1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <limits.h>
12 #include <math.h>
13 #include <stdio.h>
14
15 #include "./vp9_rtcd.h"
16 #include "./vpx_config.h"
17
18 #include "vpx_ports/vpx_timer.h"
19
20 #include "vp9/common/vp9_common.h"
21 #include "vp9/common/vp9_entropy.h"
22 #include "vp9/common/vp9_entropymode.h"
23 #include "vp9/common/vp9_idct.h"
24 #include "vp9/common/vp9_mvref_common.h"
25 #include "vp9/common/vp9_pred_common.h"
26 #include "vp9/common/vp9_quant_common.h"
27 #include "vp9/common/vp9_reconintra.h"
28 #include "vp9/common/vp9_reconinter.h"
29 #include "vp9/common/vp9_seg_common.h"
30 #include "vp9/common/vp9_systemdependent.h"
31 #include "vp9/common/vp9_tile_common.h"
32
33 #include "vp9/encoder/vp9_aq_complexity.h"
34 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
35 #include "vp9/encoder/vp9_aq_variance.h"
36 #include "vp9/encoder/vp9_encodeframe.h"
37 #include "vp9/encoder/vp9_encodemb.h"
38 #include "vp9/encoder/vp9_encodemv.h"
39 #include "vp9/encoder/vp9_extend.h"
40 #include "vp9/encoder/vp9_pickmode.h"
41 #include "vp9/encoder/vp9_rd.h"
42 #include "vp9/encoder/vp9_rdopt.h"
43 #include "vp9/encoder/vp9_segmentation.h"
44 #include "vp9/encoder/vp9_tokenize.h"
45
46 #define GF_ZEROMV_ZBIN_BOOST 0
47 #define LF_ZEROMV_ZBIN_BOOST 0
48 #define MV_ZBIN_BOOST 0
49 #define SPLIT_MV_ZBIN_BOOST 0
50 #define INTRA_ZBIN_BOOST 0
51
52 static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
53 int mi_row, int mi_col, BLOCK_SIZE bsize,
54 PICK_MODE_CONTEXT *ctx);
55
56 // Motion vector component magnitude threshold for defining fast motion.
57 #define FAST_MOTION_MV_THRESH 24
58
59 // This is used as a reference when computing the source variance for the
60 // purposes of activity masking.
61 // Eventually this should be replaced by custom no-reference routines,
62 // which will be faster.
63 static const uint8_t VP9_VAR_OFFS[64] = {
64 128, 128, 128, 128, 128, 128, 128, 128,
65 128, 128, 128, 128, 128, 128, 128, 128,
66 128, 128, 128, 128, 128, 128, 128, 128,
67 128, 128, 128, 128, 128, 128, 128, 128,
68 128, 128, 128, 128, 128, 128, 128, 128,
69 128, 128, 128, 128, 128, 128, 128, 128,
70 128, 128, 128, 128, 128, 128, 128, 128,
71 128, 128, 128, 128, 128, 128, 128, 128
72 };
73
get_sby_perpixel_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs)74 static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi,
75 const struct buf_2d *ref,
76 BLOCK_SIZE bs) {
77 unsigned int sse;
78 const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
79 VP9_VAR_OFFS, 0, &sse);
80 return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
81 }
82
get_sby_perpixel_diff_variance(VP9_COMP * cpi,const struct buf_2d * ref,int mi_row,int mi_col,BLOCK_SIZE bs)83 static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
84 const struct buf_2d *ref,
85 int mi_row, int mi_col,
86 BLOCK_SIZE bs) {
87 const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
88 const uint8_t* last_y = &last->y_buffer[mi_row * MI_SIZE * last->y_stride +
89 mi_col * MI_SIZE];
90 unsigned int sse;
91 const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
92 last_y, last->y_stride, &sse);
93 return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
94 }
95
get_rd_var_based_fixed_partition(VP9_COMP * cpi,int mi_row,int mi_col)96 static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi,
97 int mi_row,
98 int mi_col) {
99 unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
100 mi_row, mi_col,
101 BLOCK_64X64);
102 if (var < 8)
103 return BLOCK_64X64;
104 else if (var < 128)
105 return BLOCK_32X32;
106 else if (var < 2048)
107 return BLOCK_16X16;
108 else
109 return BLOCK_8X8;
110 }
111
get_nonrd_var_based_fixed_partition(VP9_COMP * cpi,int mi_row,int mi_col)112 static BLOCK_SIZE get_nonrd_var_based_fixed_partition(VP9_COMP *cpi,
113 int mi_row,
114 int mi_col) {
115 unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
116 mi_row, mi_col,
117 BLOCK_64X64);
118 if (var < 4)
119 return BLOCK_64X64;
120 else if (var < 10)
121 return BLOCK_32X32;
122 else
123 return BLOCK_16X16;
124 }
125
126 // Lighter version of set_offsets that only sets the mode info
127 // pointers.
set_modeinfo_offsets(VP9_COMMON * const cm,MACROBLOCKD * const xd,int mi_row,int mi_col)128 static INLINE void set_modeinfo_offsets(VP9_COMMON *const cm,
129 MACROBLOCKD *const xd,
130 int mi_row,
131 int mi_col) {
132 const int idx_str = xd->mi_stride * mi_row + mi_col;
133 xd->mi = cm->mi + idx_str;
134 xd->mi[0].src_mi = &xd->mi[0];
135 }
136
set_offsets(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,BLOCK_SIZE bsize)137 static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
138 int mi_row, int mi_col, BLOCK_SIZE bsize) {
139 MACROBLOCK *const x = &cpi->mb;
140 VP9_COMMON *const cm = &cpi->common;
141 MACROBLOCKD *const xd = &x->e_mbd;
142 MB_MODE_INFO *mbmi;
143 const int mi_width = num_8x8_blocks_wide_lookup[bsize];
144 const int mi_height = num_8x8_blocks_high_lookup[bsize];
145 const struct segmentation *const seg = &cm->seg;
146
147 set_skip_context(xd, mi_row, mi_col);
148
149 set_modeinfo_offsets(cm, xd, mi_row, mi_col);
150
151 mbmi = &xd->mi[0].src_mi->mbmi;
152
153 // Set up destination pointers.
154 vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
155
156 // Set up limit values for MV components.
157 // Mv beyond the range do not produce new/different prediction block.
158 x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
159 x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
160 x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
161 x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
162
163 // Set up distance of MB to edge of frame in 1/8th pel units.
164 assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
165 set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
166 cm->mi_rows, cm->mi_cols);
167
168 // Set up source buffers.
169 vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
170
171 // R/D setup.
172 x->rddiv = cpi->rd.RDDIV;
173 x->rdmult = cpi->rd.RDMULT;
174
175 // Setup segment ID.
176 if (seg->enabled) {
177 if (cpi->oxcf.aq_mode != VARIANCE_AQ) {
178 const uint8_t *const map = seg->update_map ? cpi->segmentation_map
179 : cm->last_frame_seg_map;
180 mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
181 }
182 vp9_init_plane_quantizers(cpi, x);
183
184 x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
185 } else {
186 mbmi->segment_id = 0;
187 x->encode_breakout = cpi->encode_breakout;
188 }
189 }
190
duplicate_mode_info_in_sb(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)191 static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
192 int mi_row, int mi_col,
193 BLOCK_SIZE bsize) {
194 const int block_width = num_8x8_blocks_wide_lookup[bsize];
195 const int block_height = num_8x8_blocks_high_lookup[bsize];
196 int i, j;
197 for (j = 0; j < block_height; ++j)
198 for (i = 0; i < block_width; ++i) {
199 if (mi_row + j < cm->mi_rows && mi_col + i < cm->mi_cols)
200 xd->mi[j * xd->mi_stride + i].src_mi = &xd->mi[0];
201 }
202 }
203
set_block_size(VP9_COMP * const cpi,int mi_row,int mi_col,BLOCK_SIZE bsize)204 static void set_block_size(VP9_COMP * const cpi,
205 int mi_row, int mi_col,
206 BLOCK_SIZE bsize) {
207 if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
208 MACROBLOCKD *const xd = &cpi->mb.e_mbd;
209 set_modeinfo_offsets(&cpi->common, xd, mi_row, mi_col);
210 xd->mi[0].src_mi->mbmi.sb_type = bsize;
211 duplicate_mode_info_in_sb(&cpi->common, xd, mi_row, mi_col, bsize);
212 }
213 }
214
215 typedef struct {
216 int64_t sum_square_error;
217 int64_t sum_error;
218 int count;
219 int variance;
220 } var;
221
222 typedef struct {
223 var none;
224 var horz[2];
225 var vert[2];
226 } partition_variance;
227
228 typedef struct {
229 partition_variance part_variances;
230 var split[4];
231 } v8x8;
232
233 typedef struct {
234 partition_variance part_variances;
235 v8x8 split[4];
236 } v16x16;
237
238 typedef struct {
239 partition_variance part_variances;
240 v16x16 split[4];
241 } v32x32;
242
243 typedef struct {
244 partition_variance part_variances;
245 v32x32 split[4];
246 } v64x64;
247
248 typedef struct {
249 partition_variance *part_variances;
250 var *split[4];
251 } variance_node;
252
253 typedef enum {
254 V16X16,
255 V32X32,
256 V64X64,
257 } TREE_LEVEL;
258
tree_to_node(void * data,BLOCK_SIZE bsize,variance_node * node)259 static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
260 int i;
261 node->part_variances = NULL;
262 vpx_memset(node->split, 0, sizeof(node->split));
263 switch (bsize) {
264 case BLOCK_64X64: {
265 v64x64 *vt = (v64x64 *) data;
266 node->part_variances = &vt->part_variances;
267 for (i = 0; i < 4; i++)
268 node->split[i] = &vt->split[i].part_variances.none;
269 break;
270 }
271 case BLOCK_32X32: {
272 v32x32 *vt = (v32x32 *) data;
273 node->part_variances = &vt->part_variances;
274 for (i = 0; i < 4; i++)
275 node->split[i] = &vt->split[i].part_variances.none;
276 break;
277 }
278 case BLOCK_16X16: {
279 v16x16 *vt = (v16x16 *) data;
280 node->part_variances = &vt->part_variances;
281 for (i = 0; i < 4; i++)
282 node->split[i] = &vt->split[i].part_variances.none;
283 break;
284 }
285 case BLOCK_8X8: {
286 v8x8 *vt = (v8x8 *) data;
287 node->part_variances = &vt->part_variances;
288 for (i = 0; i < 4; i++)
289 node->split[i] = &vt->split[i];
290 break;
291 }
292 default: {
293 assert(0);
294 break;
295 }
296 }
297 }
298
299 // Set variance values given sum square error, sum error, count.
fill_variance(int64_t s2,int64_t s,int c,var * v)300 static void fill_variance(int64_t s2, int64_t s, int c, var *v) {
301 v->sum_square_error = s2;
302 v->sum_error = s;
303 v->count = c;
304 if (c > 0)
305 v->variance = (int)(256 *
306 (v->sum_square_error - v->sum_error * v->sum_error /
307 v->count) / v->count);
308 else
309 v->variance = 0;
310 }
311
sum_2_variances(const var * a,const var * b,var * r)312 void sum_2_variances(const var *a, const var *b, var *r) {
313 fill_variance(a->sum_square_error + b->sum_square_error,
314 a->sum_error + b->sum_error, a->count + b->count, r);
315 }
316
fill_variance_tree(void * data,BLOCK_SIZE bsize)317 static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
318 variance_node node;
319 tree_to_node(data, bsize, &node);
320 sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
321 sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
322 sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
323 sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
324 sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
325 &node.part_variances->none);
326 }
327
set_vt_partitioning(VP9_COMP * cpi,void * data,BLOCK_SIZE bsize,int mi_row,int mi_col)328 static int set_vt_partitioning(VP9_COMP *cpi,
329 void *data,
330 BLOCK_SIZE bsize,
331 int mi_row,
332 int mi_col) {
333 VP9_COMMON * const cm = &cpi->common;
334 variance_node vt;
335 const int block_width = num_8x8_blocks_wide_lookup[bsize];
336 const int block_height = num_8x8_blocks_high_lookup[bsize];
337 // TODO(debargha): Choose this more intelligently.
338 const int64_t threshold_multiplier = 25;
339 int64_t threshold = threshold_multiplier * cpi->common.base_qindex;
340 assert(block_height == block_width);
341
342 tree_to_node(data, bsize, &vt);
343
344 // Split none is available only if we have more than half a block size
345 // in width and height inside the visible image.
346 if (mi_col + block_width / 2 < cm->mi_cols &&
347 mi_row + block_height / 2 < cm->mi_rows &&
348 vt.part_variances->none.variance < threshold) {
349 set_block_size(cpi, mi_row, mi_col, bsize);
350 return 1;
351 }
352
353 // Vertical split is available on all but the bottom border.
354 if (mi_row + block_height / 2 < cm->mi_rows &&
355 vt.part_variances->vert[0].variance < threshold &&
356 vt.part_variances->vert[1].variance < threshold) {
357 BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
358 set_block_size(cpi, mi_row, mi_col, subsize);
359 set_block_size(cpi, mi_row, mi_col + block_width / 2, subsize);
360 return 1;
361 }
362
363 // Horizontal split is available on all but the right border.
364 if (mi_col + block_width / 2 < cm->mi_cols &&
365 vt.part_variances->horz[0].variance < threshold &&
366 vt.part_variances->horz[1].variance < threshold) {
367 BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
368 set_block_size(cpi, mi_row, mi_col, subsize);
369 set_block_size(cpi, mi_row + block_height / 2, mi_col, subsize);
370 return 1;
371 }
372 return 0;
373 }
374
375 // TODO(debargha): Fix this function and make it work as expected.
choose_partitioning(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col)376 static void choose_partitioning(VP9_COMP *cpi,
377 const TileInfo *const tile,
378 int mi_row, int mi_col) {
379 VP9_COMMON * const cm = &cpi->common;
380 MACROBLOCK *x = &cpi->mb;
381 MACROBLOCKD *xd = &cpi->mb.e_mbd;
382
383 int i, j, k;
384 v64x64 vt;
385 uint8_t *s;
386 const uint8_t *d;
387 int sp;
388 int dp;
389 int pixels_wide = 64, pixels_high = 64;
390 int_mv nearest_mv, near_mv;
391 const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
392 const struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf;
393
394 vp9_zero(vt);
395 set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
396
397 if (xd->mb_to_right_edge < 0)
398 pixels_wide += (xd->mb_to_right_edge >> 3);
399 if (xd->mb_to_bottom_edge < 0)
400 pixels_high += (xd->mb_to_bottom_edge >> 3);
401
402 s = x->plane[0].src.buf;
403 sp = x->plane[0].src.stride;
404
405 if (cm->frame_type != KEY_FRAME) {
406 vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf);
407
408 xd->mi[0].src_mi->mbmi.ref_frame[0] = LAST_FRAME;
409 xd->mi[0].src_mi->mbmi.sb_type = BLOCK_64X64;
410 vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv,
411 xd->mi[0].src_mi->mbmi.ref_mvs[LAST_FRAME],
412 &nearest_mv, &near_mv);
413
414 xd->mi[0].src_mi->mbmi.mv[0] = nearest_mv;
415 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64);
416
417 d = xd->plane[0].dst.buf;
418 dp = xd->plane[0].dst.stride;
419 } else {
420 d = VP9_VAR_OFFS;
421 dp = 0;
422 }
423
424 // Fill in the entire tree of 8x8 variances for splits.
425 for (i = 0; i < 4; i++) {
426 const int x32_idx = ((i & 1) << 5);
427 const int y32_idx = ((i >> 1) << 5);
428 for (j = 0; j < 4; j++) {
429 const int x16_idx = x32_idx + ((j & 1) << 4);
430 const int y16_idx = y32_idx + ((j >> 1) << 4);
431 v16x16 *vst = &vt.split[i].split[j];
432 for (k = 0; k < 4; k++) {
433 int x_idx = x16_idx + ((k & 1) << 3);
434 int y_idx = y16_idx + ((k >> 1) << 3);
435 unsigned int sse = 0;
436 int sum = 0;
437 if (x_idx < pixels_wide && y_idx < pixels_high)
438 vp9_get8x8var(s + y_idx * sp + x_idx, sp,
439 d + y_idx * dp + x_idx, dp, &sse, &sum);
440 fill_variance(sse, sum, 64, &vst->split[k].part_variances.none);
441 }
442 }
443 }
444 // Fill the rest of the variance tree by summing split partition values.
445 for (i = 0; i < 4; i++) {
446 for (j = 0; j < 4; j++) {
447 fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
448 }
449 fill_variance_tree(&vt.split[i], BLOCK_32X32);
450 }
451 fill_variance_tree(&vt, BLOCK_64X64);
452
453 // Now go through the entire structure, splitting every block size until
454 // we get to one that's got a variance lower than our threshold, or we
455 // hit 8x8.
