1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <math.h>
12 #include <stdio.h>
13 #include <limits.h>
14
15 #include "./vpx_config.h"
16 #include "./vpx_scale_rtcd.h"
17 #include "vpx/internal/vpx_psnr.h"
18 #include "vpx_ports/vpx_timer.h"
19
20 #include "vp9/common/vp9_alloccommon.h"
21 #include "vp9/common/vp9_filter.h"
22 #include "vp9/common/vp9_idct.h"
23 #if CONFIG_VP9_POSTPROC
24 #include "vp9/common/vp9_postproc.h"
25 #endif
26 #include "vp9/common/vp9_reconinter.h"
27 #include "vp9/common/vp9_reconintra.h"
28 #include "vp9/common/vp9_systemdependent.h"
29 #include "vp9/common/vp9_tile_common.h"
30
31 #include "vp9/encoder/vp9_aq_complexity.h"
32 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
33 #include "vp9/encoder/vp9_aq_variance.h"
34 #include "vp9/encoder/vp9_bitstream.h"
35 #include "vp9/encoder/vp9_context_tree.h"
36 #include "vp9/encoder/vp9_encodeframe.h"
37 #include "vp9/encoder/vp9_encodemv.h"
38 #include "vp9/encoder/vp9_firstpass.h"
39 #include "vp9/encoder/vp9_mbgraph.h"
40 #include "vp9/encoder/vp9_encoder.h"
41 #include "vp9/encoder/vp9_picklpf.h"
42 #include "vp9/encoder/vp9_ratectrl.h"
43 #include "vp9/encoder/vp9_rd.h"
44 #include "vp9/encoder/vp9_segmentation.h"
45 #include "vp9/encoder/vp9_speed_features.h"
46 #if CONFIG_INTERNAL_STATS
47 #include "vp9/encoder/vp9_ssim.h"
48 #endif
49 #include "vp9/encoder/vp9_temporal_filter.h"
50 #include "vp9/encoder/vp9_resize.h"
51 #include "vp9/encoder/vp9_svc_layercontext.h"
52
53 void vp9_coef_tree_initialize();
54
55 #define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
56
57 #define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
58 // for altref computation.
59 #define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
60 // mv. Choose a very high value for
61 // now so that HIGH_PRECISION is always
62 // chosen.
63
64 // #define OUTPUT_YUV_REC
65
66 #ifdef OUTPUT_YUV_DENOISED
67 FILE *yuv_denoised_file = NULL;
68 #endif
69 #ifdef OUTPUT_YUV_REC
70 FILE *yuv_rec_file;
71 #endif
72
73 #if 0
74 FILE *framepsnr;
75 FILE *kf_list;
76 FILE *keyfile;
77 #endif
78
Scale2Ratio(VPX_SCALING mode,int * hr,int * hs)79 static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) {
80 switch (mode) {
81 case NORMAL:
82 *hr = 1;
83 *hs = 1;
84 break;
85 case FOURFIVE:
86 *hr = 4;
87 *hs = 5;
88 break;
89 case THREEFIVE:
90 *hr = 3;
91 *hs = 5;
92 break;
93 case ONETWO:
94 *hr = 1;
95 *hs = 2;
96 break;
97 default:
98 *hr = 1;
99 *hs = 1;
100 assert(0);
101 break;
102 }
103 }
104
vp9_set_high_precision_mv(VP9_COMP * cpi,int allow_high_precision_mv)105 void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) {
106 MACROBLOCK *const mb = &cpi->mb;
107 cpi->common.allow_high_precision_mv = allow_high_precision_mv;
108 if (cpi->common.allow_high_precision_mv) {
109 mb->mvcost = mb->nmvcost_hp;
110 mb->mvsadcost = mb->nmvsadcost_hp;
111 } else {
112 mb->mvcost = mb->nmvcost;
113 mb->mvsadcost = mb->nmvsadcost;
114 }
115 }
116
setup_frame(VP9_COMP * cpi)117 static void setup_frame(VP9_COMP *cpi) {
118 VP9_COMMON *const cm = &cpi->common;
119 // Set up entropy context depending on frame type. The decoder mandates
120 // the use of the default context, index 0, for keyframes and inter
121 // frames where the error_resilient_mode or intra_only flag is set. For
122 // other inter-frames the encoder currently uses only two contexts;
123 // context 1 for ALTREF frames and context 0 for the others.
124 if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
125 vp9_setup_past_independence(cm);
126 } else {
127 if (!cpi->use_svc)
128 cm->frame_context_idx = cpi->refresh_alt_ref_frame;
129 }
130
131 if (cm->frame_type == KEY_FRAME) {
132 if (!is_two_pass_svc(cpi))
133 cpi->refresh_golden_frame = 1;
134 cpi->refresh_alt_ref_frame = 1;
135 vp9_zero(cpi->interp_filter_selected);
136 } else {
137 cm->fc = cm->frame_contexts[cm->frame_context_idx];
138 vp9_zero(cpi->interp_filter_selected[0]);
139 }
140 }
141
vp9_initialize_enc()142 void vp9_initialize_enc() {
143 static int init_done = 0;
144
145 if (!init_done) {
146 vp9_rtcd();
147 vp9_init_neighbors();
148 vp9_init_intra_predictors();
149 vp9_coef_tree_initialize();
150 vp9_tokenize_initialize();
151 vp9_init_me_luts();
152 vp9_rc_init_minq_luts();
153 vp9_entropy_mv_init();
154 vp9_entropy_mode_init();
155 vp9_temporal_filter_init();
156 init_done = 1;
157 }
158 }
159
dealloc_compressor_data(VP9_COMP * cpi)160 static void dealloc_compressor_data(VP9_COMP *cpi) {
161 VP9_COMMON *const cm = &cpi->common;
162 int i;
163
164 // Delete sementation map
165 vpx_free(cpi->segmentation_map);
166 cpi->segmentation_map = NULL;
167 vpx_free(cm->last_frame_seg_map);
168 cm->last_frame_seg_map = NULL;
169 vpx_free(cpi->coding_context.last_frame_seg_map_copy);
170 cpi->coding_context.last_frame_seg_map_copy = NULL;
171
172 vpx_free(cpi->complexity_map);
173 cpi->complexity_map = NULL;
174
175 vpx_free(cpi->nmvcosts[0]);
176 vpx_free(cpi->nmvcosts[1]);
177 cpi->nmvcosts[0] = NULL;
178 cpi->nmvcosts[1] = NULL;
179
180 vpx_free(cpi->nmvcosts_hp[0]);
181 vpx_free(cpi->nmvcosts_hp[1]);
182 cpi->nmvcosts_hp[0] = NULL;
183 cpi->nmvcosts_hp[1] = NULL;
184
185 vpx_free(cpi->nmvsadcosts[0]);
186 vpx_free(cpi->nmvsadcosts[1]);
187 cpi->nmvsadcosts[0] = NULL;
188 cpi->nmvsadcosts[1] = NULL;
189
190 vpx_free(cpi->nmvsadcosts_hp[0]);
191 vpx_free(cpi->nmvsadcosts_hp[1]);
192 cpi->nmvsadcosts_hp[0] = NULL;
193 cpi->nmvsadcosts_hp[1] = NULL;
194
195 vp9_cyclic_refresh_free(cpi->cyclic_refresh);
196 cpi->cyclic_refresh = NULL;
197
198 vp9_free_ref_frame_buffers(cm);
199 vp9_free_context_buffers(cm);
200
201 vp9_free_frame_buffer(&cpi->last_frame_uf);
202 vp9_free_frame_buffer(&cpi->scaled_source);
203 vp9_free_frame_buffer(&cpi->scaled_last_source);
204 vp9_free_frame_buffer(&cpi->alt_ref_buffer);
205 vp9_lookahead_destroy(cpi->lookahead);
206
207 vpx_free(cpi->tok);
208 cpi->tok = 0;
209
210 vp9_free_pc_tree(cpi);
211
212 for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
213 LAYER_CONTEXT *const lc = &cpi->svc.layer_context[i];
214 vpx_free(lc->rc_twopass_stats_in.buf);
215 lc->rc_twopass_stats_in.buf = NULL;
216 lc->rc_twopass_stats_in.sz = 0;
217 }
218
219 if (cpi->source_diff_var != NULL) {
220 vpx_free(cpi->source_diff_var);
221 cpi->source_diff_var = NULL;
222 }
223
224 for (i = 0; i < MAX_LAG_BUFFERS; ++i) {
225 vp9_free_frame_buffer(&cpi->svc.scaled_frames[i]);
226 }
227 vpx_memset(&cpi->svc.scaled_frames[0], 0,
228 MAX_LAG_BUFFERS * sizeof(cpi->svc.scaled_frames[0]));
229 }
230
save_coding_context(VP9_COMP * cpi)231 static void save_coding_context(VP9_COMP *cpi) {
232 CODING_CONTEXT *const cc = &cpi->coding_context;
233 VP9_COMMON *cm = &cpi->common;
234
235 // Stores a snapshot of key state variables which can subsequently be
236 // restored with a call to vp9_restore_coding_context. These functions are
237 // intended for use in a re-code loop in vp9_compress_frame where the
238 // quantizer value is adjusted between loop iterations.
239 vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost);
240
241 vpx_memcpy(cc->nmvcosts[0], cpi->nmvcosts[0],
242 MV_VALS * sizeof(*cpi->nmvcosts[0]));
243 vpx_memcpy(cc->nmvcosts[1], cpi->nmvcosts[1],
244 MV_VALS * sizeof(*cpi->nmvcosts[1]));
245 vpx_memcpy(cc->nmvcosts_hp[0], cpi->nmvcosts_hp[0],
246 MV_VALS * sizeof(*cpi->nmvcosts_hp[0]));
247 vpx_memcpy(cc->nmvcosts_hp[1], cpi->nmvcosts_hp[1],
248 MV_VALS * sizeof(*cpi->nmvcosts_hp[1]));
249
250 vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs);
251
252 vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
253 cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));
254
255 vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
256 vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
257
258 cc->fc = cm->fc;
259 }
260
restore_coding_context(VP9_COMP * cpi)261 static void restore_coding_context(VP9_COMP *cpi) {
262 CODING_CONTEXT *const cc = &cpi->coding_context;
263 VP9_COMMON *cm = &cpi->common;
264
265 // Restore key state variables to the snapshot state stored in the
266 // previous call to vp9_save_coding_context.
267 vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
268
269 vpx_memcpy(cpi->nmvcosts[0], cc->nmvcosts[0],
270 MV_VALS * sizeof(*cc->nmvcosts[0]));
271 vpx_memcpy(cpi->nmvcosts[1], cc->nmvcosts[1],
272 MV_VALS * sizeof(*cc->nmvcosts[1]));
273 vpx_memcpy(cpi->nmvcosts_hp[0], cc->nmvcosts_hp[0],
274 MV_VALS * sizeof(*cc->nmvcosts_hp[0]));
275 vpx_memcpy(cpi->nmvcosts_hp[1], cc->nmvcosts_hp[1],
276 MV_VALS * sizeof(*cc->nmvcosts_hp[1]));
277
278 vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs);
279
280 vpx_memcpy(cm->last_frame_seg_map,
281 cpi->coding_context.last_frame_seg_map_copy,
282 (cm->mi_rows * cm->mi_cols));
283
284 vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
285 vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
286
287 cm->fc = cc->fc;
288 }
289
configure_static_seg_features(VP9_COMP * cpi)290 static void configure_static_seg_features(VP9_COMP *cpi) {
291 VP9_COMMON *const cm = &cpi->common;
292 const RATE_CONTROL *const rc = &cpi->rc;
293 struct segmentation *const seg = &cm->seg;
294
295 int high_q = (int)(rc->avg_q > 48.0);
296 int qi_delta;
297
298 // Disable and clear down for KF
299 if (cm->frame_type == KEY_FRAME) {
300 // Clear down the global segmentation map
301 vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
302 seg->update_map = 0;
303 seg->update_data = 0;
304 cpi->static_mb_pct = 0;
305
306 // Disable segmentation
307 vp9_disable_segmentation(seg);
308
309 // Clear down the segment features.
310 vp9_clearall_segfeatures(seg);
311 } else if (cpi->refresh_alt_ref_frame) {
312 // If this is an alt ref frame
313 // Clear down the global segmentation map
314 vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
315 seg->update_map = 0;
316 seg->update_data = 0;
317 cpi->static_mb_pct = 0;
318
319 // Disable segmentation and individual segment features by default
320 vp9_disable_segmentation(seg);
321 vp9_clearall_segfeatures(seg);
322
323 // Scan frames from current to arf frame.
324 // This function re-enables segmentation if appropriate.
325 vp9_update_mbgraph_stats(cpi);
326
327 // If segmentation was enabled set those features needed for the
328 // arf itself.
329 if (seg->enabled) {
330 seg->update_map = 1;
331 seg->update_data = 1;
332
333 qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875,
334 cm->bit_depth);
335 vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
336 vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
337
338 vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
339 vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
340
341 // Where relevant assume segment data is delta data
342 seg->abs_delta = SEGMENT_DELTADATA;
343 }
344 } else if (seg->enabled) {
345 // All other frames if segmentation has been enabled
346
347 // First normal frame in a valid gf or alt ref group
348 if (rc->frames_since_golden == 0) {
349 // Set up segment features for normal frames in an arf group
350 if (rc->source_alt_ref_active) {
351 seg->update_map = 0;
352 seg->update_data = 1;
353 seg->abs_delta = SEGMENT_DELTADATA;
354
355 qi_delta = vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125,
356 cm->bit_depth);
357 vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
358 vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
359
360 vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
361 vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
362
363 // Segment coding disabled for compred testing
364 if (high_q || (cpi->static_mb_pct == 100)) {
365 vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
366 vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
367 vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
368 }
369 } else {
370 // Disable segmentation and clear down features if alt ref
371 // is not active for this group
372
373 vp9_disable_segmentation(seg);
374
375 vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
376
377 seg->update_map = 0;
378 seg->update_data = 0;
379
380 vp9_clearall_segfeatures(seg);
381 }
382 } else if (rc->is_src_frame_alt_ref) {
383 // Special case where we are coding over the top of a previous
384 // alt ref frame.
385 // Segment coding disabled for compred testing
386
387 // Enable ref frame features for segment 0 as well
388 vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
389 vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
390
391 // All mbs should use ALTREF_FRAME
392 vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
393 vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
394 vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
395 vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
396
397 // Skip all MBs if high Q (0,0 mv and skip coeffs)
398 if (high_q) {
399 vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
400 vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
401 }
402 // Enable data update
403 seg->update_data = 1;
404 } else {
405 // All other frames.
406
407 // No updates.. leave things as they are.
