1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <limits.h>
12 #include <math.h>
13 #include <stdio.h>
14
15 #include "./vpx_scale_rtcd.h"
16
17 #include "vpx_mem/vpx_mem.h"
18 #include "vpx_scale/vpx_scale.h"
19 #include "vpx_scale/yv12config.h"
20
21 #include "vp9/common/vp9_entropymv.h"
22 #include "vp9/common/vp9_quant_common.h"
23 #include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes()
24 #include "vp9/common/vp9_systemdependent.h"
25 #include "vp9/encoder/vp9_aq_variance.h"
26 #include "vp9/encoder/vp9_block.h"
27 #include "vp9/encoder/vp9_encodeframe.h"
28 #include "vp9/encoder/vp9_encodemb.h"
29 #include "vp9/encoder/vp9_encodemv.h"
30 #include "vp9/encoder/vp9_encoder.h"
31 #include "vp9/encoder/vp9_extend.h"
32 #include "vp9/encoder/vp9_firstpass.h"
33 #include "vp9/encoder/vp9_mcomp.h"
34 #include "vp9/encoder/vp9_quantize.h"
35 #include "vp9/encoder/vp9_rd.h"
36 #include "vp9/encoder/vp9_variance.h"
37
38 #define OUTPUT_FPF 0
39 #define ARF_STATS_OUTPUT 0
40
41 #define BOOST_FACTOR 12.5
42 #define ERR_DIVISOR 100.0
43 #define FACTOR_PT_LOW 0.5
44 #define FACTOR_PT_HIGH 0.9
45 #define FIRST_PASS_Q 10.0
46 #define GF_MAX_BOOST 96.0
47 #define INTRA_MODE_PENALTY 1024
48 #define KF_MAX_BOOST 128.0
49 #define MIN_DECAY_FACTOR 0.01
50 #define MIN_GF_INTERVAL 4
51 #define MIN_KF_BOOST 300
52 #define NEW_MV_MODE_PENALTY 32
53 #define SVC_FACTOR_PT_LOW 0.45
54
55 #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
56
57 #if ARF_STATS_OUTPUT
58 unsigned int arf_count = 0;
59 #endif
60
swap_yv12(YV12_BUFFER_CONFIG * a,YV12_BUFFER_CONFIG * b)61 static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) {
62 YV12_BUFFER_CONFIG temp = *a;
63 *a = *b;
64 *b = temp;
65 }
66
gfboost_qadjust(int qindex,vpx_bit_depth_t bit_depth)67 static int gfboost_qadjust(int qindex, vpx_bit_depth_t bit_depth) {
68 const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
69 return (int)((0.00000828 * q * q * q) +
70 (-0.0055 * q * q) +
71 (1.32 * q) + 79.3);
72 }
73
74 // Resets the first pass file to the given position using a relative seek from
75 // the current position.
reset_fpf_position(TWO_PASS * p,const FIRSTPASS_STATS * position)76 static void reset_fpf_position(TWO_PASS *p,
77 const FIRSTPASS_STATS *position) {
78 p->stats_in = position;
79 }
80
81 // Read frame stats at an offset from the current position.
read_frame_stats(const TWO_PASS * p,int offset)82 static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
83 if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
84 (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
85 return NULL;
86 }
87
88 return &p->stats_in[offset];
89 }
90
input_stats(TWO_PASS * p,FIRSTPASS_STATS * fps)91 static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
92 if (p->stats_in >= p->stats_in_end)
93 return EOF;
94
95 *fps = *p->stats_in;
96 ++p->stats_in;
97 return 1;
98 }
99
output_stats(FIRSTPASS_STATS * stats,struct vpx_codec_pkt_list * pktlist)100 static void output_stats(FIRSTPASS_STATS *stats,
101 struct vpx_codec_pkt_list *pktlist) {
102 struct vpx_codec_cx_pkt pkt;
103 pkt.kind = VPX_CODEC_STATS_PKT;
104 pkt.data.twopass_stats.buf = stats;
105 pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
106 vpx_codec_pkt_list_add(pktlist, &pkt);
107
108 // TEMP debug code
109 #if OUTPUT_FPF
110 {
111 FILE *fpfile;
112 fpfile = fopen("firstpass.stt", "a");
113
114 fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
115 "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
116 "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n",
117 stats->frame,
118 stats->intra_error,
119 stats->coded_error,
120 stats->sr_coded_error,
121 stats->pcnt_inter,
122 stats->pcnt_motion,
123 stats->pcnt_second_ref,
124 stats->pcnt_neutral,
125 stats->MVr,
126 stats->mvr_abs,
127 stats->MVc,
128 stats->mvc_abs,
129 stats->MVrv,
130 stats->MVcv,
131 stats->mv_in_out_count,
132 stats->new_mv_count,
133 stats->count,
134 stats->duration);
135 fclose(fpfile);
136 }
137 #endif
138 }
139
140 #if CONFIG_FP_MB_STATS
output_fpmb_stats(uint8_t * this_frame_mb_stats,VP9_COMMON * cm,struct vpx_codec_pkt_list * pktlist)141 static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP9_COMMON *cm,
142 struct vpx_codec_pkt_list *pktlist) {
143 struct vpx_codec_cx_pkt pkt;
144 pkt.kind = VPX_CODEC_FPMB_STATS_PKT;
145 pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
146 pkt.data.firstpass_mb_stats.sz = cm->MBs * sizeof(uint8_t);
147 vpx_codec_pkt_list_add(pktlist, &pkt);
148 }
149 #endif
150
zero_stats(FIRSTPASS_STATS * section)151 static void zero_stats(FIRSTPASS_STATS *section) {
152 section->frame = 0.0;
153 section->intra_error = 0.0;
154 section->coded_error = 0.0;
155 section->sr_coded_error = 0.0;
156 section->pcnt_inter = 0.0;
157 section->pcnt_motion = 0.0;
158 section->pcnt_second_ref = 0.0;
159 section->pcnt_neutral = 0.0;
160 section->MVr = 0.0;
161 section->mvr_abs = 0.0;
162 section->MVc = 0.0;
163 section->mvc_abs = 0.0;
164 section->MVrv = 0.0;
165 section->MVcv = 0.0;
166 section->mv_in_out_count = 0.0;
167 section->new_mv_count = 0.0;
168 section->count = 0.0;
169 section->duration = 1.0;
170 section->spatial_layer_id = 0;
171 }
172
accumulate_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)173 static void accumulate_stats(FIRSTPASS_STATS *section,
174 const FIRSTPASS_STATS *frame) {
175 section->frame += frame->frame;
176 section->spatial_layer_id = frame->spatial_layer_id;
177 section->intra_error += frame->intra_error;
178 section->coded_error += frame->coded_error;
179 section->sr_coded_error += frame->sr_coded_error;
180 section->pcnt_inter += frame->pcnt_inter;
181 section->pcnt_motion += frame->pcnt_motion;
182 section->pcnt_second_ref += frame->pcnt_second_ref;
183 section->pcnt_neutral += frame->pcnt_neutral;
184 section->MVr += frame->MVr;
185 section->mvr_abs += frame->mvr_abs;
186 section->MVc += frame->MVc;
187 section->mvc_abs += frame->mvc_abs;
188 section->MVrv += frame->MVrv;
189 section->MVcv += frame->MVcv;
190 section->mv_in_out_count += frame->mv_in_out_count;
191 section->new_mv_count += frame->new_mv_count;
192 section->count += frame->count;
193 section->duration += frame->duration;
194 }
195
subtract_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)196 static void subtract_stats(FIRSTPASS_STATS *section,
197 const FIRSTPASS_STATS *frame) {
198 section->frame -= frame->frame;
199 section->intra_error -= frame->intra_error;
200 section->coded_error -= frame->coded_error;
201 section->sr_coded_error -= frame->sr_coded_error;
202 section->pcnt_inter -= frame->pcnt_inter;
203 section->pcnt_motion -= frame->pcnt_motion;
204 section->pcnt_second_ref -= frame->pcnt_second_ref;
205 section->pcnt_neutral -= frame->pcnt_neutral;
206 section->MVr -= frame->MVr;
207 section->mvr_abs -= frame->mvr_abs;
208 section->MVc -= frame->MVc;
209 section->mvc_abs -= frame->mvc_abs;
210 section->MVrv -= frame->MVrv;
211 section->MVcv -= frame->MVcv;
212 section->mv_in_out_count -= frame->mv_in_out_count;
213 section->new_mv_count -= frame->new_mv_count;
214 section->count -= frame->count;
215 section->duration -= frame->duration;
216 }
217
218
219 // Calculate a modified Error used in distributing bits between easier and
220 // harder frames.
calculate_modified_err(const TWO_PASS * twopass,const VP9EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame)221 static double calculate_modified_err(const TWO_PASS *twopass,
222 const VP9EncoderConfig *oxcf,
223 const FIRSTPASS_STATS *this_frame) {
224 const FIRSTPASS_STATS *const stats = &twopass->total_stats;
225 const double av_err = stats->coded_error / stats->count;
226 const double modified_error = av_err *
227 pow(this_frame->coded_error / DOUBLE_DIVIDE_CHECK(av_err),
228 oxcf->two_pass_vbrbias / 100.0);
229 return fclamp(modified_error,
230 twopass->modified_error_min, twopass->modified_error_max);
231 }
232
233 // This function returns the maximum target rate per frame.
frame_max_bits(const RATE_CONTROL * rc,const VP9EncoderConfig * oxcf)234 static int frame_max_bits(const RATE_CONTROL *rc,
235 const VP9EncoderConfig *oxcf) {
236 int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
237 (int64_t)oxcf->two_pass_vbrmax_section) / 100;
238 if (max_bits < 0)
239 max_bits = 0;
240 else if (max_bits > rc->max_frame_bandwidth)
241 max_bits = rc->max_frame_bandwidth;
242
243 return (int)max_bits;
244 }
245
vp9_init_first_pass(VP9_COMP * cpi)246 void vp9_init_first_pass(VP9_COMP *cpi) {
247 zero_stats(&cpi->twopass.total_stats);
248 }
249
vp9_end_first_pass(VP9_COMP * cpi)250 void vp9_end_first_pass(VP9_COMP *cpi) {
251 if (is_two_pass_svc(cpi)) {
252 int i;
253 for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
254 output_stats(&cpi->svc.layer_context[i].twopass.total_stats,
255 cpi->output_pkt_list);
256 }
257 } else {
258 output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
259 }
260 }
261
get_block_variance_fn(BLOCK_SIZE bsize)262 static vp9_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
263 switch (bsize) {
264 case BLOCK_8X8:
265 return vp9_mse8x8;
266 case BLOCK_16X8:
267 return vp9_mse16x8;
268 case BLOCK_8X16:
269 return vp9_mse8x16;
270 default:
271 return vp9_mse16x16;
272 }
273 }
274
get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref)275 static unsigned int get_prediction_error(BLOCK_SIZE bsize,
276 const struct buf_2d *src,
277 const struct buf_2d *ref) {
278 unsigned int sse;
279 const vp9_variance_fn_t fn = get_block_variance_fn(bsize);
280 fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
281 return sse;
282 }
283
284 // Refine the motion search range according to the frame dimension
285 // for first pass test.
get_search_range(const VP9_COMMON * cm)286 static int get_search_range(const VP9_COMMON *cm) {
287 int sr = 0;
288 const int dim = MIN(cm->width, cm->height);
289
290 while ((dim << sr) < MAX_FULL_PEL_VAL)
291 ++sr;
292 return sr;
293 }
294
first_pass_motion_search(VP9_COMP * cpi,MACROBLOCK * x,const MV * ref_mv,MV * best_mv,int * best_motion_err)295 static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
296 const MV *ref_mv, MV *best_mv,
297 int *best_motion_err) {
298 MACROBLOCKD *const xd = &x->e_mbd;
299 MV tmp_mv = {0, 0};
300 MV ref_mv_full = {ref_mv->row >> 3, ref_mv->col >> 3};
301 int num00, tmp_err, n;
302 const BLOCK_SIZE bsize = xd->mi[0].src_mi->mbmi.sb_type;
303 vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
304 const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
305
306 int step_param = 3;
307 int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
308 const int sr = get_search_range(&cpi->common);
309 step_param += sr;
310 further_steps -= sr;
311
312 // Override the default variance function to use MSE.