456 if (!set_vt_partitioning(cpi, &vt, BLOCK_64X64,
457 mi_row, mi_col)) {
458 for (i = 0; i < 4; ++i) {
459 const int x32_idx = ((i & 1) << 2);
460 const int y32_idx = ((i >> 1) << 2);
461 if (!set_vt_partitioning(cpi, &vt.split[i], BLOCK_32X32,
462 (mi_row + y32_idx), (mi_col + x32_idx))) {
463 for (j = 0; j < 4; ++j) {
464 const int x16_idx = ((j & 1) << 1);
465 const int y16_idx = ((j >> 1) << 1);
466 // NOTE: This is a temporary hack to disable 8x8 partitions,
467 // since it works really bad - possibly due to a bug
468 #define DISABLE_8X8_VAR_BASED_PARTITION
469 #ifdef DISABLE_8X8_VAR_BASED_PARTITION
470 if (mi_row + y32_idx + y16_idx + 1 < cm->mi_rows &&
471 mi_row + x32_idx + x16_idx + 1 < cm->mi_cols) {
472 set_block_size(cpi,
473 (mi_row + y32_idx + y16_idx),
474 (mi_col + x32_idx + x16_idx),
475 BLOCK_16X16);
476 } else {
477 for (k = 0; k < 4; ++k) {
478 const int x8_idx = (k & 1);
479 const int y8_idx = (k >> 1);
480 set_block_size(cpi,
481 (mi_row + y32_idx + y16_idx + y8_idx),
482 (mi_col + x32_idx + x16_idx + x8_idx),
483 BLOCK_8X8);
484 }
485 }
486 #else
487 if (!set_vt_partitioning(cpi, &vt.split[i].split[j], tile,
488 BLOCK_16X16,
489 (mi_row + y32_idx + y16_idx),
490 (mi_col + x32_idx + x16_idx), 2)) {
491 for (k = 0; k < 4; ++k) {
492 const int x8_idx = (k & 1);
493 const int y8_idx = (k >> 1);
494 set_block_size(cpi,
495 (mi_row + y32_idx + y16_idx + y8_idx),
496 (mi_col + x32_idx + x16_idx + x8_idx),
497 BLOCK_8X8);
498 }
499 }
500 #endif
501 }
502 }
503 }
504 }
505 }
506
update_state(VP9_COMP * cpi,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled)507 static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
508 int mi_row, int mi_col, BLOCK_SIZE bsize,
509 int output_enabled) {
510 int i, x_idx, y;
511 VP9_COMMON *const cm = &cpi->common;
512 RD_OPT *const rd_opt = &cpi->rd;
513 MACROBLOCK *const x = &cpi->mb;
514 MACROBLOCKD *const xd = &x->e_mbd;
515 struct macroblock_plane *const p = x->plane;
516 struct macroblockd_plane *const pd = xd->plane;
517 MODE_INFO *mi = &ctx->mic;
518 MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
519 MODE_INFO *mi_addr = &xd->mi[0];
520 const struct segmentation *const seg = &cm->seg;
521
522 const int mis = cm->mi_stride;
523 const int mi_width = num_8x8_blocks_wide_lookup[bsize];
524 const int mi_height = num_8x8_blocks_high_lookup[bsize];
525 int max_plane;
526
527 assert(mi->mbmi.sb_type == bsize);
528
529 *mi_addr = *mi;
530 mi_addr->src_mi = mi_addr;
531
532 // If segmentation in use
533 if (seg->enabled && output_enabled) {
534 // For in frame complexity AQ copy the segment id from the segment map.
535 if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
536 const uint8_t *const map = seg->update_map ? cpi->segmentation_map
537 : cm->last_frame_seg_map;
538 mi_addr->mbmi.segment_id =
539 vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
540 }
541 // Else for cyclic refresh mode update the segment map, set the segment id
542 // and then update the quantizer.
543 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
544 vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0].src_mi->mbmi,
545 mi_row, mi_col, bsize, 1);
546 }
547 }
548
549 max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
550 for (i = 0; i < max_plane; ++i) {
551 p[i].coeff = ctx->coeff_pbuf[i][1];
552 p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
553 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
554 p[i].eobs = ctx->eobs_pbuf[i][1];
555 }
556
557 for (i = max_plane; i < MAX_MB_PLANE; ++i) {
558 p[i].coeff = ctx->coeff_pbuf[i][2];
559 p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
560 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
561 p[i].eobs = ctx->eobs_pbuf[i][2];
562 }
563
564 // Restore the coding context of the MB to that that was in place
565 // when the mode was picked for it
566 for (y = 0; y < mi_height; y++)
567 for (x_idx = 0; x_idx < mi_width; x_idx++)
568 if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
569 && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
570 xd->mi[x_idx + y * mis].src_mi = mi_addr;
571 }
572
573 if (cpi->oxcf.aq_mode)
574 vp9_init_plane_quantizers(cpi, x);
575
576 // FIXME(rbultje) I'm pretty sure this should go to the end of this block
577 // (i.e. after the output_enabled)
578 if (bsize < BLOCK_32X32) {
579 if (bsize < BLOCK_16X16)
580 ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8];
581 ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16];
582 }
583
584 if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
585 mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
586 mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
587 }
588
589 x->skip = ctx->skip;
590 vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk,
591 sizeof(uint8_t) * ctx->num_4x4_blk);
592
593 if (!output_enabled)
594 return;
595
596 if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
597 for (i = 0; i < TX_MODES; i++)
598 rd_opt->tx_select_diff[i] += ctx->tx_rd_diff[i];
599 }
600
601 #if CONFIG_INTERNAL_STATS
602 if (frame_is_intra_only(cm)) {
603 static const int kf_mode_index[] = {
604 THR_DC /*DC_PRED*/,
605 THR_V_PRED /*V_PRED*/,
606 THR_H_PRED /*H_PRED*/,
607 THR_D45_PRED /*D45_PRED*/,
608 THR_D135_PRED /*D135_PRED*/,
609 THR_D117_PRED /*D117_PRED*/,
610 THR_D153_PRED /*D153_PRED*/,
611 THR_D207_PRED /*D207_PRED*/,
612 THR_D63_PRED /*D63_PRED*/,
613 THR_TM /*TM_PRED*/,
614 };
615 ++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]];
616 } else {
617 // Note how often each mode chosen as best
618 ++cpi->mode_chosen_counts[ctx->best_mode_index];
619 }
620 #endif
621 if (!frame_is_intra_only(cm)) {
622 if (is_inter_block(mbmi)) {
623 vp9_update_mv_count(cm, xd);
624
625 if (cm->interp_filter == SWITCHABLE) {
626 const int ctx = vp9_get_pred_context_switchable_interp(xd);
627 ++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
628 }
629 }
630
631 rd_opt->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
632 rd_opt->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
633 rd_opt->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
634
635 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
636 rd_opt->filter_diff[i] += ctx->best_filter_diff[i];
637 }
638 }
639
vp9_setup_src_planes(MACROBLOCK * x,const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col)640 void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
641 int mi_row, int mi_col) {
642 uint8_t *const buffers[3] = {src->y_buffer, src->u_buffer, src->v_buffer };
643 const int strides[3] = {src->y_stride, src->uv_stride, src->uv_stride };
644 int i;
645
646 // Set current frame pointer.
647 x->e_mbd.cur_buf = src;
648
649 for (i = 0; i < MAX_MB_PLANE; i++)
650 setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
651 NULL, x->e_mbd.plane[i].subsampling_x,
652 x->e_mbd.plane[i].subsampling_y);
653 }
654
set_mode_info_seg_skip(MACROBLOCK * x,TX_MODE tx_mode,int * rate,int64_t * dist,BLOCK_SIZE bsize)655 static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode, int *rate,
656 int64_t *dist, BLOCK_SIZE bsize) {
657 MACROBLOCKD *const xd = &x->e_mbd;
658 MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
659 INTERP_FILTER filter_ref;
660
661 if (xd->up_available)
662 filter_ref = xd->mi[-xd->mi_stride].src_mi->mbmi.interp_filter;
663 else if (xd->left_available)
664 filter_ref = xd->mi[-1].src_mi->mbmi.interp_filter;
665 else
666 filter_ref = EIGHTTAP;
667
668 mbmi->sb_type = bsize;
669 mbmi->mode = ZEROMV;
670 mbmi->tx_size = MIN(max_txsize_lookup[bsize],
671 tx_mode_to_biggest_tx_size[tx_mode]);
672 mbmi->skip = 1;
673 mbmi->uv_mode = DC_PRED;
674 mbmi->ref_frame[0] = LAST_FRAME;
675 mbmi->ref_frame[1] = NONE;
676 mbmi->mv[0].as_int = 0;
677 mbmi->interp_filter = filter_ref;
678
679 xd->mi[0].src_mi->bmi[0].as_mv[0].as_int = 0;
680 x->skip = 1;
681
682 *rate = 0;
683 *dist = 0;
684 }
685
rd_pick_sb_modes(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,int * totalrate,int64_t * totaldist,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,int64_t best_rd,int block)686 static void rd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
687 int mi_row, int mi_col,
688 int *totalrate, int64_t *totaldist,
689 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
690 int64_t best_rd, int block) {
691 VP9_COMMON *const cm = &cpi->common;
692 MACROBLOCK *const x = &cpi->mb;
693 MACROBLOCKD *const xd = &x->e_mbd;
694 MB_MODE_INFO *mbmi;
695 struct macroblock_plane *const p = x->plane;
696 struct macroblockd_plane *const pd = xd->plane;
697 const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
698 int i, orig_rdmult;
699 double rdmult_ratio;
700
701 vp9_clear_system_state();
702 rdmult_ratio = 1.0; // avoid uninitialized warnings
703
704 // Use the lower precision, but faster, 32x32 fdct for mode selection.
705 x->use_lp32x32fdct = 1;
706
707 // TODO(JBB): Most other places in the code instead of calling the function
708 // and then checking if its not the first 8x8 we put the check in the
709 // calling function. Do that here.
710 if (bsize < BLOCK_8X8) {
711 // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
712 // there is nothing to be done.
713 if (block != 0) {
714 *totalrate = 0;
715 *totaldist = 0;
716 return;
717 }
718 }
719
720 set_offsets(cpi, tile, mi_row, mi_col, bsize);
721 mbmi = &xd->mi[0].src_mi->mbmi;
722 mbmi->sb_type = bsize;
723
724 for (i = 0; i < MAX_MB_PLANE; ++i) {
725 p[i].coeff = ctx->coeff_pbuf[i][0];
726 p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
727 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
728 p[i].eobs = ctx->eobs_pbuf[i][0];
729 }
730 ctx->is_coded = 0;
731 ctx->skippable = 0;
732 x->skip_recode = 0;
733
734 // Set to zero to make sure we do not use the previous encoded frame stats
735 mbmi->skip = 0;
736
737 x->source_variance = get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
738
739 // Save rdmult before it might be changed, so it can be restored later.
740 orig_rdmult = x->rdmult;
741
742 if (aq_mode == VARIANCE_AQ) {
743 const int energy = bsize <= BLOCK_16X16 ? x->mb_energy
744 : vp9_block_energy(cpi, x, bsize);
745 if (cm->frame_type == KEY_FRAME ||
746 cpi->refresh_alt_ref_frame ||
747 (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
748 mbmi->segment_id = vp9_vaq_segment_id(energy);
749 } else {
750 const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
751 : cm->last_frame_seg_map;
752 mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
753 }
754
755 rdmult_ratio = vp9_vaq_rdmult_ratio(energy);
756 vp9_init_plane_quantizers(cpi, x);
757 vp9_clear_system_state();
758 x->rdmult = (int)round(x->rdmult * rdmult_ratio);
759 } else if (aq_mode == COMPLEXITY_AQ) {
760 const int mi_offset = mi_row * cm->mi_cols + mi_col;
761 unsigned char complexity = cpi->complexity_map[mi_offset];
762 const int is_edge = (mi_row <= 1) || (mi_row >= (cm->mi_rows - 2)) ||
763 (mi_col <= 1) || (mi_col >= (cm->mi_cols - 2));
764 if (!is_edge && (complexity > 128))
765 x->rdmult += ((x->rdmult * (complexity - 128)) / 256);
766 } else if (aq_mode == CYCLIC_REFRESH_AQ) {
767 const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
768 : cm->last_frame_seg_map;
769 // If segment 1, use rdmult for that segment.
770 if (vp9_get_segment_id(cm, map, bsize, mi_row, mi_col))
771 x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
772 }
773
774 // Find best coding mode & reconstruct the MB so it is available
775 // as a predictor for MBs that follow in the SB
776 if (frame_is_intra_only(cm)) {
777 vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx,
778 best_rd);
779 } else {
780 if (bsize >= BLOCK_8X8) {
781 if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
782 vp9_rd_pick_inter_mode_sb_seg_skip(cpi, x, totalrate, totaldist, bsize,
783 ctx, best_rd);
784 else
785 vp9_rd_pick_inter_mode_sb(cpi, x, tile, mi_row, mi_col,
786 totalrate, totaldist, bsize, ctx, best_rd);
787 } else {
788 vp9_rd_pick_inter_mode_sub8x8(cpi, x, tile, mi_row, mi_col, totalrate,
789 totaldist, bsize, ctx, best_rd);
790 }
791 }
792
793 x->rdmult = orig_rdmult;
794
795 if (aq_mode == VARIANCE_AQ && *totalrate != INT_MAX) {
796 vp9_clear_system_state();
797 *totalrate = (int)round(*totalrate * rdmult_ratio);
798 }
799 }
800
update_stats(VP9_COMMON * cm,const MACROBLOCK * x)801 static void update_stats(VP9_COMMON *cm, const MACROBLOCK *x) {
802 const MACROBLOCKD *const xd = &x->e_mbd;
803 const MODE_INFO *const mi = xd->mi[0].src_mi;
804 const MB_MODE_INFO *const mbmi = &mi->mbmi;
805
806 if (!frame_is_intra_only(cm)) {
807 const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
808 SEG_LVL_REF_FRAME);
809 if (!seg_ref_active) {
810 FRAME_COUNTS *const counts = &cm->counts;
811 const int inter_block = is_inter_block(mbmi);
812
813 counts->intra_inter[vp9_get_intra_inter_context(xd)][inter_block]++;
814
815 // If the segment reference feature is enabled we have only a single
816 // reference frame allowed for the segment so exclude it from
817 // the reference frame counts used to work out probabilities.
818 if (inter_block) {
819 const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
820
821 if (cm->reference_mode == REFERENCE_MODE_SELECT)
822 counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
823 [has_second_ref(mbmi)]++;
824
825 if (has_second_ref(mbmi)) {
826 counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)]
827 [ref0 == GOLDEN_FRAME]++;
828 } else {
829 counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
830 [ref0 != LAST_FRAME]++;
831 if (ref0 != LAST_FRAME)
832 counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
833 [ref0 != GOLDEN_FRAME]++;
834 }
835 }
836 }
837 }
838 }
839
restore_context(VP9_COMP * cpi,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)840 static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col,
841 ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
842 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
843 PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
844 BLOCK_SIZE bsize) {
845 MACROBLOCK *const x = &cpi->mb;
846 MACROBLOCKD *const xd = &x->e_mbd;
847 int p;
848 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
849 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
850 int mi_width = num_8x8_blocks_wide_lookup[bsize];
851 int mi_height = num_8x8_blocks_high_lookup[bsize];
852 for (p = 0; p < MAX_MB_PLANE; p++) {
853 vpx_memcpy(
854 xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
855 a + num_4x4_blocks_wide * p,
856 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
857 xd->plane[p].subsampling_x);
858 vpx_memcpy(
859 xd->left_context[p]
860 + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
861 l + num_4x4_blocks_high * p,
862 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
863 xd->plane[p].subsampling_y);
864 }
865 vpx_memcpy(xd->above_seg_context + mi_col, sa,
866 sizeof(*xd->above_seg_context) * mi_width);
867 vpx_memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
868 sizeof(xd->left_seg_context[0]) * mi_height);
869 }
870
save_context(VP9_COMP * cpi,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)871 static void save_context(VP9_COMP *cpi, int mi_row, int mi_col,
872 ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
873 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
874 PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
875 BLOCK_SIZE bsize) {
876 const MACROBLOCK *const x = &cpi->mb;
877 const MACROBLOCKD *const xd = &x->e_mbd;
878 int p;
879 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
880 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
881 int mi_width = num_8x8_blocks_wide_lookup[bsize];
882 int mi_height = num_8x8_blocks_high_lookup[bsize];
883
884 // buffer the above/left context information of the block in search.
885 for (p = 0; p < MAX_MB_PLANE; ++p) {
886 vpx_memcpy(
887 a + num_4x4_blocks_wide * p,
888 xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
889 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
890 xd->plane[p].subsampling_x);
891 vpx_memcpy(
892 l + num_4x4_blocks_high * p,
893 xd->left_context[p]
894 + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
895 (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
896 xd->plane[p].subsampling_y);
897 }
898 vpx_memcpy(sa, xd->above_seg_context + mi_col,
899 sizeof(*xd->above_seg_context) * mi_width);
900 vpx_memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
901 sizeof(xd->left_seg_context[0]) * mi_height);
902 }
903
encode_b(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)904 static void encode_b(VP9_COMP *cpi, const TileInfo *const tile,
905 TOKENEXTRA **tp, int mi_row, int mi_col,
906 int output_enabled, BLOCK_SIZE bsize,
907 PICK_MODE_CONTEXT *ctx) {
908 set_offsets(cpi, tile, mi_row, mi_col, bsize);
909 update_state(cpi, ctx, mi_row, mi_col, bsize, output_enabled);
910 encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx);
911
912 if (output_enabled) {
913 update_stats(&cpi->common, &cpi->mb);
914
915 (*tp)->token = EOSB_TOKEN;
916 (*tp)++;
917 }
918 }
919
encode_sb(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)920 static void encode_sb(VP9_COMP *cpi, const TileInfo *const tile,
921 TOKENEXTRA **tp, int mi_row, int mi_col,
922 int output_enabled, BLOCK_SIZE bsize,
923 PC_TREE *pc_tree) {
924 VP9_COMMON *const cm = &cpi->common;
925 MACROBLOCK *const x = &cpi->mb;
926 MACROBLOCKD *const xd = &x->e_mbd;
927
928 const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
929 int ctx;
930 PARTITION_TYPE partition;
931 BLOCK_SIZE subsize = bsize;
932
933 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
934 return;
935
936 if (bsize >= BLOCK_8X8) {
937 ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
938 subsize = get_subsize(bsize, pc_tree->partitioning);
939 } else {
940 ctx = 0;
941 subsize = BLOCK_4X4;
942 }
943
944 partition = partition_lookup[bsl][subsize];
945 if (output_enabled && bsize != BLOCK_4X4)
946 cm->counts.partition[ctx][partition]++;
947
948 switch (partition) {
949 case PARTITION_NONE:
950 encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
951 &pc_tree->none);
952 break;
953 case PARTITION_VERT:
954 encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
955 &pc_tree->vertical[0]);
956 if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
957 encode_b(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize,
958 &pc_tree->vertical[1]);
959 }
960 break;
961 case PARTITION_HORZ:
962 encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
963 &pc_tree->horizontal[0]);
964 if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
965 encode_b(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize,
966 &pc_tree->horizontal[1]);
967 }
968 break;
969 case PARTITION_SPLIT:
970 if (bsize == BLOCK_8X8) {
971 encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
972 pc_tree->leaf_split[0]);
973 } else {
974 encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
975 pc_tree->split[0]);
976 encode_sb(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize,
977 pc_tree->split[1]);
978 encode_sb(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize,
979 pc_tree->split[2]);
980 encode_sb(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
981 subsize, pc_tree->split[3]);
982 }
983 break;
984 default:
985 assert("Invalid partition type.");
986 break;
987 }
988
989 if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
990 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
991 }
992
993 // Check to see if the given partition size is allowed for a specified number
994 // of 8x8 block rows and columns remaining in the image.