408 seg->update_map = 0;
409 seg->update_data = 0;
410 }
411 }
412 }
413
update_reference_segmentation_map(VP9_COMP * cpi)414 static void update_reference_segmentation_map(VP9_COMP *cpi) {
415 VP9_COMMON *const cm = &cpi->common;
416 MODE_INFO *mi_8x8_ptr = cm->mi;
417 uint8_t *cache_ptr = cm->last_frame_seg_map;
418 int row, col;
419
420 for (row = 0; row < cm->mi_rows; row++) {
421 MODE_INFO *mi_8x8 = mi_8x8_ptr;
422 uint8_t *cache = cache_ptr;
423 for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
424 cache[0] = mi_8x8[0].src_mi->mbmi.segment_id;
425 mi_8x8_ptr += cm->mi_stride;
426 cache_ptr += cm->mi_cols;
427 }
428 }
429
alloc_raw_frame_buffers(VP9_COMP * cpi)430 static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
431 VP9_COMMON *cm = &cpi->common;
432 const VP9EncoderConfig *oxcf = &cpi->oxcf;
433
434 cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height,
435 cm->subsampling_x, cm->subsampling_y,
436 #if CONFIG_VP9_HIGHBITDEPTH
437 cm->use_highbitdepth,
438 #endif
439 oxcf->lag_in_frames);
440 if (!cpi->lookahead)
441 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
442 "Failed to allocate lag buffers");
443
444 if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
445 oxcf->width, oxcf->height,
446 cm->subsampling_x, cm->subsampling_y,
447 #if CONFIG_VP9_HIGHBITDEPTH
448 cm->use_highbitdepth,
449 #endif
450 VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
451 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
452 "Failed to allocate altref buffer");
453 }
454
alloc_ref_frame_buffers(VP9_COMP * cpi)455 static void alloc_ref_frame_buffers(VP9_COMP *cpi) {
456 VP9_COMMON *const cm = &cpi->common;
457 if (vp9_alloc_ref_frame_buffers(cm, cm->width, cm->height))
458 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
459 "Failed to allocate frame buffers");
460 }
461
alloc_util_frame_buffers(VP9_COMP * cpi)462 static void alloc_util_frame_buffers(VP9_COMP *cpi) {
463 VP9_COMMON *const cm = &cpi->common;
464 if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
465 cm->width, cm->height,
466 cm->subsampling_x, cm->subsampling_y,
467 #if CONFIG_VP9_HIGHBITDEPTH
468 cm->use_highbitdepth,
469 #endif
470 VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
471 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
472 "Failed to allocate last frame buffer");
473
474 if (vp9_realloc_frame_buffer(&cpi->scaled_source,
475 cm->width, cm->height,
476 cm->subsampling_x, cm->subsampling_y,
477 #if CONFIG_VP9_HIGHBITDEPTH
478 cm->use_highbitdepth,
479 #endif
480 VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
481 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
482 "Failed to allocate scaled source buffer");
483
484 if (vp9_realloc_frame_buffer(&cpi->scaled_last_source,
485 cm->width, cm->height,
486 cm->subsampling_x, cm->subsampling_y,
487 #if CONFIG_VP9_HIGHBITDEPTH
488 cm->use_highbitdepth,
489 #endif
490 VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
491 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
492 "Failed to allocate scaled last source buffer");
493 }
494
vp9_alloc_compressor_data(VP9_COMP * cpi)495 void vp9_alloc_compressor_data(VP9_COMP *cpi) {
496 VP9_COMMON *cm = &cpi->common;
497
498 vp9_alloc_context_buffers(cm, cm->width, cm->height);
499
500 vpx_free(cpi->tok);
501
502 {
503 unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
504 CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
505 }
506
507 vp9_setup_pc_tree(&cpi->common, cpi);
508 }
509
update_frame_size(VP9_COMP * cpi)510 static void update_frame_size(VP9_COMP *cpi) {
511 VP9_COMMON *const cm = &cpi->common;
512 MACROBLOCKD *const xd = &cpi->mb.e_mbd;
513
514 vp9_set_mb_mi(cm, cm->width, cm->height);
515 vp9_init_context_buffers(cm);
516 init_macroblockd(cm, xd);
517
518 if (is_two_pass_svc(cpi)) {
519 if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
520 cm->width, cm->height,
521 cm->subsampling_x, cm->subsampling_y,
522 #if CONFIG_VP9_HIGHBITDEPTH
523 cm->use_highbitdepth,
524 #endif
525 VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
526 vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
527 "Failed to reallocate alt_ref_buffer");
528 }
529 }
530
vp9_new_framerate(VP9_COMP * cpi,double framerate)531 void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
532 cpi->framerate = framerate < 0.1 ? 30 : framerate;
533 vp9_rc_update_framerate(cpi);
534 }
535
set_tile_limits(VP9_COMP * cpi)536 static void set_tile_limits(VP9_COMP *cpi) {
537 VP9_COMMON *const cm = &cpi->common;
538
539 int min_log2_tile_cols, max_log2_tile_cols;
540 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
541
542 cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
543 min_log2_tile_cols, max_log2_tile_cols);
544 cm->log2_tile_rows = cpi->oxcf.tile_rows;
545 }
546
init_buffer_indices(VP9_COMP * cpi)547 static void init_buffer_indices(VP9_COMP *cpi) {
548 cpi->lst_fb_idx = 0;
549 cpi->gld_fb_idx = 1;
550 cpi->alt_fb_idx = 2;
551 }
552
init_config(struct VP9_COMP * cpi,VP9EncoderConfig * oxcf)553 static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) {
554 VP9_COMMON *const cm = &cpi->common;
555
556 cpi->oxcf = *oxcf;
557 cpi->framerate = oxcf->init_framerate;
558
559 cm->profile = oxcf->profile;
560 cm->bit_depth = oxcf->bit_depth;
561 #if CONFIG_VP9_HIGHBITDEPTH
562 cm->use_highbitdepth = oxcf->use_highbitdepth;
563 #endif
564 cm->color_space = UNKNOWN;
565
566 cm->width = oxcf->width;
567 cm->height = oxcf->height;
568 vp9_alloc_compressor_data(cpi);
569
570 // Spatial scalability.
571 cpi->svc.number_spatial_layers = oxcf->ss_number_layers;
572 // Temporal scalability.
573 cpi->svc.number_temporal_layers = oxcf->ts_number_layers;
574
575 if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) ||
576 ((cpi->svc.number_temporal_layers > 1 ||
577 cpi->svc.number_spatial_layers > 1) &&
578 cpi->oxcf.pass == 2)) {
579 vp9_init_layer_context(cpi);
580 }
581
582 // change includes all joint functionality
583 vp9_change_config(cpi, oxcf);
584
585 cpi->static_mb_pct = 0;
586 cpi->ref_frame_flags = 0;
587
588 init_buffer_indices(cpi);
589
590 set_tile_limits(cpi);
591 }
592
set_rc_buffer_sizes(RATE_CONTROL * rc,const VP9EncoderConfig * oxcf)593 static void set_rc_buffer_sizes(RATE_CONTROL *rc,
594 const VP9EncoderConfig *oxcf) {
595 const int64_t bandwidth = oxcf->target_bandwidth;
596 const int64_t starting = oxcf->starting_buffer_level_ms;
597 const int64_t optimal = oxcf->optimal_buffer_level_ms;
598 const int64_t maximum = oxcf->maximum_buffer_size_ms;
599
600 rc->starting_buffer_level = starting * bandwidth / 1000;
601 rc->optimal_buffer_level = (optimal == 0) ? bandwidth / 8
602 : optimal * bandwidth / 1000;
603 rc->maximum_buffer_size = (maximum == 0) ? bandwidth / 8
604 : maximum * bandwidth / 1000;
605 }
606
vp9_change_config(struct VP9_COMP * cpi,const VP9EncoderConfig * oxcf)607 void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
608 VP9_COMMON *const cm = &cpi->common;
609 RATE_CONTROL *const rc = &cpi->rc;
610
611 if (cm->profile != oxcf->profile)
612 cm->profile = oxcf->profile;
613 cm->bit_depth = oxcf->bit_depth;
614
615 if (cm->profile <= PROFILE_1)
616 assert(cm->bit_depth == VPX_BITS_8);
617 else
618 assert(cm->bit_depth > VPX_BITS_8);
619
620 cpi->oxcf = *oxcf;
621 #if CONFIG_VP9_HIGHBITDEPTH
622 if (cpi->oxcf.use_highbitdepth) {
623 cpi->mb.e_mbd.bd = (int)cm->bit_depth;
624 }
625 #endif
626
627 rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
628
629 cpi->refresh_golden_frame = 0;
630 cpi->refresh_last_frame = 1;
631 cm->refresh_frame_context = 1;
632 cm->reset_frame_context = 0;
633
634 vp9_reset_segment_features(&cm->seg);
635 vp9_set_high_precision_mv(cpi, 0);
636
637 {
638 int i;
639
640 for (i = 0; i < MAX_SEGMENTS; i++)
641 cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
642 }
643 cpi->encode_breakout = cpi->oxcf.encode_breakout;
644
645 set_rc_buffer_sizes(rc, &cpi->oxcf);
646
647 // Under a configuration change, where maximum_buffer_size may change,
648 // keep buffer level clipped to the maximum allowed buffer size.
649 rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
650 rc->buffer_level = MIN(rc->buffer_level, rc->maximum_buffer_size);
651
652 // Set up frame rate and related parameters rate control values.
653 vp9_new_framerate(cpi, cpi->framerate);
654
655 // Set absolute upper and lower quality limits
656 rc->worst_quality = cpi->oxcf.worst_allowed_q;
657 rc->best_quality = cpi->oxcf.best_allowed_q;
658
659 cm->interp_filter = cpi->sf.default_interp_filter;
660
661 cm->display_width = cpi->oxcf.width;
662 cm->display_height = cpi->oxcf.height;
663
664 if (cpi->initial_width) {
665 // Increasing the size of the frame beyond the first seen frame, or some
666 // otherwise signaled maximum size, is not supported.
667 // TODO(jkoleszar): exit gracefully.
668 assert(cm->width <= cpi->initial_width);
669 assert(cm->height <= cpi->initial_height);
670 }
671 update_frame_size(cpi);
672
673 if ((cpi->svc.number_temporal_layers > 1 &&
674 cpi->oxcf.rc_mode == VPX_CBR) ||
675 ((cpi->svc.number_temporal_layers > 1 ||
676 cpi->svc.number_spatial_layers > 1) &&
677 cpi->oxcf.pass == 2)) {
678 vp9_update_layer_context_change_config(cpi,
679 (int)cpi->oxcf.target_bandwidth);
680 }
681
682 cpi->alt_ref_source = NULL;
683 rc->is_src_frame_alt_ref = 0;
684
685 #if 0
686 // Experimental RD Code
687 cpi->frame_distortion = 0;
688 cpi->last_frame_distortion = 0;
689 #endif
690
691 set_tile_limits(cpi);
692
693 cpi->ext_refresh_frame_flags_pending = 0;
694 cpi->ext_refresh_frame_context_pending = 0;
695
696 #if CONFIG_VP9_TEMPORAL_DENOISING
697 if (cpi->oxcf.noise_sensitivity > 0) {
698 vp9_denoiser_alloc(&(cpi->denoiser), cm->width, cm->height,
699 cm->subsampling_x, cm->subsampling_y,
700 #if CONFIG_VP9_HIGHBITDEPTH
701 cm->use_highbitdepth,
702 #endif
703 VP9_ENC_BORDER_IN_PIXELS);
704 }
705 #endif
706 }
707
708 #ifndef M_LOG2_E
709 #define M_LOG2_E 0.693147180559945309417
710 #endif
711 #define log2f(x) (log (x) / (float) M_LOG2_E)
712
cal_nmvjointsadcost(int * mvjointsadcost)713 static void cal_nmvjointsadcost(int *mvjointsadcost) {
714 mvjointsadcost[0] = 600;
715 mvjointsadcost[1] = 300;
716 mvjointsadcost[2] = 300;
717 mvjointsadcost[3] = 300;
718 }
719
cal_nmvsadcosts(int * mvsadcost[2])720 static void cal_nmvsadcosts(int *mvsadcost[2]) {
721 int i = 1;
722
723 mvsadcost[0][0] = 0;
724 mvsadcost[1][0] = 0;
725
726 do {
727 double z = 256 * (2 * (log2f(8 * i) + .6));
728 mvsadcost[0][i] = (int)z;
729 mvsadcost[1][i] = (int)z;
730 mvsadcost[0][-i] = (int)z;
731 mvsadcost[1][-i] = (int)z;
732 } while (++i <= MV_MAX);
733 }
734
cal_nmvsadcosts_hp(int * mvsadcost[2])735 static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
736 int i = 1;
737
738 mvsadcost[0][0] = 0;
739 mvsadcost[1][0] = 0;
740
741 do {
742 double z = 256 * (2 * (log2f(8 * i) + .6));
743 mvsadcost[0][i] = (int)z;
744 mvsadcost[1][i] = (int)z;
745 mvsadcost[0][-i] = (int)z;
746 mvsadcost[1][-i] = (int)z;
747 } while (++i <= MV_MAX);
748 }
749
750
vp9_create_compressor(VP9EncoderConfig * oxcf)751 VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf) {
752 unsigned int i, j;
753 VP9_COMP *const cpi = vpx_memalign(32, sizeof(VP9_COMP));
754 VP9_COMMON *const cm = cpi != NULL ? &cpi->common : NULL;
755
756 if (!cm)
757 return NULL;
758
759 vp9_zero(*cpi);
760
761 if (setjmp(cm->error.jmp)) {
762 cm->error.setjmp = 0;
763 vp9_remove_compressor(cpi);
764 return 0;
765 }
766
767 cm->error.setjmp = 1;
768
769 cpi->use_svc = 0;
770
771 init_config(cpi, oxcf);
772 vp9_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc);
773
774 cm->current_video_frame = 0;
775 cpi->skippable_frame = 0;
776
777 // Create the encoder segmentation map and set all entries to 0
778 CHECK_MEM_ERROR(cm, cpi->segmentation_map,
779 vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
780
781 // Create a complexity map used for rd adjustment
782 CHECK_MEM_ERROR(cm, cpi->complexity_map,
783 vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
784
785 // Create a map used for cyclic background refresh.
786 CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
787 vp9_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
788
789 // And a place holder structure is the coding context
790 // for use if we want to save and restore it
791 CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
792 vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
793
794 CHECK_MEM_ERROR(cm, cpi->nmvcosts[0],
795 vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[0])));
796 CHECK_MEM_ERROR(cm, cpi->nmvcosts[1],
797 vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[1])));
798 CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[0],
799 vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[0])));
800 CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[1],
801 vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[1])));
802 CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[0],
803 vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[0])));
804 CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[1],
805 vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[1])));
806 CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[0],
807 vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[0])));
808 CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[1],
809 vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[1])));
810
811 for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
812 sizeof(cpi->mbgraph_stats[0])); i++) {
813 CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
814 vpx_calloc(cm->MBs *
815 sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
816 }
817
818 #if CONFIG_FP_MB_STATS
819 cpi->use_fp_mb_stats = 0;
820 if (cpi->use_fp_mb_stats) {
821 // a place holder used to store the first pass mb stats in the first pass
822 CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf,
823 vpx_calloc(cm->MBs * sizeof(uint8_t), 1));
824 } else {
825 cpi->twopass.frame_mb_stats_buf = NULL;
826 }
827 #endif
828
829 cpi->refresh_alt_ref_frame = 0;
830
831 // Note that at the moment multi_arf will not work with svc.