313 v_fn_ptr.vf = get_block_variance_fn(bsize);
314
315 // Center the initial step/diamond search on best mv.
316 tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
317 step_param,
318 x->sadperbit16, &num00, &v_fn_ptr, ref_mv);
319 if (tmp_err < INT_MAX)
320 tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
321 if (tmp_err < INT_MAX - new_mv_mode_penalty)
322 tmp_err += new_mv_mode_penalty;
323
324 if (tmp_err < *best_motion_err) {
325 *best_motion_err = tmp_err;
326 *best_mv = tmp_mv;
327 }
328
329 // Carry out further step/diamond searches as necessary.
330 n = num00;
331 num00 = 0;
332
333 while (n < further_steps) {
334 ++n;
335
336 if (num00) {
337 --num00;
338 } else {
339 tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
340 step_param + n, x->sadperbit16,
341 &num00, &v_fn_ptr, ref_mv);
342 if (tmp_err < INT_MAX)
343 tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
344 if (tmp_err < INT_MAX - new_mv_mode_penalty)
345 tmp_err += new_mv_mode_penalty;
346
347 if (tmp_err < *best_motion_err) {
348 *best_motion_err = tmp_err;
349 *best_mv = tmp_mv;
350 }
351 }
352 }
353 }
354
get_bsize(const VP9_COMMON * cm,int mb_row,int mb_col)355 static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) {
356 if (2 * mb_col + 1 < cm->mi_cols) {
357 return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16
358 : BLOCK_16X8;
359 } else {
360 return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16
361 : BLOCK_8X8;
362 }
363 }
364
find_fp_qindex(vpx_bit_depth_t bit_depth)365 static int find_fp_qindex(vpx_bit_depth_t bit_depth) {
366 int i;
367
368 for (i = 0; i < QINDEX_RANGE; ++i)
369 if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q)
370 break;
371
372 if (i == QINDEX_RANGE)
373 i--;
374
375 return i;
376 }
377
set_first_pass_params(VP9_COMP * cpi)378 static void set_first_pass_params(VP9_COMP *cpi) {
379 VP9_COMMON *const cm = &cpi->common;
380 if (!cpi->refresh_alt_ref_frame &&
381 (cm->current_video_frame == 0 ||
382 (cpi->frame_flags & FRAMEFLAGS_KEY))) {
383 cm->frame_type = KEY_FRAME;
384 } else {
385 cm->frame_type = INTER_FRAME;
386 }
387 // Do not use periodic key frames.
388 cpi->rc.frames_to_key = INT_MAX;
389 }
390
vp9_first_pass(VP9_COMP * cpi,const struct lookahead_entry * source)391 void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) {
392 int mb_row, mb_col;
393 MACROBLOCK *const x = &cpi->mb;
394 VP9_COMMON *const cm = &cpi->common;
395 MACROBLOCKD *const xd = &x->e_mbd;
396 TileInfo tile;
397 struct macroblock_plane *const p = x->plane;
398 struct macroblockd_plane *const pd = xd->plane;
399 const PICK_MODE_CONTEXT *ctx = &cpi->pc_root->none;
400 int i;
401
402 int recon_yoffset, recon_uvoffset;
403 YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
404 YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
405 YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
406 int recon_y_stride = lst_yv12->y_stride;
407 int recon_uv_stride = lst_yv12->uv_stride;
408 int uv_mb_height = 16 >> (lst_yv12->y_height > lst_yv12->uv_height);
409 int64_t intra_error = 0;
410 int64_t coded_error = 0;
411 int64_t sr_coded_error = 0;
412
413 int sum_mvr = 0, sum_mvc = 0;
414 int sum_mvr_abs = 0, sum_mvc_abs = 0;
415 int64_t sum_mvrs = 0, sum_mvcs = 0;
416 int mvcount = 0;
417 int intercount = 0;
418 int second_ref_count = 0;
419 const int intrapenalty = INTRA_MODE_PENALTY;
420 int neutral_count = 0;
421 int new_mv_count = 0;
422 int sum_in_vectors = 0;
423 MV lastmv = {0, 0};
424 TWO_PASS *twopass = &cpi->twopass;
425 const MV zero_mv = {0, 0};
426 const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
427 LAYER_CONTEXT *const lc = is_two_pass_svc(cpi) ?
428 &cpi->svc.layer_context[cpi->svc.spatial_layer_id] : NULL;
429
430 #if CONFIG_FP_MB_STATS
431 if (cpi->use_fp_mb_stats) {
432 vp9_zero_array(cpi->twopass.frame_mb_stats_buf, cm->MBs);
433 }
434 #endif
435
436 vp9_clear_system_state();
437
438 set_first_pass_params(cpi);
439 vp9_set_quantizer(cm, find_fp_qindex(cm->bit_depth));
440
441 if (lc != NULL) {
442 twopass = &lc->twopass;
443
444 cpi->lst_fb_idx = cpi->svc.spatial_layer_id;
445 cpi->ref_frame_flags = VP9_LAST_FLAG;
446
447 if (cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id <
448 REF_FRAMES) {
449 cpi->gld_fb_idx =
450 cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id;
451 cpi->ref_frame_flags |= VP9_GOLD_FLAG;
452 cpi->refresh_golden_frame = (lc->current_video_frame_in_layer == 0);
453 } else {
454 cpi->refresh_golden_frame = 0;
455 }
456
457 if (lc->current_video_frame_in_layer == 0)
458 cpi->ref_frame_flags = 0;
459
460 vp9_scale_references(cpi);
461
462 // Use either last frame or alt frame for motion search.
463 if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
464 first_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME);
465 if (first_ref_buf == NULL)
466 first_ref_buf = get_ref_frame_buffer(cpi, LAST_FRAME);
467 }
468
469 if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
470 const int ref_idx =
471 cm->ref_frame_map[get_ref_frame_idx(cpi, GOLDEN_FRAME)];
472 const int scaled_idx = cpi->scaled_ref_idx[GOLDEN_FRAME - 1];
473
474 gld_yv12 = (scaled_idx != ref_idx) ? &cm->frame_bufs[scaled_idx].buf :
475 get_ref_frame_buffer(cpi, GOLDEN_FRAME);
476 } else {
477 gld_yv12 = NULL;
478 }
479
480 recon_y_stride = new_yv12->y_stride;
481 recon_uv_stride = new_yv12->uv_stride;
482 uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
483
484 set_ref_ptrs(cm, xd,
485 (cpi->ref_frame_flags & VP9_LAST_FLAG) ? LAST_FRAME: NONE,
486 (cpi->ref_frame_flags & VP9_GOLD_FLAG) ? GOLDEN_FRAME : NONE);
487
488 cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
489 &cpi->scaled_source);
490 }
491
492 vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
493
494 vp9_setup_src_planes(x, cpi->Source, 0, 0);
495 vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
496 vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
497
498 xd->mi = cm->mi;
499 xd->mi[0].src_mi = &xd->mi[0];
500
501 vp9_frame_init_quantizer(cpi);
502
503 for (i = 0; i < MAX_MB_PLANE; ++i) {
504 p[i].coeff = ctx->coeff_pbuf[i][1];
505 p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
506 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
507 p[i].eobs = ctx->eobs_pbuf[i][1];
508 }
509 x->skip_recode = 0;
510
511 vp9_init_mv_probs(cm);
512 vp9_initialize_rd_consts(cpi);
513
514 // Tiling is ignored in the first pass.
515 vp9_tile_init(&tile, cm, 0, 0);
516
517 for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
518 MV best_ref_mv = {0, 0};
519
520 // Reset above block coeffs.
521 xd->up_available = (mb_row != 0);
522 recon_yoffset = (mb_row * recon_y_stride * 16);
523 recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
524
525 // Set up limit values for motion vectors to prevent them extending
526 // outside the UMV borders.
527 x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
528 x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
529 + BORDER_MV_PIXELS_B16;
530
531 for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
532 int this_error;
533 const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
534 double error_weight = 1.0;
535 const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
536 #if CONFIG_FP_MB_STATS
537 const int mb_index = mb_row * cm->mb_cols + mb_col;
538 #endif
539
540 vp9_clear_system_state();
541
542 xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
543 xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
544 xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
545 xd->left_available = (mb_col != 0);
546 xd->mi[0].src_mi->mbmi.sb_type = bsize;
547 xd->mi[0].src_mi->mbmi.ref_frame[0] = INTRA_FRAME;
548 set_mi_row_col(xd, &tile,
549 mb_row << 1, num_8x8_blocks_high_lookup[bsize],
550 mb_col << 1, num_8x8_blocks_wide_lookup[bsize],
551 cm->mi_rows, cm->mi_cols);
552
553 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
554 const int energy = vp9_block_energy(cpi, x, bsize);
555 error_weight = vp9_vaq_inv_q_ratio(energy);
556 }
557
558 // Do intra 16x16 prediction.
559 x->skip_encode = 0;
560 xd->mi[0].src_mi->mbmi.mode = DC_PRED;
561 xd->mi[0].src_mi->mbmi.tx_size = use_dc_pred ?
562 (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
563 vp9_encode_intra_block_plane(x, bsize, 0);
564 this_error = vp9_get_mb_ss(x->plane[0].src_diff);
565
566 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
567 vp9_clear_system_state();
568 this_error = (int)(this_error * error_weight);
569 }
570
571 // Intrapenalty below deals with situations where the intra and inter
572 // error scores are very low (e.g. a plain black frame).
573 // We do not have special cases in first pass for 0,0 and nearest etc so
574 // all inter modes carry an overhead cost estimate for the mv.
575 // When the error score is very low this causes us to pick all or lots of
576 // INTRA modes and throw lots of key frames.
577 // This penalty adds a cost matching that of a 0,0 mv to the intra case.
578 this_error += intrapenalty;
579
580 // Accumulate the intra error.
581 intra_error += (int64_t)this_error;
582
583 #if CONFIG_FP_MB_STATS
584 if (cpi->use_fp_mb_stats) {
585 // initialization
586 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
587 }
588 #endif
589
590 // Set up limit values for motion vectors to prevent them extending
591 // outside the UMV borders.
592 x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
593 x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
594
595 // Other than for the first frame do a motion search.
596 if ((lc == NULL && cm->current_video_frame > 0) ||
597 (lc != NULL && lc->current_video_frame_in_layer > 0)) {
598 int tmp_err, motion_error, raw_motion_error;
599 // Assume 0,0 motion with no mv overhead.
600 MV mv = {0, 0} , tmp_mv = {0, 0};
601 struct buf_2d unscaled_last_source_buf_2d;
602
603 xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
604 motion_error = get_prediction_error(bsize, &x->plane[0].src,
605 &xd->plane[0].pre[0]);
606
607 // Compute the motion error of the 0,0 motion using the last source
608 // frame as the reference. Skip the further motion search on
609 // reconstructed frame if this error is small.
