 x->block[16].src + *x->block[16].base_src, x->block[16].src_stride,
675 denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset,
676 denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
677 }
678 if (decision_v == COPY_BLOCK) {
679 vp8_copy_mem8x8(
680 x->block[20].src + *x->block[20].base_src, x->block[16].src_stride,
681 denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset,
682 denoiser->yv12_running_avg[INTRA_FRAME].uv_stride);
683 }
684 }
685 // Option to selectively deblock the denoised signal, for y channel only.
686 if (apply_spatial_loop_filter) {
687 loop_filter_info lfi;
688 int apply_filter_col = 0;
689 int apply_filter_row = 0;
690 int apply_filter = 0;
691 int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
692 int uv_stride =denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
693
694 // Fix filter level to some nominal value for now.
695 int filter_level = 32;
696
697 int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level];
698 lfi.mblim = lfi_n->mblim[filter_level];
699 lfi.blim = lfi_n->blim[filter_level];
700 lfi.lim = lfi_n->lim[filter_level];
701 lfi.hev_thr = lfi_n->hev_thr[hev_index];
702
703 // Apply filter if there is a difference in the denoiser filter state
704 // between the current and left/top block, or if non-zero motion vector
705 // is used for the motion-compensated filtering.
706 if (mb_col > 0) {
707 apply_filter_col = !((denoiser->denoise_state[block_index] ==
708 denoiser->denoise_state[block_index - 1]) &&
709 denoiser->denoise_state[block_index] != kFilterNonZeroMV);
710 if (apply_filter_col) {
711 // Filter left vertical edge.
712 apply_filter = 1;
713 vp8_loop_filter_mbv(
714 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
715 NULL, NULL, y_stride, uv_stride, &lfi);
716 }
717 }
718 if (mb_row > 0) {
719 apply_filter_row = !((denoiser->denoise_state[block_index] ==
720 denoiser->denoise_state[block_index - denoiser->num_mb_cols]) &&
721 denoiser->denoise_state[block_index] != kFilterNonZeroMV);
722 if (apply_filter_row) {
723 // Filter top horizontal edge.
724 apply_filter = 1;
725 vp8_loop_filter_mbh(
726 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
727 NULL, NULL, y_stride, uv_stride, &lfi);
728 }
729 }
730 if (apply_filter) {
731 // Update the signal block |x|. Pixel changes are only to top and/or
732 // left boundary pixels: can we avoid full block copy here.
733 vp8_copy_mem16x16(
734 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
735 y_stride, x->thismb, 16);
736 }
737 }
738 }
739