832 // For the current check in all the execution paths are defaulted to 0
833 // pending further tuning and testing. The code is left in place here
834 // as a place holder in regard to the required paths.
835 cpi->multi_arf_last_grp_enabled = 0;
836 if (oxcf->pass == 2) {
837 if (cpi->use_svc) {
838 cpi->multi_arf_allowed = 0;
839 cpi->multi_arf_enabled = 0;
840 } else {
841 // Disable by default for now.
842 cpi->multi_arf_allowed = 0;
843 cpi->multi_arf_enabled = 0;
844 }
845 } else {
846 cpi->multi_arf_allowed = 0;
847 cpi->multi_arf_enabled = 0;
848 }
849
850 cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
851 #if CONFIG_INTERNAL_STATS
852 cpi->b_calculate_ssimg = 0;
853
854 cpi->count = 0;
855 cpi->bytes = 0;
856
857 if (cpi->b_calculate_psnr) {
858 cpi->total_y = 0.0;
859 cpi->total_u = 0.0;
860 cpi->total_v = 0.0;
861 cpi->total = 0.0;
862 cpi->total_sq_error = 0;
863 cpi->total_samples = 0;
864
865 cpi->totalp_y = 0.0;
866 cpi->totalp_u = 0.0;
867 cpi->totalp_v = 0.0;
868 cpi->totalp = 0.0;
869 cpi->totalp_sq_error = 0;
870 cpi->totalp_samples = 0;
871
872 cpi->tot_recode_hits = 0;
873 cpi->summed_quality = 0;
874 cpi->summed_weights = 0;
875 cpi->summedp_quality = 0;
876 cpi->summedp_weights = 0;
877 }
878
879 if (cpi->b_calculate_ssimg) {
880 cpi->total_ssimg_y = 0;
881 cpi->total_ssimg_u = 0;
882 cpi->total_ssimg_v = 0;
883 cpi->total_ssimg_all = 0;
884 }
885
886 #endif
887
888 cpi->first_time_stamp_ever = INT64_MAX;
889
890 cal_nmvjointsadcost(cpi->mb.nmvjointsadcost);
891 cpi->mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX];
892 cpi->mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX];
893 cpi->mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX];
894 cpi->mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX];
895 cal_nmvsadcosts(cpi->mb.nmvsadcost);
896
897 cpi->mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX];
898 cpi->mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX];
899 cpi->mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX];
900 cpi->mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX];
901 cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
902
903 #if CONFIG_VP9_TEMPORAL_DENOISING
904 #ifdef OUTPUT_YUV_DENOISED
905 yuv_denoised_file = fopen("denoised.yuv", "ab");
906 #endif
907 #endif
908 #ifdef OUTPUT_YUV_REC
909 yuv_rec_file = fopen("rec.yuv", "wb");
910 #endif
911
912 #if 0
913 framepsnr = fopen("framepsnr.stt", "a");
914 kf_list = fopen("kf_list.stt", "w");
915 #endif
916
917 cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
918
919 if (oxcf->pass == 1) {
920 vp9_init_first_pass(cpi);
921 } else if (oxcf->pass == 2) {
922 const size_t packet_sz = sizeof(FIRSTPASS_STATS);
923 const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
924
925 if (cpi->svc.number_spatial_layers > 1
926 || cpi->svc.number_temporal_layers > 1) {
927 FIRSTPASS_STATS *const stats = oxcf->two_pass_stats_in.buf;
928 FIRSTPASS_STATS *stats_copy[VPX_SS_MAX_LAYERS] = {0};
929 int i;
930
931 for (i = 0; i < oxcf->ss_number_layers; ++i) {
932 FIRSTPASS_STATS *const last_packet_for_layer =
933 &stats[packets - oxcf->ss_number_layers + i];
934 const int layer_id = (int)last_packet_for_layer->spatial_layer_id;
935 const int packets_in_layer = (int)last_packet_for_layer->count + 1;
936 if (layer_id >= 0 && layer_id < oxcf->ss_number_layers) {
937 LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer_id];
938
939 vpx_free(lc->rc_twopass_stats_in.buf);
940
941 lc->rc_twopass_stats_in.sz = packets_in_layer * packet_sz;
942 CHECK_MEM_ERROR(cm, lc->rc_twopass_stats_in.buf,
943 vpx_malloc(lc->rc_twopass_stats_in.sz));
944 lc->twopass.stats_in_start = lc->rc_twopass_stats_in.buf;
945 lc->twopass.stats_in = lc->twopass.stats_in_start;
946 lc->twopass.stats_in_end = lc->twopass.stats_in_start
947 + packets_in_layer - 1;
948 stats_copy[layer_id] = lc->rc_twopass_stats_in.buf;
949 }
950 }
951
952 for (i = 0; i < packets; ++i) {
953 const int layer_id = (int)stats[i].spatial_layer_id;
954 if (layer_id >= 0 && layer_id < oxcf->ss_number_layers
955 && stats_copy[layer_id] != NULL) {
956 *stats_copy[layer_id] = stats[i];
957 ++stats_copy[layer_id];
958 }
959 }
960
961 vp9_init_second_pass_spatial_svc(cpi);
962 } else {
963 #if CONFIG_FP_MB_STATS
964 if (cpi->use_fp_mb_stats) {
965 const size_t psz = cpi->common.MBs * sizeof(uint8_t);
966 const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
967
968 cpi->twopass.firstpass_mb_stats.mb_stats_start =
969 oxcf->firstpass_mb_stats_in.buf;
970 cpi->twopass.firstpass_mb_stats.mb_stats_end =
971 cpi->twopass.firstpass_mb_stats.mb_stats_start +
972 (ps - 1) * cpi->common.MBs * sizeof(uint8_t);
973 }
974 #endif
975
976 cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
977 cpi->twopass.stats_in = cpi->twopass.stats_in_start;
978 cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
979
980 vp9_init_second_pass(cpi);
981 }
982 }
983
984 vp9_set_speed_features(cpi);
985
986 // Allocate memory to store variances for a frame.
987 CHECK_MEM_ERROR(cm, cpi->source_diff_var,
988 vpx_calloc(cm->MBs, sizeof(diff)));
989 cpi->source_var_thresh = 0;
990 cpi->frames_till_next_var_check = 0;
991
992 // Default rd threshold factors for mode selection
993 for (i = 0; i < BLOCK_SIZES; ++i) {
994 for (j = 0; j < MAX_MODES; ++j) {
995 cpi->rd.thresh_freq_fact[i][j] = 32;
996 cpi->rd.mode_map[i][j] = j;
997 }
998 }
999
1000 #define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF)\
1001 cpi->fn_ptr[BT].sdf = SDF; \
1002 cpi->fn_ptr[BT].sdaf = SDAF; \
1003 cpi->fn_ptr[BT].vf = VF; \
1004 cpi->fn_ptr[BT].svf = SVF; \
1005 cpi->fn_ptr[BT].svaf = SVAF; \
1006 cpi->fn_ptr[BT].sdx3f = SDX3F; \
1007 cpi->fn_ptr[BT].sdx8f = SDX8F; \
1008 cpi->fn_ptr[BT].sdx4df = SDX4DF;
1009
1010 BFP(BLOCK_32X16, vp9_sad32x16, vp9_sad32x16_avg,
1011 vp9_variance32x16, vp9_sub_pixel_variance32x16,
1012 vp9_sub_pixel_avg_variance32x16, NULL, NULL, vp9_sad32x16x4d)
1013
1014 BFP(BLOCK_16X32, vp9_sad16x32, vp9_sad16x32_avg,
1015 vp9_variance16x32, vp9_sub_pixel_variance16x32,
1016 vp9_sub_pixel_avg_variance16x32, NULL, NULL, vp9_sad16x32x4d)
1017
1018 BFP(BLOCK_64X32, vp9_sad64x32, vp9_sad64x32_avg,
1019 vp9_variance64x32, vp9_sub_pixel_variance64x32,
1020 vp9_sub_pixel_avg_variance64x32, NULL, NULL, vp9_sad64x32x4d)
1021
1022 BFP(BLOCK_32X64, vp9_sad32x64, vp9_sad32x64_avg,
1023 vp9_variance32x64, vp9_sub_pixel_variance32x64,
1024 vp9_sub_pixel_avg_variance32x64, NULL, NULL, vp9_sad32x64x4d)
1025
1026 BFP(BLOCK_32X32, vp9_sad32x32, vp9_sad32x32_avg,
1027 vp9_variance32x32, vp9_sub_pixel_variance32x32,
1028 vp9_sub_pixel_avg_variance32x32, vp9_sad32x32x3, vp9_sad32x32x8,
1029 vp9_sad32x32x4d)
1030
1031 BFP(BLOCK_64X64, vp9_sad64x64, vp9_sad64x64_avg,
1032 vp9_variance64x64, vp9_sub_pixel_variance64x64,
1033 vp9_sub_pixel_avg_variance64x64, vp9_sad64x64x3, vp9_sad64x64x8,
1034 vp9_sad64x64x4d)
1035
1036 BFP(BLOCK_16X16, vp9_sad16x16, vp9_sad16x16_avg,
1037 vp9_variance16x16, vp9_sub_pixel_variance16x16,
1038 vp9_sub_pixel_avg_variance16x16, vp9_sad16x16x3, vp9_sad16x16x8,
1039 vp9_sad16x16x4d)
1040
1041 BFP(BLOCK_16X8, vp9_sad16x8, vp9_sad16x8_avg,
1042 vp9_variance16x8, vp9_sub_pixel_variance16x8,
1043 vp9_sub_pixel_avg_variance16x8,
1044 vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d)
1045
1046 BFP(BLOCK_8X16, vp9_sad8x16, vp9_sad8x16_avg,
1047 vp9_variance8x16, vp9_sub_pixel_variance8x16,
1048 vp9_sub_pixel_avg_variance8x16,
1049 vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d)
1050
1051 BFP(BLOCK_8X8, vp9_sad8x8, vp9_sad8x8_avg,
1052 vp9_variance8x8, vp9_sub_pixel_variance8x8,
1053 vp9_sub_pixel_avg_variance8x8,
1054 vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d)
1055
1056 BFP(BLOCK_8X4, vp9_sad8x4, vp9_sad8x4_avg,
1057 vp9_variance8x4, vp9_sub_pixel_variance8x4,
1058 vp9_sub_pixel_avg_variance8x4, NULL, vp9_sad8x4x8, vp9_sad8x4x4d)
1059
1060 BFP(BLOCK_4X8, vp9_sad4x8, vp9_sad4x8_avg,
1061 vp9_variance4x8, vp9_sub_pixel_variance4x8,
1062 vp9_sub_pixel_avg_variance4x8, NULL, vp9_sad4x8x8, vp9_sad4x8x4d)
1063
1064 BFP(BLOCK_4X4, vp9_sad4x4, vp9_sad4x4_avg,
1065 vp9_variance4x4, vp9_sub_pixel_variance4x4,
1066 vp9_sub_pixel_avg_variance4x4,
1067 vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
1068
1069 /* vp9_init_quantizer() is first called here. Add check in
1070 * vp9_frame_init_quantizer() so that vp9_init_quantizer is only
1071 * called later when needed. This will avoid unnecessary calls of
1072 * vp9_init_quantizer() for every frame.