995 // If not then return the largest allowed partition size
find_partition_size(BLOCK_SIZE bsize,int rows_left,int cols_left,int * bh,int * bw)996 static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
997 int rows_left, int cols_left,
998 int *bh, int *bw) {
999 if (rows_left <= 0 || cols_left <= 0) {
1000 return MIN(bsize, BLOCK_8X8);
1001 } else {
1002 for (; bsize > 0; bsize -= 3) {
1003 *bh = num_8x8_blocks_high_lookup[bsize];
1004 *bw = num_8x8_blocks_wide_lookup[bsize];
1005 if ((*bh <= rows_left) && (*bw <= cols_left)) {
1006 break;
1007 }
1008 }
1009 }
1010 return bsize;
1011 }
1012
set_partial_b64x64_partition(MODE_INFO * mi,int mis,int bh_in,int bw_in,int row8x8_remaining,int col8x8_remaining,BLOCK_SIZE bsize,MODE_INFO * mi_8x8)1013 static void set_partial_b64x64_partition(MODE_INFO *mi, int mis,
1014 int bh_in, int bw_in, int row8x8_remaining, int col8x8_remaining,
1015 BLOCK_SIZE bsize, MODE_INFO *mi_8x8) {
1016 int bh = bh_in;
1017 int r, c;
1018 for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
1019 int bw = bw_in;
1020 for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
1021 const int index = r * mis + c;
1022 mi_8x8[index].src_mi = mi + index;
1023 mi_8x8[index].src_mi->mbmi.sb_type = find_partition_size(bsize,
1024 row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
1025 }
1026 }
1027 }
1028
1029 // This function attempts to set all mode info entries in a given SB64
1030 // to the same block partition size.
1031 // However, at the bottom and right borders of the image the requested size
1032 // may not be allowed in which case this code attempts to choose the largest
1033 // allowable partition.
set_fixed_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO * mi_8x8,int mi_row,int mi_col,BLOCK_SIZE bsize)1034 static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
1035 MODE_INFO *mi_8x8, int mi_row, int mi_col,
1036 BLOCK_SIZE bsize) {
1037 VP9_COMMON *const cm = &cpi->common;
1038 const int mis = cm->mi_stride;
1039 const int row8x8_remaining = tile->mi_row_end - mi_row;
1040 const int col8x8_remaining = tile->mi_col_end - mi_col;
1041 int block_row, block_col;
1042 MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
1043 int bh = num_8x8_blocks_high_lookup[bsize];
1044 int bw = num_8x8_blocks_wide_lookup[bsize];
1045
1046 assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
1047
1048 // Apply the requested partition size to the SB64 if it is all "in image"
1049 if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
1050 (row8x8_remaining >= MI_BLOCK_SIZE)) {
1051 for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
1052 for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
1053 int index = block_row * mis + block_col;
1054 mi_8x8[index].src_mi = mi_upper_left + index;
1055 mi_8x8[index].src_mi->mbmi.sb_type = bsize;
1056 }
1057 }
1058 } else {
1059 // Else this is a partial SB64.
1060 set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
1061 col8x8_remaining, bsize, mi_8x8);
1062 }
1063 }
1064
copy_partitioning(VP9_COMMON * cm,MODE_INFO * mi_8x8,MODE_INFO * prev_mi_8x8)1065 static void copy_partitioning(VP9_COMMON *cm, MODE_INFO *mi_8x8,
1066 MODE_INFO *prev_mi_8x8) {
1067 const int mis = cm->mi_stride;
1068 int block_row, block_col;
1069
1070 for (block_row = 0; block_row < 8; ++block_row) {
1071 for (block_col = 0; block_col < 8; ++block_col) {
1072 MODE_INFO *const prev_mi =
1073 prev_mi_8x8[block_row * mis + block_col].src_mi;
1074 const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
1075
1076 if (prev_mi) {
1077 const ptrdiff_t offset = prev_mi - cm->prev_mi;
1078 mi_8x8[block_row * mis + block_col].src_mi = cm->mi + offset;
1079 mi_8x8[block_row * mis + block_col].src_mi->mbmi.sb_type = sb_type;
1080 }
1081 }
1082 }
1083 }
1084
constrain_copy_partitioning(VP9_COMP * const cpi,const TileInfo * const tile,MODE_INFO * mi_8x8,MODE_INFO * prev_mi_8x8,int mi_row,int mi_col,BLOCK_SIZE bsize)1085 static void constrain_copy_partitioning(VP9_COMP *const cpi,
1086 const TileInfo *const tile,
1087 MODE_INFO *mi_8x8,
1088 MODE_INFO *prev_mi_8x8,
1089 int mi_row, int mi_col,
1090 BLOCK_SIZE bsize) {
1091 VP9_COMMON *const cm = &cpi->common;
1092 const int mis = cm->mi_stride;
1093 const int row8x8_remaining = tile->mi_row_end - mi_row;
1094 const int col8x8_remaining = tile->mi_col_end - mi_col;
1095 MODE_INFO *const mi_upper_left = cm->mi + mi_row * mis + mi_col;
1096 const int bh = num_8x8_blocks_high_lookup[bsize];
1097 const int bw = num_8x8_blocks_wide_lookup[bsize];
1098 int block_row, block_col;
1099
1100 assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
1101
1102 // If the SB64 if it is all "in image".
1103 if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
1104 (row8x8_remaining >= MI_BLOCK_SIZE)) {
1105 for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
1106 for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
1107 const int index = block_row * mis + block_col;
1108 MODE_INFO *prev_mi = prev_mi_8x8[index].src_mi;
1109 const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
1110 // Use previous partition if block size is not larger than bsize.
1111 if (prev_mi && sb_type <= bsize) {
1112 int block_row2, block_col2;
1113 for (block_row2 = 0; block_row2 < bh; ++block_row2) {
1114 for (block_col2 = 0; block_col2 < bw; ++block_col2) {
1115 const int index2 = (block_row + block_row2) * mis +
1116 block_col + block_col2;
1117 prev_mi = prev_mi_8x8[index2].src_mi;
1118 if (prev_mi) {
1119 const ptrdiff_t offset = prev_mi - cm->prev_mi;
1120 mi_8x8[index2].src_mi = cm->mi + offset;
1121 mi_8x8[index2].src_mi->mbmi.sb_type = prev_mi->mbmi.sb_type;
1122 }
1123 }
1124 }
1125 } else {
1126 // Otherwise, use fixed partition of size bsize.
1127 mi_8x8[index].src_mi = mi_upper_left + index;
1128 mi_8x8[index].src_mi->mbmi.sb_type = bsize;
1129 }
1130 }
1131 }
1132 } else {
1133 // Else this is a partial SB64, copy previous partition.
1134 copy_partitioning(cm, mi_8x8, prev_mi_8x8);
1135 }
1136 }
1137
1138 const struct {
1139 int row;
1140 int col;
1141 } coord_lookup[16] = {
1142 // 32x32 index = 0
1143 {0, 0}, {0, 2}, {2, 0}, {2, 2},
1144 // 32x32 index = 1
1145 {0, 4}, {0, 6}, {2, 4}, {2, 6},
1146 // 32x32 index = 2
1147 {4, 0}, {4, 2}, {6, 0}, {6, 2},
1148 // 32x32 index = 3
1149 {4, 4}, {4, 6}, {6, 4}, {6, 6},
1150 };
1151
set_source_var_based_partition(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO * mi_8x8,int mi_row,int mi_col)1152 static void set_source_var_based_partition(VP9_COMP *cpi,
1153 const TileInfo *const tile,
1154 MODE_INFO *mi_8x8,
1155 int mi_row, int mi_col) {
1156 VP9_COMMON *const cm = &cpi->common;
1157 MACROBLOCK *const x = &cpi->mb;
1158 const int mis = cm->mi_stride;
1159 const int row8x8_remaining = tile->mi_row_end - mi_row;
1160 const int col8x8_remaining = tile->mi_col_end - mi_col;
1161 MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
1162
1163 vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
1164
1165 assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
1166
1167 // In-image SB64
1168 if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
1169 (row8x8_remaining >= MI_BLOCK_SIZE)) {
1170 int i, j;
1171 int index;
1172 diff d32[4];
1173 const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
1174 int is_larger_better = 0;
1175 int use32x32 = 0;
1176 unsigned int thr = cpi->source_var_thresh;
1177
1178 vpx_memset(d32, 0, 4 * sizeof(diff));
1179
1180 for (i = 0; i < 4; i++) {
1181 diff *d16[4];
1182
1183 for (j = 0; j < 4; j++) {
1184 int b_mi_row = coord_lookup[i * 4 + j].row;
1185 int b_mi_col = coord_lookup[i * 4 + j].col;
1186 int boffset = b_mi_row / 2 * cm->mb_cols +
1187 b_mi_col / 2;
1188
1189 d16[j] = cpi->source_diff_var + offset + boffset;
1190
1191 index = b_mi_row * mis + b_mi_col;
1192 mi_8x8[index].src_mi = mi_upper_left + index;
1193 mi_8x8[index].src_mi->mbmi.sb_type = BLOCK_16X16;
1194
1195 // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
1196 // size to further improve quality.
1197 }
1198
1199 is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
1200 (d16[2]->var < thr) && (d16[3]->var < thr);
1201
1202 // Use 32x32 partition
1203 if (is_larger_better) {
1204 use32x32 += 1;
1205
1206 for (j = 0; j < 4; j++) {
1207 d32[i].sse += d16[j]->sse;
1208 d32[i].sum += d16[j]->sum;
1209 }
1210
1211 d32[i].var = d32[i].sse - (((int64_t)d32[i].sum * d32[i].sum) >> 10);
1212
1213 index = coord_lookup[i*4].row * mis + coord_lookup[i*4].col;
1214 mi_8x8[index].src_mi = mi_upper_left + index;
1215 mi_8x8[index].src_mi->mbmi.sb_type = BLOCK_32X32;
1216 }
1217 }
1218
1219 if (use32x32 == 4) {
1220 thr <<= 1;
1221 is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
1222 (d32[2].var < thr) && (d32[3].var < thr);
1223
1224 // Use 64x64 partition
1225 if (is_larger_better) {
1226 mi_8x8[0].src_mi = mi_upper_left;
1227 mi_8x8[0].src_mi->mbmi.sb_type = BLOCK_64X64;
1228 }
1229 }
1230 } else { // partial in-image SB64
1231 int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
1232 int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
1233 set_partial_b64x64_partition(mi_upper_left, mis, bh, bw,
1234 row8x8_remaining, col8x8_remaining, BLOCK_16X16, mi_8x8);
1235 }
1236 }
1237
is_background(const VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col)1238 static int is_background(const VP9_COMP *cpi, const TileInfo *const tile,
1239 int mi_row, int mi_col) {
1240 // This assumes the input source frames are of the same dimension.
1241 const int row8x8_remaining = tile->mi_row_end - mi_row;
1242 const int col8x8_remaining = tile->mi_col_end - mi_col;
1243 const int x = mi_col * MI_SIZE;
1244 const int y = mi_row * MI_SIZE;
1245 const int src_stride = cpi->Source->y_stride;
1246 const uint8_t *const src = &cpi->Source->y_buffer[y * src_stride + x];
1247 const int pre_stride = cpi->Last_Source->y_stride;
1248 const uint8_t *const pre = &cpi->Last_Source->y_buffer[y * pre_stride + x];
1249 int this_sad = 0;
1250 int threshold = 0;
1251
1252 if (row8x8_remaining >= MI_BLOCK_SIZE &&
1253 col8x8_remaining >= MI_BLOCK_SIZE) {
1254 this_sad = cpi->fn_ptr[BLOCK_64X64].sdf(src, src_stride, pre, pre_stride);
1255 threshold = (1 << 12);
1256 } else {
1257 int r, c;
1258 for (r = 0; r < row8x8_remaining; r += 2)
1259 for (c = 0; c < col8x8_remaining; c += 2)
1260 this_sad += cpi->fn_ptr[BLOCK_16X16].sdf(src, src_stride,
1261 pre, pre_stride);
1262 threshold = (row8x8_remaining * col8x8_remaining) << 6;
1263 }
1264
1265 return this_sad < 2 * threshold;
1266 }
1267
sb_has_motion(const VP9_COMMON * cm,MODE_INFO * prev_mi_8x8,const int motion_thresh)1268 static int sb_has_motion(const VP9_COMMON *cm, MODE_INFO *prev_mi_8x8,
1269 const int motion_thresh) {
1270 const int mis = cm->mi_stride;
1271 int block_row, block_col;
1272
1273 if (cm->prev_mi) {
1274 for (block_row = 0; block_row < 8; ++block_row) {
1275 for (block_col = 0; block_col < 8; ++block_col) {
1276 const MODE_INFO *prev_mi =
1277 prev_mi_8x8[block_row * mis + block_col].src_mi;
1278 if (prev_mi) {
1279 if (abs(prev_mi->mbmi.mv[0].as_mv.row) > motion_thresh ||
1280 abs(prev_mi->mbmi.mv[0].as_mv.col) > motion_thresh)
1281 return 1;
1282 }
1283 }
1284 }
1285 }
1286 return 0;
1287 }
1288
update_state_rt(VP9_COMP * cpi,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,int bsize)1289 static void update_state_rt(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
1290 int mi_row, int mi_col, int bsize) {
1291 VP9_COMMON *const cm = &cpi->common;
1292 MACROBLOCK *const x = &cpi->mb;
1293 MACROBLOCKD *const xd = &x->e_mbd;
1294 MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
1295 const struct segmentation *const seg = &cm->seg;
1296
1297 *(xd->mi[0].src_mi) = ctx->mic;
1298 xd->mi[0].src_mi = &xd->mi[0];
1299
1300
1301 // For in frame adaptive Q, check for reseting the segment_id and updating
1302 // the cyclic refresh map.