610 unscaled_last_source_buf_2d.buf =
611 cpi->unscaled_last_source->y_buffer + recon_yoffset;
612 unscaled_last_source_buf_2d.stride =
613 cpi->unscaled_last_source->y_stride;
614 raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
615 &unscaled_last_source_buf_2d);
616
617 // TODO(pengchong): Replace the hard-coded threshold
618 if (raw_motion_error > 25 || lc != NULL) {
619 // Test last reference frame using the previous best mv as the
620 // starting point (best reference) for the search.
621 first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error);
622 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
623 vp9_clear_system_state();
624 motion_error = (int)(motion_error * error_weight);
625 }
626
627 // If the current best reference mv is not centered on 0,0 then do a
628 // 0,0 based search as well.
629 if (!is_zero_mv(&best_ref_mv)) {
630 tmp_err = INT_MAX;
631 first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err);
632 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
633 vp9_clear_system_state();
634 tmp_err = (int)(tmp_err * error_weight);
635 }
636
637 if (tmp_err < motion_error) {
638 motion_error = tmp_err;
639 mv = tmp_mv;
640 }
641 }
642
643 // Search in an older reference frame.
644 if (((lc == NULL && cm->current_video_frame > 1) ||
645 (lc != NULL && lc->current_video_frame_in_layer > 1))
646 && gld_yv12 != NULL) {
647 // Assume 0,0 motion with no mv overhead.
648 int gf_motion_error;
649
650 xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
651 gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
652 &xd->plane[0].pre[0]);
653
654 first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv,
655 &gf_motion_error);
656 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
657 vp9_clear_system_state();
658 gf_motion_error = (int)(gf_motion_error * error_weight);
659 }
660
661 if (gf_motion_error < motion_error && gf_motion_error < this_error)
662 ++second_ref_count;
663
664 // Reset to last frame as reference buffer.
665 xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
666 xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
667 xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
668
669 // In accumulating a score for the older reference frame take the
670 // best of the motion predicted score and the intra coded error
671 // (just as will be done for) accumulation of "coded_error" for
672 // the last frame.
673 if (gf_motion_error < this_error)
674 sr_coded_error += gf_motion_error;
675 else
676 sr_coded_error += this_error;
677 } else {
678 sr_coded_error += motion_error;
679 }
680 } else {
681 sr_coded_error += motion_error;
682 }
683
684 // Start by assuming that intra mode is best.
685 best_ref_mv.row = 0;
686 best_ref_mv.col = 0;
687
688 #if CONFIG_FP_MB_STATS
689 if (cpi->use_fp_mb_stats) {
690 // intra predication statistics
691 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
692 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
693 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
694 if (this_error > FPMB_ERROR_LARGE_TH) {
695 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
696 } else if (this_error < FPMB_ERROR_SMALL_TH) {
697 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
698 }
699 }
700 #endif
701
702 if (motion_error <= this_error) {
703 // Keep a count of cases where the inter and intra were very close
704 // and very low. This helps with scene cut detection for example in
705 // cropped clips with black bars at the sides or top and bottom.
706 if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
707 this_error < 2 * intrapenalty)
708 ++neutral_count;
709
710 mv.row *= 8;
711 mv.col *= 8;
712 this_error = motion_error;
713 xd->mi[0].src_mi->mbmi.mode = NEWMV;
714 xd->mi[0].src_mi->mbmi.mv[0].as_mv = mv;
715 xd->mi[0].src_mi->mbmi.tx_size = TX_4X4;
716 xd->mi[0].src_mi->mbmi.ref_frame[0] = LAST_FRAME;
717 xd->mi[0].src_mi->mbmi.ref_frame[1] = NONE;
718 vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
719 vp9_encode_sby_pass1(x, bsize);
720 sum_mvr += mv.row;
721 sum_mvr_abs += abs(mv.row);
722 sum_mvc += mv.col;
723 sum_mvc_abs += abs(mv.col);
724 sum_mvrs += mv.row * mv.row;
725 sum_mvcs += mv.col * mv.col;
726 ++intercount;
727
728 best_ref_mv = mv;
729
730 #if CONFIG_FP_MB_STATS
731 if (cpi->use_fp_mb_stats) {
732 // inter predication statistics
733 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
734 cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
735 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
736 if (this_error > FPMB_ERROR_LARGE_TH) {
737 cpi->twopass.frame_mb_stats_buf[mb_index] |=
738 FPMB_ERROR_LARGE_MASK;
739 } else if (this_error < FPMB_ERROR_SMALL_TH) {
740 cpi->twopass.frame_mb_stats_buf[mb_index] |=
741 FPMB_ERROR_SMALL_MASK;
742 }
743 }
744 #endif
745
746 if (!is_zero_mv(&mv)) {
747 ++mvcount;
748
749 #if CONFIG_FP_MB_STATS
750 if (cpi->use_fp_mb_stats) {
751 cpi->twopass.frame_mb_stats_buf[mb_index] &=
752 ~FPMB_MOTION_ZERO_MASK;
753 // check estimated motion direction
754 if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) {
755 // right direction
756 cpi->twopass.frame_mb_stats_buf[mb_index] |=
757 FPMB_MOTION_RIGHT_MASK;
758 } else if (mv.as_mv.row < 0 &&
759 abs(mv.as_mv.row) >= abs(mv.as_mv.col)) {
760 // up direction
761 cpi->twopass.frame_mb_stats_buf[mb_index] |=
762 FPMB_MOTION_UP_MASK;
763 } else if (mv.as_mv.col < 0 &&
764 abs(mv.as_mv.col) >= abs(mv.as_mv.row)) {
765 // left direction
766 cpi->twopass.frame_mb_stats_buf[mb_index] |=
767 FPMB_MOTION_LEFT_MASK;
768 } else {
769 // down direction
770 cpi->twopass.frame_mb_stats_buf[mb_index] |=
771 FPMB_MOTION_DOWN_MASK;
772 }
773 }
774 #endif
775
776 // Non-zero vector, was it different from the last non zero vector?
777 if (!is_equal_mv(&mv, &lastmv))
778 ++new_mv_count;
779 lastmv = mv;
780
781 // Does the row vector point inwards or outwards?
782 if (mb_row < cm->mb_rows / 2) {
783 if (mv.row > 0)
784 --sum_in_vectors;
785 else if (mv.row < 0)
786 ++sum_in_vectors;
787 } else if (mb_row > cm->mb_rows / 2) {
788 if (mv.row > 0)
789 ++sum_in_vectors;
790 else if (mv.row < 0)
791 --sum_in_vectors;
792 }
793
794 // Does the col vector point inwards or outwards?
795 if (mb_col < cm->mb_cols / 2) {
796 if (mv.col > 0)
797 --sum_in_vectors;
798 else if (mv.col < 0)
799 ++sum_in_vectors;
800 } else if (mb_col > cm->mb_cols / 2) {
801 if (mv.col > 0)
802 ++sum_in_vectors;
803 else if (mv.col < 0)
804 --sum_in_vectors;
805 }
806 }
807 }
808 } else {
809 sr_coded_error += (int64_t)this_error;
810 }
811 coded_error += (int64_t)this_error;
812
813 // Adjust to the next column of MBs.
814 x->plane[0].src.buf += 16;
815 x->plane[1].src.buf += uv_mb_height;
816 x->plane[2].src.buf += uv_mb_height;
817
818 recon_yoffset += 16;
819 recon_uvoffset += uv_mb_height;
820 }
821
822 // Adjust to the next row of MBs.
823 x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
824 x->plane[1].src.buf += uv_mb_height * x->plane[1].src.stride -
825 uv_mb_height * cm->mb_cols;
826 x->plane[2].src.buf += uv_mb_height * x->plane[1].src.stride -
827 uv_mb_height * cm->mb_cols;
828
829 vp9_clear_system_state();
830 }
831
832 vp9_clear_system_state();
833 {
834 FIRSTPASS_STATS fps;
835 // The minimum error here insures some bit alocation to frames even
836 // in static regions. The allocation per MB declines for larger formats
837 // where the typical "real" energy per MB also falls.
838 // Initial estimate here uses sqrt(mbs) to define the min_err, where the
839 // number of mbs is propotional to image area.
840 const double min_err = 200 * sqrt(cm->MBs);
841
842 fps.frame = cm->current_video_frame;
843 fps.spatial_layer_id = cpi->svc.spatial_layer_id;
844 fps.coded_error = (double)(coded_error >> 8) + min_err;
845 fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err;
846 fps.intra_error = (double)(intra_error >> 8) + min_err;
847 fps.count = 1.0;
848 fps.pcnt_inter = (double)intercount / cm->MBs;
849 fps.pcnt_second_ref = (double)second_ref_count / cm->MBs;
850 fps.pcnt_neutral = (double)neutral_count / cm->MBs;
851
852 if (mvcount > 0) {
853 fps.MVr = (double)sum_mvr / mvcount;
854 fps.mvr_abs = (double)sum_mvr_abs / mvcount;
855 fps.MVc = (double)sum_mvc / mvcount;
856 fps.mvc_abs = (double)sum_mvc_abs / mvcount;
857 fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / mvcount)) / mvcount;
858 fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / mvcount)) / mvcount;
859 fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
860 fps.new_mv_count = new_mv_count;
861 fps.pcnt_motion = (double)mvcount / cm->MBs;
862 } else {
863 fps.MVr = 0.0;
864 fps.mvr_abs = 0.0;
865 fps.MVc = 0.0;
866 fps.mvc_abs = 0.0;
867 fps.MVrv = 0.0;
868 fps.MVcv = 0.0;
869 fps.mv_in_out_count = 0.0;
870 fps.new_mv_count = 0.0;
871 fps.pcnt_motion = 0.0;
872 }
873
874 // TODO(paulwilkins): Handle the case when duration is set to 0, or
875 // something less than the full time between subsequent values of
876 // cpi->source_time_stamp.
877 fps.duration = (double)(source->ts_end - source->ts_start);
878
879 // Don't want to do output stats with a stack variable!
880 twopass->this_frame_stats = fps;
881 output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
882 accumulate_stats(&twopass->total_stats, &fps);
883
884 #if CONFIG_FP_MB_STATS
885 if (cpi->use_fp_mb_stats) {
886 output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list);
887 }
888 #endif
889 }
890
891 // Copy the previous Last Frame back into gf and and arf buffers if
892 // the prediction is good enough... but also don't allow it to lag too far.
893 if ((twopass->sr_update_lag > 3) ||
894 ((cm->current_video_frame > 0) &&
895 (twopass->this_frame_stats.pcnt_inter > 0.20) &&
896 ((twopass->this_frame_stats.intra_error /
897 DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
898 if (gld_yv12 != NULL) {
899 vp8_yv12_copy_frame(lst_yv12, gld_yv12);
900 }
901 twopass->sr_update_lag = 1;
902 } else {
903 ++twopass->sr_update_lag;
904 }
905
906 vp9_extend_frame_borders(new_yv12);
907
908 if (lc != NULL) {
909 vp9_update_reference_frames(cpi);
910 } else {
911 // Swap frame pointers so last frame refers to the frame we just compressed.
912 swap_yv12(lst_yv12, new_yv12);
913 }
914
915 // Special case for the first frame. Copy into the GF buffer as a second
916 // reference.
917 if (cm->current_video_frame == 0 && gld_yv12 != NULL && lc == NULL) {
918 vp8_yv12_copy_frame(lst_yv12, gld_yv12);
919 }
920
921 // Use this to see what the first pass reconstruction looks like.