1073 */
1074 vp9_init_quantizer(cpi);
1075
1076 vp9_loop_filter_init(cm);
1077
1078 cm->error.setjmp = 0;
1079
1080 return cpi;
1081 }
1082
vp9_remove_compressor(VP9_COMP * cpi)1083 void vp9_remove_compressor(VP9_COMP *cpi) {
1084 unsigned int i;
1085
1086 if (!cpi)
1087 return;
1088
1089 if (cpi && (cpi->common.current_video_frame > 0)) {
1090 #if CONFIG_INTERNAL_STATS
1091
1092 vp9_clear_system_state();
1093
1094 // printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
1095 if (cpi->oxcf.pass != 1) {
1096 FILE *f = fopen("opsnr.stt", "a");
1097 double time_encoded = (cpi->last_end_time_stamp_seen
1098 - cpi->first_time_stamp_ever) / 10000000.000;
1099 double total_encode_time = (cpi->time_receive_data +
1100 cpi->time_compress_data) / 1000.000;
1101 double dr = (double)cpi->bytes * (double) 8 / (double)1000
1102 / time_encoded;
1103
1104 if (cpi->b_calculate_psnr) {
1105 const double total_psnr =
1106 vpx_sse_to_psnr((double)cpi->total_samples, 255.0,
1107 (double)cpi->total_sq_error);
1108 const double totalp_psnr =
1109 vpx_sse_to_psnr((double)cpi->totalp_samples, 255.0,
1110 (double)cpi->totalp_sq_error);
1111 const double total_ssim = 100 * pow(cpi->summed_quality /
1112 cpi->summed_weights, 8.0);
1113 const double totalp_ssim = 100 * pow(cpi->summedp_quality /
1114 cpi->summedp_weights, 8.0);
1115
1116 fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
1117 "VPXSSIM\tVPSSIMP\t Time(ms)\n");
1118 fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
1119 dr, cpi->total / cpi->count, total_psnr,
1120 cpi->totalp / cpi->count, totalp_psnr, total_ssim, totalp_ssim,
1121 total_encode_time);
1122 }
1123
1124 if (cpi->b_calculate_ssimg) {
1125 fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n");
1126 fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
1127 cpi->total_ssimg_y / cpi->count,
1128 cpi->total_ssimg_u / cpi->count,
1129 cpi->total_ssimg_v / cpi->count,
1130 cpi->total_ssimg_all / cpi->count, total_encode_time);
1131 }
1132
1133 fclose(f);
1134 }
1135
1136 #endif
1137
1138 #if 0
1139 {
1140 printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
1141 printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
1142 printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
1143 cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
1144 cpi->time_compress_data / 1000,
1145 (cpi->time_receive_data + cpi->time_compress_data) / 1000);
1146 }
1147 #endif
1148 }
1149
1150 #if CONFIG_VP9_TEMPORAL_DENOISING
1151 if (cpi->oxcf.noise_sensitivity > 0) {
1152 vp9_denoiser_free(&(cpi->denoiser));
1153 }
1154 #endif
1155
1156 dealloc_compressor_data(cpi);
1157 vpx_free(cpi->tok);
1158
1159 for (i = 0; i < sizeof(cpi->mbgraph_stats) /
1160 sizeof(cpi->mbgraph_stats[0]); ++i) {
1161 vpx_free(cpi->mbgraph_stats[i].mb_stats);
1162 }
1163
1164 #if CONFIG_FP_MB_STATS
1165 if (cpi->use_fp_mb_stats) {
1166 vpx_free(cpi->twopass.frame_mb_stats_buf);
1167 cpi->twopass.frame_mb_stats_buf = NULL;
1168 }
1169 #endif
1170
1171 vp9_remove_common(&cpi->common);
1172 vpx_free(cpi);
1173
1174 #if CONFIG_VP9_TEMPORAL_DENOISING
1175 #ifdef OUTPUT_YUV_DENOISED
1176 fclose(yuv_denoised_file);
1177 #endif
1178 #endif
1179 #ifdef OUTPUT_YUV_REC
1180 fclose(yuv_rec_file);
1181 #endif
1182
1183 #if 0
1184
1185 if (keyfile)
1186 fclose(keyfile);
1187
1188 if (framepsnr)
1189 fclose(framepsnr);
1190
1191 if (kf_list)
1192 fclose(kf_list);
1193
1194 #endif
1195 }
get_sse(const uint8_t * a,int a_stride,const uint8_t * b,int b_stride,int width,int height)1196 static int64_t get_sse(const uint8_t *a, int a_stride,
1197 const uint8_t *b, int b_stride,
1198 int width, int height) {
1199 const int dw = width % 16;
1200 const int dh = height % 16;
1201 int64_t total_sse = 0;
1202 unsigned int sse = 0;
1203 int sum = 0;
1204 int x, y;
1205
1206 if (dw > 0) {
1207 variance(&a[width - dw], a_stride, &b[width - dw], b_stride,
1208 dw, height, &sse, &sum);
1209 total_sse += sse;
1210 }
1211
1212 if (dh > 0) {
1213 variance(&a[(height - dh) * a_stride], a_stride,
1214 &b[(height - dh) * b_stride], b_stride,
1215 width - dw, dh, &sse, &sum);
1216 total_sse += sse;
1217 }
1218
1219 for (y = 0; y < height / 16; ++y) {
1220 const uint8_t *pa = a;
1221 const uint8_t *pb = b;
1222 for (x = 0; x < width / 16; ++x) {
1223 vp9_mse16x16(pa, a_stride, pb, b_stride, &sse);
1224 total_sse += sse;
1225
1226 pa += 16;
1227 pb += 16;
1228 }
1229
1230 a += 16 * a_stride;
1231 b += 16 * b_stride;
1232 }
1233
1234 return total_sse;
1235 }
1236
1237 typedef struct {
1238 double psnr[4]; // total/y/u/v
1239 uint64_t sse[4]; // total/y/u/v
1240 uint32_t samples[4]; // total/y/u/v
1241 } PSNR_STATS;
1242
calc_psnr(const YV12_BUFFER_CONFIG * a,const YV12_BUFFER_CONFIG * b,PSNR_STATS * psnr)1243 static void calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b,
1244 PSNR_STATS *psnr) {
1245 const int widths[3] = {a->y_width, a->uv_width, a->uv_width };
1246 const int heights[3] = {a->y_height, a->uv_height, a->uv_height};
1247 const uint8_t *a_planes[3] = {a->y_buffer, a->u_buffer, a->v_buffer };
1248 const int a_strides[3] = {a->y_stride, a->uv_stride, a->uv_stride};
1249 const uint8_t *b_planes[3] = {b->y_buffer, b->u_buffer, b->v_buffer };
1250 const int b_strides[3] = {b->y_stride, b->uv_stride, b->uv_stride};
1251 int i;
1252 uint64_t total_sse = 0;
1253 uint32_t total_samples = 0;
1254
1255 for (i = 0; i < 3; ++i) {
1256 const int w = widths[i];
1257 const int h = heights[i];
1258 const uint32_t samples = w * h;
1259 const uint64_t sse = get_sse(a_planes[i], a_strides[i],
1260 b_planes[i], b_strides[i],
1261 w, h);
1262 psnr->sse[1 + i] = sse;
1263 psnr->samples[1 + i] = samples;
1264 psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, 255.0, (double)sse);
1265
1266 total_sse += sse;
1267 total_samples += samples;
1268 }
1269
1270 psnr->sse[0] = total_sse;
1271 psnr->samples[0] = total_samples;
1272 psnr->psnr[0] = vpx_sse_to_psnr((double)total_samples, 255.0,
1273 (double)total_sse);
1274 }
1275
generate_psnr_packet(VP9_COMP * cpi)1276 static void generate_psnr_packet(VP9_COMP *cpi) {
1277 struct vpx_codec_cx_pkt pkt;
1278 int i;
1279 PSNR_STATS psnr;
1280 calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr);
1281 for (i = 0; i < 4; ++i) {
1282 pkt.data.psnr.samples[i] = psnr.samples[i];
1283 pkt.data.psnr.sse[i] = psnr.sse[i];
1284 pkt.data.psnr.psnr[i] = psnr.psnr[i];
1285 }
1286 pkt.kind = VPX_CODEC_PSNR_PKT;
1287 if (is_two_pass_svc(cpi))
1288 cpi->svc.layer_context[cpi->svc.spatial_layer_id].psnr_pkt = pkt.data.psnr;
1289 else
1290 vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
1291 }
1292
vp9_use_as_reference(VP9_COMP * cpi,int ref_frame_flags)1293 int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags) {
1294 if (ref_frame_flags > 7)
1295 return -1;
1296
1297 cpi->ref_frame_flags = ref_frame_flags;
1298 return 0;
1299 }
1300
vp9_update_reference(VP9_COMP * cpi,int ref_frame_flags)1301 void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags) {
1302 cpi->ext_refresh_golden_frame = (ref_frame_flags & VP9_GOLD_FLAG) != 0;
1303 cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VP9_ALT_FLAG) != 0;
1304 cpi->ext_refresh_last_frame = (ref_frame_flags & VP9_LAST_FLAG) != 0;
1305 cpi->ext_refresh_frame_flags_pending = 1;
1306 }
1307
get_vp9_ref_frame_buffer(VP9_COMP * cpi,VP9_REFFRAME ref_frame_flag)1308 static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer(VP9_COMP *cpi,
1309 VP9_REFFRAME ref_frame_flag) {
1310 MV_REFERENCE_FRAME ref_frame = NONE;
1311 if (ref_frame_flag == VP9_LAST_FLAG)
1312 ref_frame = LAST_FRAME;
1313 else if (ref_frame_flag == VP9_GOLD_FLAG)
1314 ref_frame = GOLDEN_FRAME;
1315 else if (ref_frame_flag == VP9_ALT_FLAG)
1316 ref_frame = ALTREF_FRAME;
1317
1318 return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
1319 }
1320
vp9_copy_reference_enc(VP9_COMP * cpi,VP9_REFFRAME ref_frame_flag,YV12_BUFFER_CONFIG * sd)1321 int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
1322 YV12_BUFFER_CONFIG *sd) {
1323 YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
1324 if (cfg) {
1325 vp8_yv12_copy_frame(cfg, sd);
1326 return 0;
1327 } else {
1328 return -1;
1329 }
1330 }
1331
vp9_set_reference_enc(VP9_COMP * cpi,VP9_REFFRAME ref_frame_flag,YV12_BUFFER_CONFIG * sd)1332 int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
1333 YV12_BUFFER_CONFIG *sd) {
1334 YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
1335 if (cfg) {
1336 vp8_yv12_copy_frame(sd, cfg);
1337 return 0;
1338 } else {
1339 return -1;
1340 }
1341 }
1342
vp9_update_entropy(VP9_COMP * cpi,int update)1343 int vp9_update_entropy(VP9_COMP * cpi, int update) {
1344 cpi->ext_refresh_frame_context = update;
1345 cpi->ext_refresh_frame_context_pending = 1;
1346 return 0;
1347 }
1348
1349 #if CONFIG_VP9_TEMPORAL_DENOISING
1350 #if defined(OUTPUT_YUV_DENOISED)
1351 // The denoiser buffer is allocated as a YUV 440 buffer. This function writes it
1352 // as YUV 420. We simply use the top-left pixels of the UV buffers, since we do
1353 // not denoise the UV channels at this time. If ever we implement UV channel
1354 // denoising we will have to modify this.
vp9_write_yuv_frame_420(YV12_BUFFER_CONFIG * s,FILE * f)1355 void vp9_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) {
1356 uint8_t *src = s->y_buffer;
1357 int h = s->y_height;
1358
1359 do {
1360 fwrite(src, s->y_width, 1, f);
1361 src += s->y_stride;
1362 } while (--h);
1363
1364 src = s->u_buffer;
1365 h = s->uv_height / 2;
1366
1367 do {
1368 fwrite(src, s->uv_width / 2, 1, f);
1369 src += s->uv_stride + s->uv_width / 2;
1370 } while (--h);
1371
1372 src = s->v_buffer;
1373 h = s->uv_height / 2;
1374
1375 do {
1376 fwrite(src, s->uv_width / 2, 1, f);
1377 src += s->uv_stride + s->uv_width / 2;
1378 } while (--h);
1379 }
1380 #endif
1381 #endif
1382
1383 #ifdef OUTPUT_YUV_REC
vp9_write_yuv_rec_frame(VP9_COMMON * cm)1384 void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
1385 YV12_BUFFER_CONFIG *s = cm->frame_to_show;
1386 uint8_t *src = s->y_buffer;
1387 int h = cm->height;
1388
1389 do {
1390 fwrite(src, s->y_width, 1, yuv_rec_file);
1391 src += s->y_stride;
1392 } while (--h);
1393
1394 src = s->u_buffer;
1395 h = s->uv_height;
1396
1397 do {
1398 fwrite(src, s->uv_width, 1, yuv_rec_file);
1399 src += s->uv_stride;
1400 } while (--h);
1401
1402 src = s->v_buffer;
1403 h = s->uv_height;
1404
1405 do {
1406 fwrite(src, s->uv_width, 1, yuv_rec_file);
1407 src += s->uv_stride;
1408 } while (--h);
1409
1410 fflush(yuv_rec_file);
1411 }
1412 #endif
1413
scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG * src,YV12_BUFFER_CONFIG * dst)1414 static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
1415 YV12_BUFFER_CONFIG *dst) {
1416 // TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t
1417 int i;
1418 const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer};
1419 const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride};
1420 const int src_widths[3] = {src->y_crop_width, src->uv_crop_width,
1421 src->uv_crop_width };
1422 const int src_heights[3] = {src->y_crop_height, src->uv_crop_height,
1423 src->uv_crop_height};
1424 uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer};
1425 const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride};
1426 const int dst_widths[3] = {dst->y_crop_width, dst->uv_crop_width,
1427 dst->uv_crop_width};
1428 const int dst_heights[3] = {dst->y_crop_height, dst->uv_crop_height,
1429 dst->uv_crop_height};
1430
1431 for (i = 0; i < MAX_MB_PLANE; ++i)
1432 vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
1433 dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
1434
1435 vp9_extend_frame_borders(dst);
1436 }
1437
scale_and_extend_frame(const YV12_BUFFER_CONFIG * src,YV12_BUFFER_CONFIG * dst)1438 static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
1439 YV12_BUFFER_CONFIG *dst) {
1440 const int src_w = src->y_crop_width;
1441 const int src_h = src->y_crop_height;
1442 const int dst_w = dst->y_crop_width;
1443 const int dst_h = dst->y_crop_height;
1444 const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer};
1445 const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride};
1446 uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer};
1447 const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride};
1448 const InterpKernel *const kernel = vp9_get_interp_kernel(EIGHTTAP);
1449 int x, y, i;
1450
1451 for (y = 0; y < dst_h; y += 16) {
1452 for (x = 0; x < dst_w; x += 16) {
1453 for (i = 0; i < MAX_MB_PLANE; ++i) {
1454 const int factor = (i == 0 || i == 3 ? 1 : 2);
1455 const int x_q4 = x * (16 / factor) * src_w / dst_w;
1456 const int y_q4 = y * (16 / factor) * src_h / dst_h;
1457 const int src_stride = src_strides[i];
1458 const int dst_stride = dst_strides[i];
1459 const uint8_t *src_ptr = srcs[i] + (y / factor) * src_h / dst_h *
1460 src_stride + (x / factor) * src_w / dst_w;
1461 uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
1462
1463 vp9_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
1464 kernel[x_q4 & 0xf], 16 * src_w / dst_w,
1465 kernel[y_q4 & 0xf], 16 * src_h / dst_h,
1466 16 / factor, 16 / factor);
1467 }
1468 }
1469 }
1470
1471 vp9_extend_frame_borders(dst);
1472 }
1473
1474 // Function to test for conditions that indicate we should loop
1475 // back and recode a frame.
recode_loop_test(const VP9_COMP * cpi,int high_limit,int low_limit,int q,int maxq,int minq)1476 static int recode_loop_test(const VP9_COMP *cpi,
1477 int high_limit, int low_limit,
1478 int q, int maxq, int minq) {
1479 const VP9_COMMON *const cm = &cpi->common;
1480 const RATE_CONTROL *const rc = &cpi->rc;
1481 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1482 int force_recode = 0;
1483
1484 // Special case trap if maximum allowed frame size exceeded.
1485 if (rc->projected_frame_size > rc->max_frame_bandwidth) {
1486 force_recode = 1;
1487
1488 // Is frame recode allowed.
1489 // Yes if either recode mode 1 is selected or mode 2 is selected
1490 // and the frame is a key frame, golden frame or alt_ref_frame
1491 } else if ((cpi->sf.recode_loop == ALLOW_RECODE) ||
1492 ((cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF) &&
1493 (cm->frame_type == KEY_FRAME ||
1494 cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
1495 // General over and under shoot tests
1496 if ((rc->projected_frame_size > high_limit && q < maxq) ||
1497 (rc->projected_frame_size < low_limit && q > minq)) {
1498 force_recode = 1;
1499 } else if (cpi->oxcf.rc_mode == VPX_CQ) {
1500 // Deal with frame undershoot and whether or not we are
1501 // below the automatically set cq level.
1502 if (q > oxcf->cq_level &&
1503 rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
1504 force_recode = 1;
1505 }
1506 }
1507 }
1508 return force_recode;
1509 }
1510
vp9_update_reference_frames(VP9_COMP * cpi)1511 void vp9_update_reference_frames(VP9_COMP *cpi) {
1512 VP9_COMMON * const cm = &cpi->common;
1513
1514 // At this point the new frame has been encoded.
1515 // If any buffer copy / swapping is signaled it should be done here.
1516 if (cm->frame_type == KEY_FRAME) {
1517 ref_cnt_fb(cm->frame_bufs,
1518 &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
1519 ref_cnt_fb(cm->frame_bufs,
1520 &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
1521 } else if (vp9_preserve_existing_gf(cpi)) {
1522 // We have decided to preserve the previously existing golden frame as our
1523 // new ARF frame. However, in the short term in function
1524 // vp9_bitstream.c::get_refresh_mask() we left it in the GF slot and, if
1525 // we're updating the GF with the current decoded frame, we save it to the
1526 // ARF slot instead.
1527 // We now have to update the ARF with the current frame and swap gld_fb_idx
1528 // and alt_fb_idx so that, overall, we've stored the old GF in the new ARF
1529 // slot and, if we're updating the GF, the current frame becomes the new GF.