1303 if ((cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) && seg->enabled) {
1304 vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0].src_mi->mbmi,
1305 mi_row, mi_col, bsize, 1);
1306 vp9_init_plane_quantizers(cpi, x);
1307 }
1308
1309 if (is_inter_block(mbmi)) {
1310 vp9_update_mv_count(cm, xd);
1311
1312 if (cm->interp_filter == SWITCHABLE) {
1313 const int pred_ctx = vp9_get_pred_context_switchable_interp(xd);
1314 ++cm->counts.switchable_interp[pred_ctx][mbmi->interp_filter];
1315 }
1316 }
1317
1318 x->skip = ctx->skip;
1319 x->skip_txfm[0] = mbmi->segment_id ? 0 : ctx->skip_txfm[0];
1320 }
1321
encode_b_rt(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)1322 static void encode_b_rt(VP9_COMP *cpi, const TileInfo *const tile,
1323 TOKENEXTRA **tp, int mi_row, int mi_col,
1324 int output_enabled, BLOCK_SIZE bsize,
1325 PICK_MODE_CONTEXT *ctx) {
1326 set_offsets(cpi, tile, mi_row, mi_col, bsize);
1327 update_state_rt(cpi, ctx, mi_row, mi_col, bsize);
1328
1329 #if CONFIG_VP9_TEMPORAL_DENOISING
1330 if (cpi->oxcf.noise_sensitivity > 0 && output_enabled) {
1331 vp9_denoiser_denoise(&cpi->denoiser, &cpi->mb, mi_row, mi_col,
1332 MAX(BLOCK_8X8, bsize), ctx);
1333 }
1334 #endif
1335
1336 encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx);
1337 update_stats(&cpi->common, &cpi->mb);
1338
1339 (*tp)->token = EOSB_TOKEN;
1340 (*tp)++;
1341 }
1342
encode_sb_rt(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)1343 static void encode_sb_rt(VP9_COMP *cpi, const TileInfo *const tile,
1344 TOKENEXTRA **tp, int mi_row, int mi_col,
1345 int output_enabled, BLOCK_SIZE bsize,
1346 PC_TREE *pc_tree) {
1347 VP9_COMMON *const cm = &cpi->common;
1348 MACROBLOCK *const x = &cpi->mb;
1349 MACROBLOCKD *const xd = &x->e_mbd;
1350
1351 const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
1352 int ctx;
1353 PARTITION_TYPE partition;
1354 BLOCK_SIZE subsize;
1355
1356 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
1357 return;
1358
1359 if (bsize >= BLOCK_8X8) {
1360 const int idx_str = xd->mi_stride * mi_row + mi_col;
1361 MODE_INFO *mi_8x8 = cm->mi[idx_str].src_mi;
1362 ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1363 subsize = mi_8x8[0].src_mi->mbmi.sb_type;
1364 } else {
1365 ctx = 0;
1366 subsize = BLOCK_4X4;
1367 }
1368
1369 partition = partition_lookup[bsl][subsize];
1370 if (output_enabled && bsize != BLOCK_4X4)
1371 cm->counts.partition[ctx][partition]++;
1372
1373 switch (partition) {
1374 case PARTITION_NONE:
1375 encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
1376 &pc_tree->none);
1377 break;
1378 case PARTITION_VERT:
1379 encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
1380 &pc_tree->vertical[0]);
1381 if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
1382 encode_b_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
1383 subsize, &pc_tree->vertical[1]);
1384 }
1385 break;
1386 case PARTITION_HORZ:
1387 encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
1388 &pc_tree->horizontal[0]);
1389 if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
1390 encode_b_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
1391 subsize, &pc_tree->horizontal[1]);
1392 }
1393 break;
1394 case PARTITION_SPLIT:
1395 subsize = get_subsize(bsize, PARTITION_SPLIT);
1396 encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
1397 pc_tree->split[0]);
1398 encode_sb_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
1399 subsize, pc_tree->split[1]);
1400 encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
1401 subsize, pc_tree->split[2]);
1402 encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
1403 subsize, pc_tree->split[3]);
1404 break;
1405 default:
1406 assert("Invalid partition type.");
1407 break;
1408 }
1409
1410 if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
1411 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1412 }
1413
rd_use_partition(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO * mi_8x8,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon,PC_TREE * pc_tree)1414 static void rd_use_partition(VP9_COMP *cpi,
1415 const TileInfo *const tile,
1416 MODE_INFO *mi_8x8,
1417 TOKENEXTRA **tp, int mi_row, int mi_col,
1418 BLOCK_SIZE bsize, int *rate, int64_t *dist,
1419 int do_recon, PC_TREE *pc_tree) {
1420 VP9_COMMON *const cm = &cpi->common;
1421 MACROBLOCK *const x = &cpi->mb;
1422 MACROBLOCKD *const xd = &x->e_mbd;
1423 const int mis = cm->mi_stride;
1424 const int bsl = b_width_log2(bsize);
1425 const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
1426 const int bss = (1 << bsl) / 4;
1427 int i, pl;
1428 PARTITION_TYPE partition = PARTITION_NONE;
1429 BLOCK_SIZE subsize;
1430 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
1431 PARTITION_CONTEXT sl[8], sa[8];
1432 int last_part_rate = INT_MAX;
1433 int64_t last_part_dist = INT64_MAX;
1434 int64_t last_part_rd = INT64_MAX;
1435 int none_rate = INT_MAX;
1436 int64_t none_dist = INT64_MAX;
1437 int64_t none_rd = INT64_MAX;
1438 int chosen_rate = INT_MAX;
1439 int64_t chosen_dist = INT64_MAX;
1440 int64_t chosen_rd = INT64_MAX;
1441 BLOCK_SIZE sub_subsize = BLOCK_4X4;
1442 int splits_below = 0;
1443 BLOCK_SIZE bs_type = mi_8x8[0].src_mi->mbmi.sb_type;
1444 int do_partition_search = 1;
1445 PICK_MODE_CONTEXT *ctx = &pc_tree->none;
1446
1447 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
1448 return;
1449
1450 assert(num_4x4_blocks_wide_lookup[bsize] ==
1451 num_4x4_blocks_high_lookup[bsize]);
1452
1453 partition = partition_lookup[bsl][bs_type];
1454 subsize = get_subsize(bsize, partition);
1455
1456 pc_tree->partitioning = partition;
1457 save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1458
1459 if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode) {
1460 set_offsets(cpi, tile, mi_row, mi_col, bsize);
1461 x->mb_energy = vp9_block_energy(cpi, x, bsize);
1462 }
1463
1464 if (do_partition_search &&
1465 cpi->sf.partition_search_type == SEARCH_PARTITION &&
1466 cpi->sf.adjust_partitioning_from_last_frame) {
1467 // Check if any of the sub blocks are further split.
1468 if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
1469 sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
1470 splits_below = 1;
1471 for (i = 0; i < 4; i++) {
1472 int jj = i >> 1, ii = i & 0x01;
1473 MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss].src_mi;
1474 if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
1475 splits_below = 0;
1476 }
1477 }
1478 }
1479
1480 // If partition is not none try none unless each of the 4 splits are split
1481 // even further..
1482 if (partition != PARTITION_NONE && !splits_below &&
1483 mi_row + (mi_step >> 1) < cm->mi_rows &&
1484 mi_col + (mi_step >> 1) < cm->mi_cols) {
1485 pc_tree->partitioning = PARTITION_NONE;
1486 rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rate, &none_dist, bsize,
1487 ctx, INT64_MAX, 0);
1488
1489 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
1490
1491 if (none_rate < INT_MAX) {
1492 none_rate += cpi->partition_cost[pl][PARTITION_NONE];
1493 none_rd = RDCOST(x->rdmult, x->rddiv, none_rate, none_dist);
1494 }
1495
1496 restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1497 mi_8x8[0].src_mi->mbmi.sb_type = bs_type;
1498 pc_tree->partitioning = partition;
1499 }
1500 }
1501
1502 switch (partition) {
1503 case PARTITION_NONE:
1504 rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1505 &last_part_dist, bsize, ctx, INT64_MAX, 0);
1506 break;
1507 case PARTITION_HORZ:
1508 rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1509 &last_part_dist, subsize, &pc_tree->horizontal[0],
1510 INT64_MAX, 0);
1511 if (last_part_rate != INT_MAX &&
1512 bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) {
1513 int rt = 0;
1514 int64_t dt = 0;
1515 PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
1516 update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
1517 encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
1518 rd_pick_sb_modes(cpi, tile, mi_row + (mi_step >> 1), mi_col, &rt, &dt,
1519 subsize, &pc_tree->horizontal[1], INT64_MAX, 1);
1520 if (rt == INT_MAX || dt == INT64_MAX) {
1521 last_part_rate = INT_MAX;
1522 last_part_dist = INT64_MAX;
1523 break;
1524 }
1525
1526 last_part_rate += rt;
1527 last_part_dist += dt;
1528 }
1529 break;
1530 case PARTITION_VERT:
1531 rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1532 &last_part_dist, subsize, &pc_tree->vertical[0],
1533 INT64_MAX, 0);
1534 if (last_part_rate != INT_MAX &&
1535 bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) {
1536 int rt = 0;
1537 int64_t dt = 0;
1538 PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
1539 update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
1540 encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
1541 rd_pick_sb_modes(cpi, tile, mi_row, mi_col + (mi_step >> 1), &rt, &dt,
1542 subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
1543 INT64_MAX, 1);
1544 if (rt == INT_MAX || dt == INT64_MAX) {
1545 last_part_rate = INT_MAX;
1546 last_part_dist = INT64_MAX;
1547 break;
1548 }
1549 last_part_rate += rt;
1550 last_part_dist += dt;
1551 }
1552 break;
1553 case PARTITION_SPLIT:
1554 if (bsize == BLOCK_8X8) {
1555 rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1556 &last_part_dist, subsize, pc_tree->leaf_split[0],
1557 INT64_MAX, 0);
1558 break;
1559 }
1560 last_part_rate = 0;
1561 last_part_dist = 0;
1562 for (i = 0; i < 4; i++) {
1563 int x_idx = (i & 1) * (mi_step >> 1);
1564 int y_idx = (i >> 1) * (mi_step >> 1);
1565 int jj = i >> 1, ii = i & 0x01;
1566 int rt;
1567 int64_t dt;
1568
1569 if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
1570 continue;
1571
1572 rd_use_partition(cpi, tile, mi_8x8 + jj * bss * mis + ii * bss, tp,
1573 mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt,
1574 i != 3, pc_tree->split[i]);
1575 if (rt == INT_MAX || dt == INT64_MAX) {
1576 last_part_rate = INT_MAX;
1577 last_part_dist = INT64_MAX;
1578 break;
1579 }
1580 last_part_rate += rt;
1581 last_part_dist += dt;
1582 }
1583 break;
1584 default:
1585 assert(0);
1586 break;
1587 }
1588
1589 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
1590 if (last_part_rate < INT_MAX) {
1591 last_part_rate += cpi->partition_cost[pl][partition];
1592 last_part_rd = RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist);
1593 }
1594
1595 if (do_partition_search
1596 && cpi->sf.adjust_partitioning_from_last_frame
1597 && cpi->sf.partition_search_type == SEARCH_PARTITION
1598 && partition != PARTITION_SPLIT && bsize > BLOCK_8X8
1599 && (mi_row + mi_step < cm->mi_rows ||
1600 mi_row + (mi_step >> 1) == cm->mi_rows)
1601 && (mi_col + mi_step < cm->mi_cols ||
1602 mi_col + (mi_step >> 1) == cm->mi_cols)) {
1603 BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
1604 chosen_rate = 0;
1605 chosen_dist = 0;
1606 restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1607 pc_tree->partitioning = PARTITION_SPLIT;
1608
1609 // Split partition.
1610 for (i = 0; i < 4; i++) {
1611 int x_idx = (i & 1) * (mi_step >> 1);
1612 int y_idx = (i >> 1) * (mi_step >> 1);
1613 int rt = 0;
1614 int64_t dt = 0;
1615 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
1616 PARTITION_CONTEXT sl[8], sa[8];
1617
1618 if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
1619 continue;
1620
1621 save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1622 pc_tree->split[i]->partitioning = PARTITION_NONE;
1623 rd_pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
1624 split_subsize, &pc_tree->split[i]->none,
1625 INT64_MAX, i);
1626
1627 restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1628
1629 if (rt == INT_MAX || dt == INT64_MAX) {
1630 chosen_rate = INT_MAX;
1631 chosen_dist = INT64_MAX;
1632 break;
1633 }
1634
1635 chosen_rate += rt;
1636 chosen_dist += dt;
1637
1638 if (i != 3)
1639 encode_sb(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, 0,
1640 split_subsize, pc_tree->split[i]);
1641
1642 pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
1643 split_subsize);
1644 chosen_rate += cpi->partition_cost[pl][PARTITION_NONE];
1645 }
1646 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
1647 if (chosen_rate < INT_MAX) {
1648 chosen_rate += cpi->partition_cost[pl][PARTITION_SPLIT];
1649 chosen_rd = RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist);
1650 }
1651 }
1652
1653 // If last_part is better set the partitioning to that.
1654 if (last_part_rd < chosen_rd) {
1655 mi_8x8[0].src_mi->mbmi.sb_type = bsize;
1656 if (bsize >= BLOCK_8X8)
1657 pc_tree->partitioning = partition;
1658 chosen_rate = last_part_rate;
1659 chosen_dist = last_part_dist;
1660 chosen_rd = last_part_rd;
1661 }
1662 // If none was better set the partitioning to that.
1663 if (none_rd < chosen_rd) {
1664 if (bsize >= BLOCK_8X8)
1665 pc_tree->partitioning = PARTITION_NONE;
1666 chosen_rate = none_rate;
1667 chosen_dist = none_dist;
1668 }
1669
1670 restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1671
1672 // We must have chosen a partitioning and encoding or we'll fail later on.
1673 // No other opportunities for success.
1674 if ( bsize == BLOCK_64X64)
1675 assert(chosen_rate < INT_MAX && chosen_dist < INT64_MAX);
1676
1677 if (do_recon) {
1678 int output_enabled = (bsize == BLOCK_64X64);
1679
1680 // Check the projected output rate for this SB against it's target
1681 // and and if necessary apply a Q delta using segmentation to get
1682 // closer to the target.
1683 if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
1684 vp9_select_in_frame_q_segment(cpi, mi_row, mi_col,
1685 output_enabled, chosen_rate);
1686 }
1687
1688 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1689 vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
1690 chosen_rate, chosen_dist);
1691 encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize,
1692 pc_tree);
1693 }
1694
1695 *rate = chosen_rate;
1696 *dist = chosen_dist;
1697 }
1698
1699 static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
1700 BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
1701 BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
1702 BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
1703 BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
1704 BLOCK_16X16
1705 };
1706
1707 static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
1708 BLOCK_8X8, BLOCK_16X16, BLOCK_16X16,
1709 BLOCK_16X16, BLOCK_32X32, BLOCK_32X32,
1710 BLOCK_32X32, BLOCK_64X64, BLOCK_64X64,
1711 BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
1712 BLOCK_64X64
1713 };
1714
1715 // Look at all the mode_info entries for blocks that are part of this
1716 // partition and find the min and max values for sb_type.
1717 // At the moment this is designed to work on a 64x64 SB but could be
1718 // adjusted to use a size parameter.
1719 //
1720 // The min and max are assumed to have been initialized prior to calling this
1721 // function so repeat calls can accumulate a min and max of more than one sb64.
get_sb_partition_size_range(MACROBLOCKD * xd,MODE_INFO * mi_8x8,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size,int bs_hist[BLOCK_SIZES])1722 static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO *mi_8x8,
1723 BLOCK_SIZE *min_block_size,
1724 BLOCK_SIZE *max_block_size,
1725 int bs_hist[BLOCK_SIZES]) {
1726 int sb_width_in_blocks = MI_BLOCK_SIZE;
1727 int sb_height_in_blocks = MI_BLOCK_SIZE;
1728 int i, j;
1729 int index = 0;
1730
1731 // Check the sb_type for each block that belongs to this region.
1732 for (i = 0; i < sb_height_in_blocks; ++i) {
1733 for (j = 0; j < sb_width_in_blocks; ++j) {
1734 MODE_INFO *mi = mi_8x8[index+j].src_mi;
1735 BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
1736 bs_hist[sb_type]++;
1737 *min_block_size = MIN(*min_block_size, sb_type);
1738 *max_block_size = MAX(*max_block_size, sb_type);
1739 }
1740 index += xd->mi_stride;
1741 }
1742 }
1743
1744 // Next square block size less or equal than current block size.
1745 static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
1746 BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
1747 BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
1748 BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
1749 BLOCK_32X32, BLOCK_32X32, BLOCK_32X32,
1750 BLOCK_64X64
1751 };
1752
1753 // Look at neighboring blocks and set a min and max partition size based on
1754 // what they chose.
rd_auto_partition_range(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)1755 static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
1756 int mi_row, int mi_col,
1757 BLOCK_SIZE *min_block_size,
1758 BLOCK_SIZE *max_block_size) {
1759 VP9_COMMON *const cm = &cpi->common;
1760 MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1761 MODE_INFO *mi = xd->mi[0].src_mi;
1762 const int left_in_image = xd->left_available && mi[-1].src_mi;
1763 const int above_in_image = xd->up_available && mi[-xd->mi_stride].src_mi;
1764 const int row8x8_remaining = tile->mi_row_end - mi_row;
1765 const int col8x8_remaining = tile->mi_col_end - mi_col;
1766 int bh, bw;
1767 BLOCK_SIZE min_size = BLOCK_4X4;
1768 BLOCK_SIZE max_size = BLOCK_64X64;
1769 int i = 0;
1770 int bs_hist[BLOCK_SIZES] = {0};
1771
1772 // Trap case where we do not have a prediction.
1773 if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
1774 // Default "min to max" and "max to min"
1775 min_size = BLOCK_64X64;
1776 max_size = BLOCK_4X4;
1777
1778 // NOTE: each call to get_sb_partition_size_range() uses the previous
1779 // passed in values for min and max as a starting point.
1780 // Find the min and max partition used in previous frame at this location
1781 if (cm->frame_type != KEY_FRAME) {
1782 MODE_INFO *prev_mi =
1783 cm->prev_mip + cm->mi_stride + 1 + mi_row * xd->mi_stride + mi_col;
1784
1785 get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
1786 }
1787 // Find the min and max partition sizes used in the left SB64
1788 if (left_in_image) {
1789 MODE_INFO *left_sb64_mi = mi[-MI_BLOCK_SIZE].src_mi;
1790 get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
1791 bs_hist);
1792 }
1793 // Find the min and max partition sizes used in the above SB64.
1794 if (above_in_image) {
1795 MODE_INFO *above_sb64_mi = mi[-xd->mi_stride * MI_BLOCK_SIZE].src_mi;
1796 get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
1797 bs_hist);
1798 }
1799
1800 // adjust observed min and max
1801 if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
1802 min_size = min_partition_size[min_size];
1803 max_size = max_partition_size[max_size];
1804 } else if (cpi->sf.auto_min_max_partition_size ==
1805 CONSTRAIN_NEIGHBORING_MIN_MAX) {
1806 // adjust the search range based on the histogram of the observed
1807 // partition sizes from left, above the previous co-located blocks
1808 int sum = 0;
1809 int first_moment = 0;
1810 int second_moment = 0;
1811 int var_unnormalized = 0;
1812
1813 for (i = 0; i < BLOCK_SIZES; i++) {
1814 sum += bs_hist[i];
1815 first_moment += bs_hist[i] * i;
1816 second_moment += bs_hist[i] * i * i;
1817 }
1818
1819 // if variance is small enough,
1820 // adjust the range around its mean size, which gives a tighter range
1821 var_unnormalized = second_moment - first_moment * first_moment / sum;
1822 if (var_unnormalized <= 4 * sum) {
1823 int mean = first_moment / sum;
1824 min_size = min_partition_size[mean];
1825 max_size = max_partition_size[mean];
1826 } else {
1827 min_size = min_partition_size[min_size];
1828 max_size = max_partition_size[max_size];
1829 }
1830 }
1831 }
1832
1833 // Check border cases where max and min from neighbors may not be legal.
1834 max_size = find_partition_size(max_size,
1835 row8x8_remaining, col8x8_remaining,
1836 &bh, &bw);
1837 min_size = MIN(min_size, max_size);
1838
1839 // When use_square_partition_only is true, make sure at least one square
1840 // partition is allowed by selecting the next smaller square size as
1841 // *min_block_size.