922 if (0) {
923 char filename[512];
924 FILE *recon_file;
925 snprintf(filename, sizeof(filename), "enc%04d.yuv",
926 (int)cm->current_video_frame);
927
928 if (cm->current_video_frame == 0)
929 recon_file = fopen(filename, "wb");
930 else
931 recon_file = fopen(filename, "ab");
932
933 (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
934 fclose(recon_file);
935 }
936
937 ++cm->current_video_frame;
938 if (cpi->use_svc)
939 vp9_inc_frame_in_layer(cpi);
940 }
941
calc_correction_factor(double err_per_mb,double err_divisor,double pt_low,double pt_high,int q,vpx_bit_depth_t bit_depth)942 static double calc_correction_factor(double err_per_mb,
943 double err_divisor,
944 double pt_low,
945 double pt_high,
946 int q,
947 vpx_bit_depth_t bit_depth) {
948 const double error_term = err_per_mb / err_divisor;
949
950 // Adjustment based on actual quantizer to power term.
951 const double power_term =
952 MIN(vp9_convert_qindex_to_q(q, bit_depth) * 0.0125 + pt_low, pt_high);
953
954 // Calculate correction factor.
955 if (power_term < 1.0)
956 assert(error_term >= 0.0);
957
958 return fclamp(pow(error_term, power_term), 0.05, 5.0);
959 }
960
get_twopass_worst_quality(const VP9_COMP * cpi,const FIRSTPASS_STATS * stats,int section_target_bandwidth)961 static int get_twopass_worst_quality(const VP9_COMP *cpi,
962 const FIRSTPASS_STATS *stats,
963 int section_target_bandwidth) {
964 const RATE_CONTROL *const rc = &cpi->rc;
965 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
966
967 if (section_target_bandwidth <= 0) {
968 return rc->worst_quality; // Highest value allowed
969 } else {
970 const int num_mbs = cpi->common.MBs;
971 const double section_err = stats->coded_error / stats->count;
972 const double err_per_mb = section_err / num_mbs;
973 const double speed_term = 1.0 + 0.04 * oxcf->speed;
974 const int target_norm_bits_per_mb = ((uint64_t)section_target_bandwidth <<
975 BPER_MB_NORMBITS) / num_mbs;
976 int q;
977 int is_svc_upper_layer = 0;
978 if (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0)
979 is_svc_upper_layer = 1;
980
981 // Try and pick a max Q that will be high enough to encode the
982 // content at the given rate.
983 for (q = rc->best_quality; q < rc->worst_quality; ++q) {
984 const double factor =
985 calc_correction_factor(err_per_mb, ERR_DIVISOR,
986 is_svc_upper_layer ? SVC_FACTOR_PT_LOW :
987 FACTOR_PT_LOW, FACTOR_PT_HIGH, q,
988 cpi->common.bit_depth);
989 const int bits_per_mb = vp9_rc_bits_per_mb(INTER_FRAME, q,
990 factor * speed_term,
991 cpi->common.bit_depth);
992 if (bits_per_mb <= target_norm_bits_per_mb)
993 break;
994 }
995
996 // Restriction on active max q for constrained quality mode.
997 if (cpi->oxcf.rc_mode == VPX_CQ)
998 q = MAX(q, oxcf->cq_level);
999 return q;
1000 }
1001 }
1002
1003 extern void vp9_new_framerate(VP9_COMP *cpi, double framerate);
1004
vp9_init_second_pass(VP9_COMP * cpi)1005 void vp9_init_second_pass(VP9_COMP *cpi) {
1006 SVC *const svc = &cpi->svc;
1007 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1008 const int is_two_pass_svc = (svc->number_spatial_layers > 1) ||
1009 (svc->number_temporal_layers > 1);
1010 TWO_PASS *const twopass = is_two_pass_svc ?
1011 &svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass;
1012 double frame_rate;
1013 FIRSTPASS_STATS *stats;
1014
1015 zero_stats(&twopass->total_stats);
1016 zero_stats(&twopass->total_left_stats);
1017
1018 if (!twopass->stats_in_end)
1019 return;
1020
1021 stats = &twopass->total_stats;
1022
1023 *stats = *twopass->stats_in_end;
1024 twopass->total_left_stats = *stats;
1025
1026 frame_rate = 10000000.0 * stats->count / stats->duration;
1027 // Each frame can have a different duration, as the frame rate in the source
1028 // isn't guaranteed to be constant. The frame rate prior to the first frame
1029 // encoded in the second pass is a guess. However, the sum duration is not.
1030 // It is calculated based on the actual durations of all frames from the
1031 // first pass.
1032
1033 if (is_two_pass_svc) {
1034 vp9_update_spatial_layer_framerate(cpi, frame_rate);
1035 twopass->bits_left = (int64_t)(stats->duration *
1036 svc->layer_context[svc->spatial_layer_id].target_bandwidth /
1037 10000000.0);
1038 } else {
1039 vp9_new_framerate(cpi, frame_rate);
1040 twopass->bits_left = (int64_t)(stats->duration * oxcf->target_bandwidth /
1041 10000000.0);
1042 }
1043
1044 // This variable monitors how far behind the second ref update is lagging.
1045 twopass->sr_update_lag = 1;
1046
1047 // Scan the first pass file and calculate a modified total error based upon
1048 // the bias/power function used to allocate bits.
1049 {
1050 const double avg_error = stats->coded_error /
1051 DOUBLE_DIVIDE_CHECK(stats->count);
1052 const FIRSTPASS_STATS *s = twopass->stats_in;
1053 double modified_error_total = 0.0;
1054 twopass->modified_error_min = (avg_error *
1055 oxcf->two_pass_vbrmin_section) / 100;
1056 twopass->modified_error_max = (avg_error *
1057 oxcf->two_pass_vbrmax_section) / 100;
1058 while (s < twopass->stats_in_end) {
1059 modified_error_total += calculate_modified_err(twopass, oxcf, s);
1060 ++s;
1061 }
1062 twopass->modified_error_left = modified_error_total;
1063 }
1064
1065 // Reset the vbr bits off target counter
1066 cpi->rc.vbr_bits_off_target = 0;
1067
1068 // Static sequence monitor variables.
1069 twopass->kf_zeromotion_pct = 100;
1070 twopass->last_kfgroup_zeromotion_pct = 100;
1071 }
1072
1073 #define SR_DIFF_PART 0.0015
1074 #define MOTION_AMP_PART 0.003
1075 #define INTRA_PART 0.005
1076 #define DEFAULT_DECAY_LIMIT 0.75
1077 #define LOW_SR_DIFF_TRHESH 0.1
1078 #define SR_DIFF_MAX 128.0
1079
get_sr_decay_rate(const VP9_COMMON * cm,const FIRSTPASS_STATS * frame)1080 static double get_sr_decay_rate(const VP9_COMMON *cm,
1081 const FIRSTPASS_STATS *frame) {
1082 double sr_diff = (frame->sr_coded_error - frame->coded_error) / cm->MBs;
1083 double sr_decay = 1.0;
1084 const double motion_amplitude_factor =
1085 frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2);
1086 const double pcnt_intra = 100 * (1.0 - frame->pcnt_inter);
1087
1088 if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
1089 sr_diff = MIN(sr_diff, SR_DIFF_MAX);
1090 sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
1091 (MOTION_AMP_PART * motion_amplitude_factor) -
1092 (INTRA_PART * pcnt_intra);
1093 }
1094 return MAX(sr_decay, MIN(DEFAULT_DECAY_LIMIT, frame->pcnt_inter));
1095 }
1096
1097 // This function gives an estimate of how badly we believe the prediction
1098 // quality is decaying from frame to frame.
get_zero_motion_factor(const VP9_COMMON * cm,const FIRSTPASS_STATS * frame)1099 static double get_zero_motion_factor(const VP9_COMMON *cm,
1100 const FIRSTPASS_STATS *frame) {
1101 const double zero_motion_pct = frame->pcnt_inter -
1102 frame->pcnt_motion;
1103 double sr_decay = get_sr_decay_rate(cm, frame);
1104 return MIN(sr_decay, zero_motion_pct);
1105 }
1106
1107 #define ZM_POWER_FACTOR 0.75
1108
get_prediction_decay_rate(const VP9_COMMON * cm,const FIRSTPASS_STATS * next_frame)1109 static double get_prediction_decay_rate(const VP9_COMMON *cm,
1110 const FIRSTPASS_STATS *next_frame) {
1111 const double sr_decay_rate = get_sr_decay_rate(cm, next_frame);
1112 const double zero_motion_factor =
1113 (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
1114 ZM_POWER_FACTOR));
1115
1116 return MAX(zero_motion_factor,
1117 (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
1118 }
1119
1120 // Function to test for a condition where a complex transition is followed
1121 // by a static section. For example in slide shows where there is a fade
1122 // between slides. This is to help with more optimal kf and gf positioning.
detect_transition_to_still(const TWO_PASS * twopass,int frame_interval,int still_interval,double loop_decay_rate,double last_decay_rate)1123 static int detect_transition_to_still(const TWO_PASS *twopass,
1124 int frame_interval, int still_interval,
1125 double loop_decay_rate,
1126 double last_decay_rate) {
1127 // Break clause to detect very still sections after motion
1128 // For example a static image after a fade or other transition
1129 // instead of a clean scene cut.
1130 if (frame_interval > MIN_GF_INTERVAL &&
1131 loop_decay_rate >= 0.999 &&
1132 last_decay_rate < 0.9) {
1133 int j;
1134
1135 // Look ahead a few frames to see if static condition persists...
1136 for (j = 0; j < still_interval; ++j) {
1137 const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
1138 if (stats >= twopass->stats_in_end)
1139 break;
1140
1141 if (stats->pcnt_inter - stats->pcnt_motion < 0.999)
1142 break;
1143 }
1144
1145 // Only if it does do we signal a transition to still.
1146 return j == still_interval;
1147 }
1148
1149 return 0;
1150 }
1151
1152 // This function detects a flash through the high relative pcnt_second_ref
1153 // score in the frame following a flash frame. The offset passed in should
1154 // reflect this.
detect_flash(const TWO_PASS * twopass,int offset)1155 static int detect_flash(const TWO_PASS *twopass, int offset) {
1156 const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
1157
1158 // What we are looking for here is a situation where there is a
1159 // brief break in prediction (such as a flash) but subsequent frames
1160 // are reasonably well predicted by an earlier (pre flash) frame.
1161 // The recovery after a flash is indicated by a high pcnt_second_ref
1162 // compared to pcnt_inter.
1163 return next_frame != NULL &&
1164 next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
1165 next_frame->pcnt_second_ref >= 0.5;
1166 }
1167
1168 // Update the motion related elements to the GF arf boost calculation.
accumulate_frame_motion_stats(const FIRSTPASS_STATS * stats,double * mv_in_out,double * mv_in_out_accumulator,double * abs_mv_in_out_accumulator,double * mv_ratio_accumulator)1169 static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
1170 double *mv_in_out,
1171 double *mv_in_out_accumulator,
1172 double *abs_mv_in_out_accumulator,
1173 double *mv_ratio_accumulator) {
1174 const double pct = stats->pcnt_motion;
1175
1176 // Accumulate Motion In/Out of frame stats.
1177 *mv_in_out = stats->mv_in_out_count * pct;
1178 *mv_in_out_accumulator += *mv_in_out;
1179 *abs_mv_in_out_accumulator += fabs(*mv_in_out);
1180
1181 // Accumulate a measure of how uniform (or conversely how random) the motion
1182 // field is (a ratio of abs(mv) / mv).
