1 /*
2 * Copyright (c) 2013 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "./vp9_rtcd.h"
12 #include "vp9/common/vp9_filter.h"
13 #include "vp9/common/vp9_scale.h"
14
scaled_x(int val,const struct scale_factors * sf)15 static INLINE int scaled_x(int val, const struct scale_factors *sf) {
16 return (int)((int64_t)val * sf->x_scale_fp >> REF_SCALE_SHIFT);
17 }
18
scaled_y(int val,const struct scale_factors * sf)19 static INLINE int scaled_y(int val, const struct scale_factors *sf) {
20 return (int)((int64_t)val * sf->y_scale_fp >> REF_SCALE_SHIFT);
21 }
22
unscaled_value(int val,const struct scale_factors * sf)23 static int unscaled_value(int val, const struct scale_factors *sf) {
24 (void) sf;
25 return val;
26 }
27
get_fixed_point_scale_factor(int other_size,int this_size)28 static int get_fixed_point_scale_factor(int other_size, int this_size) {
29 // Calculate scaling factor once for each reference frame
30 // and use fixed point scaling factors in decoding and encoding routines.
31 // Hardware implementations can calculate scale factor in device driver
32 // and use multiplication and shifting on hardware instead of division.
33 return (other_size << REF_SCALE_SHIFT) / this_size;
34 }
35
vp9_scale_mv(const MV * mv,int x,int y,const struct scale_factors * sf)36 MV32 vp9_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf) {
37 const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf) & SUBPEL_MASK;
38 const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf) & SUBPEL_MASK;
39 const MV32 res = {
40 scaled_y(mv->row, sf) + y_off_q4,
41 scaled_x(mv->col, sf) + x_off_q4
42 };
43 return res;
44 }
45
46 #if CONFIG_VP9_HIGHBITDEPTH
vp9_setup_scale_factors_for_frame(struct scale_factors * sf,int other_w,int other_h,int this_w,int this_h,int use_high)47 void vp9_setup_scale_factors_for_frame(struct scale_factors *sf,
48 int other_w, int other_h,
49 int this_w, int this_h,
50 int use_high) {
51 #else
52 void vp9_setup_scale_factors_for_frame(struct scale_factors *sf,
53 int other_w, int other_h,
54 int this_w, int this_h) {
55 #endif
56 if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) {
57 sf->x_scale_fp = REF_INVALID_SCALE;
58 sf->y_scale_fp = REF_INVALID_SCALE;
59 return;
60 }
61
62 sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w);
63 sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h);
64 sf->x_step_q4 = scaled_x(16, sf);
65 sf->y_step_q4 = scaled_y(16, sf);
66
67 if (vp9_is_scaled(sf)) {
68 sf->scale_value_x = scaled_x;
69 sf->scale_value_y = scaled_y;
70 } else {
71 sf->scale_value_x = unscaled_value;
72 sf->scale_value_y = unscaled_value;
73 }
74
75 // TODO(agrange): Investigate the best choice of functions to use here
76 // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
77 // to do at full-pel offsets. The current selection, where the filter is
78 // applied in one direction only, and not at all for 0,0, seems to give the
79 // best quality, but it may be worth trying an additional mode that does
80 // do the filtering on full-pel.
81 if (sf->x_step_q4 == 16) {
82 if (sf->y_step_q4 == 16) {
83 // No scaling in either direction.
84 sf->predict[0][0][0] = vp9_convolve_copy;
85 sf->predict[0][0][1] = vp9_convolve_avg;
86 sf->predict[0][1][0] = vp9_convolve8_vert;
87 sf->predict[0][1][1] = vp9_convolve8_avg_vert;
88 sf->predict[1][0][0] = vp9_convolve8_horiz;
89 sf->predict[1][0][1] = vp9_convolve8_avg_horiz;
90 } else {
91 // No scaling in x direction. Must always scale in the y direction.