1842 if (cpi->sf.use_square_partition_only &&
1843 next_square_size[max_size] < min_size) {
1844 min_size = next_square_size[max_size];
1845 }
1846
1847 *min_block_size = min_size;
1848 *max_block_size = max_size;
1849 }
1850
auto_partition_range(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)1851 static void auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
1852 int mi_row, int mi_col,
1853 BLOCK_SIZE *min_block_size,
1854 BLOCK_SIZE *max_block_size) {
1855 VP9_COMMON *const cm = &cpi->common;
1856 MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1857 MODE_INFO *mi_8x8 = xd->mi;
1858 const int left_in_image = xd->left_available && mi_8x8[-1].src_mi;
1859 const int above_in_image = xd->up_available &&
1860 mi_8x8[-xd->mi_stride].src_mi;
1861 int row8x8_remaining = tile->mi_row_end - mi_row;
1862 int col8x8_remaining = tile->mi_col_end - mi_col;
1863 int bh, bw;
1864 BLOCK_SIZE min_size = BLOCK_32X32;
1865 BLOCK_SIZE max_size = BLOCK_8X8;
1866 int bsl = mi_width_log2(BLOCK_64X64);
1867 const int search_range_ctrl = (((mi_row + mi_col) >> bsl) +
1868 get_chessboard_index(cm->current_video_frame)) & 0x1;
1869 // Trap case where we do not have a prediction.
1870 if (search_range_ctrl &&
1871 (left_in_image || above_in_image || cm->frame_type != KEY_FRAME)) {
1872 int block;
1873 MODE_INFO *mi;
1874 BLOCK_SIZE sb_type;
1875
1876 // Find the min and max partition sizes used in the left SB64.
1877 if (left_in_image) {
1878 MODE_INFO *cur_mi;
1879 mi = mi_8x8[-1].src_mi;
1880 for (block = 0; block < MI_BLOCK_SIZE; ++block) {
1881 cur_mi = mi[block * xd->mi_stride].src_mi;
1882 sb_type = cur_mi ? cur_mi->mbmi.sb_type : 0;
1883 min_size = MIN(min_size, sb_type);
1884 max_size = MAX(max_size, sb_type);
1885 }
1886 }
1887 // Find the min and max partition sizes used in the above SB64.
1888 if (above_in_image) {
1889 mi = mi_8x8[-xd->mi_stride * MI_BLOCK_SIZE].src_mi;
1890 for (block = 0; block < MI_BLOCK_SIZE; ++block) {
1891 sb_type = mi[block].src_mi ? mi[block].src_mi->mbmi.sb_type : 0;
1892 min_size = MIN(min_size, sb_type);
1893 max_size = MAX(max_size, sb_type);
1894 }
1895 }
1896
1897 min_size = min_partition_size[min_size];
1898 max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
1899 &bh, &bw);
1900 min_size = MIN(min_size, max_size);
1901 min_size = MAX(min_size, BLOCK_8X8);
1902 max_size = MIN(max_size, BLOCK_32X32);
1903 } else {
1904 min_size = BLOCK_8X8;
1905 max_size = BLOCK_32X32;
1906 }
1907
1908 *min_block_size = min_size;
1909 *max_block_size = max_size;
1910 }
1911
1912 // TODO(jingning) refactor functions setting partition search range
set_partition_range(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize,BLOCK_SIZE * min_bs,BLOCK_SIZE * max_bs)1913 static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd,
1914 int mi_row, int mi_col, BLOCK_SIZE bsize,
1915 BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
1916 int mi_width = num_8x8_blocks_wide_lookup[bsize];
1917 int mi_height = num_8x8_blocks_high_lookup[bsize];
1918 int idx, idy;
1919
1920 MODE_INFO *mi;
1921 const int idx_str = cm->mi_stride * mi_row + mi_col;
1922 MODE_INFO *prev_mi = (cm->prev_mip + cm->mi_stride + 1 + idx_str)->src_mi;
1923
1924
1925 BLOCK_SIZE bs, min_size, max_size;
1926
1927 min_size = BLOCK_64X64;
1928 max_size = BLOCK_4X4;
1929
1930 if (prev_mi) {
1931 for (idy = 0; idy < mi_height; ++idy) {
1932 for (idx = 0; idx < mi_width; ++idx) {
1933 mi = prev_mi[idy * cm->mi_stride + idx].src_mi;
1934 bs = mi ? mi->mbmi.sb_type : bsize;
1935 min_size = MIN(min_size, bs);
1936 max_size = MAX(max_size, bs);
1937 }
1938 }
1939 }
1940
1941 if (xd->left_available) {
1942 for (idy = 0; idy < mi_height; ++idy) {
1943 mi = xd->mi[idy * cm->mi_stride - 1].src_mi;
1944 bs = mi ? mi->mbmi.sb_type : bsize;
1945 min_size = MIN(min_size, bs);
1946 max_size = MAX(max_size, bs);
1947 }
1948 }
1949
1950 if (xd->up_available) {
1951 for (idx = 0; idx < mi_width; ++idx) {
1952 mi = xd->mi[idx - cm->mi_stride].src_mi;
1953 bs = mi ? mi->mbmi.sb_type : bsize;
1954 min_size = MIN(min_size, bs);
1955 max_size = MAX(max_size, bs);
1956 }
1957 }
1958
1959 if (min_size == max_size) {
1960 min_size = min_partition_size[min_size];
1961 max_size = max_partition_size[max_size];
1962 }
1963
1964 *min_bs = min_size;
1965 *max_bs = max_size;
1966 }
1967
store_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)1968 static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
1969 vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
1970 }
1971
load_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)1972 static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
1973 vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
1974 }
1975
1976 #if CONFIG_FP_MB_STATS
1977 const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] =
1978 {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4};
1979 const int num_16x16_blocks_high_lookup[BLOCK_SIZES] =
1980 {1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4};
1981 const int qindex_skip_threshold_lookup[BLOCK_SIZES] =
1982 {0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120};
1983 const int qindex_split_threshold_lookup[BLOCK_SIZES] =
1984 {0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120};
1985 const int complexity_16x16_blocks_threshold[BLOCK_SIZES] =
1986 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6};
1987
1988 typedef enum {
1989 MV_ZERO = 0,
1990 MV_LEFT = 1,
1991 MV_UP = 2,
1992 MV_RIGHT = 3,
1993 MV_DOWN = 4,
1994 MV_INVALID
1995 } MOTION_DIRECTION;
1996
get_motion_direction_fp(uint8_t fp_byte)1997 static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
1998 if (fp_byte & FPMB_MOTION_ZERO_MASK) {
1999 return MV_ZERO;
2000 } else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
2001 return MV_LEFT;
2002 } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
2003 return MV_RIGHT;
2004 } else if (fp_byte & FPMB_MOTION_UP_MASK) {
2005 return MV_UP;
2006 } else {
2007 return MV_DOWN;
2008 }
2009 }
2010
get_motion_inconsistency(MOTION_DIRECTION this_mv,MOTION_DIRECTION that_mv)2011 static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
2012 MOTION_DIRECTION that_mv) {
2013 if (this_mv == that_mv) {
2014 return 0;
2015 } else {
2016 return abs(this_mv - that_mv) == 2 ? 2 : 1;
2017 }
2018 }
2019 #endif
2020
2021 // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
2022 // unlikely to be selected depending on previous rate-distortion optimization
2023 // results, for encoding speed-up.
rd_pick_partition(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int64_t best_rd,PC_TREE * pc_tree)2024 static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
2025 TOKENEXTRA **tp, int mi_row,
2026 int mi_col, BLOCK_SIZE bsize, int *rate,
2027 int64_t *dist, int64_t best_rd,
2028 PC_TREE *pc_tree) {
2029 VP9_COMMON *const cm = &cpi->common;
2030 MACROBLOCK *const x = &cpi->mb;
2031 MACROBLOCKD *const xd = &x->e_mbd;
2032 const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
2033 ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
2034 PARTITION_CONTEXT sl[8], sa[8];
2035 TOKENEXTRA *tp_orig = *tp;
2036 PICK_MODE_CONTEXT *ctx = &pc_tree->none;
2037 int i, pl;
2038 BLOCK_SIZE subsize;
2039 int this_rate, sum_rate = 0, best_rate = INT_MAX;
2040 int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
2041 int64_t sum_rd = 0;
2042 int do_split = bsize >= BLOCK_8X8;
2043 int do_rect = 1;
2044
2045 // Override skipping rectangular partition operations for edge blocks
2046 const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
2047 const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
2048 const int xss = x->e_mbd.plane[1].subsampling_x;
2049 const int yss = x->e_mbd.plane[1].subsampling_y;
2050
2051 BLOCK_SIZE min_size = cpi->sf.min_partition_size;
2052 BLOCK_SIZE max_size = cpi->sf.max_partition_size;
2053
2054 #if CONFIG_FP_MB_STATS
2055 unsigned int src_diff_var = UINT_MAX;
2056 int none_complexity = 0;
2057 #endif
2058
2059 int partition_none_allowed = !force_horz_split && !force_vert_split;
2060 int partition_horz_allowed = !force_vert_split && yss <= xss &&
2061 bsize >= BLOCK_8X8;
2062 int partition_vert_allowed = !force_horz_split && xss <= yss &&
2063 bsize >= BLOCK_8X8;
2064 (void) *tp_orig;
2065
2066 assert(num_8x8_blocks_wide_lookup[bsize] ==
2067 num_8x8_blocks_high_lookup[bsize]);
2068
2069 set_offsets(cpi, tile, mi_row, mi_col, bsize);
2070
2071 if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode)
2072 x->mb_energy = vp9_block_energy(cpi, x, bsize);
2073
2074 if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
2075 int cb_partition_search_ctrl = ((pc_tree->index == 0 || pc_tree->index == 3)
2076 + get_chessboard_index(cm->current_video_frame)) & 0x1;
2077
2078 if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
2079 set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
2080 }
2081
2082 // Determine partition types in search according to the speed features.
2083 // The threshold set here has to be of square block size.
2084 if (cpi->sf.auto_min_max_partition_size) {
2085 partition_none_allowed &= (bsize <= max_size && bsize >= min_size);
2086 partition_horz_allowed &= ((bsize <= max_size && bsize > min_size) ||
2087 force_horz_split);
2088 partition_vert_allowed &= ((bsize <= max_size && bsize > min_size) ||
2089 force_vert_split);
2090 do_split &= bsize > min_size;
2091 }
2092 if (cpi->sf.use_square_partition_only) {
2093 partition_horz_allowed &= force_horz_split;
2094 partition_vert_allowed &= force_vert_split;
2095 }
2096
2097 save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2098
2099 #if CONFIG_FP_MB_STATS
2100 if (cpi->use_fp_mb_stats) {
2101 set_offsets(cpi, tile, mi_row, mi_col, bsize);
2102 src_diff_var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
2103 mi_row, mi_col, bsize);
2104 }
2105 #endif
2106
2107 #if CONFIG_FP_MB_STATS
2108 // Decide whether we shall split directly and skip searching NONE by using
2109 // the first pass block statistics
2110 if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
2111 partition_none_allowed && src_diff_var > 4 &&
2112 cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
2113 int mb_row = mi_row >> 1;
2114 int mb_col = mi_col >> 1;
2115 int mb_row_end =
2116 MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
2117 int mb_col_end =
2118 MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
2119 int r, c;
2120
2121 // compute a complexity measure, basically measure inconsistency of motion
2122 // vectors obtained from the first pass in the current block
2123 for (r = mb_row; r < mb_row_end ; r++) {
2124 for (c = mb_col; c < mb_col_end; c++) {
2125 const int mb_index = r * cm->mb_cols + c;
2126
2127 MOTION_DIRECTION this_mv;
2128 MOTION_DIRECTION right_mv;
2129 MOTION_DIRECTION bottom_mv;
2130
2131 this_mv =
2132 get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
2133
2134 // to its right
2135 if (c != mb_col_end - 1) {
2136 right_mv = get_motion_direction_fp(
2137 cpi->twopass.this_frame_mb_stats[mb_index + 1]);
2138 none_complexity += get_motion_inconsistency(this_mv, right_mv);
2139 }
2140
2141 // to its bottom
2142 if (r != mb_row_end - 1) {
2143 bottom_mv = get_motion_direction_fp(
2144 cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
2145 none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
2146 }
2147
2148 // do not count its left and top neighbors to avoid double counting
2149 }
2150 }
2151
2152 if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
2153 partition_none_allowed = 0;
2154 }
2155 }
2156 #endif
2157
2158 // PARTITION_NONE
2159 if (partition_none_allowed) {
2160 rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize,
2161 ctx, best_rd, 0);
2162 if (this_rate != INT_MAX) {
2163 if (bsize >= BLOCK_8X8) {
2164 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2165 this_rate += cpi->partition_cost[pl][PARTITION_NONE];
2166 }
2167 sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
2168
2169 if (sum_rd < best_rd) {
2170 int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_dist_thr;
2171 int rate_breakout_thr = cpi->sf.partition_search_breakout_rate_thr;
2172
2173 best_rate = this_rate;
2174 best_dist = this_dist;
2175 best_rd = sum_rd;
2176 if (bsize >= BLOCK_8X8)
2177 pc_tree->partitioning = PARTITION_NONE;
2178
2179 // Adjust dist breakout threshold according to the partition size.
2180 dist_breakout_thr >>= 8 - (b_width_log2(bsize) +
2181 b_height_log2(bsize));
2182
2183 // If all y, u, v transform blocks in this partition are skippable, and
2184 // the dist & rate are within the thresholds, the partition search is
2185 // terminated for current branch of the partition search tree.
2186 // The dist & rate thresholds are set to 0 at speed 0 to disable the
2187 // early termination at that speed.
2188 if (!x->e_mbd.lossless &&
2189 (ctx->skippable && best_dist < dist_breakout_thr &&
2190 best_rate < rate_breakout_thr)) {
2191 do_split = 0;
2192 do_rect = 0;
2193 }
2194
2195 #if CONFIG_FP_MB_STATS
2196 // Check if every 16x16 first pass block statistics has zero
2197 // motion and the corresponding first pass residue is small enough.
2198 // If that is the case, check the difference variance between the
2199 // current frame and the last frame. If the variance is small enough,
2200 // stop further splitting in RD optimization
2201 if (cpi->use_fp_mb_stats && do_split != 0 &&
2202 cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
2203 int mb_row = mi_row >> 1;
2204 int mb_col = mi_col >> 1;
2205 int mb_row_end =
2206 MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
2207 int mb_col_end =
2208 MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
2209 int r, c;
2210
2211 int skip = 1;
2212 for (r = mb_row; r < mb_row_end; r++) {
2213 for (c = mb_col; c < mb_col_end; c++) {
2214 const int mb_index = r * cm->mb_cols + c;
2215 if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
2216 FPMB_MOTION_ZERO_MASK) ||
2217 !(cpi->twopass.this_frame_mb_stats[mb_index] &
2218 FPMB_ERROR_SMALL_MASK)) {
2219 skip = 0;
2220 break;
2221 }
2222 }
2223 if (skip == 0) {
2224 break;
2225 }
2226 }
2227 if (skip) {
2228 if (src_diff_var == UINT_MAX) {
2229 set_offsets(cpi, tile, mi_row, mi_col, bsize);
2230 src_diff_var = get_sby_perpixel_diff_variance(
2231 cpi, &cpi->mb.plane[0].src, mi_row, mi_col, bsize);
2232 }
2233 if (src_diff_var < 8) {
2234 do_split = 0;
2235 do_rect = 0;
2236 }
2237 }
2238 }
2239 #endif
2240 }
2241 }
2242 restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2243 }
2244
2245 // store estimated motion vector
2246 if (cpi->sf.adaptive_motion_search)
2247 store_pred_mv(x, ctx);
2248
2249 // PARTITION_SPLIT
2250 sum_rd = 0;
2251 // TODO(jingning): use the motion vectors given by the above search as
2252 // the starting point of motion search in the following partition type check.