1183 if (pct > 0.05) {
1184 const double mvr_ratio = fabs(stats->mvr_abs) /
1185 DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
1186 const double mvc_ratio = fabs(stats->mvc_abs) /
1187 DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
1188
1189 *mv_ratio_accumulator += pct * (mvr_ratio < stats->mvr_abs ?
1190 mvr_ratio : stats->mvr_abs);
1191 *mv_ratio_accumulator += pct * (mvc_ratio < stats->mvc_abs ?
1192 mvc_ratio : stats->mvc_abs);
1193 }
1194 }
1195
1196 #define BASELINE_ERR_PER_MB 1000.0
calc_frame_boost(VP9_COMP * cpi,const FIRSTPASS_STATS * this_frame,double this_frame_mv_in_out,double max_boost)1197 static double calc_frame_boost(VP9_COMP *cpi,
1198 const FIRSTPASS_STATS *this_frame,
1199 double this_frame_mv_in_out,
1200 double max_boost) {
1201 double frame_boost;
1202
1203 // Underlying boost factor is based on inter error ratio.
1204 frame_boost = (BASELINE_ERR_PER_MB * cpi->common.MBs) /
1205 DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
1206 frame_boost = frame_boost * BOOST_FACTOR;
1207
1208 // Increase boost for frames where new data coming into frame (e.g. zoom out).
1209 // Slightly reduce boost if there is a net balance of motion out of the frame
1210 // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
1211 if (this_frame_mv_in_out > 0.0)
1212 frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
1213 // In the extreme case the boost is halved.
1214 else
1215 frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
1216
1217 return MIN(frame_boost, max_boost);
1218 }
1219
calc_arf_boost(VP9_COMP * cpi,int offset,int f_frames,int b_frames,int * f_boost,int * b_boost)1220 static int calc_arf_boost(VP9_COMP *cpi, int offset,
1221 int f_frames, int b_frames,
1222 int *f_boost, int *b_boost) {
1223 TWO_PASS *const twopass = &cpi->twopass;
1224 int i;
1225 double boost_score = 0.0;
1226 double mv_ratio_accumulator = 0.0;
1227 double decay_accumulator = 1.0;
1228 double this_frame_mv_in_out = 0.0;
1229 double mv_in_out_accumulator = 0.0;
1230 double abs_mv_in_out_accumulator = 0.0;
1231 int arf_boost;
1232 int flash_detected = 0;
1233
1234 // Search forward from the proposed arf/next gf position.
1235 for (i = 0; i < f_frames; ++i) {
1236 const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
1237 if (this_frame == NULL)
1238 break;
1239
1240 // Update the motion related elements to the boost calculation.
1241 accumulate_frame_motion_stats(this_frame,
1242 &this_frame_mv_in_out, &mv_in_out_accumulator,
1243 &abs_mv_in_out_accumulator,
1244 &mv_ratio_accumulator);
1245
1246 // We want to discount the flash frame itself and the recovery
1247 // frame that follows as both will have poor scores.
1248 flash_detected = detect_flash(twopass, i + offset) ||
1249 detect_flash(twopass, i + offset + 1);
1250
1251 // Accumulate the effect of prediction quality decay.
1252 if (!flash_detected) {
1253 decay_accumulator *= get_prediction_decay_rate(&cpi->common, this_frame);
1254 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
1255 ? MIN_DECAY_FACTOR : decay_accumulator;
1256 }
1257
1258 boost_score += decay_accumulator * calc_frame_boost(cpi, this_frame,
1259 this_frame_mv_in_out,
1260 GF_MAX_BOOST);
1261 }
1262
1263 *f_boost = (int)boost_score;
1264
1265 // Reset for backward looking loop.
1266 boost_score = 0.0;
1267 mv_ratio_accumulator = 0.0;
1268 decay_accumulator = 1.0;
1269 this_frame_mv_in_out = 0.0;
1270 mv_in_out_accumulator = 0.0;
1271 abs_mv_in_out_accumulator = 0.0;
1272
1273 // Search backward towards last gf position.
1274 for (i = -1; i >= -b_frames; --i) {
1275 const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
1276 if (this_frame == NULL)
1277 break;
1278
1279 // Update the motion related elements to the boost calculation.
1280 accumulate_frame_motion_stats(this_frame,
1281 &this_frame_mv_in_out, &mv_in_out_accumulator,
1282 &abs_mv_in_out_accumulator,
1283 &mv_ratio_accumulator);
1284
1285 // We want to discount the the flash frame itself and the recovery
1286 // frame that follows as both will have poor scores.
1287 flash_detected = detect_flash(twopass, i + offset) ||
1288 detect_flash(twopass, i + offset + 1);
1289
1290 // Cumulative effect of prediction quality decay.
1291 if (!flash_detected) {
1292 decay_accumulator *= get_prediction_decay_rate(&cpi->common, this_frame);
1293 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
1294 ? MIN_DECAY_FACTOR : decay_accumulator;
1295 }
1296
1297 boost_score += decay_accumulator * calc_frame_boost(cpi, this_frame,
1298 this_frame_mv_in_out,
1299 GF_MAX_BOOST);
1300 }
1301 *b_boost = (int)boost_score;
1302
1303 arf_boost = (*f_boost + *b_boost);
1304 if (arf_boost < ((b_frames + f_frames) * 20))
1305 arf_boost = ((b_frames + f_frames) * 20);
1306
1307 return arf_boost;
1308 }
1309
1310 // Calculate a section intra ratio used in setting max loop filter.
calculate_section_intra_ratio(const FIRSTPASS_STATS * begin,const FIRSTPASS_STATS * end,int section_length)1311 static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
1312 const FIRSTPASS_STATS *end,
1313 int section_length) {
1314 const FIRSTPASS_STATS *s = begin;
1315 double intra_error = 0.0;
1316 double coded_error = 0.0;
1317 int i = 0;
1318
1319 while (s < end && i < section_length) {
1320 intra_error += s->intra_error;
1321 coded_error += s->coded_error;
1322 ++s;
1323 ++i;
1324 }
1325
1326 return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
1327 }
1328
1329 // Calculate the total bits to allocate in this GF/ARF group.
calculate_total_gf_group_bits(VP9_COMP * cpi,double gf_group_err)1330 static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi,
1331 double gf_group_err) {
1332 const RATE_CONTROL *const rc = &cpi->rc;
1333 const TWO_PASS *const twopass = &cpi->twopass;
1334 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
1335 int64_t total_group_bits;
1336
1337 // Calculate the bits to be allocated to the group as a whole.
1338 if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
1339 total_group_bits = (int64_t)(twopass->kf_group_bits *
1340 (gf_group_err / twopass->kf_group_error_left));
1341 } else {
1342 total_group_bits = 0;
1343 }
1344
1345 // Clamp odd edge cases.
1346 total_group_bits = (total_group_bits < 0) ?
1347 0 : (total_group_bits > twopass->kf_group_bits) ?
1348 twopass->kf_group_bits : total_group_bits;
1349
1350 // Clip based on user supplied data rate variability limit.
1351 if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
1352 total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
1353
1354 return total_group_bits;
1355 }
1356
1357 // Calculate the number bits extra to assign to boosted frames in a group.
calculate_boost_bits(int frame_count,int boost,int64_t total_group_bits)1358 static int calculate_boost_bits(int frame_count,
1359 int boost, int64_t total_group_bits) {
1360 int allocation_chunks;
1361
1362 // return 0 for invalid inputs (could arise e.g. through rounding errors)
1363 if (!boost || (total_group_bits <= 0) || (frame_count <= 0) )
1364 return 0;
1365
1366 allocation_chunks = (frame_count * 100) + boost;
1367
1368 // Prevent overflow.
1369 if (boost > 1023) {
1370 int divisor = boost >> 10;
1371 boost /= divisor;
1372 allocation_chunks /= divisor;
1373 }
1374
1375 // Calculate the number of extra bits for use in the boosted frame or frames.
1376 return MAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), 0);
1377 }
1378
1379 // Current limit on maximum number of active arfs in a GF/ARF group.
1380 #define MAX_ACTIVE_ARFS 2
1381 #define ARF_SLOT1 2
1382 #define ARF_SLOT2 3
1383 // This function indirects the choice of buffers for arfs.
1384 // At the moment the values are fixed but this may change as part of
1385 // the integration process with other codec features that swap buffers around.
get_arf_buffer_indices(unsigned char * arf_buffer_indices)1386 static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
1387 arf_buffer_indices[0] = ARF_SLOT1;
1388 arf_buffer_indices[1] = ARF_SLOT2;
1389 }
1390
allocate_gf_group_bits(VP9_COMP * cpi,int64_t gf_group_bits,double group_error,int gf_arf_bits)1391 static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
1392 double group_error, int gf_arf_bits) {
1393 RATE_CONTROL *const rc = &cpi->rc;
1394 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1395 TWO_PASS *const twopass = &cpi->twopass;
1396 GF_GROUP *const gf_group = &twopass->gf_group;
1397 FIRSTPASS_STATS frame_stats;
1398 int i;
1399 int frame_index = 1;
1400 int target_frame_size;
1401 int key_frame;
1402 const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
1403 int64_t total_group_bits = gf_group_bits;
1404 double modified_err = 0.0;
1405 double err_fraction;
1406 int mid_boost_bits = 0;
1407 int mid_frame_idx;
1408 unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
1409 int alt_frame_index = frame_index;
1410 int has_temporal_layers = is_two_pass_svc(cpi) &&
1411 cpi->svc.number_temporal_layers > 1;
1412
1413 // Only encode alt reference frame in temporal base layer.
1414 if (has_temporal_layers)
1415 alt_frame_index = cpi->svc.number_temporal_layers;
1416
1417 key_frame = cpi->common.frame_type == KEY_FRAME ||
1418 vp9_is_upper_layer_key_frame(cpi);
1419
1420 get_arf_buffer_indices(arf_buffer_indices);
1421
1422 // For key frames the frame target rate is already set and it
1423 // is also the golden frame.
1424 if (!key_frame) {
1425 if (rc->source_alt_ref_active) {
1426 gf_group->update_type[0] = OVERLAY_UPDATE;
1427 gf_group->rf_level[0] = INTER_NORMAL;
1428 gf_group->bit_allocation[0] = 0;
1429 gf_group->arf_update_idx[0] = arf_buffer_indices[0];
1430 gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
1431 } else {
1432 gf_group->update_type[0] = GF_UPDATE;
1433 gf_group->rf_level[0] = GF_ARF_STD;
1434 gf_group->bit_allocation[0] = gf_arf_bits;
1435 gf_group->arf_update_idx[0] = arf_buffer_indices[0];
1436 gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
1437 }
1438
1439 // Step over the golden frame / overlay frame
1440 if (EOF == input_stats(twopass, &frame_stats))
1441 return;
1442 }
1443
1444 // Deduct the boost bits for arf (or gf if it is not a key frame)
1445 // from the group total.
1446 if (rc->source_alt_ref_pending || !key_frame)
1447 total_group_bits -= gf_arf_bits;
1448
1449 // Store the bits to spend on the ARF if there is one.