92 sf->predict[0][0][0] = vp9_convolve8_vert;
93 sf->predict[0][0][1] = vp9_convolve8_avg_vert;
94 sf->predict[0][1][0] = vp9_convolve8_vert;
95 sf->predict[0][1][1] = vp9_convolve8_avg_vert;
96 sf->predict[1][0][0] = vp9_convolve8;
97 sf->predict[1][0][1] = vp9_convolve8_avg;
98 }
99 } else {
100 if (sf->y_step_q4 == 16) {
101 // No scaling in the y direction. Must always scale in the x direction.
102 sf->predict[0][0][0] = vp9_convolve8_horiz;
103 sf->predict[0][0][1] = vp9_convolve8_avg_horiz;
104 sf->predict[0][1][0] = vp9_convolve8;
105 sf->predict[0][1][1] = vp9_convolve8_avg;
106 sf->predict[1][0][0] = vp9_convolve8_horiz;
107 sf->predict[1][0][1] = vp9_convolve8_avg_horiz;
108 } else {
109 // Must always scale in both directions.
110 sf->predict[0][0][0] = vp9_convolve8;
111 sf->predict[0][0][1] = vp9_convolve8_avg;
112 sf->predict[0][1][0] = vp9_convolve8;
113 sf->predict[0][1][1] = vp9_convolve8_avg;
114 sf->predict[1][0][0] = vp9_convolve8;
115 sf->predict[1][0][1] = vp9_convolve8_avg;
116 }
117 }
118 // 2D subpel motion always gets filtered in both directions
119 sf->predict[1][1][0] = vp9_convolve8;
120 sf->predict[1][1][1] = vp9_convolve8_avg;
121 #if CONFIG_VP9_HIGHBITDEPTH
122 if (use_high) {
123 if (sf->x_step_q4 == 16) {
124 if (sf->y_step_q4 == 16) {
125 // No scaling in either direction.
126 sf->high_predict[0][0][0] = vp9_high_convolve_copy;
127 sf->high_predict[0][0][1] = vp9_high_convolve_avg;
128 sf->high_predict[0][1][0] = vp9_high_convolve8_vert;
129 sf->high_predict[0][1][1] = vp9_high_convolve8_avg_vert;
130 sf->high_predict[1][0][0] = vp9_high_convolve8_horiz;
131 sf->high_predict[1][0][1] = vp9_high_convolve8_avg_horiz;
132 } else {
133 // No scaling in x direction. Must always scale in the y direction.
134 sf->high_predict[0][0][0] = vp9_high_convolve8_vert;
135 sf->high_predict[0][0][1] = vp9_high_convolve8_avg_vert;
136 sf->high_predict[0][1][0] = vp9_high_convolve8_vert;
137 sf->high_predict[0][1][1] = vp9_high_convolve8_avg_vert;
138 sf->high_predict[1][0][0] = vp9_high_convolve8;
139 sf->high_predict[1][0][1] = vp9_high_convolve8_avg;
140 }
141 } else {
142 if (sf->y_step_q4 == 16) {
143 // No scaling in the y direction. Must always scale in the x direction.
144 sf->high_predict[0][0][0] = vp9_high_convolve8_horiz;
145 sf->high_predict[0][0][1] = vp9_high_convolve8_avg_horiz;
146 sf->high_predict[0][1][0] = vp9_high_convolve8;
147 sf->high_predict[0][1][1] = vp9_high_convolve8_avg;
148 sf->high_predict[1][0][0] = vp9_high_convolve8_horiz;
149 sf->high_predict[1][0][1] = vp9_high_convolve8_avg_horiz;
150 } else {
151 // Must always scale in both directions.
152 sf->high_predict[0][0][0] = vp9_high_convolve8;
153 sf->high_predict[0][0][1] = vp9_high_convolve8_avg;
154 sf->high_predict[0][1][0] = vp9_high_convolve8;
155 sf->high_predict[0][1][1] = vp9_high_convolve8_avg;
156 sf->high_predict[1][0][0] = vp9_high_convolve8;
157 sf->high_predict[1][0][1] = vp9_high_convolve8_avg;
158 }
159 }
160 // 2D subpel motion always gets filtered in both directions.
161 sf->high_predict[1][1][0] = vp9_high_convolve8;
162 sf->high_predict[1][1][1] = vp9_high_convolve8_avg;
163 }
164 #endif
165 }
166