1530 int tmp;
1531
1532 ref_cnt_fb(cm->frame_bufs,
1533 &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
1534
1535 tmp = cpi->alt_fb_idx;
1536 cpi->alt_fb_idx = cpi->gld_fb_idx;
1537 cpi->gld_fb_idx = tmp;
1538
1539 if (is_two_pass_svc(cpi)) {
1540 cpi->svc.layer_context[0].gold_ref_idx = cpi->gld_fb_idx;
1541 cpi->svc.layer_context[0].alt_ref_idx = cpi->alt_fb_idx;
1542 }
1543 } else { /* For non key/golden frames */
1544 if (cpi->refresh_alt_ref_frame) {
1545 int arf_idx = cpi->alt_fb_idx;
1546 if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
1547 const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
1548 arf_idx = gf_group->arf_update_idx[gf_group->index];
1549 }
1550
1551 ref_cnt_fb(cm->frame_bufs,
1552 &cm->ref_frame_map[arf_idx], cm->new_fb_idx);
1553 vpx_memcpy(cpi->interp_filter_selected[ALTREF_FRAME],
1554 cpi->interp_filter_selected[0],
1555 sizeof(cpi->interp_filter_selected[0]));
1556 }
1557
1558 if (cpi->refresh_golden_frame) {
1559 ref_cnt_fb(cm->frame_bufs,
1560 &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
1561 if (!cpi->rc.is_src_frame_alt_ref)
1562 vpx_memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
1563 cpi->interp_filter_selected[0],
1564 sizeof(cpi->interp_filter_selected[0]));
1565 else
1566 vpx_memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
1567 cpi->interp_filter_selected[ALTREF_FRAME],
1568 sizeof(cpi->interp_filter_selected[ALTREF_FRAME]));
1569 }
1570 }
1571
1572 if (cpi->refresh_last_frame) {
1573 ref_cnt_fb(cm->frame_bufs,
1574 &cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
1575 if (!cpi->rc.is_src_frame_alt_ref)
1576 vpx_memcpy(cpi->interp_filter_selected[LAST_FRAME],
1577 cpi->interp_filter_selected[0],
1578 sizeof(cpi->interp_filter_selected[0]));
1579 }
1580 #if CONFIG_VP9_TEMPORAL_DENOISING
1581 if (cpi->oxcf.noise_sensitivity > 0) {
1582 vp9_denoiser_update_frame_info(&cpi->denoiser,
1583 *cpi->Source,
1584 cpi->common.frame_type,
1585 cpi->refresh_alt_ref_frame,
1586 cpi->refresh_golden_frame,
1587 cpi->refresh_last_frame);
1588 }
1589 #endif
1590 }
1591
loopfilter_frame(VP9_COMP * cpi,VP9_COMMON * cm)1592 static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
1593 MACROBLOCKD *xd = &cpi->mb.e_mbd;
1594 struct loopfilter *lf = &cm->lf;
1595 if (xd->lossless) {
1596 lf->filter_level = 0;
1597 } else {
1598 struct vpx_usec_timer timer;
1599
1600 vp9_clear_system_state();
1601
1602 vpx_usec_timer_start(&timer);
1603
1604 vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick);
1605
1606 vpx_usec_timer_mark(&timer);
1607 cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
1608 }
1609
1610 if (lf->filter_level > 0) {
1611 vp9_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
1612 }
1613
1614 vp9_extend_frame_inner_borders(cm->frame_to_show);
1615 }
1616
vp9_scale_references(VP9_COMP * cpi)1617 void vp9_scale_references(VP9_COMP *cpi) {
1618 VP9_COMMON *cm = &cpi->common;
1619 MV_REFERENCE_FRAME ref_frame;
1620 const VP9_REFFRAME ref_mask[3] = {VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG};
1621
1622 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1623 const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
1624 const YV12_BUFFER_CONFIG *const ref = &cm->frame_bufs[idx].buf;
1625
1626 // Need to convert from VP9_REFFRAME to index into ref_mask (subtract 1).
1627 if ((cpi->ref_frame_flags & ref_mask[ref_frame - 1]) &&
1628 (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height)) {
1629 const int new_fb = get_free_fb(cm);
1630 vp9_realloc_frame_buffer(&cm->frame_bufs[new_fb].buf,
1631 cm->width, cm->height,
1632 cm->subsampling_x, cm->subsampling_y,
1633 #if CONFIG_VP9_HIGHBITDEPTH
1634 cm->use_highbitdepth,
1635 #endif
1636 VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL);
1637 scale_and_extend_frame(ref, &cm->frame_bufs[new_fb].buf);
1638 cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
1639 } else {
1640 cpi->scaled_ref_idx[ref_frame - 1] = idx;
1641 cm->frame_bufs[idx].ref_count++;
1642 }
1643 }
1644 }
1645
release_scaled_references(VP9_COMP * cpi)1646 static void release_scaled_references(VP9_COMP *cpi) {
1647 VP9_COMMON *cm = &cpi->common;
1648 int i;
1649
1650 for (i = 0; i < 3; i++)
1651 cm->frame_bufs[cpi->scaled_ref_idx[i]].ref_count--;
1652 }
1653
full_to_model_count(unsigned int * model_count,unsigned int * full_count)1654 static void full_to_model_count(unsigned int *model_count,
1655 unsigned int *full_count) {
1656 int n;
1657 model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
1658 model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
1659 model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
1660 for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
1661 model_count[TWO_TOKEN] += full_count[n];
1662 model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
1663 }
1664
full_to_model_counts(vp9_coeff_count_model * model_count,vp9_coeff_count * full_count)1665 static void full_to_model_counts(vp9_coeff_count_model *model_count,
1666 vp9_coeff_count *full_count) {
1667 int i, j, k, l;
1668
1669 for (i = 0; i < PLANE_TYPES; ++i)
1670 for (j = 0; j < REF_TYPES; ++j)
1671 for (k = 0; k < COEF_BANDS; ++k)
1672 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
1673 full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
1674 }
1675
1676 #if 0 && CONFIG_INTERNAL_STATS
1677 static void output_frame_level_debug_stats(VP9_COMP *cpi) {
1678 VP9_COMMON *const cm = &cpi->common;
1679 FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
1680 int recon_err;
1681
1682 vp9_clear_system_state();
1683
1684 recon_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
1685
1686 if (cpi->twopass.total_left_stats.coded_error != 0.0)
1687 fprintf(f, "%10u %10d %10d %10d %10d"
1688 "%10"PRId64" %10"PRId64" %10"PRId64" %10"PRId64" %10d "
1689 "%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf"
1690 "%6d %6d %5d %5d %5d "
1691 "%10"PRId64" %10.3lf"
1692 "%10lf %8u %10d %10d %10d\n",
1693 cpi->common.current_video_frame, cpi->rc.this_frame_target,
1694 cpi->rc.projected_frame_size,
1695 cpi->rc.projected_frame_size / cpi->common.MBs,
1696 (cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
1697 cpi->rc.vbr_bits_off_target,
1698 cpi->rc.total_target_vs_actual,
1699 (cpi->rc.starting_buffer_level - cpi->rc.bits_off_target),
1700 cpi->rc.total_actual_bits, cm->base_qindex,
1701 vp9_convert_qindex_to_q(cm->base_qindex),
1702 (double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
1703 vp9_convert_qindex_to_q(cpi->twopass.active_worst_quality),
1704 cpi->rc.avg_q,
1705 vp9_convert_qindex_to_q(cpi->oxcf.cq_level),
1706 cpi->refresh_last_frame, cpi->refresh_golden_frame,
1707 cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
1708 cpi->twopass.bits_left,
1709 cpi->twopass.total_left_stats.coded_error,
1710 cpi->twopass.bits_left /
1711 (1 + cpi->twopass.total_left_stats.coded_error),
1712 cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
1713 cpi->twopass.kf_zeromotion_pct);
1714
1715 fclose(f);
1716
1717 if (0) {
1718 FILE *const fmodes = fopen("Modes.stt", "a");
1719 int i;
1720
1721 fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
1722 cm->frame_type, cpi->refresh_golden_frame,
1723 cpi->refresh_alt_ref_frame);
1724
1725 for (i = 0; i < MAX_MODES; ++i)
1726 fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
1727
1728 fprintf(fmodes, "\n");
1729
1730 fclose(fmodes);
1731 }
1732 }
1733 #endif
1734
encode_without_recode_loop(VP9_COMP * cpi,int q)1735 static void encode_without_recode_loop(VP9_COMP *cpi,
1736 int q) {
1737 VP9_COMMON *const cm = &cpi->common;
1738 vp9_clear_system_state();
1739 vp9_set_quantizer(cm, q);
1740 setup_frame(cpi);
1741 // Variance adaptive and in frame q adjustment experiments are mutually
1742 // exclusive.
1743 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
1744 vp9_vaq_frame_setup(cpi);
1745 } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
1746 vp9_setup_in_frame_q_adj(cpi);
1747 } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
1748 vp9_cyclic_refresh_setup(cpi);
1749 }
1750 // transform / motion compensation build reconstruction frame
1751 vp9_encode_frame(cpi);
1752
1753 // Update the skip mb flag probabilities based on the distribution
1754 // seen in the last encoder iteration.
1755 // update_base_skip_probs(cpi);
1756 vp9_clear_system_state();
1757 }
1758
encode_with_recode_loop(VP9_COMP * cpi,size_t * size,uint8_t * dest,int q,int bottom_index,int top_index)1759 static void encode_with_recode_loop(VP9_COMP *cpi,
1760 size_t *size,
1761 uint8_t *dest,
1762 int q,
1763 int bottom_index,
1764 int top_index) {
1765 VP9_COMMON *const cm = &cpi->common;
1766 RATE_CONTROL *const rc = &cpi->rc;
1767 int loop_count = 0;
1768 int loop = 0;
1769 int overshoot_seen = 0;
1770 int undershoot_seen = 0;
1771 int q_low = bottom_index, q_high = top_index;
1772 int frame_over_shoot_limit;
1773 int frame_under_shoot_limit;
1774
1775 // Decide frame size bounds
1776 vp9_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
1777 &frame_under_shoot_limit,
1778 &frame_over_shoot_limit);
1779
1780 do {
1781 vp9_clear_system_state();
1782
1783 vp9_set_quantizer(cm, q);
1784
1785 if (loop_count == 0)
1786 setup_frame(cpi);
1787
1788 // Variance adaptive and in frame q adjustment experiments are mutually
1789 // exclusive.
1790 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
1791 vp9_vaq_frame_setup(cpi);
1792 } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
1793 vp9_setup_in_frame_q_adj(cpi);
1794 }
1795
1796 // transform / motion compensation build reconstruction frame
1797 vp9_encode_frame(cpi);
1798
1799 // Update the skip mb flag probabilities based on the distribution
1800 // seen in the last encoder iteration.
1801 // update_base_skip_probs(cpi);
1802
1803 vp9_clear_system_state();
1804
1805 // Dummy pack of the bitstream using up to date stats to get an
1806 // accurate estimate of output frame size to determine if we need
1807 // to recode.
1808 if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
1809 save_coding_context(cpi);
1810 if (!cpi->sf.use_nonrd_pick_mode)
1811 vp9_pack_bitstream(cpi, dest, size);
1812
1813 rc->projected_frame_size = (int)(*size) << 3;
1814 restore_coding_context(cpi);
1815
1816 if (frame_over_shoot_limit == 0)
1817 frame_over_shoot_limit = 1;
1818 }
1819
1820 if (cpi->oxcf.rc_mode == VPX_Q) {
1821 loop = 0;
1822 } else {
1823 if ((cm->frame_type == KEY_FRAME) &&
1824 rc->this_key_frame_forced &&
1825 (rc->projected_frame_size < rc->max_frame_bandwidth)) {
1826 int last_q = q;
1827 int kf_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
1828
1829 int high_err_target = cpi->ambient_err;
1830 int low_err_target = cpi->ambient_err >> 1;
1831
1832 // Prevent possible divide by zero error below for perfect KF
1833 kf_err += !kf_err;
1834
1835 // The key frame is not good enough or we can afford
1836 // to make it better without undue risk of popping.
1837 if ((kf_err > high_err_target &&
1838 rc->projected_frame_size <= frame_over_shoot_limit) ||
1839 (kf_err > low_err_target &&
1840 rc->projected_frame_size <= frame_under_shoot_limit)) {
1841 // Lower q_high
1842 q_high = q > q_low ? q - 1 : q_low;
1843
1844 // Adjust Q
1845 q = (q * high_err_target) / kf_err;
1846 q = MIN(q, (q_high + q_low) >> 1);
1847 } else if (kf_err < low_err_target &&
1848 rc->projected_frame_size >= frame_under_shoot_limit) {
1849 // The key frame is much better than the previous frame
1850 // Raise q_low
1851 q_low = q < q_high ? q + 1 : q_high;
1852
1853 // Adjust Q
1854 q = (q * low_err_target) / kf_err;
1855 q = MIN(q, (q_high + q_low + 1) >> 1);
1856 }
1857
1858 // Clamp Q to upper and lower limits:
1859 q = clamp(q, q_low, q_high);
1860
1861 loop = q != last_q;
1862 } else if (recode_loop_test(
1863 cpi, frame_over_shoot_limit, frame_under_shoot_limit,
1864 q, MAX(q_high, top_index), bottom_index)) {
1865 // Is the projected frame size out of range and are we allowed
1866 // to attempt to recode.
1867 int last_q = q;
1868 int retries = 0;
1869
1870 // Frame size out of permitted range:
1871 // Update correction factor & compute new Q to try...
1872
1873 // Frame is too large
1874 if (rc->projected_frame_size > rc->this_frame_target) {
1875 // Special case if the projected size is > the max allowed.
1876 if (rc->projected_frame_size >= rc->max_frame_bandwidth)
1877 q_high = rc->worst_quality;
1878
1879 // Raise Qlow as to at least the current value
1880 q_low = q < q_high ? q + 1 : q_high;
1881
1882 if (undershoot_seen || loop_count > 1) {
1883 // Update rate_correction_factor unless
1884 vp9_rc_update_rate_correction_factors(cpi, 1);
1885
1886 q = (q_high + q_low + 1) / 2;
1887 } else {
1888 // Update rate_correction_factor unless
1889 vp9_rc_update_rate_correction_factors(cpi, 0);
1890
1891 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
1892 bottom_index, MAX(q_high, top_index));
1893
1894 while (q < q_low && retries < 10) {
1895 vp9_rc_update_rate_correction_factors(cpi, 0);
1896 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
1897 bottom_index, MAX(q_high, top_index));
1898 retries++;
1899 }
1900 }
1901
1902 overshoot_seen = 1;
1903 } else {
1904 // Frame is too small
1905 q_high = q > q_low ? q - 1 : q_low;
1906
1907 if (overshoot_seen || loop_count > 1) {
1908 vp9_rc_update_rate_correction_factors(cpi, 1);
1909 q = (q_high + q_low) / 2;
1910 } else {
1911 vp9_rc_update_rate_correction_factors(cpi, 0);
1912 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
1913 bottom_index, top_index);
1914 // Special case reset for qlow for constrained quality.
1915 // This should only trigger where there is very substantial
1916 // undershoot on a frame and the auto cq level is above
1917 // the user passsed in value.