1450 if (rc->source_alt_ref_pending) {
1451 gf_group->update_type[alt_frame_index] = ARF_UPDATE;
1452 gf_group->rf_level[alt_frame_index] = GF_ARF_STD;
1453 gf_group->bit_allocation[alt_frame_index] = gf_arf_bits;
1454
1455 if (has_temporal_layers)
1456 gf_group->arf_src_offset[alt_frame_index] =
1457 (unsigned char)(rc->baseline_gf_interval -
1458 cpi->svc.number_temporal_layers);
1459 else
1460 gf_group->arf_src_offset[alt_frame_index] =
1461 (unsigned char)(rc->baseline_gf_interval - 1);
1462
1463 gf_group->arf_update_idx[alt_frame_index] = arf_buffer_indices[0];
1464 gf_group->arf_ref_idx[alt_frame_index] =
1465 arf_buffer_indices[cpi->multi_arf_last_grp_enabled &&
1466 rc->source_alt_ref_active];
1467 if (!has_temporal_layers)
1468 ++frame_index;
1469
1470 if (cpi->multi_arf_enabled) {
1471 // Set aside a slot for a level 1 arf.
1472 gf_group->update_type[frame_index] = ARF_UPDATE;
1473 gf_group->rf_level[frame_index] = GF_ARF_LOW;
1474 gf_group->arf_src_offset[frame_index] =
1475 (unsigned char)((rc->baseline_gf_interval >> 1) - 1);
1476 gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1];
1477 gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
1478 ++frame_index;
1479 }
1480 }
1481
1482 // Define middle frame
1483 mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
1484
1485 // Allocate bits to the other frames in the group.
1486 for (i = 0; i < rc->baseline_gf_interval - 1; ++i) {
1487 int arf_idx = 0;
1488 if (EOF == input_stats(twopass, &frame_stats))
1489 break;
1490
1491 if (has_temporal_layers && frame_index == alt_frame_index) {
1492 ++frame_index;
1493 }
1494
1495 modified_err = calculate_modified_err(twopass, oxcf, &frame_stats);
1496
1497 if (group_error > 0)
1498 err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error);
1499 else
1500 err_fraction = 0.0;
1501
1502 target_frame_size = (int)((double)total_group_bits * err_fraction);
1503
1504 if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
1505 mid_boost_bits += (target_frame_size >> 4);
1506 target_frame_size -= (target_frame_size >> 4);
1507
1508 if (frame_index <= mid_frame_idx)
1509 arf_idx = 1;
1510 }
1511 gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
1512 gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
1513
1514 target_frame_size = clamp(target_frame_size, 0,
1515 MIN(max_bits, (int)total_group_bits));
1516
1517 gf_group->update_type[frame_index] = LF_UPDATE;
1518 gf_group->rf_level[frame_index] = INTER_NORMAL;
1519
1520 gf_group->bit_allocation[frame_index] = target_frame_size;
1521 ++frame_index;
1522 }
1523
1524 // Note:
1525 // We need to configure the frame at the end of the sequence + 1 that will be
1526 // the start frame for the next group. Otherwise prior to the call to
1527 // vp9_rc_get_second_pass_params() the data will be undefined.
1528 gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
1529 gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
1530
1531 if (rc->source_alt_ref_pending) {
1532 gf_group->update_type[frame_index] = OVERLAY_UPDATE;
1533 gf_group->rf_level[frame_index] = INTER_NORMAL;
1534
1535 // Final setup for second arf and its overlay.
1536 if (cpi->multi_arf_enabled) {
1537 gf_group->bit_allocation[2] =
1538 gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits;
1539 gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE;
1540 gf_group->bit_allocation[mid_frame_idx] = 0;
1541 }
1542 } else {
1543 gf_group->update_type[frame_index] = GF_UPDATE;
1544 gf_group->rf_level[frame_index] = GF_ARF_STD;
1545 }
1546
1547 // Note whether multi-arf was enabled this group for next time.
1548 cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled;
1549 }
1550
1551 // Analyse and define a gf/arf group.
define_gf_group(VP9_COMP * cpi,FIRSTPASS_STATS * this_frame)1552 static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
1553 RATE_CONTROL *const rc = &cpi->rc;
1554 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1555 TWO_PASS *const twopass = &cpi->twopass;
1556 FIRSTPASS_STATS next_frame;
1557 const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
1558 int i;
1559
1560 double boost_score = 0.0;
1561 double old_boost_score = 0.0;
1562 double gf_group_err = 0.0;
1563 double gf_first_frame_err = 0.0;
1564 double mod_frame_err = 0.0;
1565
1566 double mv_ratio_accumulator = 0.0;
1567 double decay_accumulator = 1.0;
1568 double zero_motion_accumulator = 1.0;
1569
1570 double loop_decay_rate = 1.00;
1571 double last_loop_decay_rate = 1.00;
1572
1573 double this_frame_mv_in_out = 0.0;
1574 double mv_in_out_accumulator = 0.0;
1575 double abs_mv_in_out_accumulator = 0.0;
1576 double mv_ratio_accumulator_thresh;
1577 unsigned int allow_alt_ref = is_altref_enabled(cpi);
1578
1579 int f_boost = 0;
1580 int b_boost = 0;
1581 int flash_detected;
1582 int active_max_gf_interval;
1583 int64_t gf_group_bits;
1584 double gf_group_error_left;
1585 int gf_arf_bits;
1586
1587 // Reset the GF group data structures unless this is a key
1588 // frame in which case it will already have been done.
1589 if (cpi->common.frame_type != KEY_FRAME) {
1590 vp9_zero(twopass->gf_group);
1591 }
1592
1593 vp9_clear_system_state();
1594 vp9_zero(next_frame);
1595
1596 // Load stats for the current frame.
1597 mod_frame_err = calculate_modified_err(twopass, oxcf, this_frame);
1598
1599 // Note the error of the frame at the start of the group. This will be
1600 // the GF frame error if we code a normal gf.
1601 gf_first_frame_err = mod_frame_err;
1602
1603 // If this is a key frame or the overlay from a previous arf then
1604 // the error score / cost of this frame has already been accounted for.
1605 if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active)
1606 gf_group_err -= gf_first_frame_err;
1607
1608 // Motion breakout threshold for loop below depends on image size.
1609 mv_ratio_accumulator_thresh = (cpi->common.width + cpi->common.height) / 4.0;
1610
1611 // Work out a maximum interval for the GF group.
1612 // If the image appears almost completely static we can extend beyond this.
1613 if (cpi->multi_arf_allowed) {
1614 active_max_gf_interval = rc->max_gf_interval;
1615 } else {
1616 // The value chosen depends on the active Q range. At low Q we have
1617 // bits to spare and are better with a smaller interval and smaller boost.
1618 // At high Q when there are few bits to spare we are better with a longer
1619 // interval to spread the cost of the GF.
1620 active_max_gf_interval =
1621 12 + ((int)vp9_convert_qindex_to_q(rc->last_q[INTER_FRAME],
1622 cpi->common.bit_depth) >> 5);
1623
1624 if (active_max_gf_interval > rc->max_gf_interval)
1625 active_max_gf_interval = rc->max_gf_interval;
1626 }
1627
1628 i = 0;
1629 while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
1630 ++i;
1631
1632 // Accumulate error score of frames in this gf group.
1633 mod_frame_err = calculate_modified_err(twopass, oxcf, this_frame);
1634 gf_group_err += mod_frame_err;
1635
1636 if (EOF == input_stats(twopass, &next_frame))
1637 break;
1638
1639 // Test for the case where there is a brief flash but the prediction
1640 // quality back to an earlier frame is then restored.
1641 flash_detected = detect_flash(twopass, 0);
1642
1643 // Update the motion related elements to the boost calculation.
1644 accumulate_frame_motion_stats(&next_frame,
1645 &this_frame_mv_in_out, &mv_in_out_accumulator,
1646 &abs_mv_in_out_accumulator,
1647 &mv_ratio_accumulator);
1648
1649 // Accumulate the effect of prediction quality decay.
1650 if (!flash_detected) {
1651 last_loop_decay_rate = loop_decay_rate;
1652 loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame);
1653
1654 decay_accumulator = decay_accumulator * loop_decay_rate;
1655
1656 // Monitor for static sections.
1657 zero_motion_accumulator =
1658 MIN(zero_motion_accumulator,
1659 get_zero_motion_factor(&cpi->common, &next_frame));
1660
1661 // Break clause to detect very still sections after motion. For example,
1662 // a static image after a fade or other transition.
1663 if (detect_transition_to_still(twopass, i, 5, loop_decay_rate,
1664 last_loop_decay_rate)) {
1665 allow_alt_ref = 0;
1666 break;
1667 }
1668 }
1669
1670 // Calculate a boost number for this frame.
1671 boost_score += decay_accumulator * calc_frame_boost(cpi, &next_frame,
1672 this_frame_mv_in_out,
1673 GF_MAX_BOOST);
1674
1675 // Break out conditions.
1676 if (
1677 // Break at active_max_gf_interval unless almost totally static.
1678 (i >= active_max_gf_interval && (zero_motion_accumulator < 0.995)) ||
1679 (
1680 // Don't break out with a very short interval.
1681 (i > MIN_GF_INTERVAL) &&
1682 (!flash_detected) &&
1683 ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
1684 (abs_mv_in_out_accumulator > 3.0) ||
1685 (mv_in_out_accumulator < -2.0) ||
1686 ((boost_score - old_boost_score) < BOOST_FACTOR)))) {
1687 boost_score = old_boost_score;
1688 break;
1689 }
1690
1691 *this_frame = next_frame;
1692 old_boost_score = boost_score;
1693 }
1694
1695 twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
1696
1697 // Set the interval until the next gf.
1698 if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active)
1699 rc->baseline_gf_interval = i - 1;
1700 else
1701 rc->baseline_gf_interval = i;
1702
1703 // Only encode alt reference frame in temporal base layer. So
1704 // baseline_gf_interval should be multiple of a temporal layer group
1705 // (typically the frame distance between two base layer frames)
1706 if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
1707 int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
1708 int new_gf_interval = (rc->baseline_gf_interval + count) & (~count);
1709 int j;
1710 for (j = 0; j < new_gf_interval - rc->baseline_gf_interval; ++j) {
1711 if (EOF == input_stats(twopass, this_frame))
1712 break;
1713 gf_group_err += calculate_modified_err(twopass, oxcf, this_frame);
1714 }
1715 rc->baseline_gf_interval = new_gf_interval;
1716 }
1717
1718 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1719
1720 // Should we use the alternate reference frame.
1721 if (allow_alt_ref &&
1722 (i < cpi->oxcf.lag_in_frames) &&
1723 (i >= MIN_GF_INTERVAL)) {
1724 // Calculate the boost for alt ref.
1725 rc->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
1726 &b_boost);
1727 rc->source_alt_ref_pending = 1;
1728
1729 // Test to see if multi arf is appropriate.
1730 cpi->multi_arf_enabled =
1731 (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
1732 (zero_motion_accumulator < 0.995)) ? 1 : 0;
1733 } else {
1734 rc->gfu_boost = MAX((int)boost_score, 125);
1735 rc->source_alt_ref_pending = 0;
1736 }
1737
1738 // Reset the file position.
1739 reset_fpf_position(twopass, start_pos);
1740
1741 // Calculate the bits to be allocated to the gf/arf group as a whole
1742 gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
1743
1744 // Calculate the extra bits to be used for boosted frame(s)
1745 {
1746 int q = rc->last_q[INTER_FRAME];
1747 int boost =
1748 (rc->gfu_boost * gfboost_qadjust(q, cpi->common.bit_depth)) / 100;
1749
1750 // Set max and minimum boost and hence minimum allocation.
1751 boost = clamp(boost, 125, (rc->baseline_gf_interval + 1) * 200);
1752
1753 // Calculate the extra bits to be used for boosted frame(s)
1754 gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval,
1755 boost, gf_group_bits);
1756 }
1757
1758 // Adjust KF group bits and error remaining.