2253 if (do_split) {
2254 subsize = get_subsize(bsize, PARTITION_SPLIT);
2255 if (bsize == BLOCK_8X8) {
2256 i = 4;
2257 if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
2258 pc_tree->leaf_split[0]->pred_interp_filter =
2259 ctx->mic.mbmi.interp_filter;
2260 rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
2261 pc_tree->leaf_split[0], best_rd, 0);
2262 if (sum_rate == INT_MAX)
2263 sum_rd = INT64_MAX;
2264 else
2265 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2266 } else {
2267 for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
2268 const int x_idx = (i & 1) * mi_step;
2269 const int y_idx = (i >> 1) * mi_step;
2270
2271 if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
2272 continue;
2273
2274 if (cpi->sf.adaptive_motion_search)
2275 load_pred_mv(x, ctx);
2276
2277 pc_tree->split[i]->index = i;
2278 rd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx,
2279 subsize, &this_rate, &this_dist,
2280 best_rd - sum_rd, pc_tree->split[i]);
2281
2282 if (this_rate == INT_MAX) {
2283 sum_rd = INT64_MAX;
2284 } else {
2285 sum_rate += this_rate;
2286 sum_dist += this_dist;
2287 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2288 }
2289 }
2290 }
2291
2292 if (sum_rd < best_rd && i == 4) {
2293 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2294 sum_rate += cpi->partition_cost[pl][PARTITION_SPLIT];
2295 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2296
2297 if (sum_rd < best_rd) {
2298 best_rate = sum_rate;
2299 best_dist = sum_dist;
2300 best_rd = sum_rd;
2301 pc_tree->partitioning = PARTITION_SPLIT;
2302 }
2303 } else {
2304 // skip rectangular partition test when larger block size
2305 // gives better rd cost
2306 if (cpi->sf.less_rectangular_check)
2307 do_rect &= !partition_none_allowed;
2308 }
2309 restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2310 }
2311
2312 // PARTITION_HORZ
2313 if (partition_horz_allowed && do_rect) {
2314 subsize = get_subsize(bsize, PARTITION_HORZ);
2315 if (cpi->sf.adaptive_motion_search)
2316 load_pred_mv(x, ctx);
2317 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2318 partition_none_allowed)
2319 pc_tree->horizontal[0].pred_interp_filter =
2320 ctx->mic.mbmi.interp_filter;
2321 rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
2322 &pc_tree->horizontal[0], best_rd, 0);
2323 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2324
2325 if (sum_rd < best_rd && mi_row + mi_step < cm->mi_rows) {
2326 PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
2327 update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
2328 encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
2329
2330 if (cpi->sf.adaptive_motion_search)
2331 load_pred_mv(x, ctx);
2332 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2333 partition_none_allowed)
2334 pc_tree->horizontal[1].pred_interp_filter =
2335 ctx->mic.mbmi.interp_filter;
2336 rd_pick_sb_modes(cpi, tile, mi_row + mi_step, mi_col, &this_rate,
2337 &this_dist, subsize, &pc_tree->horizontal[1],
2338 best_rd - sum_rd, 1);
2339 if (this_rate == INT_MAX) {
2340 sum_rd = INT64_MAX;
2341 } else {
2342 sum_rate += this_rate;
2343 sum_dist += this_dist;
2344 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2345 }
2346 }
2347 if (sum_rd < best_rd) {
2348 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2349 sum_rate += cpi->partition_cost[pl][PARTITION_HORZ];
2350 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2351 if (sum_rd < best_rd) {
2352 best_rd = sum_rd;
2353 best_rate = sum_rate;
2354 best_dist = sum_dist;
2355 pc_tree->partitioning = PARTITION_HORZ;
2356 }
2357 }
2358 restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2359 }
2360 // PARTITION_VERT
2361 if (partition_vert_allowed && do_rect) {
2362 subsize = get_subsize(bsize, PARTITION_VERT);
2363
2364 if (cpi->sf.adaptive_motion_search)
2365 load_pred_mv(x, ctx);
2366 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2367 partition_none_allowed)
2368 pc_tree->vertical[0].pred_interp_filter =
2369 ctx->mic.mbmi.interp_filter;
2370 rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
2371 &pc_tree->vertical[0], best_rd, 0);
2372 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2373 if (sum_rd < best_rd && mi_col + mi_step < cm->mi_cols) {
2374 update_state(cpi, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
2375 encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize,
2376 &pc_tree->vertical[0]);
2377
2378 if (cpi->sf.adaptive_motion_search)
2379 load_pred_mv(x, ctx);
2380 if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2381 partition_none_allowed)
2382 pc_tree->vertical[1].pred_interp_filter =
2383 ctx->mic.mbmi.interp_filter;
2384 rd_pick_sb_modes(cpi, tile, mi_row, mi_col + mi_step, &this_rate,
2385 &this_dist, subsize,
2386 &pc_tree->vertical[1], best_rd - sum_rd,
2387 1);
2388 if (this_rate == INT_MAX) {
2389 sum_rd = INT64_MAX;
2390 } else {
2391 sum_rate += this_rate;
2392 sum_dist += this_dist;
2393 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2394 }
2395 }
2396 if (sum_rd < best_rd) {
2397 pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2398 sum_rate += cpi->partition_cost[pl][PARTITION_VERT];
2399 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2400 if (sum_rd < best_rd) {
2401 best_rate = sum_rate;
2402 best_dist = sum_dist;
2403 best_rd = sum_rd;
2404 pc_tree->partitioning = PARTITION_VERT;
2405 }
2406 }
2407 restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2408 }
2409
2410 // TODO(jbb): This code added so that we avoid static analysis
2411 // warning related to the fact that best_rd isn't used after this
2412 // point. This code should be refactored so that the duplicate
2413 // checks occur in some sub function and thus are used...
2414 (void) best_rd;
2415 *rate = best_rate;
2416 *dist = best_dist;
2417
2418 if (best_rate < INT_MAX && best_dist < INT64_MAX && pc_tree->index != 3) {
2419 int output_enabled = (bsize == BLOCK_64X64);
2420
2421 // Check the projected output rate for this SB against it's target
2422 // and and if necessary apply a Q delta using segmentation to get
2423 // closer to the target.
2424 if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map)
2425 vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
2426 best_rate);
2427 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2428 vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
2429 best_rate, best_dist);
2430
2431 encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize, pc_tree);
2432 }
2433
2434 if (bsize == BLOCK_64X64) {
2435 assert(tp_orig < *tp);
2436 assert(best_rate < INT_MAX);
2437 assert(best_dist < INT64_MAX);
2438 } else {
2439 assert(tp_orig == *tp);
2440 }
2441 }
2442
encode_rd_sb_row(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,TOKENEXTRA ** tp)2443 static void encode_rd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
2444 int mi_row, TOKENEXTRA **tp) {
2445 VP9_COMMON *const cm = &cpi->common;
2446 MACROBLOCKD *const xd = &cpi->mb.e_mbd;
2447 SPEED_FEATURES *const sf = &cpi->sf;
2448 int mi_col;
2449
2450 // Initialize the left context for the new SB row
2451 vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
2452 vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
2453
2454 // Code each SB in the row
2455 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
2456 mi_col += MI_BLOCK_SIZE) {
2457 int dummy_rate;
2458 int64_t dummy_dist;
2459
2460 int i;
2461
2462 if (sf->adaptive_pred_interp_filter) {
2463 for (i = 0; i < 64; ++i)
2464 cpi->leaf_tree[i].pred_interp_filter = SWITCHABLE;
2465
2466 for (i = 0; i < 64; ++i) {
2467 cpi->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
2468 cpi->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
2469 cpi->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
2470 cpi->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
2471 }
2472 }
2473
2474 vp9_zero(cpi->mb.pred_mv);
2475 cpi->pc_root->index = 0;
2476
2477 // TODO(yunqingwang): use_lastframe_partitioning is no longer used in good-
2478 // quality encoding. Need to evaluate it in real-time encoding later to
2479 // decide if it can be removed too. And then, do the code cleanup.
2480 if ((sf->partition_search_type == SEARCH_PARTITION &&
2481 sf->use_lastframe_partitioning) ||
2482 sf->partition_search_type == FIXED_PARTITION ||
2483 sf->partition_search_type == VAR_BASED_PARTITION ||
2484 sf->partition_search_type == VAR_BASED_FIXED_PARTITION) {
2485 const int idx_str = cm->mi_stride * mi_row + mi_col;
2486 MODE_INFO *mi = cm->mi + idx_str;
2487 MODE_INFO *prev_mi = (cm->prev_mip + cm->mi_stride + 1 + idx_str)->src_mi;
2488 cpi->mb.source_variance = UINT_MAX;
2489 if (sf->partition_search_type == FIXED_PARTITION) {
2490 set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2491 set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col,
2492 sf->always_this_block_size);
2493 rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
2494 &dummy_rate, &dummy_dist, 1, cpi->pc_root);
2495 } else if (cpi->skippable_frame ||
2496 sf->partition_search_type == VAR_BASED_FIXED_PARTITION) {
2497 BLOCK_SIZE bsize;
2498 set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2499 bsize = get_rd_var_based_fixed_partition(cpi, mi_row, mi_col);
2500 set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col, bsize);
2501 rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
2502 &dummy_rate, &dummy_dist, 1, cpi->pc_root);
2503 } else if (sf->partition_search_type == VAR_BASED_PARTITION) {
2504 choose_partitioning(cpi, tile, mi_row, mi_col);
2505 rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
2506 &dummy_rate, &dummy_dist, 1, cpi->pc_root);
2507 } else {
2508 GF_GROUP * gf_grp = &cpi->twopass.gf_group;
2509 int last_was_mid_sequence_overlay = 0;
2510 if ((cpi->oxcf.pass == 2) && (gf_grp->index)) {
2511 if (gf_grp->update_type[gf_grp->index - 1] == OVERLAY_UPDATE)
2512 last_was_mid_sequence_overlay = 1;
2513 }
2514 if ((cpi->rc.frames_since_key
2515 % sf->last_partitioning_redo_frequency) == 0
2516 || last_was_mid_sequence_overlay
2517 || cm->prev_mi == 0
2518 || cm->show_frame == 0
2519 || cm->frame_type == KEY_FRAME
2520 || cpi->rc.is_src_frame_alt_ref
2521 || ((sf->use_lastframe_partitioning ==
2522 LAST_FRAME_PARTITION_LOW_MOTION) &&
2523 sb_has_motion(cm, prev_mi, sf->lf_motion_threshold))) {
2524 // If required set upper and lower partition size limits
2525 if (sf->auto_min_max_partition_size) {
2526 set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2527 rd_auto_partition_range(cpi, tile, mi_row, mi_col,
2528 &sf->min_partition_size,
2529 &sf->max_partition_size);
2530 }
2531 rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
2532 &dummy_rate, &dummy_dist, INT64_MAX,
2533 cpi->pc_root);
2534 } else {
2535 if (sf->constrain_copy_partition &&
2536 sb_has_motion(cm, prev_mi, sf->lf_motion_threshold))
2537 constrain_copy_partitioning(cpi, tile, mi, prev_mi,
2538 mi_row, mi_col, BLOCK_16X16);
2539 else
2540 copy_partitioning(cm, mi, prev_mi);
2541 rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
2542 &dummy_rate, &dummy_dist, 1, cpi->pc_root);
2543 }
2544 }
2545 } else {
2546 // If required set upper and lower partition size limits
2547 if (sf->auto_min_max_partition_size) {
2548 set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2549 rd_auto_partition_range(cpi, tile, mi_row, mi_col,
2550 &sf->min_partition_size,
2551 &sf->max_partition_size);
2552 }
2553 rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
2554 &dummy_rate, &dummy_dist, INT64_MAX, cpi->pc_root);
2555 }
2556 }
2557 }
2558
init_encode_frame_mb_context(VP9_COMP * cpi)2559 static void init_encode_frame_mb_context(VP9_COMP *cpi) {
2560 MACROBLOCK *const x = &cpi->mb;
2561 VP9_COMMON *const cm = &cpi->common;
2562 MACROBLOCKD *const xd = &x->e_mbd;
2563 const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
2564
2565 // Copy data over into macro block data structures.
2566 vp9_setup_src_planes(x, cpi->Source, 0, 0);
2567
2568 vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
2569
2570 // Note: this memset assumes above_context[0], [1] and [2]
2571 // are allocated as part of the same buffer.
2572 vpx_memset(xd->above_context[0], 0,
2573 sizeof(*xd->above_context[0]) *
2574 2 * aligned_mi_cols * MAX_MB_PLANE);
2575 vpx_memset(xd->above_seg_context, 0,
2576 sizeof(*xd->above_seg_context) * aligned_mi_cols);
2577 }
2578
check_dual_ref_flags(VP9_COMP * cpi)2579 static int check_dual_ref_flags(VP9_COMP *cpi) {
2580 const int ref_flags = cpi->ref_frame_flags;
2581
2582 if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
2583 return 0;
2584 } else {
2585 return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
2586 + !!(ref_flags & VP9_ALT_FLAG)) >= 2;
2587 }
2588 }
2589
reset_skip_tx_size(VP9_COMMON * cm,TX_SIZE max_tx_size)2590 static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
2591 int mi_row, mi_col;
2592 const int mis = cm->mi_stride;
2593 MODE_INFO *mi_ptr = cm->mi;
2594
2595 for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
2596 for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
2597 if (mi_ptr[mi_col].src_mi->mbmi.tx_size > max_tx_size)
2598 mi_ptr[mi_col].src_mi->mbmi.tx_size = max_tx_size;
2599 }
2600 }
2601 }
2602
get_frame_type(const VP9_COMP * cpi)2603 static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
2604 if (frame_is_intra_only(&cpi->common))
2605 return INTRA_FRAME;
2606 else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
2607 return ALTREF_FRAME;
2608 else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
2609 return GOLDEN_FRAME;
2610 else
2611 return LAST_FRAME;
2612 }
2613
select_tx_mode(const VP9_COMP * cpi)2614 static TX_MODE select_tx_mode(const VP9_COMP *cpi) {
2615 if (cpi->mb.e_mbd.lossless)
2616 return ONLY_4X4;
2617 if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
2618 return ALLOW_32X32;
2619 else if (cpi->sf.tx_size_search_method == USE_FULL_RD||
2620 cpi->sf.tx_size_search_method == USE_TX_8X8)
2621 return TX_MODE_SELECT;
2622 else
2623 return cpi->common.tx_mode;
2624 }
2625
nonrd_pick_sb_modes(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,int * rate,int64_t * dist,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2626 static void nonrd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
2627 int mi_row, int mi_col,
2628 int *rate, int64_t *dist,
2629 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
2630 VP9_COMMON *const cm = &cpi->common;
2631 MACROBLOCK *const x = &cpi->mb;
2632 MACROBLOCKD *const xd = &x->e_mbd;
2633 MB_MODE_INFO *mbmi;
2634 set_offsets(cpi, tile, mi_row, mi_col, bsize);
2635 mbmi = &xd->mi[0].src_mi->mbmi;
2636 mbmi->sb_type = bsize;
2637
2638 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
2639 if (mbmi->segment_id && x->in_static_area)
2640 x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
2641
2642 if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
2643 set_mode_info_seg_skip(x, cm->tx_mode, rate, dist, bsize);
2644 else
2645 vp9_pick_inter_mode(cpi, x, tile, mi_row, mi_col, rate, dist, bsize, ctx);
2646
2647 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2648 }
2649
fill_mode_info_sb(VP9_COMMON * cm,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,BLOCK_SIZE subsize,PC_TREE * pc_tree)2650 static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x,
2651 int mi_row, int mi_col,
2652 BLOCK_SIZE bsize, BLOCK_SIZE subsize,
2653 PC_TREE *pc_tree) {
2654 MACROBLOCKD *xd = &x->e_mbd;
2655 int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
2656 PARTITION_TYPE partition = pc_tree->partitioning;
2657
2658 assert(bsize >= BLOCK_8X8);
2659
2660 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
2661 return;
2662
2663 switch (partition) {
2664 case PARTITION_NONE:
2665 set_modeinfo_offsets(cm, xd, mi_row, mi_col);
2666 *(xd->mi[0].src_mi) = pc_tree->none.mic;
2667 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2668 break;
2669 case PARTITION_VERT:
2670 set_modeinfo_offsets(cm, xd, mi_row, mi_col);
2671 *(xd->mi[0].src_mi) = pc_tree->vertical[0].mic;
2672 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2673
2674 if (mi_col + hbs < cm->mi_cols) {
2675 set_modeinfo_offsets(cm, xd, mi_row, mi_col + hbs);
2676 *(xd->mi[0].src_mi) = pc_tree->vertical[1].mic;
2677 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, bsize);
2678 }
2679 break;
2680 case PARTITION_HORZ:
2681 set_modeinfo_offsets(cm, xd, mi_row, mi_col);
2682 *(xd->mi[0].src_mi) = pc_tree->horizontal[0].mic;
2683 duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2684 if (mi_row + hbs < cm->mi_rows) {
2685 set_modeinfo_offsets(cm, xd, mi_row + hbs, mi_col);
2686 *(xd->mi[0].src_mi) = pc_tree->horizontal[1].mic;
2687 duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, bsize);
2688 }
2689 break;
2690 case PARTITION_SPLIT: {
2691 BLOCK_SIZE subsubsize = get_subsize(subsize, PARTITION_SPLIT);
2692 fill_mode_info_sb(cm, x, mi_row, mi_col, subsize,
2693 subsubsize, pc_tree->split[0]);
2694 fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
2695 subsubsize, pc_tree->split[1]);
2696 fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
2697 subsubsize, pc_tree->split[2]);
2698 fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
2699 subsubsize, pc_tree->split[3]);
2700 break;
2701 }
2702 default:
2703 break;
2704 }
2705 }
2706
nonrd_pick_partition(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon,int64_t best_rd,PC_TREE * pc_tree)2707 static void nonrd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
2708 TOKENEXTRA **tp, int mi_row,
2709 int mi_col, BLOCK_SIZE bsize, int *rate,
2710 int64_t *dist, int do_recon, int64_t best_rd,
2711 PC_TREE *pc_tree) {
2712 const SPEED_FEATURES *const sf = &cpi->sf;
2713 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2714 VP9_COMMON *const cm = &cpi->common;
2715 MACROBLOCK *const x = &cpi->mb;
2716 MACROBLOCKD *const xd = &x->e_mbd;
2717 const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
2718 TOKENEXTRA *tp_orig = *tp;
2719 PICK_MODE_CONTEXT *ctx = &pc_tree->none;
2720 int i;
2721 BLOCK_SIZE subsize = bsize;
2722 int this_rate, sum_rate = 0, best_rate = INT_MAX;
2723 int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
2724 int64_t sum_rd = 0;
2725 int do_split = bsize >= BLOCK_8X8;
2726 int do_rect = 1;
2727 // Override skipping rectangular partition operations for edge blocks
2728 const int force_horz_split = (mi_row + ms >= cm->mi_rows);
2729 const int force_vert_split = (mi_col + ms >= cm->mi_cols);
2730 const int xss = x->e_mbd.plane[1].subsampling_x;
2731 const int yss = x->e_mbd.plane[1].subsampling_y;
2732
2733 int partition_none_allowed = !force_horz_split && !force_vert_split;
2734 int partition_horz_allowed = !force_vert_split && yss <= xss &&
2735 bsize >= BLOCK_8X8;
2736 int partition_vert_allowed = !force_horz_split && xss <= yss &&
2737 bsize >= BLOCK_8X8;
2738 (void) *tp_orig;
2739
2740 assert(num_8x8_blocks_wide_lookup[bsize] ==
2741 num_8x8_blocks_high_lookup[bsize]);
2742
2743 // Determine partition types in search according to the speed features.
2744 // The threshold set here has to be of square block size.