1918 if (cpi->oxcf.rc_mode == VPX_CQ &&
1919 q < q_low) {
1920 q_low = q;
1921 }
1922
1923 while (q > q_high && retries < 10) {
1924 vp9_rc_update_rate_correction_factors(cpi, 0);
1925 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
1926 bottom_index, top_index);
1927 retries++;
1928 }
1929 }
1930
1931 undershoot_seen = 1;
1932 }
1933
1934 // Clamp Q to upper and lower limits:
1935 q = clamp(q, q_low, q_high);
1936
1937 loop = q != last_q;
1938 } else {
1939 loop = 0;
1940 }
1941 }
1942
1943 // Special case for overlay frame.
1944 if (rc->is_src_frame_alt_ref &&
1945 rc->projected_frame_size < rc->max_frame_bandwidth)
1946 loop = 0;
1947
1948 if (loop) {
1949 loop_count++;
1950
1951 #if CONFIG_INTERNAL_STATS
1952 cpi->tot_recode_hits++;
1953 #endif
1954 }
1955 } while (loop);
1956 }
1957
get_ref_frame_flags(const VP9_COMP * cpi)1958 static int get_ref_frame_flags(const VP9_COMP *cpi) {
1959 const int *const map = cpi->common.ref_frame_map;
1960 const int gold_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx];
1961 const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx];
1962 const int gold_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx];
1963 int flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
1964
1965 if (gold_is_last)
1966 flags &= ~VP9_GOLD_FLAG;
1967
1968 if (cpi->rc.frames_till_gf_update_due == INT_MAX && !is_two_pass_svc(cpi))
1969 flags &= ~VP9_GOLD_FLAG;
1970
1971 if (alt_is_last)
1972 flags &= ~VP9_ALT_FLAG;
1973
1974 if (gold_is_alt)
1975 flags &= ~VP9_ALT_FLAG;
1976
1977 return flags;
1978 }
1979
set_ext_overrides(VP9_COMP * cpi)1980 static void set_ext_overrides(VP9_COMP *cpi) {
1981 // Overrides the defaults with the externally supplied values with
1982 // vp9_update_reference() and vp9_update_entropy() calls
1983 // Note: The overrides are valid only for the next frame passed
1984 // to encode_frame_to_data_rate() function
1985 if (cpi->ext_refresh_frame_context_pending) {
1986 cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
1987 cpi->ext_refresh_frame_context_pending = 0;
1988 }
1989 if (cpi->ext_refresh_frame_flags_pending) {
1990 cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
1991 cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
1992 cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
1993 cpi->ext_refresh_frame_flags_pending = 0;
1994 }
1995 }
1996
vp9_scale_if_required(VP9_COMMON * cm,YV12_BUFFER_CONFIG * unscaled,YV12_BUFFER_CONFIG * scaled)1997 YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm,
1998 YV12_BUFFER_CONFIG *unscaled,
1999 YV12_BUFFER_CONFIG *scaled) {
2000 if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
2001 cm->mi_rows * MI_SIZE != unscaled->y_height) {
2002 scale_and_extend_frame_nonnormative(unscaled, scaled);
2003 return scaled;
2004 } else {
2005 return unscaled;
2006 }
2007 }
2008
is_skippable_frame(const VP9_COMP * cpi)2009 static int is_skippable_frame(const VP9_COMP *cpi) {
2010 // If the current frame does not have non-zero motion vector detected in the
2011 // first pass, and so do its previous and forward frames, then this frame
2012 // can be skipped for partition check, and the partition size is assigned
2013 // according to the variance
2014 const SVC *const svc = &cpi->svc;
2015 const TWO_PASS *const twopass = is_two_pass_svc(cpi) ?
2016 &svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass;
2017
2018 return (!frame_is_intra_only(&cpi->common) &&
2019 twopass->stats_in - 2 > twopass->stats_in_start &&
2020 twopass->stats_in < twopass->stats_in_end &&
2021 (twopass->stats_in - 1)->pcnt_inter - (twopass->stats_in - 1)->pcnt_motion
2022 == 1 &&
2023 (twopass->stats_in - 2)->pcnt_inter - (twopass->stats_in - 2)->pcnt_motion
2024 == 1 &&
2025 twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
2026 }
2027
set_arf_sign_bias(VP9_COMP * cpi)2028 static void set_arf_sign_bias(VP9_COMP *cpi) {
2029 VP9_COMMON *const cm = &cpi->common;
2030 int arf_sign_bias;
2031
2032 if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
2033 const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
2034 arf_sign_bias = cpi->rc.source_alt_ref_active &&
2035 (!cpi->refresh_alt_ref_frame ||
2036 (gf_group->rf_level[gf_group->index] == GF_ARF_LOW));
2037 } else {
2038 arf_sign_bias =
2039 (cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame);
2040 }
2041 cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias;
2042 }
2043
set_mv_search_params(VP9_COMP * cpi)2044 static void set_mv_search_params(VP9_COMP *cpi) {
2045 const VP9_COMMON *const cm = &cpi->common;
2046 const unsigned int max_mv_def = MIN(cm->width, cm->height);
2047
2048 // Default based on max resolution.
2049 cpi->mv_step_param = vp9_init_search_range(max_mv_def);
2050
2051 if (cpi->sf.mv.auto_mv_step_size) {
2052 if (frame_is_intra_only(cm)) {
2053 // Initialize max_mv_magnitude for use in the first INTER frame
2054 // after a key/intra-only frame.
2055 cpi->max_mv_magnitude = max_mv_def;
2056 } else {
2057 if (cm->show_frame)
2058 // Allow mv_steps to correspond to twice the max mv magnitude found
2059 // in the previous frame, capped by the default max_mv_magnitude based
2060 // on resolution.
2061 cpi->mv_step_param =
2062 vp9_init_search_range(MIN(max_mv_def, 2 * cpi->max_mv_magnitude));
2063 cpi->max_mv_magnitude = 0;
2064 }
2065 }
2066 }
2067
2068
setup_interp_filter_search_mask(VP9_COMP * cpi)2069 int setup_interp_filter_search_mask(VP9_COMP *cpi) {
2070 INTERP_FILTER ifilter;
2071 int ref_total[MAX_REF_FRAMES] = {0};
2072 MV_REFERENCE_FRAME ref;
2073 int mask = 0;
2074 if (cpi->common.last_frame_type == KEY_FRAME ||
2075 cpi->refresh_alt_ref_frame)
2076 return mask;
2077 for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref)
2078 for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter)
2079 ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
2080
2081 for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter) {
2082 if ((ref_total[LAST_FRAME] &&
2083 cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) &&
2084 (ref_total[GOLDEN_FRAME] == 0 ||
2085 cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50
2086 < ref_total[GOLDEN_FRAME]) &&
2087 (ref_total[ALTREF_FRAME] == 0 ||
2088 cpi->interp_filter_selected[ALTREF_FRAME][ifilter] * 50
2089 < ref_total[ALTREF_FRAME]))
2090 mask |= 1 << ifilter;
2091 }
2092 return mask;
2093 }
2094
encode_frame_to_data_rate(VP9_COMP * cpi,size_t * size,uint8_t * dest,unsigned int * frame_flags)2095 static void encode_frame_to_data_rate(VP9_COMP *cpi,
2096 size_t *size,
2097 uint8_t *dest,
2098 unsigned int *frame_flags) {
2099 VP9_COMMON *const cm = &cpi->common;
2100 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2101 struct segmentation *const seg = &cm->seg;
2102 TX_SIZE t;
2103 int q;
2104 int top_index;
2105 int bottom_index;
2106
2107 set_ext_overrides(cpi);
2108
2109 cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
2110 &cpi->scaled_source);
2111
2112 if (cpi->unscaled_last_source != NULL)
2113 cpi->Last_Source = vp9_scale_if_required(cm, cpi->unscaled_last_source,
2114 &cpi->scaled_last_source);
2115
2116 vp9_scale_references(cpi);
2117
2118 vp9_clear_system_state();
2119
2120 // Enable or disable mode based tweaking of the zbin.
2121 // For 2 pass only used where GF/ARF prediction quality
2122 // is above a threshold.
2123 cpi->zbin_mode_boost = 0;
2124 cpi->zbin_mode_boost_enabled = 0;
2125
2126 // Set the arf sign bias for this frame.
2127 set_arf_sign_bias(cpi);
2128
2129 // Set default state for segment based loop filter update flags.
2130 cm->lf.mode_ref_delta_update = 0;
2131
2132 set_mv_search_params(cpi);
2133
2134 if (cpi->oxcf.pass == 2 &&
2135 cpi->sf.adaptive_interp_filter_search)
2136 cpi->sf.interp_filter_search_mask =
2137 setup_interp_filter_search_mask(cpi);
2138
2139
2140 // Set various flags etc to special state if it is a key frame.
2141 if (frame_is_intra_only(cm)) {
2142 // Reset the loop filter deltas and segmentation map.
2143 vp9_reset_segment_features(&cm->seg);
2144
2145 // If segmentation is enabled force a map update for key frames.
2146 if (seg->enabled) {
2147 seg->update_map = 1;
2148 seg->update_data = 1;
2149 }
2150
2151 // The alternate reference frame cannot be active for a key frame.
2152 cpi->rc.source_alt_ref_active = 0;
2153
2154 cm->error_resilient_mode = oxcf->error_resilient_mode;
2155
2156 // By default, encoder assumes decoder can use prev_mi.
2157 if (cm->error_resilient_mode) {
2158 cm->frame_parallel_decoding_mode = 1;
2159 cm->reset_frame_context = 0;
2160 cm->refresh_frame_context = 0;
2161 } else if (cm->intra_only) {
2162 cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode;
2163 // Only reset the current context.
2164 cm->reset_frame_context = 2;
2165 }
2166 }
2167 if (is_two_pass_svc(cpi) && cm->error_resilient_mode == 0) {
2168 cm->frame_context_idx =
2169 cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers +
2170 cpi->svc.temporal_layer_id;
2171
2172 // The probs will be updated based on the frame type of its previous
2173 // frame if frame_parallel_decoding_mode is 0. The type may vary for
2174 // the frame after a key frame in base layer since we may drop enhancement
2175 // layers. So set frame_parallel_decoding_mode to 1 in this case.
2176 if (cpi->svc.number_temporal_layers == 1) {
2177 if (cpi->svc.spatial_layer_id == 0 &&
2178 cpi->svc.layer_context[0].last_frame_type == KEY_FRAME)
2179 cm->frame_parallel_decoding_mode = 1;
2180 else
2181 cm->frame_parallel_decoding_mode = 0;
2182 } else if (cpi->svc.spatial_layer_id == 0) {
2183 // Find the 2nd frame in temporal base layer and 1st frame in temporal
2184 // enhancement layers from the key frame.
2185 int i;
2186 for (i = 0; i < cpi->svc.number_temporal_layers; ++i) {
2187 if (cpi->svc.layer_context[0].frames_from_key_frame == 1 << i) {
2188 cm->frame_parallel_decoding_mode = 1;
2189 break;
2190 }
2191 }
2192 if (i == cpi->svc.number_temporal_layers)
2193 cm->frame_parallel_decoding_mode = 0;
2194 }
2195 }
2196
2197 // Configure experimental use of segmentation for enhanced coding of
2198 // static regions if indicated.
2199 // Only allowed in second pass of two pass (as requires lagged coding)
2200 // and if the relevant speed feature flag is set.
2201 if (oxcf->pass == 2 && cpi->sf.static_segmentation)
2202 configure_static_seg_features(cpi);
2203
2204 // Check if the current frame is skippable for the partition search in the
2205 // second pass according to the first pass stats
2206 if (oxcf->pass == 2 &&
2207 (!cpi->use_svc || is_two_pass_svc(cpi))) {
2208 cpi->skippable_frame = is_skippable_frame(cpi);
2209 }
2210
2211 // For 1 pass CBR, check if we are dropping this frame.
2212 // Never drop on key frame.
2213 if (oxcf->pass == 0 &&
2214 oxcf->rc_mode == VPX_CBR &&
2215 cm->frame_type != KEY_FRAME) {
2216 if (vp9_rc_drop_frame(cpi)) {
2217 vp9_rc_postencode_update_drop_frame(cpi);
2218 ++cm->current_video_frame;
2219 return;
2220 }
2221 }
2222
2223 vp9_clear_system_state();
2224
2225 #if CONFIG_VP9_POSTPROC
2226 if (oxcf->noise_sensitivity > 0) {
2227 int l = 0;
2228 switch (oxcf->noise_sensitivity) {
2229 case 1:
2230 l = 20;
2231 break;
2232 case 2:
2233 l = 40;
2234 break;
2235 case 3:
2236 l = 60;
2237 break;
2238 case 4:
2239 case 5:
2240 l = 100;
2241 break;
2242 case 6:
2243 l = 150;
2244 break;
2245 }
2246 vp9_denoise(cpi->Source, cpi->Source, l);
2247 }
2248 #endif
2249
2250 #if CONFIG_INTERNAL_STATS
2251 {
2252 int i;
2253 for (i = 0; i < MAX_MODES; ++i)
2254 cpi->mode_chosen_counts[i] = 0;
2255 }
2256 #endif
2257
2258 vp9_set_speed_features(cpi);
2259
2260 vp9_set_rd_speed_thresholds(cpi);
2261 vp9_set_rd_speed_thresholds_sub8x8(cpi);
2262
2263 // Decide q and q bounds.
2264 q = vp9_rc_pick_q_and_bounds(cpi, &bottom_index, &top_index);
2265
2266 if (!frame_is_intra_only(cm)) {
2267 cm->interp_filter = cpi->sf.default_interp_filter;
2268 /* TODO: Decide this more intelligently */
2269 vp9_set_high_precision_mv(cpi, q < HIGH_PRECISION_MV_QTHRESH);
2270 }
2271
2272 if (cpi->sf.recode_loop == DISALLOW_RECODE) {
2273 encode_without_recode_loop(cpi, q);
2274 } else {
2275 encode_with_recode_loop(cpi, size, dest, q, bottom_index, top_index);
2276 }
2277
2278 #if CONFIG_VP9_TEMPORAL_DENOISING
2279 #ifdef OUTPUT_YUV_DENOISED
2280 if (oxcf->noise_sensitivity > 0) {
2281 vp9_write_yuv_frame_420(&cpi->denoiser.running_avg_y[INTRA_FRAME],
2282 yuv_denoised_file);
2283 }
2284 #endif
2285 #endif
2286
2287
2288 // Special case code to reduce pulsing when key frames are forced at a
2289 // fixed interval. Note the reconstruction error if it is the frame before
2290 // the force key frame
2291 if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
2292 cpi->ambient_err = vp9_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
2293 }
2294
2295 // If the encoder forced a KEY_FRAME decision
2296 if (cm->frame_type == KEY_FRAME)
2297 cpi->refresh_last_frame = 1;
2298
2299 cm->frame_to_show = get_frame_new_buffer(cm);
2300
2301 // Pick the loop filter level for the frame.