1759 twopass->kf_group_error_left -= (int64_t)gf_group_err;
1760
1761 // If this is an arf update we want to remove the score for the overlay
1762 // frame at the end which will usually be very cheap to code.
1763 // The overlay frame has already, in effect, been coded so we want to spread
1764 // the remaining bits among the other frames.
1765 // For normal GFs remove the score for the GF itself unless this is
1766 // also a key frame in which case it has already been accounted for.
1767 if (rc->source_alt_ref_pending) {
1768 gf_group_error_left = gf_group_err - mod_frame_err;
1769 } else if (cpi->common.frame_type != KEY_FRAME) {
1770 gf_group_error_left = gf_group_err - gf_first_frame_err;
1771 } else {
1772 gf_group_error_left = gf_group_err;
1773 }
1774
1775 // Allocate bits to each of the frames in the GF group.
1776 allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits);
1777
1778 // Reset the file position.
1779 reset_fpf_position(twopass, start_pos);
1780
1781 // Calculate a section intra ratio used in setting max loop filter.
1782 if (cpi->common.frame_type != KEY_FRAME) {
1783 twopass->section_intra_rating =
1784 calculate_section_intra_ratio(start_pos, twopass->stats_in_end,
1785 rc->baseline_gf_interval);
1786 }
1787 }
1788
1789 // TODO(PGW) Re-examine the use of II ration in this code in the light of#
1790 // changes elsewhere
1791 #define KF_II_MAX 128.0
test_candidate_kf(TWO_PASS * twopass,const FIRSTPASS_STATS * last_frame,const FIRSTPASS_STATS * this_frame,const FIRSTPASS_STATS * next_frame)1792 static int test_candidate_kf(TWO_PASS *twopass,
1793 const FIRSTPASS_STATS *last_frame,
1794 const FIRSTPASS_STATS *this_frame,
1795 const FIRSTPASS_STATS *next_frame) {
1796 int is_viable_kf = 0;
1797
1798 // Does the frame satisfy the primary criteria of a key frame?
1799 // If so, then examine how well it predicts subsequent frames.
1800 if ((this_frame->pcnt_second_ref < 0.10) &&
1801 (next_frame->pcnt_second_ref < 0.10) &&
1802 ((this_frame->pcnt_inter < 0.05) ||
1803 (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < 0.35) &&
1804 ((this_frame->intra_error /
1805 DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
1806 ((fabs(last_frame->coded_error - this_frame->coded_error) /
1807 DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > 0.40) ||
1808 (fabs(last_frame->intra_error - this_frame->intra_error) /
1809 DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > 0.40) ||
1810 ((next_frame->intra_error /
1811 DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) {
1812 int i;
1813 const FIRSTPASS_STATS *start_pos = twopass->stats_in;
1814 FIRSTPASS_STATS local_next_frame = *next_frame;
1815 double boost_score = 0.0;
1816 double old_boost_score = 0.0;
1817 double decay_accumulator = 1.0;
1818
1819 // Examine how well the key frame predicts subsequent frames.
1820 for (i = 0; i < 16; ++i) {
1821 double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error /
1822 DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
1823
1824 if (next_iiratio > KF_II_MAX)
1825 next_iiratio = KF_II_MAX;
1826
1827 // Cumulative effect of decay in prediction quality.
1828 if (local_next_frame.pcnt_inter > 0.85)
1829 decay_accumulator *= local_next_frame.pcnt_inter;
1830 else
1831 decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
1832
1833 // Keep a running total.
1834 boost_score += (decay_accumulator * next_iiratio);
1835
1836 // Test various breakout clauses.
1837 if ((local_next_frame.pcnt_inter < 0.05) ||
1838 (next_iiratio < 1.5) ||
1839 (((local_next_frame.pcnt_inter -
1840 local_next_frame.pcnt_neutral) < 0.20) &&
1841 (next_iiratio < 3.0)) ||
1842 ((boost_score - old_boost_score) < 3.0) ||
1843 (local_next_frame.intra_error < 200)) {
1844 break;
1845 }
1846
1847 old_boost_score = boost_score;
1848
1849 // Get the next frame details
1850 if (EOF == input_stats(twopass, &local_next_frame))
1851 break;
1852 }
1853
1854 // If there is tolerable prediction for at least the next 3 frames then
1855 // break out else discard this potential key frame and move on
1856 if (boost_score > 30.0 && (i > 3)) {
1857 is_viable_kf = 1;
1858 } else {
1859 // Reset the file position
1860 reset_fpf_position(twopass, start_pos);
1861
1862 is_viable_kf = 0;
1863 }
1864 }
1865
1866 return is_viable_kf;
1867 }
1868
find_next_key_frame(VP9_COMP * cpi,FIRSTPASS_STATS * this_frame)1869 static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
1870 int i, j;
1871 RATE_CONTROL *const rc = &cpi->rc;
1872 TWO_PASS *const twopass = &cpi->twopass;
1873 GF_GROUP *const gf_group = &twopass->gf_group;
1874 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1875 const FIRSTPASS_STATS first_frame = *this_frame;
1876 const FIRSTPASS_STATS *const start_position = twopass->stats_in;
1877 FIRSTPASS_STATS next_frame;
1878 FIRSTPASS_STATS last_frame;
1879 int kf_bits = 0;
1880 int loop_decay_counter = 0;
1881 double decay_accumulator = 1.0;
1882 double av_decay_accumulator = 0.0;
1883 double zero_motion_accumulator = 1.0;
1884 double boost_score = 0.0;
1885 double kf_mod_err = 0.0;
1886 double kf_group_err = 0.0;
1887 double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
1888
1889 vp9_zero(next_frame);
1890
1891 cpi->common.frame_type = KEY_FRAME;
1892
1893 // Reset the GF group data structures.
1894 vp9_zero(*gf_group);
1895
1896 // Is this a forced key frame by interval.
1897 rc->this_key_frame_forced = rc->next_key_frame_forced;
1898
1899 // Clear the alt ref active flag and last group multi arf flags as they
1900 // can never be set for a key frame.
1901 rc->source_alt_ref_active = 0;
1902 cpi->multi_arf_last_grp_enabled = 0;
1903
1904 // KF is always a GF so clear frames till next gf counter.
1905 rc->frames_till_gf_update_due = 0;
1906
1907 rc->frames_to_key = 1;
1908
1909 twopass->kf_group_bits = 0; // Total bits available to kf group
1910 twopass->kf_group_error_left = 0; // Group modified error score.
1911
1912 kf_mod_err = calculate_modified_err(twopass, oxcf, this_frame);
1913
1914 // Find the next keyframe.
1915 i = 0;
1916 while (twopass->stats_in < twopass->stats_in_end &&
1917 rc->frames_to_key < cpi->oxcf.key_freq) {
1918 // Accumulate kf group error.
1919 kf_group_err += calculate_modified_err(twopass, oxcf, this_frame);
1920
1921 // Load the next frame's stats.
1922 last_frame = *this_frame;
1923 input_stats(twopass, this_frame);
1924
1925 // Provided that we are not at the end of the file...
1926 if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
1927 double loop_decay_rate;
1928
1929 // Check for a scene cut.
1930 if (test_candidate_kf(twopass, &last_frame, this_frame,
1931 twopass->stats_in))
1932 break;
1933
1934 // How fast is the prediction quality decaying?
1935 loop_decay_rate = get_prediction_decay_rate(&cpi->common,
1936 twopass->stats_in);
1937
1938 // We want to know something about the recent past... rather than
1939 // as used elsewhere where we are concerned with decay in prediction
1940 // quality since the last GF or KF.
1941 recent_loop_decay[i % 8] = loop_decay_rate;
1942 decay_accumulator = 1.0;
1943 for (j = 0; j < 8; ++j)
1944 decay_accumulator *= recent_loop_decay[j];
1945
1946 // Special check for transition or high motion followed by a
1947 // static scene.
1948 if (detect_transition_to_still(twopass, i, cpi->oxcf.key_freq - i,
1949 loop_decay_rate, decay_accumulator))
1950 break;
1951
1952 // Step on to the next frame.
1953 ++rc->frames_to_key;
1954
1955 // If we don't have a real key frame within the next two
1956 // key_freq intervals then break out of the loop.
1957 if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq)
1958 break;
1959 } else {
1960 ++rc->frames_to_key;
1961 }
1962 ++i;
1963 }
1964
1965 // If there is a max kf interval set by the user we must obey it.
1966 // We already breakout of the loop above at 2x max.
1967 // This code centers the extra kf if the actual natural interval
1968 // is between 1x and 2x.
1969 if (cpi->oxcf.auto_key &&
1970 rc->frames_to_key > cpi->oxcf.key_freq) {
1971 FIRSTPASS_STATS tmp_frame = first_frame;
1972
1973 rc->frames_to_key /= 2;
1974
1975 // Reset to the start of the group.
1976 reset_fpf_position(twopass, start_position);
1977
1978 kf_group_err = 0;
1979
1980 // Rescan to get the correct error data for the forced kf group.
1981 for (i = 0; i < rc->frames_to_key; ++i) {
1982 kf_group_err += calculate_modified_err(twopass, oxcf, &tmp_frame);
1983 input_stats(twopass, &tmp_frame);
1984 }
1985 rc->next_key_frame_forced = 1;
1986 } else if (twopass->stats_in == twopass->stats_in_end ||
1987 rc->frames_to_key >= cpi->oxcf.key_freq) {
1988 rc->next_key_frame_forced = 1;
1989 } else {
1990 rc->next_key_frame_forced = 0;
1991 }
1992
1993 if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
1994 int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
1995 int new_frame_to_key = (rc->frames_to_key + count) & (~count);
1996 int j;
1997 for (j = 0; j < new_frame_to_key - rc->frames_to_key; ++j) {
1998 if (EOF == input_stats(twopass, this_frame))
1999 break;
2000 kf_group_err += calculate_modified_err(twopass, oxcf, this_frame);
2001 }
2002 rc->frames_to_key = new_frame_to_key;
2003 }
2004
2005 // Special case for the last key frame of the file.
2006 if (twopass->stats_in >= twopass->stats_in_end) {
2007 // Accumulate kf group error.
2008 kf_group_err += calculate_modified_err(twopass, oxcf, this_frame);
2009 }
2010
2011 // Calculate the number of bits that should be assigned to the kf group.
2012 if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
2013 // Maximum number of bits for a single normal frame (not key frame).
2014 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
2015
2016 // Maximum number of bits allocated to the key frame group.
2017 int64_t max_grp_bits;
2018
2019 // Default allocation based on bits left and relative
2020 // complexity of the section.
2021 twopass->kf_group_bits = (int64_t)(twopass->bits_left *
2022 (kf_group_err / twopass->modified_error_left));
2023
2024 // Clip based on maximum per frame rate defined by the user.
2025 max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
2026 if (twopass->kf_group_bits > max_grp_bits)
2027 twopass->kf_group_bits = max_grp_bits;
2028 } else {
2029 twopass->kf_group_bits = 0;
2030 }
2031 twopass->kf_group_bits = MAX(0, twopass->kf_group_bits);
2032
2033 // Reset the first pass file position.
2034 reset_fpf_position(twopass, start_position);
2035
2036 // Scan through the kf group collating various stats used to determine
2037 // how many bits to spend on it.
2038 decay_accumulator = 1.0;
2039 boost_score = 0.0;
2040 for (i = 0; i < (rc->frames_to_key - 1); ++i) {
2041 if (EOF == input_stats(twopass, &next_frame))
2042 break;
2043
2044 // Monitor for static sections.