2745 if (sf->auto_min_max_partition_size) {
2746 partition_none_allowed &= (bsize <= sf->max_partition_size &&
2747 bsize >= sf->min_partition_size);
2748 partition_horz_allowed &= ((bsize <= sf->max_partition_size &&
2749 bsize > sf->min_partition_size) ||
2750 force_horz_split);
2751 partition_vert_allowed &= ((bsize <= sf->max_partition_size &&
2752 bsize > sf->min_partition_size) ||
2753 force_vert_split);
2754 do_split &= bsize > sf->min_partition_size;
2755 }
2756 if (sf->use_square_partition_only) {
2757 partition_horz_allowed &= force_horz_split;
2758 partition_vert_allowed &= force_vert_split;
2759 }
2760
2761 // PARTITION_NONE
2762 if (partition_none_allowed) {
2763 nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
2764 &this_rate, &this_dist, bsize, ctx);
2765 ctx->mic.mbmi = xd->mi[0].src_mi->mbmi;
2766 ctx->skip_txfm[0] = x->skip_txfm[0];
2767 ctx->skip = x->skip;
2768
2769 if (this_rate != INT_MAX) {
2770 int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2771 this_rate += cpi->partition_cost[pl][PARTITION_NONE];
2772 sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
2773 if (sum_rd < best_rd) {
2774 int64_t stop_thresh = 4096;
2775 int64_t stop_thresh_rd;
2776
2777 best_rate = this_rate;
2778 best_dist = this_dist;
2779 best_rd = sum_rd;
2780 if (bsize >= BLOCK_8X8)
2781 pc_tree->partitioning = PARTITION_NONE;
2782
2783 // Adjust threshold according to partition size.
2784 stop_thresh >>= 8 - (b_width_log2(bsize) +
2785 b_height_log2(bsize));
2786
2787 stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh);
2788 // If obtained distortion is very small, choose current partition
2789 // and stop splitting.
2790 if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) {
2791 do_split = 0;
2792 do_rect = 0;
2793 }
2794 }
2795 }
2796 }
2797
2798 // store estimated motion vector
2799 store_pred_mv(x, ctx);
2800
2801 // PARTITION_SPLIT
2802 sum_rd = 0;
2803 if (do_split) {
2804 int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2805 sum_rate += cpi->partition_cost[pl][PARTITION_SPLIT];
2806 subsize = get_subsize(bsize, PARTITION_SPLIT);
2807 for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
2808 const int x_idx = (i & 1) * ms;
2809 const int y_idx = (i >> 1) * ms;
2810
2811 if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
2812 continue;
2813 load_pred_mv(x, ctx);
2814 nonrd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx,
2815 subsize, &this_rate, &this_dist, 0,
2816 best_rd - sum_rd, pc_tree->split[i]);
2817
2818 if (this_rate == INT_MAX) {
2819 sum_rd = INT64_MAX;
2820 } else {
2821 sum_rate += this_rate;
2822 sum_dist += this_dist;
2823 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2824 }
2825 }
2826
2827 if (sum_rd < best_rd) {
2828 best_rate = sum_rate;
2829 best_dist = sum_dist;
2830 best_rd = sum_rd;
2831 pc_tree->partitioning = PARTITION_SPLIT;
2832 } else {
2833 // skip rectangular partition test when larger block size
2834 // gives better rd cost
2835 if (sf->less_rectangular_check)
2836 do_rect &= !partition_none_allowed;
2837 }
2838 }
2839
2840 // PARTITION_HORZ
2841 if (partition_horz_allowed && do_rect) {
2842 subsize = get_subsize(bsize, PARTITION_HORZ);
2843 if (sf->adaptive_motion_search)
2844 load_pred_mv(x, ctx);
2845
2846 nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
2847 &this_rate, &this_dist, subsize,
2848 &pc_tree->horizontal[0]);
2849
2850 pc_tree->horizontal[0].mic.mbmi = xd->mi[0].src_mi->mbmi;
2851 pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
2852 pc_tree->horizontal[0].skip = x->skip;
2853
2854 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2855
2856 if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
2857 load_pred_mv(x, ctx);
2858 nonrd_pick_sb_modes(cpi, tile, mi_row + ms, mi_col,
2859 &this_rate, &this_dist, subsize,
2860 &pc_tree->horizontal[1]);
2861
2862 pc_tree->horizontal[1].mic.mbmi = xd->mi[0].src_mi->mbmi;
2863 pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
2864 pc_tree->horizontal[1].skip = x->skip;
2865
2866 if (this_rate == INT_MAX) {
2867 sum_rd = INT64_MAX;
2868 } else {
2869 int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2870 this_rate += cpi->partition_cost[pl][PARTITION_HORZ];
2871 sum_rate += this_rate;
2872 sum_dist += this_dist;
2873 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2874 }
2875 }
2876 if (sum_rd < best_rd) {
2877 best_rd = sum_rd;
2878 best_rate = sum_rate;
2879 best_dist = sum_dist;
2880 pc_tree->partitioning = PARTITION_HORZ;
2881 }
2882 }
2883
2884 // PARTITION_VERT
2885 if (partition_vert_allowed && do_rect) {
2886 subsize = get_subsize(bsize, PARTITION_VERT);
2887
2888 if (sf->adaptive_motion_search)
2889 load_pred_mv(x, ctx);
2890
2891 nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
2892 &this_rate, &this_dist, subsize,
2893 &pc_tree->vertical[0]);
2894 pc_tree->vertical[0].mic.mbmi = xd->mi[0].src_mi->mbmi;
2895 pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
2896 pc_tree->vertical[0].skip = x->skip;
2897 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2898 if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
2899 load_pred_mv(x, ctx);
2900 nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + ms,
2901 &this_rate, &this_dist, subsize,
2902 &pc_tree->vertical[1]);
2903 pc_tree->vertical[1].mic.mbmi = xd->mi[0].src_mi->mbmi;
2904 pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
2905 pc_tree->vertical[1].skip = x->skip;
2906 if (this_rate == INT_MAX) {
2907 sum_rd = INT64_MAX;
2908 } else {
2909 int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2910 this_rate += cpi->partition_cost[pl][PARTITION_VERT];
2911 sum_rate += this_rate;
2912 sum_dist += this_dist;
2913 sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2914 }
2915 }
2916 if (sum_rd < best_rd) {
2917 best_rate = sum_rate;
2918 best_dist = sum_dist;
2919 best_rd = sum_rd;
2920 pc_tree->partitioning = PARTITION_VERT;
2921 }
2922 }
2923 // TODO(JBB): The following line is here just to avoid a static warning
2924 // that occurs because at this point we never again reuse best_rd
2925 // despite setting it here. The code should be refactored to avoid this.
2926 (void) best_rd;
2927
2928 *rate = best_rate;
2929 *dist = best_dist;
2930
2931 if (best_rate == INT_MAX)
2932 return;
2933
2934 // update mode info array
2935 subsize = get_subsize(bsize, pc_tree->partitioning);
2936 fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, subsize,
2937 pc_tree);
2938
2939 if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) {
2940 int output_enabled = (bsize == BLOCK_64X64);
2941
2942 // Check the projected output rate for this SB against it's target
2943 // and and if necessary apply a Q delta using segmentation to get
2944 // closer to the target.
2945 if ((oxcf->aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
2946 vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
2947 best_rate);
2948 }
2949
2950 if (oxcf->aq_mode == CYCLIC_REFRESH_AQ)
2951 vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
2952 best_rate, best_dist);
2953
2954 encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize, pc_tree);
2955 }
2956
2957 if (bsize == BLOCK_64X64) {
2958 assert(tp_orig < *tp);
2959 assert(best_rate < INT_MAX);
2960 assert(best_dist < INT64_MAX);
2961 } else {
2962 assert(tp_orig == *tp);
2963 }
2964 }
2965
nonrd_use_partition(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO * mi,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,int * totrate,int64_t * totdist,PC_TREE * pc_tree)2966 static void nonrd_use_partition(VP9_COMP *cpi,
2967 const TileInfo *const tile,
2968 MODE_INFO *mi,
2969 TOKENEXTRA **tp,
2970 int mi_row, int mi_col,
2971 BLOCK_SIZE bsize, int output_enabled,
2972 int *totrate, int64_t *totdist,
2973 PC_TREE *pc_tree) {
2974 VP9_COMMON *const cm = &cpi->common;
2975 MACROBLOCK *const x = &cpi->mb;
2976 MACROBLOCKD *const xd = &x->e_mbd;
2977 const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
2978 const int mis = cm->mi_stride;
2979 PARTITION_TYPE partition;
2980 BLOCK_SIZE subsize;
2981 int rate = INT_MAX;
2982 int64_t dist = INT64_MAX;
2983
2984 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
2985 return;
2986
2987 subsize = (bsize >= BLOCK_8X8) ? mi[0].src_mi->mbmi.sb_type : BLOCK_4X4;
2988 partition = partition_lookup[bsl][subsize];
2989
2990 switch (partition) {
2991 case PARTITION_NONE:
2992 nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist,
2993 subsize, &pc_tree->none);
2994 pc_tree->none.mic.mbmi = xd->mi[0].src_mi->mbmi;
2995 pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
2996 pc_tree->none.skip = x->skip;
2997 break;
2998 case PARTITION_VERT:
2999 nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist,
3000 subsize, &pc_tree->vertical[0]);
3001 pc_tree->vertical[0].mic.mbmi = xd->mi[0].src_mi->mbmi;
3002 pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
3003 pc_tree->vertical[0].skip = x->skip;
3004 if (mi_col + hbs < cm->mi_cols) {
3005 nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + hbs,
3006 &rate, &dist, subsize, &pc_tree->vertical[1]);
3007 pc_tree->vertical[1].mic.mbmi = xd->mi[0].src_mi->mbmi;
3008 pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
3009 pc_tree->vertical[1].skip = x->skip;
3010 if (rate != INT_MAX && dist != INT64_MAX &&
3011 *totrate != INT_MAX && *totdist != INT64_MAX) {
3012 *totrate += rate;
3013 *totdist += dist;
3014 }
3015 }
3016 break;
3017 case PARTITION_HORZ:
3018 nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist,
3019 subsize, &pc_tree->horizontal[0]);
3020 pc_tree->horizontal[0].mic.mbmi = xd->mi[0].src_mi->mbmi;
3021 pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
3022 pc_tree->horizontal[0].skip = x->skip;
3023 if (mi_row + hbs < cm->mi_rows) {
3024 nonrd_pick_sb_modes(cpi, tile, mi_row + hbs, mi_col,
3025 &rate, &dist, subsize, &pc_tree->horizontal[0]);
3026 pc_tree->horizontal[1].mic.mbmi = xd->mi[0].src_mi->mbmi;
3027 pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
3028 pc_tree->horizontal[1].skip = x->skip;
3029 if (rate != INT_MAX && dist != INT64_MAX &&
3030 *totrate != INT_MAX && *totdist != INT64_MAX) {
3031 *totrate += rate;
3032 *totdist += dist;
3033 }
3034 }
3035 break;
3036 case PARTITION_SPLIT:
3037 subsize = get_subsize(bsize, PARTITION_SPLIT);
3038 nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col,
3039 subsize, output_enabled, totrate, totdist,
3040 pc_tree->split[0]);
3041 nonrd_use_partition(cpi, tile, mi + hbs, tp,
3042 mi_row, mi_col + hbs, subsize, output_enabled,
3043 &rate, &dist, pc_tree->split[1]);
3044 if (rate != INT_MAX && dist != INT64_MAX &&
3045 *totrate != INT_MAX && *totdist != INT64_MAX) {
3046 *totrate += rate;
3047 *totdist += dist;
3048 }
3049 nonrd_use_partition(cpi, tile, mi + hbs * mis, tp,
3050 mi_row + hbs, mi_col, subsize, output_enabled,
3051 &rate, &dist, pc_tree->split[2]);
3052 if (rate != INT_MAX && dist != INT64_MAX &&
3053 *totrate != INT_MAX && *totdist != INT64_MAX) {
3054 *totrate += rate;
3055 *totdist += dist;
3056 }
3057 nonrd_use_partition(cpi, tile, mi + hbs * mis + hbs, tp,
3058 mi_row + hbs, mi_col + hbs, subsize, output_enabled,
3059 &rate, &dist, pc_tree->split[3]);
3060 if (rate != INT_MAX && dist != INT64_MAX &&
3061 *totrate != INT_MAX && *totdist != INT64_MAX) {
3062 *totrate += rate;
3063 *totdist += dist;
3064 }
3065 break;
3066 default:
3067 assert("Invalid partition type.");
3068 break;
3069 }
3070
3071 if (bsize == BLOCK_64X64 && output_enabled) {
3072 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
3073 vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
3074 *totrate, *totdist);
3075 encode_sb_rt(cpi, tile, tp, mi_row, mi_col, 1, bsize, pc_tree);
3076 }
3077 }
3078
encode_nonrd_sb_row(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,TOKENEXTRA ** tp)3079 static void encode_nonrd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
3080 int mi_row, TOKENEXTRA **tp) {
3081 SPEED_FEATURES *const sf = &cpi->sf;
3082 VP9_COMMON *const cm = &cpi->common;
3083 MACROBLOCK *const x = &cpi->mb;
3084 MACROBLOCKD *const xd = &x->e_mbd;
3085 int mi_col;
3086
3087 // Initialize the left context for the new SB row
3088 vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
3089 vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
3090
3091 // Code each SB in the row
3092 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
3093 mi_col += MI_BLOCK_SIZE) {
3094 int dummy_rate = 0;
3095 int64_t dummy_dist = 0;
3096 const int idx_str = cm->mi_stride * mi_row + mi_col;
3097 MODE_INFO *mi = cm->mi + idx_str;
3098 MODE_INFO *prev_mi = (cm->prev_mip + cm->mi_stride + 1 + idx_str)->src_mi;
3099 BLOCK_SIZE bsize;
3100 x->in_static_area = 0;
3101 x->source_variance = UINT_MAX;
3102 vp9_zero(x->pred_mv);
3103
3104 // Set the partition type of the 64X64 block
3105 switch (sf->partition_search_type) {
3106 case VAR_BASED_PARTITION:
3107 choose_partitioning(cpi, tile, mi_row, mi_col);
3108 nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
3109 1, &dummy_rate, &dummy_dist, cpi->pc_root);
3110 break;
3111 case SOURCE_VAR_BASED_PARTITION:
3112 set_source_var_based_partition(cpi, tile, mi, mi_row, mi_col);
3113 nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
3114 1, &dummy_rate, &dummy_dist, cpi->pc_root);
3115 break;
3116 case VAR_BASED_FIXED_PARTITION:
3117 case FIXED_PARTITION:
3118 bsize = sf->partition_search_type == FIXED_PARTITION ?
3119 sf->always_this_block_size :
3120 get_nonrd_var_based_fixed_partition(cpi, mi_row, mi_col);
3121 set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col, bsize);
3122 nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
3123 1, &dummy_rate, &dummy_dist, cpi->pc_root);
3124 break;
3125 case REFERENCE_PARTITION:
3126 if (sf->partition_check ||
3127 !(x->in_static_area = is_background(cpi, tile, mi_row, mi_col))) {
3128 set_modeinfo_offsets(cm, xd, mi_row, mi_col);
3129 auto_partition_range(cpi, tile, mi_row, mi_col,
3130 &sf->min_partition_size,
3131 &sf->max_partition_size);
3132 nonrd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
3133 &dummy_rate, &dummy_dist, 1, INT64_MAX,
3134 cpi->pc_root);
3135 } else {
3136 copy_partitioning(cm, mi, prev_mi);
3137 nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col,
3138 BLOCK_64X64, 1, &dummy_rate, &dummy_dist,
3139 cpi->pc_root);
3140 }
3141 break;
3142 default:
3143 assert(0);
3144 break;
3145 }
3146 }
3147 }
3148 // end RTC play code
3149
set_var_thresh_from_histogram(VP9_COMP * cpi)3150 static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
3151 const SPEED_FEATURES *const sf = &cpi->sf;
3152 const VP9_COMMON *const cm = &cpi->common;
3153
3154 const uint8_t *src = cpi->Source->y_buffer;
3155 const uint8_t *last_src = cpi->Last_Source->y_buffer;
3156 const int src_stride = cpi->Source->y_stride;
3157 const int last_stride = cpi->Last_Source->y_stride;
3158
3159 // Pick cutoff threshold
3160 const int cutoff = (MIN(cm->width, cm->height) >= 720) ?
3161 (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100) :
3162 (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
3163 DECLARE_ALIGNED_ARRAY(16, int, hist, VAR_HIST_BINS);
3164 diff *var16 = cpi->source_diff_var;
3165
3166 int sum = 0;
3167 int i, j;
3168
3169 vpx_memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
3170
3171 for (i = 0; i < cm->mb_rows; i++) {
3172 for (j = 0; j < cm->mb_cols; j++) {
3173 vp9_get16x16var(src, src_stride, last_src, last_stride,
3174 &var16->sse, &var16->sum);
3175
3176 var16->var = var16->sse -
3177 (((uint32_t)var16->sum * var16->sum) >> 8);
3178
3179 if (var16->var >= VAR_HIST_MAX_BG_VAR)
3180 hist[VAR_HIST_BINS - 1]++;
3181 else
3182 hist[var16->var / VAR_HIST_FACTOR]++;
3183
3184 src += 16;
3185 last_src += 16;
3186 var16++;
3187 }
3188
3189 src = src - cm->mb_cols * 16 + 16 * src_stride;
3190 last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
3191 }
3192
3193 cpi->source_var_thresh = 0;
3194
3195 if (hist[VAR_HIST_BINS - 1] < cutoff) {
3196 for (i = 0; i < VAR_HIST_BINS - 1; i++) {
3197 sum += hist[i];
3198
3199 if (sum > cutoff) {
3200 cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
3201 return 0;
3202 }
3203 }
3204 }
3205
3206 return sf->search_type_check_frequency;
3207 }
3208
source_var_based_partition_search_method(VP9_COMP * cpi)3209 static void source_var_based_partition_search_method(VP9_COMP *cpi) {
3210 VP9_COMMON *const cm = &cpi->common;
3211 SPEED_FEATURES *const sf = &cpi->sf;
3212
3213 if (cm->frame_type == KEY_FRAME) {
3214 // For key frame, use SEARCH_PARTITION.