2302 loopfilter_frame(cpi, cm);
2303
2304 // build the bitstream
2305 vp9_pack_bitstream(cpi, dest, size);
2306
2307 if (cm->seg.update_map)
2308 update_reference_segmentation_map(cpi);
2309
2310 release_scaled_references(cpi);
2311 vp9_update_reference_frames(cpi);
2312
2313 for (t = TX_4X4; t <= TX_32X32; t++)
2314 full_to_model_counts(cm->counts.coef[t], cpi->coef_counts[t]);
2315
2316 if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode)
2317 vp9_adapt_coef_probs(cm);
2318
2319 if (!frame_is_intra_only(cm)) {
2320 if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
2321 vp9_adapt_mode_probs(cm);
2322 vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
2323 }
2324 }
2325
2326 if (cpi->refresh_golden_frame == 1)
2327 cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
2328 else
2329 cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
2330
2331 if (cpi->refresh_alt_ref_frame == 1)
2332 cpi->frame_flags |= FRAMEFLAGS_ALTREF;
2333 else
2334 cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
2335
2336 cpi->ref_frame_flags = get_ref_frame_flags(cpi);
2337
2338 cm->last_frame_type = cm->frame_type;
2339 vp9_rc_postencode_update(cpi, *size);
2340
2341 #if 0
2342 output_frame_level_debug_stats(cpi);
2343 #endif
2344
2345 if (cm->frame_type == KEY_FRAME) {
2346 // Tell the caller that the frame was coded as a key frame
2347 *frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
2348 } else {
2349 *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
2350 }
2351
2352 // Clear the one shot update flags for segmentation map and mode/ref loop
2353 // filter deltas.
2354 cm->seg.update_map = 0;
2355 cm->seg.update_data = 0;
2356 cm->lf.mode_ref_delta_update = 0;
2357
2358 // keep track of the last coded dimensions
2359 cm->last_width = cm->width;
2360 cm->last_height = cm->height;
2361
2362 // reset to normal state now that we are done.
2363 if (!cm->show_existing_frame) {
2364 if (is_two_pass_svc(cpi) && cm->error_resilient_mode == 0)
2365 cm->last_show_frame = 0;
2366 else
2367 cm->last_show_frame = cm->show_frame;
2368 }
2369
2370 if (cm->show_frame) {
2371 vp9_swap_mi_and_prev_mi(cm);
2372
2373 // Don't increment frame counters if this was an altref buffer
2374 // update not a real frame
2375 ++cm->current_video_frame;
2376 if (cpi->use_svc)
2377 vp9_inc_frame_in_layer(cpi);
2378 }
2379
2380 if (is_two_pass_svc(cpi))
2381 cpi->svc.layer_context[cpi->svc.spatial_layer_id].last_frame_type =
2382 cm->frame_type;
2383 }
2384
SvcEncode(VP9_COMP * cpi,size_t * size,uint8_t * dest,unsigned int * frame_flags)2385 static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
2386 unsigned int *frame_flags) {
2387 vp9_rc_get_svc_params(cpi);
2388 encode_frame_to_data_rate(cpi, size, dest, frame_flags);
2389 }
2390
Pass0Encode(VP9_COMP * cpi,size_t * size,uint8_t * dest,unsigned int * frame_flags)2391 static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
2392 unsigned int *frame_flags) {
2393 if (cpi->oxcf.rc_mode == VPX_CBR) {
2394 vp9_rc_get_one_pass_cbr_params(cpi);
2395 } else {
2396 vp9_rc_get_one_pass_vbr_params(cpi);
2397 }
2398 encode_frame_to_data_rate(cpi, size, dest, frame_flags);
2399 }
2400
Pass2Encode(VP9_COMP * cpi,size_t * size,uint8_t * dest,unsigned int * frame_flags)2401 static void Pass2Encode(VP9_COMP *cpi, size_t *size,
2402 uint8_t *dest, unsigned int *frame_flags) {
2403 cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
2404 encode_frame_to_data_rate(cpi, size, dest, frame_flags);
2405 vp9_twopass_postencode_update(cpi);
2406 }
2407
init_motion_estimation(VP9_COMP * cpi)2408 static void init_motion_estimation(VP9_COMP *cpi) {
2409 int y_stride = cpi->scaled_source.y_stride;
2410
2411 if (cpi->sf.mv.search_method == NSTEP) {
2412 vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride);
2413 } else if (cpi->sf.mv.search_method == DIAMOND) {
2414 vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
2415 }
2416 }
2417
check_initial_width(VP9_COMP * cpi,int subsampling_x,int subsampling_y)2418 static void check_initial_width(VP9_COMP *cpi, int subsampling_x,
2419 int subsampling_y) {
2420 VP9_COMMON *const cm = &cpi->common;
2421
2422 if (!cpi->initial_width) {
2423 cm->subsampling_x = subsampling_x;
2424 cm->subsampling_y = subsampling_y;
2425
2426 alloc_raw_frame_buffers(cpi);
2427 alloc_ref_frame_buffers(cpi);
2428 alloc_util_frame_buffers(cpi);
2429
2430 init_motion_estimation(cpi);
2431
2432 cpi->initial_width = cm->width;
2433 cpi->initial_height = cm->height;
2434 }
2435 }
2436
2437
vp9_receive_raw_frame(VP9_COMP * cpi,unsigned int frame_flags,YV12_BUFFER_CONFIG * sd,int64_t time_stamp,int64_t end_time)2438 int vp9_receive_raw_frame(VP9_COMP *cpi, unsigned int frame_flags,
2439 YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
2440 int64_t end_time) {
2441 VP9_COMMON *cm = &cpi->common;
2442 struct vpx_usec_timer timer;
2443 int res = 0;
2444 const int subsampling_x = sd->uv_width < sd->y_width;
2445 const int subsampling_y = sd->uv_height < sd->y_height;
2446
2447 check_initial_width(cpi, subsampling_x, subsampling_y);
2448
2449 vpx_usec_timer_start(&timer);
2450
2451 if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags))
2452 res = -1;
2453 vpx_usec_timer_mark(&timer);
2454 cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
2455
2456 if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) &&
2457 (subsampling_x != 1 || subsampling_y != 1)) {
2458 vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
2459 "Non-4:2:0 color space requires profile 1 or 3");
2460 res = -1;
2461 }
2462 if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) &&
2463 (subsampling_x == 1 && subsampling_y == 1)) {
2464 vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
2465 "4:2:0 color space requires profile 0 or 2");
2466 res = -1;
2467 }
2468
2469 return res;
2470 }
2471
2472
frame_is_reference(const VP9_COMP * cpi)2473 static int frame_is_reference(const VP9_COMP *cpi) {
2474 const VP9_COMMON *cm = &cpi->common;
2475
2476 return cm->frame_type == KEY_FRAME ||
2477 cpi->refresh_last_frame ||
2478 cpi->refresh_golden_frame ||
2479 cpi->refresh_alt_ref_frame ||
2480 cm->refresh_frame_context ||
2481 cm->lf.mode_ref_delta_update ||
2482 cm->seg.update_map ||
2483 cm->seg.update_data;
2484 }
2485
adjust_frame_rate(VP9_COMP * cpi,const struct lookahead_entry * source)2486 void adjust_frame_rate(VP9_COMP *cpi,
2487 const struct lookahead_entry *source) {
2488 int64_t this_duration;
2489 int step = 0;
2490
2491 if (source->ts_start == cpi->first_time_stamp_ever) {
2492 this_duration = source->ts_end - source->ts_start;
2493 step = 1;
2494 } else {
2495 int64_t last_duration = cpi->last_end_time_stamp_seen
2496 - cpi->last_time_stamp_seen;
2497
2498 this_duration = source->ts_end - cpi->last_end_time_stamp_seen;
2499
2500 // do a step update if the duration changes by 10%
2501 if (last_duration)
2502 step = (int)((this_duration - last_duration) * 10 / last_duration);
2503 }
2504
2505 if (this_duration) {
2506 if (step) {
2507 vp9_new_framerate(cpi, 10000000.0 / this_duration);
2508 } else {
2509 // Average this frame's rate into the last second's average
2510 // frame rate. If we haven't seen 1 second yet, then average
2511 // over the whole interval seen.
2512 const double interval = MIN((double)(source->ts_end
2513 - cpi->first_time_stamp_ever), 10000000.0);
2514 double avg_duration = 10000000.0 / cpi->framerate;
2515 avg_duration *= (interval - avg_duration + this_duration);
2516 avg_duration /= interval;
2517
2518 vp9_new_framerate(cpi, 10000000.0 / avg_duration);
2519 }
2520 }
2521 cpi->last_time_stamp_seen = source->ts_start;
2522 cpi->last_end_time_stamp_seen = source->ts_end;
2523 }
2524
2525 // Returns 0 if this is not an alt ref else the offset of the source frame
2526 // used as the arf midpoint.
get_arf_src_index(VP9_COMP * cpi)2527 static int get_arf_src_index(VP9_COMP *cpi) {
2528 RATE_CONTROL *const rc = &cpi->rc;
2529 int arf_src_index = 0;
2530 if (is_altref_enabled(cpi)) {
2531 if (cpi->oxcf.pass == 2) {
2532 const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
2533 if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
2534 arf_src_index = gf_group->arf_src_offset[gf_group->index];
2535 }
2536 } else if (rc->source_alt_ref_pending) {
2537 arf_src_index = rc->frames_till_gf_update_due;
2538 }
2539 }
2540 return arf_src_index;
2541 }
2542
check_src_altref(VP9_COMP * cpi,const struct lookahead_entry * source)2543 static void check_src_altref(VP9_COMP *cpi,
2544 const struct lookahead_entry *source) {
2545 RATE_CONTROL *const rc = &cpi->rc;
2546
2547 if (cpi->oxcf.pass == 2) {
2548 const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
2549 rc->is_src_frame_alt_ref =
2550 (gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
2551 } else {
2552 rc->is_src_frame_alt_ref = cpi->alt_ref_source &&
2553 (source == cpi->alt_ref_source);
2554 }
2555
2556 if (rc->is_src_frame_alt_ref) {
2557 // Current frame is an ARF overlay frame.
2558 cpi->alt_ref_source = NULL;
2559
2560 // Don't refresh the last buffer for an ARF overlay frame. It will
2561 // become the GF so preserve last as an alternative prediction option.
2562 cpi->refresh_last_frame = 0;
2563 }
2564 }
2565
vp9_get_compressed_data(VP9_COMP * cpi,unsigned int * frame_flags,size_t * size,uint8_t * dest,int64_t * time_stamp,int64_t * time_end,int flush)2566 int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
2567 size_t *size, uint8_t *dest,
2568 int64_t *time_stamp, int64_t *time_end, int flush) {
2569 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2570 VP9_COMMON *const cm = &cpi->common;
2571 MACROBLOCKD *const xd = &cpi->mb.e_mbd;
2572 RATE_CONTROL *const rc = &cpi->rc;
2573 struct vpx_usec_timer cmptimer;
2574 YV12_BUFFER_CONFIG *force_src_buffer = NULL;
2575 struct lookahead_entry *last_source = NULL;
2576 struct lookahead_entry *source = NULL;
2577 MV_REFERENCE_FRAME ref_frame;
2578 int arf_src_index;
2579
2580 if (is_two_pass_svc(cpi)) {
2581 #if CONFIG_SPATIAL_SVC
2582 vp9_svc_start_frame(cpi);
2583 #endif
2584 if (oxcf->pass == 2)
2585 vp9_restore_layer_context(cpi);
2586 }
2587
2588 vpx_usec_timer_start(&cmptimer);
2589
2590 vp9_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
2591
2592 // Normal defaults
2593 cm->reset_frame_context = 0;
2594 cm->refresh_frame_context = 1;
2595 cpi->refresh_last_frame = 1;
2596 cpi->refresh_golden_frame = 0;
2597 cpi->refresh_alt_ref_frame = 0;
2598
2599 // Should we encode an arf frame.
2600 arf_src_index = get_arf_src_index(cpi);
2601 if (arf_src_index) {
2602 assert(arf_src_index <= rc->frames_to_key);
2603
2604 if ((source = vp9_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
2605 cpi->alt_ref_source = source;
2606
2607 #if CONFIG_SPATIAL_SVC
2608 if (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0) {
2609 int i;
2610 // Reference a hidden frame from a lower layer
2611 for (i = cpi->svc.spatial_layer_id - 1; i >= 0; --i) {
2612 if (oxcf->ss_play_alternate[i]) {
2613 cpi->gld_fb_idx = cpi->svc.layer_context[i].alt_ref_idx;
2614 break;
2615 }
2616 }
2617 }
2618 cpi->svc.layer_context[cpi->svc.spatial_layer_id].has_alt_frame = 1;
2619 #endif
2620
2621 if (oxcf->arnr_max_frames > 0) {
2622 // Produce the filtered ARF frame.
2623 vp9_temporal_filter(cpi, arf_src_index);
2624 vp9_extend_frame_borders(&cpi->alt_ref_buffer);
2625 force_src_buffer = &cpi->alt_ref_buffer;
2626 }
2627
2628 cm->show_frame = 0;
2629 cpi->refresh_alt_ref_frame = 1;
2630 cpi->refresh_golden_frame = 0;
2631 cpi->refresh_last_frame = 0;
2632 rc->is_src_frame_alt_ref = 0;
2633 rc->source_alt_ref_pending = 0;
2634 } else {
2635 rc->source_alt_ref_pending = 0;
2636 }
2637 }
2638
2639 if (!source) {
2640 // Get last frame source.
2641 if (cm->current_video_frame > 0) {
2642 if ((last_source = vp9_lookahead_peek(cpi->lookahead, -1)) == NULL)
2643 return -1;
2644 }
2645
2646 // Read in the source frame.
2647 #if CONFIG_SPATIAL_SVC
2648 if (is_two_pass_svc(cpi))
2649 source = vp9_svc_lookahead_pop(cpi, cpi->lookahead, flush);
2650 else
2651 #endif
2652 source = vp9_lookahead_pop(cpi->lookahead, flush);
2653 if (source != NULL) {
2654 cm->show_frame = 1;
2655 cm->intra_only = 0;
2656
2657 // Check to see if the frame should be encoded as an arf overlay.
2658 check_src_altref(cpi, source);
2659 }
2660 }
2661
2662 if (source) {
2663 cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
2664 : &source->img;
2665
2666 cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL;
2667
2668 *time_stamp = source->ts_start;
2669 *time_end = source->ts_end;
2670 *frame_flags = (source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
2671
2672 } else {
2673 *size = 0;
2674 if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) {
2675 vp9_end_first_pass(cpi); /* get last stats packet */
2676 cpi->twopass.first_pass_done = 1;
2677 }
2678 return -1;
2679 }
2680
2681 if (source->ts_start < cpi->first_time_stamp_ever) {
2682 cpi->first_time_stamp_ever = source->ts_start;
2683 cpi->last_end_time_stamp_seen = source->ts_start;
2684 }
2685
2686 // Clear down mmx registers
2687 vp9_clear_system_state();
2688
2689 // adjust frame rates based on timestamps given
2690 if (cm->show_frame) {
2691 adjust_frame_rate(cpi, source);
2692 }
2693
2694 if (cpi->svc.number_temporal_layers > 1 &&
2695 oxcf->rc_mode == VPX_CBR) {
2696 vp9_update_temporal_layer_framerate(cpi);
2697 vp9_restore_layer_context(cpi);
2698 }
2699
2700 // start with a 0 size frame
2701 *size = 0;
2702
2703 /* find a free buffer for the new frame, releasing the reference previously
2704 * held.