3215 sf->partition_search_type = SEARCH_PARTITION;
3216 } else if (cm->intra_only) {
3217 sf->partition_search_type = FIXED_PARTITION;
3218 } else {
3219 if (cm->last_width != cm->width || cm->last_height != cm->height) {
3220 if (cpi->source_diff_var)
3221 vpx_free(cpi->source_diff_var);
3222
3223 CHECK_MEM_ERROR(cm, cpi->source_diff_var,
3224 vpx_calloc(cm->MBs, sizeof(diff)));
3225 }
3226
3227 if (!cpi->frames_till_next_var_check)
3228 cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
3229
3230 if (cpi->frames_till_next_var_check > 0) {
3231 sf->partition_search_type = FIXED_PARTITION;
3232 cpi->frames_till_next_var_check--;
3233 }
3234 }
3235 }
3236
get_skip_encode_frame(const VP9_COMMON * cm)3237 static int get_skip_encode_frame(const VP9_COMMON *cm) {
3238 unsigned int intra_count = 0, inter_count = 0;
3239 int j;
3240
3241 for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
3242 intra_count += cm->counts.intra_inter[j][0];
3243 inter_count += cm->counts.intra_inter[j][1];
3244 }
3245
3246 return (intra_count << 2) < inter_count &&
3247 cm->frame_type != KEY_FRAME &&
3248 cm->show_frame;
3249 }
3250
encode_tiles(VP9_COMP * cpi)3251 static void encode_tiles(VP9_COMP *cpi) {
3252 const VP9_COMMON *const cm = &cpi->common;
3253 const int tile_cols = 1 << cm->log2_tile_cols;
3254 const int tile_rows = 1 << cm->log2_tile_rows;
3255 int tile_col, tile_row;
3256 TOKENEXTRA *tok = cpi->tok;
3257
3258 for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
3259 for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
3260 TileInfo tile;
3261 TOKENEXTRA *old_tok = tok;
3262 int mi_row;
3263
3264 vp9_tile_init(&tile, cm, tile_row, tile_col);
3265 for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
3266 mi_row += MI_BLOCK_SIZE) {
3267 if (cpi->sf.use_nonrd_pick_mode && !frame_is_intra_only(cm))
3268 encode_nonrd_sb_row(cpi, &tile, mi_row, &tok);
3269 else
3270 encode_rd_sb_row(cpi, &tile, mi_row, &tok);
3271 }
3272 cpi->tok_count[tile_row][tile_col] = (unsigned int)(tok - old_tok);
3273 assert(tok - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols));
3274 }
3275 }
3276 }
3277
3278 #if CONFIG_FP_MB_STATS
input_fpmb_stats(FIRSTPASS_MB_STATS * firstpass_mb_stats,VP9_COMMON * cm,uint8_t ** this_frame_mb_stats)3279 static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
3280 VP9_COMMON *cm, uint8_t **this_frame_mb_stats) {
3281 uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
3282 cm->current_video_frame * cm->MBs * sizeof(uint8_t);
3283
3284 if (mb_stats_in > firstpass_mb_stats->mb_stats_end)
3285 return EOF;
3286
3287 *this_frame_mb_stats = mb_stats_in;
3288
3289 return 1;
3290 }
3291 #endif
3292
encode_frame_internal(VP9_COMP * cpi)3293 static void encode_frame_internal(VP9_COMP *cpi) {
3294 SPEED_FEATURES *const sf = &cpi->sf;
3295 RD_OPT *const rd_opt = &cpi->rd;
3296 MACROBLOCK *const x = &cpi->mb;
3297 VP9_COMMON *const cm = &cpi->common;
3298 MACROBLOCKD *const xd = &x->e_mbd;
3299
3300 xd->mi = cm->mi;
3301 xd->mi[0].src_mi = &xd->mi[0];
3302
3303 vp9_zero(cm->counts);
3304 vp9_zero(cpi->coef_counts);
3305 vp9_zero(rd_opt->comp_pred_diff);
3306 vp9_zero(rd_opt->filter_diff);
3307 vp9_zero(rd_opt->tx_select_diff);
3308 vp9_zero(rd_opt->tx_select_threshes);
3309
3310 xd->lossless = cm->base_qindex == 0 &&
3311 cm->y_dc_delta_q == 0 &&
3312 cm->uv_dc_delta_q == 0 &&
3313 cm->uv_ac_delta_q == 0;
3314
3315 cm->tx_mode = select_tx_mode(cpi);
3316
3317 x->fwd_txm4x4 = xd->lossless ? vp9_fwht4x4 : vp9_fdct4x4;
3318 x->itxm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
3319
3320 if (xd->lossless) {
3321 x->optimize = 0;
3322 cm->lf.filter_level = 0;
3323 cpi->zbin_mode_boost_enabled = 0;
3324 }
3325
3326 vp9_frame_init_quantizer(cpi);
3327
3328 vp9_initialize_rd_consts(cpi);
3329 vp9_initialize_me_consts(cpi, cm->base_qindex);
3330 init_encode_frame_mb_context(cpi);
3331 set_prev_mi(cm);
3332
3333 x->quant_fp = cpi->sf.use_quant_fp;
3334 vp9_zero(x->skip_txfm);
3335 if (sf->use_nonrd_pick_mode) {
3336 // Initialize internal buffer pointers for rtc coding, where non-RD
3337 // mode decision is used and hence no buffer pointer swap needed.
3338 int i;
3339 struct macroblock_plane *const p = x->plane;
3340 struct macroblockd_plane *const pd = xd->plane;
3341 PICK_MODE_CONTEXT *ctx = &cpi->pc_root->none;
3342
3343 for (i = 0; i < MAX_MB_PLANE; ++i) {
3344 p[i].coeff = ctx->coeff_pbuf[i][0];
3345 p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
3346 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
3347 p[i].eobs = ctx->eobs_pbuf[i][0];
3348 }
3349 vp9_zero(x->zcoeff_blk);
3350
3351 if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
3352 source_var_based_partition_search_method(cpi);
3353 }
3354
3355 {
3356 struct vpx_usec_timer emr_timer;
3357 vpx_usec_timer_start(&emr_timer);
3358
3359 #if CONFIG_FP_MB_STATS
3360 if (cpi->use_fp_mb_stats) {
3361 input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
3362 &cpi->twopass.this_frame_mb_stats);
3363 }
3364 #endif
3365
3366 encode_tiles(cpi);
3367
3368 vpx_usec_timer_mark(&emr_timer);
3369 cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
3370 }
3371
3372 sf->skip_encode_frame = sf->skip_encode_sb ? get_skip_encode_frame(cm) : 0;
3373
3374 #if 0
3375 // Keep record of the total distortion this time around for future use
3376 cpi->last_frame_distortion = cpi->frame_distortion;
3377 #endif
3378 }
3379
get_interp_filter(const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS],int is_alt_ref)3380 static INTERP_FILTER get_interp_filter(
3381 const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
3382 if (!is_alt_ref &&
3383 threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
3384 threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
3385 threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
3386 return EIGHTTAP_SMOOTH;
3387 } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
3388 threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
3389 return EIGHTTAP_SHARP;
3390 } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
3391 return EIGHTTAP;
3392 } else {
3393 return SWITCHABLE;
3394 }
3395 }
3396
vp9_encode_frame(VP9_COMP * cpi)3397 void vp9_encode_frame(VP9_COMP *cpi) {
3398 VP9_COMMON *const cm = &cpi->common;
3399 RD_OPT *const rd_opt = &cpi->rd;
3400
3401 // In the longer term the encoder should be generalized to match the
3402 // decoder such that we allow compound where one of the 3 buffers has a
3403 // different sign bias and that buffer is then the fixed ref. However, this
3404 // requires further work in the rd loop. For now the only supported encoder
3405 // side behavior is where the ALT ref buffer has opposite sign bias to
3406 // the other two.
3407 if (!frame_is_intra_only(cm)) {
3408 if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
3409 cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
3410 (cm->ref_frame_sign_bias[ALTREF_FRAME] ==
3411 cm->ref_frame_sign_bias[LAST_FRAME])) {
3412 cm->allow_comp_inter_inter = 0;
3413 } else {
3414 cm->allow_comp_inter_inter = 1;
3415 cm->comp_fixed_ref = ALTREF_FRAME;
3416 cm->comp_var_ref[0] = LAST_FRAME;
3417 cm->comp_var_ref[1] = GOLDEN_FRAME;
3418 }
3419 }
3420
3421 if (cpi->sf.frame_parameter_update) {
3422 int i;
3423
3424 // This code does a single RD pass over the whole frame assuming
3425 // either compound, single or hybrid prediction as per whatever has
3426 // worked best for that type of frame in the past.
3427 // It also predicts whether another coding mode would have worked
3428 // better that this coding mode. If that is the case, it remembers
3429 // that for subsequent frames.
3430 // It does the same analysis for transform size selection also.
3431 const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
3432 int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
3433 int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
3434 int *const tx_thrs = rd_opt->tx_select_threshes[frame_type];
3435 const int is_alt_ref = frame_type == ALTREF_FRAME;
3436
3437 /* prediction (compound, single or hybrid) mode selection */
3438 if (is_alt_ref || !cm->allow_comp_inter_inter)
3439 cm->reference_mode = SINGLE_REFERENCE;
3440 else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
3441 mode_thrs[COMPOUND_REFERENCE] >
3442 mode_thrs[REFERENCE_MODE_SELECT] &&
3443 check_dual_ref_flags(cpi) &&
3444 cpi->static_mb_pct == 100)
3445 cm->reference_mode = COMPOUND_REFERENCE;
3446 else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
3447 cm->reference_mode = SINGLE_REFERENCE;
3448 else
3449 cm->reference_mode = REFERENCE_MODE_SELECT;
3450
3451 if (cm->interp_filter == SWITCHABLE)
3452 cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
3453
3454 encode_frame_internal(cpi);
3455
3456 for (i = 0; i < REFERENCE_MODES; ++i)
3457 mode_thrs[i] = (mode_thrs[i] + rd_opt->comp_pred_diff[i] / cm->MBs) / 2;
3458
3459 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
3460 filter_thrs[i] = (filter_thrs[i] + rd_opt->filter_diff[i] / cm->MBs) / 2;
3461
3462 for (i = 0; i < TX_MODES; ++i) {
3463 int64_t pd = rd_opt->tx_select_diff[i];
3464 if (i == TX_MODE_SELECT)
3465 pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZES - 1), 0);
3466 tx_thrs[i] = (tx_thrs[i] + (int)(pd / cm->MBs)) / 2;
3467 }
3468
3469 if (cm->reference_mode == REFERENCE_MODE_SELECT) {
3470 int single_count_zero = 0;
3471 int comp_count_zero = 0;
3472
3473 for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
3474 single_count_zero += cm->counts.comp_inter[i][0];
3475 comp_count_zero += cm->counts.comp_inter[i][1];
3476 }
3477
3478 if (comp_count_zero == 0) {
3479 cm->reference_mode = SINGLE_REFERENCE;
3480 vp9_zero(cm->counts.comp_inter);
3481 } else if (single_count_zero == 0) {
3482 cm->reference_mode = COMPOUND_REFERENCE;
3483 vp9_zero(cm->counts.comp_inter);
3484 }
3485 }
3486
3487 if (cm->tx_mode == TX_MODE_SELECT) {
3488 int count4x4 = 0;
3489 int count8x8_lp = 0, count8x8_8x8p = 0;
3490 int count16x16_16x16p = 0, count16x16_lp = 0;
3491 int count32x32 = 0;
3492
3493 for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
3494 count4x4 += cm->counts.tx.p32x32[i][TX_4X4];
3495 count4x4 += cm->counts.tx.p16x16[i][TX_4X4];
3496 count4x4 += cm->counts.tx.p8x8[i][TX_4X4];
3497
3498 count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8];
3499 count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8];
3500 count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8];
3501
3502 count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16];
3503 count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16];
3504 count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
3505 }
3506
3507 if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
3508 count32x32 == 0) {
3509 cm->tx_mode = ALLOW_8X8;
3510 reset_skip_tx_size(cm, TX_8X8);
3511 } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
3512 count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
3513 cm->tx_mode = ONLY_4X4;
3514 reset_skip_tx_size(cm, TX_4X4);
3515 } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
3516 cm->tx_mode = ALLOW_32X32;
3517 } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
3518 cm->tx_mode = ALLOW_16X16;
3519 reset_skip_tx_size(cm, TX_16X16);
3520 }
3521 }
3522 } else {
3523 cm->reference_mode = SINGLE_REFERENCE;
3524 encode_frame_internal(cpi);
3525 }
3526 }
3527
sum_intra_stats(FRAME_COUNTS * counts,const MODE_INFO * mi)3528 static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
3529 const PREDICTION_MODE y_mode = mi->mbmi.mode;
3530 const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
3531 const BLOCK_SIZE bsize = mi->mbmi.sb_type;
3532
3533 if (bsize < BLOCK_8X8) {
3534 int idx, idy;
3535 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
3536 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
3537 for (idy = 0; idy < 2; idy += num_4x4_h)
3538 for (idx = 0; idx < 2; idx += num_4x4_w)
3539 ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
3540 } else {
3541 ++counts->y_mode[size_group_lookup[bsize]][y_mode];
3542 }
3543
3544 ++counts->uv_mode[y_mode][uv_mode];
3545 }
3546
get_zbin_mode_boost(const MB_MODE_INFO * mbmi,int enabled)3547 static int get_zbin_mode_boost(const MB_MODE_INFO *mbmi, int enabled) {
3548 if (enabled) {
3549 if (is_inter_block(mbmi)) {
3550 if (mbmi->mode == ZEROMV) {
3551 return mbmi->ref_frame[0] != LAST_FRAME ? GF_ZEROMV_ZBIN_BOOST
3552 : LF_ZEROMV_ZBIN_BOOST;
3553 } else {
3554 return mbmi->sb_type < BLOCK_8X8 ? SPLIT_MV_ZBIN_BOOST
3555 : MV_ZBIN_BOOST;
3556 }
3557 } else {
3558 return INTRA_ZBIN_BOOST;
3559 }
3560 } else {
3561 return 0;
3562 }
3563 }
3564
encode_superblock(VP9_COMP * cpi,TOKENEXTRA ** t,int output_enabled,int mi_row,int mi_col,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)3565 static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
3566 int mi_row, int mi_col, BLOCK_SIZE bsize,
3567 PICK_MODE_CONTEXT *ctx) {
3568 VP9_COMMON *const cm = &cpi->common;
3569 MACROBLOCK *const x = &cpi->mb;
3570 MACROBLOCKD *const xd = &x->e_mbd;
3571 MODE_INFO *mi_8x8 = xd->mi;
3572 MODE_INFO *mi = mi_8x8;
3573 MB_MODE_INFO *mbmi = &mi->mbmi;
3574 const int seg_skip = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
3575 SEG_LVL_SKIP);
3576 const int mis = cm->mi_stride;
3577 const int mi_width = num_8x8_blocks_wide_lookup[bsize];
3578 const int mi_height = num_8x8_blocks_high_lookup[bsize];
3579
3580 x->skip_recode = !x->select_tx_size && mbmi->sb_type >= BLOCK_8X8 &&
3581 cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
3582 cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
3583 cpi->sf.allow_skip_recode;
3584
3585 if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
3586 vpx_memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
3587
3588 x->skip_optimize = ctx->is_coded;
3589 ctx->is_coded = 1;
3590 x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
3591 x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
3592 x->q_index < QIDX_SKIP_THRESH);
3593
3594 if (x->skip_encode)
3595 return;
3596
3597 set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
3598
3599 // Experimental code. Special case for gf and arf zeromv modes.
3600 // Increase zbin size to suppress noise
3601 cpi->zbin_mode_boost = get_zbin_mode_boost(mbmi,
3602 cpi->zbin_mode_boost_enabled);
3603 vp9_update_zbin_extra(cpi, x);
3604
3605 if (!is_inter_block(mbmi)) {
3606 int plane;
3607 mbmi->skip = 1;
3608 for (plane = 0; plane < MAX_MB_PLANE; ++plane)
3609 vp9_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane);
3610 if (output_enabled)
3611 sum_intra_stats(&cm->counts, mi);
3612 vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
3613 } else {
3614 int ref;
3615 const int is_compound = has_second_ref(mbmi);
3616 for (ref = 0; ref < 1 + is_compound; ++ref) {
3617 YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
3618 mbmi->ref_frame[ref]);
3619 vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
3620 &xd->block_refs[ref]->sf);
3621 }
3622 if (!cpi->sf.reuse_inter_pred_sby || seg_skip)
3623 vp9_build_inter_predictors_sby(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
3624
3625 vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
3626
3627 vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
3628 vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
3629 }
3630
3631 if (output_enabled) {
3632 if (cm->tx_mode == TX_MODE_SELECT &&
3633 mbmi->sb_type >= BLOCK_8X8 &&
3634 !(is_inter_block(mbmi) && (mbmi->skip || seg_skip))) {
3635 ++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd),
3636 &cm->counts.tx)[mbmi->tx_size];
3637 } else {
3638 int x, y;
3639 TX_SIZE tx_size;
3640 // The new intra coding scheme requires no change of transform size
3641 if (is_inter_block(&mi->mbmi)) {
3642 tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
3643 max_txsize_lookup[bsize]);
3644 } else {
3645 tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
3646 }
3647
3648 for (y = 0; y < mi_height; y++)
3649 for (x = 0; x < mi_width; x++)
3650 if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
3651 mi_8x8[mis * y + x].src_mi->mbmi.tx_size = tx_size;
3652 }
3653 }
3654 }
3655