2705 */
2706 cm->frame_bufs[cm->new_fb_idx].ref_count--;
2707 cm->new_fb_idx = get_free_fb(cm);
2708
2709 // For two pass encodes analyse the first pass stats and determine
2710 // the bit allocation and other parameters for this frame / group of frames.
2711 if ((oxcf->pass == 2) && (!cpi->use_svc || is_two_pass_svc(cpi))) {
2712 vp9_rc_get_second_pass_params(cpi);
2713 }
2714
2715 if (!cpi->use_svc && cpi->multi_arf_allowed) {
2716 if (cm->frame_type == KEY_FRAME) {
2717 init_buffer_indices(cpi);
2718 } else if (oxcf->pass == 2) {
2719 const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
2720 cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index];
2721 }
2722 }
2723
2724 cpi->frame_flags = *frame_flags;
2725
2726 if (oxcf->pass == 2 &&
2727 cm->current_video_frame == 0 &&
2728 oxcf->allow_spatial_resampling &&
2729 oxcf->rc_mode == VPX_VBR) {
2730 // Internal scaling is triggered on the first frame.
2731 vp9_set_size_literal(cpi, oxcf->scaled_frame_width,
2732 oxcf->scaled_frame_height);
2733 }
2734
2735 // Reset the frame pointers to the current frame size
2736 vp9_realloc_frame_buffer(get_frame_new_buffer(cm),
2737 cm->width, cm->height,
2738 cm->subsampling_x, cm->subsampling_y,
2739 #if CONFIG_VP9_HIGHBITDEPTH
2740 cm->use_highbitdepth,
2741 #endif
2742 VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL);
2743
2744 alloc_util_frame_buffers(cpi);
2745 init_motion_estimation(cpi);
2746
2747 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2748 const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
2749 YV12_BUFFER_CONFIG *const buf = &cm->frame_bufs[idx].buf;
2750 RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1];
2751 ref_buf->buf = buf;
2752 ref_buf->idx = idx;
2753 #if CONFIG_VP9_HIGHBITDEPTH
2754 vp9_setup_scale_factors_for_frame(&ref_buf->sf,
2755 buf->y_crop_width, buf->y_crop_height,
2756 cm->width, cm->height,
2757 (buf->flags & YV12_FLAG_HIGHBITDEPTH) ?
2758 1 : 0);
2759 #else
2760 vp9_setup_scale_factors_for_frame(&ref_buf->sf,
2761 buf->y_crop_width, buf->y_crop_height,
2762 cm->width, cm->height);
2763 #endif
2764 if (vp9_is_scaled(&ref_buf->sf))
2765 vp9_extend_frame_borders(buf);
2766 }
2767
2768 set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
2769
2770 if (oxcf->aq_mode == VARIANCE_AQ) {
2771 vp9_vaq_init();
2772 }
2773
2774 if (oxcf->pass == 1 &&
2775 (!cpi->use_svc || is_two_pass_svc(cpi))) {
2776 const int lossless = is_lossless_requested(oxcf);
2777 #if CONFIG_VP9_HIGHBITDEPTH
2778 if (cpi->oxcf.use_highbitdepth)
2779 cpi->mb.fwd_txm4x4 = lossless ? vp9_high_fwht4x4 : vp9_high_fdct4x4;
2780 else
2781 cpi->mb.fwd_txm4x4 = lossless ? vp9_fwht4x4 : vp9_fdct4x4;
2782 cpi->mb.high_itxm_add = lossless ? vp9_high_iwht4x4_add :
2783 vp9_high_idct4x4_add;
2784 #else
2785 cpi->mb.fwd_txm4x4 = lossless ? vp9_fwht4x4 : vp9_fdct4x4;
2786 #endif
2787 cpi->mb.itxm_add = lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
2788 vp9_first_pass(cpi, source);
2789 } else if (oxcf->pass == 2 &&
2790 (!cpi->use_svc || is_two_pass_svc(cpi))) {
2791 Pass2Encode(cpi, size, dest, frame_flags);
2792 } else if (cpi->use_svc) {
2793 SvcEncode(cpi, size, dest, frame_flags);
2794 } else {
2795 // One pass encode
2796 Pass0Encode(cpi, size, dest, frame_flags);
2797 }
2798
2799 if (cm->refresh_frame_context)
2800 cm->frame_contexts[cm->frame_context_idx] = cm->fc;
2801
2802 // Frame was dropped, release scaled references.
2803 if (*size == 0) {
2804 release_scaled_references(cpi);
2805 }
2806
2807 if (*size > 0) {
2808 cpi->droppable = !frame_is_reference(cpi);
2809 }
2810
2811 // Save layer specific state.
2812 if ((cpi->svc.number_temporal_layers > 1 &&
2813 oxcf->rc_mode == VPX_CBR) ||
2814 ((cpi->svc.number_temporal_layers > 1 ||
2815 cpi->svc.number_spatial_layers > 1) &&
2816 oxcf->pass == 2)) {
2817 vp9_save_layer_context(cpi);
2818 }
2819
2820 vpx_usec_timer_mark(&cmptimer);
2821 cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
2822
2823 if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame)
2824 generate_psnr_packet(cpi);
2825
2826 #if CONFIG_INTERNAL_STATS
2827
2828 if (oxcf->pass != 1) {
2829 cpi->bytes += (int)(*size);
2830
2831 if (cm->show_frame) {
2832 cpi->count++;
2833
2834 if (cpi->b_calculate_psnr) {
2835 YV12_BUFFER_CONFIG *orig = cpi->Source;
2836 YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
2837 YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
2838 PSNR_STATS psnr;
2839 calc_psnr(orig, recon, &psnr);
2840
2841 cpi->total += psnr.psnr[0];
2842 cpi->total_y += psnr.psnr[1];
2843 cpi->total_u += psnr.psnr[2];
2844 cpi->total_v += psnr.psnr[3];
2845 cpi->total_sq_error += psnr.sse[0];
2846 cpi->total_samples += psnr.samples[0];
2847
2848 {
2849 PSNR_STATS psnr2;
2850 double frame_ssim2 = 0, weight = 0;
2851 #if CONFIG_VP9_POSTPROC
2852 // TODO(agrange) Add resizing of post-proc buffer in here when the
2853 // encoder is changed to use on-demand buffer allocation.
2854 vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
2855 cm->lf.filter_level * 10 / 6);
2856 #endif
2857 vp9_clear_system_state();
2858
2859 calc_psnr(orig, pp, &psnr2);
2860
2861 cpi->totalp += psnr2.psnr[0];
2862 cpi->totalp_y += psnr2.psnr[1];
2863 cpi->totalp_u += psnr2.psnr[2];
2864 cpi->totalp_v += psnr2.psnr[3];
2865 cpi->totalp_sq_error += psnr2.sse[0];
2866 cpi->totalp_samples += psnr2.samples[0];
2867
2868 frame_ssim2 = vp9_calc_ssim(orig, recon, &weight);
2869
2870 cpi->summed_quality += frame_ssim2 * weight;
2871 cpi->summed_weights += weight;
2872
2873 frame_ssim2 = vp9_calc_ssim(orig, &cm->post_proc_buffer, &weight);
2874
2875 cpi->summedp_quality += frame_ssim2 * weight;
2876 cpi->summedp_weights += weight;
2877 #if 0
2878 {
2879 FILE *f = fopen("q_used.stt", "a");
2880 fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
2881 cpi->common.current_video_frame, y2, u2, v2,
2882 frame_psnr2, frame_ssim2);
2883 fclose(f);
2884 }
2885 #endif
2886 }
2887 }
2888
2889
2890 if (cpi->b_calculate_ssimg) {
2891 double y, u, v, frame_all;
2892 frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v);
2893 cpi->total_ssimg_y += y;
2894 cpi->total_ssimg_u += u;
2895 cpi->total_ssimg_v += v;
2896 cpi->total_ssimg_all += frame_all;
2897 }
2898 }
2899 }
2900
2901 #endif
2902
2903 if (is_two_pass_svc(cpi) && cm->show_frame) {
2904 ++cpi->svc.spatial_layer_to_encode;
2905 if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers)
2906 cpi->svc.spatial_layer_to_encode = 0;
2907 }
2908 return 0;
2909 }
2910
vp9_get_preview_raw_frame(VP9_COMP * cpi,YV12_BUFFER_CONFIG * dest,vp9_ppflags_t * flags)2911 int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest,
2912 vp9_ppflags_t *flags) {
2913 VP9_COMMON *cm = &cpi->common;
2914 #if !CONFIG_VP9_POSTPROC
2915 (void)flags;
2916 #endif
2917
2918 if (!cm->show_frame) {
2919 return -1;
2920 } else {
2921 int ret;
2922 #if CONFIG_VP9_POSTPROC
2923 ret = vp9_post_proc_frame(cm, dest, flags);
2924 #else
2925 if (cm->frame_to_show) {
2926 *dest = *cm->frame_to_show;
2927 dest->y_width = cm->width;
2928 dest->y_height = cm->height;
2929 dest->uv_width = cm->width >> cm->subsampling_x;
2930 dest->uv_height = cm->height >> cm->subsampling_y;
2931 ret = 0;
2932 } else {
2933 ret = -1;
2934 }
2935 #endif // !CONFIG_VP9_POSTPROC
2936 vp9_clear_system_state();
2937 return ret;
2938 }
2939 }
2940
vp9_set_active_map(VP9_COMP * cpi,unsigned char * map,int rows,int cols)2941 int vp9_set_active_map(VP9_COMP *cpi, unsigned char *map, int rows, int cols) {
2942 if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
2943 const int mi_rows = cpi->common.mi_rows;
2944 const int mi_cols = cpi->common.mi_cols;
2945 if (map) {
2946 int r, c;
2947 for (r = 0; r < mi_rows; r++) {
2948 for (c = 0; c < mi_cols; c++) {
2949 cpi->segmentation_map[r * mi_cols + c] =
2950 !map[(r >> 1) * cols + (c >> 1)];
2951 }
2952 }
2953 vp9_enable_segfeature(&cpi->common.seg, 1, SEG_LVL_SKIP);
2954 vp9_enable_segmentation(&cpi->common.seg);
2955 } else {
2956 vp9_disable_segmentation(&cpi->common.seg);
2957 }
2958 return 0;
2959 } else {
2960 return -1;
2961 }
2962 }
2963
vp9_set_internal_size(VP9_COMP * cpi,VPX_SCALING horiz_mode,VPX_SCALING vert_mode)2964 int vp9_set_internal_size(VP9_COMP *cpi,
2965 VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
2966 VP9_COMMON *cm = &cpi->common;
2967 int hr = 0, hs = 0, vr = 0, vs = 0;
2968
2969 if (horiz_mode > ONETWO || vert_mode > ONETWO)
2970 return -1;
2971
2972 Scale2Ratio(horiz_mode, &hr, &hs);
2973 Scale2Ratio(vert_mode, &vr, &vs);
2974
2975 // always go to the next whole number
2976 cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
2977 cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
2978 assert(cm->width <= cpi->initial_width);
2979 assert(cm->height <= cpi->initial_height);
2980
2981 update_frame_size(cpi);
2982
2983 return 0;
2984 }
2985
vp9_set_size_literal(VP9_COMP * cpi,unsigned int width,unsigned int height)2986 int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width,
2987 unsigned int height) {
2988 VP9_COMMON *cm = &cpi->common;
2989
2990 check_initial_width(cpi, 1, 1);
2991
2992 if (width) {
2993 cm->width = width;
2994 if (cm->width * 5 < cpi->initial_width) {
2995 cm->width = cpi->initial_width / 5 + 1;
2996 printf("Warning: Desired width too small, changed to %d\n", cm->width);
2997 }
2998 if (cm->width > cpi->initial_width) {
2999 cm->width = cpi->initial_width;
3000 printf("Warning: Desired width too large, changed to %d\n", cm->width);
3001 }
3002 }
3003
3004 if (height) {
3005 cm->height = height;
3006 if (cm->height * 5 < cpi->initial_height) {
3007 cm->height = cpi->initial_height / 5 + 1;
3008 printf("Warning: Desired height too small, changed to %d\n", cm->height);
3009 }
3010 if (cm->height > cpi->initial_height) {
3011 cm->height = cpi->initial_height;
3012 printf("Warning: Desired height too large, changed to %d\n", cm->height);
3013 }
3014 }
3015 assert(cm->width <= cpi->initial_width);
3016 assert(cm->height <= cpi->initial_height);
3017
3018 update_frame_size(cpi);
3019
3020 return 0;
3021 }
3022
vp9_set_svc(VP9_COMP * cpi,int use_svc)3023 void vp9_set_svc(VP9_COMP *cpi, int use_svc) {
3024 cpi->use_svc = use_svc;
3025 return;
3026 }
3027
vp9_get_y_sse(const YV12_BUFFER_CONFIG * a,const YV12_BUFFER_CONFIG * b)3028 int vp9_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b) {
3029 assert(a->y_crop_width == b->y_crop_width);
3030 assert(a->y_crop_height == b->y_crop_height);
3031
3032 return (int)get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride,
3033 a->y_crop_width, a->y_crop_height);
3034 }
3035
3036
vp9_get_quantizer(VP9_COMP * cpi)3037 int vp9_get_quantizer(VP9_COMP *cpi) {
3038 return cpi->common.base_qindex;
3039 }
3040
vp9_apply_encoding_flags(VP9_COMP * cpi,vpx_enc_frame_flags_t flags)3041 void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags) {
3042 if (flags & (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF |
3043 VP8_EFLAG_NO_REF_ARF)) {
3044 int ref = 7;
3045
3046 if (flags & VP8_EFLAG_NO_REF_LAST)
3047 ref ^= VP9_LAST_FLAG;
3048
3049 if (flags & VP8_EFLAG_NO_REF_GF)
3050 ref ^= VP9_GOLD_FLAG;
3051
3052 if (flags & VP8_EFLAG_NO_REF_ARF)
3053 ref ^= VP9_ALT_FLAG;
3054
3055 vp9_use_as_reference(cpi, ref);
3056 }
3057
3058 if (flags & (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
3059 VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_FORCE_GF |
3060 VP8_EFLAG_FORCE_ARF)) {
3061 int upd = 7;
3062
3063 if (flags & VP8_EFLAG_NO_UPD_LAST)
3064 upd ^= VP9_LAST_FLAG;
3065
3066 if (flags & VP8_EFLAG_NO_UPD_GF)
3067 upd ^= VP9_GOLD_FLAG;
3068
3069 if (flags & VP8_EFLAG_NO_UPD_ARF)
3070 upd ^= VP9_ALT_FLAG;
3071
3072 vp9_update_reference(cpi, upd);
3073 }
3074
3075 if (flags & VP8_EFLAG_NO_UPD_ENTROPY) {
3076 vp9_update_entropy(cpi, 0);
3077 }
3078 }
3079