2045 zero_motion_accumulator =
2046 MIN(zero_motion_accumulator,
2047 get_zero_motion_factor(&cpi->common, &next_frame));
2048
2049 // Not all frames in the group are necessarily used in calculating boost.
2050 if ((i <= rc->max_gf_interval) ||
2051 ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) {
2052 const double frame_boost =
2053 calc_frame_boost(cpi, this_frame, 0, KF_MAX_BOOST);
2054
2055 // How fast is prediction quality decaying.
2056 if (!detect_flash(twopass, 0)) {
2057 const double loop_decay_rate =
2058 get_prediction_decay_rate(&cpi->common, &next_frame);
2059 decay_accumulator *= loop_decay_rate;
2060 decay_accumulator = MAX(decay_accumulator, MIN_DECAY_FACTOR);
2061 av_decay_accumulator += decay_accumulator;
2062 ++loop_decay_counter;
2063 }
2064 boost_score += (decay_accumulator * frame_boost);
2065 }
2066 }
2067 av_decay_accumulator /= (double)loop_decay_counter;
2068
2069 reset_fpf_position(twopass, start_position);
2070
2071 // Store the zero motion percentage
2072 twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
2073
2074 // Calculate a section intra ratio used in setting max loop filter.
2075 twopass->section_intra_rating =
2076 calculate_section_intra_ratio(start_position, twopass->stats_in_end,
2077 rc->frames_to_key);
2078
2079 // Apply various clamps for min and max boost
2080 rc->kf_boost = (int)(av_decay_accumulator * boost_score);
2081 rc->kf_boost = MAX(rc->kf_boost, (rc->frames_to_key * 3));
2082 rc->kf_boost = MAX(rc->kf_boost, MIN_KF_BOOST);
2083
2084 // Work out how many bits to allocate for the key frame itself.
2085 kf_bits = calculate_boost_bits((rc->frames_to_key - 1),
2086 rc->kf_boost, twopass->kf_group_bits);
2087
2088 twopass->kf_group_bits -= kf_bits;
2089
2090 // Save the bits to spend on the key frame.
2091 gf_group->bit_allocation[0] = kf_bits;
2092 gf_group->update_type[0] = KF_UPDATE;
2093 gf_group->rf_level[0] = KF_STD;
2094
2095 // Note the total error score of the kf group minus the key frame itself.
2096 twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
2097
2098 // Adjust the count of total modified error left.
2099 // The count of bits left is adjusted elsewhere based on real coded frame
2100 // sizes.
2101 twopass->modified_error_left -= kf_group_err;
2102 }
2103
2104 // For VBR...adjustment to the frame target based on error from previous frames
vbr_rate_correction(int * this_frame_target,const int64_t vbr_bits_off_target)2105 void vbr_rate_correction(int * this_frame_target,
2106 const int64_t vbr_bits_off_target) {
2107 int max_delta = (*this_frame_target * 15) / 100;
2108
2109 // vbr_bits_off_target > 0 means we have extra bits to spend
2110 if (vbr_bits_off_target > 0) {
2111 *this_frame_target +=
2112 (vbr_bits_off_target > max_delta) ? max_delta
2113 : (int)vbr_bits_off_target;
2114 } else {
2115 *this_frame_target -=
2116 (vbr_bits_off_target < -max_delta) ? max_delta
2117 : (int)-vbr_bits_off_target;
2118 }
2119 }
2120
2121 // Define the reference buffers that will be updated post encode.
configure_buffer_updates(VP9_COMP * cpi)2122 void configure_buffer_updates(VP9_COMP *cpi) {
2123 TWO_PASS *const twopass = &cpi->twopass;
2124
2125 cpi->rc.is_src_frame_alt_ref = 0;
2126 switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
2127 case KF_UPDATE:
2128 cpi->refresh_last_frame = 1;
2129 cpi->refresh_golden_frame = 1;
2130 cpi->refresh_alt_ref_frame = 1;
2131 break;
2132 case LF_UPDATE:
2133 cpi->refresh_last_frame = 1;
2134 cpi->refresh_golden_frame = 0;
2135 cpi->refresh_alt_ref_frame = 0;
2136 break;
2137 case GF_UPDATE:
2138 cpi->refresh_last_frame = 1;
2139 cpi->refresh_golden_frame = 1;
2140 cpi->refresh_alt_ref_frame = 0;
2141 break;
2142 case OVERLAY_UPDATE:
2143 cpi->refresh_last_frame = 0;
2144 cpi->refresh_golden_frame = 1;
2145 cpi->refresh_alt_ref_frame = 0;
2146 cpi->rc.is_src_frame_alt_ref = 1;
2147 break;
2148 case ARF_UPDATE:
2149 cpi->refresh_last_frame = 0;
2150 cpi->refresh_golden_frame = 0;
2151 cpi->refresh_alt_ref_frame = 1;
2152 break;
2153 default:
2154 assert(0);
2155 break;
2156 }
2157 if (is_two_pass_svc(cpi)) {
2158 if (cpi->svc.temporal_layer_id > 0) {
2159 cpi->refresh_last_frame = 0;
2160 cpi->refresh_golden_frame = 0;
2161 }
2162 if (cpi->svc.layer_context[cpi->svc.spatial_layer_id].gold_ref_idx < 0)
2163 cpi->refresh_golden_frame = 0;
2164 if (cpi->alt_ref_source == NULL)
2165 cpi->refresh_alt_ref_frame = 0;
2166 }
2167 }
2168
2169
vp9_rc_get_second_pass_params(VP9_COMP * cpi)2170 void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
2171 VP9_COMMON *const cm = &cpi->common;
2172 RATE_CONTROL *const rc = &cpi->rc;
2173 TWO_PASS *const twopass = &cpi->twopass;
2174 GF_GROUP *const gf_group = &twopass->gf_group;
2175 int frames_left;
2176 FIRSTPASS_STATS this_frame;
2177 FIRSTPASS_STATS this_frame_copy;
2178
2179 int target_rate;
2180 LAYER_CONTEXT *const lc = is_two_pass_svc(cpi) ?
2181 &cpi->svc.layer_context[cpi->svc.spatial_layer_id] : 0;
2182
2183 if (lc != NULL) {
2184 frames_left = (int)(twopass->total_stats.count -
2185 lc->current_video_frame_in_layer);
2186 } else {
2187 frames_left = (int)(twopass->total_stats.count -
2188 cm->current_video_frame);
2189 }
2190
2191 if (!twopass->stats_in)
2192 return;
2193
2194 // If this is an arf frame then we dont want to read the stats file or
2195 // advance the input pointer as we already have what we need.
2196 if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
2197 int target_rate;
2198 configure_buffer_updates(cpi);
2199 target_rate = gf_group->bit_allocation[gf_group->index];
2200 target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
2201 rc->base_frame_target = target_rate;
2202
2203 // Correction to rate target based on prior over or under shoot.
2204 if (cpi->oxcf.rc_mode == VPX_VBR)
2205 vbr_rate_correction(&target_rate, rc->vbr_bits_off_target);
2206
2207 vp9_rc_set_frame_target(cpi, target_rate);
2208 cm->frame_type = INTER_FRAME;
2209
2210 if (lc != NULL) {
2211 if (cpi->svc.spatial_layer_id == 0) {
2212 lc->is_key_frame = 0;
2213 } else {
2214 lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
2215
2216 if (lc->is_key_frame)
2217 cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
2218 }
2219 }
2220
2221 return;
2222 }
2223
2224 vp9_clear_system_state();
2225
2226 if (cpi->oxcf.rc_mode == VPX_Q) {
2227 twopass->active_worst_quality = cpi->oxcf.cq_level;
2228 } else if (cm->current_video_frame == 0 ||
2229 (lc != NULL && lc->current_video_frame_in_layer == 0)) {
2230 // Special case code for first frame.
2231 const int section_target_bandwidth = (int)(twopass->bits_left /
2232 frames_left);
2233 const int tmp_q = get_twopass_worst_quality(cpi, &twopass->total_left_stats,
2234 section_target_bandwidth);
2235 twopass->active_worst_quality = tmp_q;
2236 rc->ni_av_qi = tmp_q;
2237 rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth);
2238 }
2239 vp9_zero(this_frame);
2240 if (EOF == input_stats(twopass, &this_frame))
2241 return;
2242
2243 // Local copy of the current frame's first pass stats.
2244 this_frame_copy = this_frame;
2245
2246 // Keyframe and section processing.
2247 if (rc->frames_to_key == 0 ||
2248 (cpi->frame_flags & FRAMEFLAGS_KEY)) {
2249 // Define next KF group and assign bits to it.
2250 find_next_key_frame(cpi, &this_frame_copy);
2251 } else {
2252 cm->frame_type = INTER_FRAME;
2253 }
2254
2255 if (lc != NULL) {
2256 if (cpi->svc.spatial_layer_id == 0) {
2257 lc->is_key_frame = (cm->frame_type == KEY_FRAME);
2258 if (lc->is_key_frame) {
2259 cpi->ref_frame_flags &=
2260 (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
2261 lc->frames_from_key_frame = 0;
2262 }
2263 } else {
2264 cm->frame_type = INTER_FRAME;
2265 lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
2266
2267 if (lc->is_key_frame) {
2268 cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
2269 lc->frames_from_key_frame = 0;
2270 }
2271 }
2272 }
2273
2274 // Define a new GF/ARF group. (Should always enter here for key frames).
2275 if (rc->frames_till_gf_update_due == 0) {
2276 define_gf_group(cpi, &this_frame_copy);
2277
2278 if (twopass->gf_zeromotion_pct > 995) {
2279 // As long as max_thresh for encode breakout is small enough, it is ok
2280 // to enable it for show frame, i.e. set allow_encode_breakout to
2281 // ENCODE_BREAKOUT_LIMITED.
2282 if (!cm->show_frame)
2283 cpi->allow_encode_breakout = ENCODE_BREAKOUT_DISABLED;
2284 else
2285 cpi->allow_encode_breakout = ENCODE_BREAKOUT_LIMITED;
2286 }
2287
2288 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2289 if (lc != NULL)
2290 cpi->refresh_golden_frame = 1;
2291
2292 #if ARF_STATS_OUTPUT
2293 {
2294 FILE *fpfile;
2295 fpfile = fopen("arf.stt", "a");
2296 ++arf_count;
2297 fprintf(fpfile, "%10d %10d %10d %10ld\n",
2298 cm->current_video_frame, rc->kf_boost, arf_count, rc->gfu_boost);
2299
2300 fclose(fpfile);
2301 }
2302 #endif
2303 }
2304
2305 configure_buffer_updates(cpi);
2306
2307 target_rate = gf_group->bit_allocation[gf_group->index];
2308 if (cpi->common.frame_type == KEY_FRAME)
2309 target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
2310 else
2311 target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
2312
2313 rc->base_frame_target = target_rate;
2314
2315 // Correction to rate target based on prior over or under shoot.
2316 if (cpi->oxcf.rc_mode == VPX_VBR)
2317 vbr_rate_correction(&target_rate, rc->vbr_bits_off_target);
2318
2319 vp9_rc_set_frame_target(cpi, target_rate);
2320
2321 // Update the total stats remaining structure.
2322 subtract_stats(&twopass->total_left_stats, &this_frame);
2323 }
2324
vp9_twopass_postencode_update(VP9_COMP * cpi)2325 void vp9_twopass_postencode_update(VP9_COMP *cpi) {
2326 TWO_PASS *const twopass = &cpi->twopass;
2327 RATE_CONTROL *const rc = &cpi->rc;
2328
2329 // VBR correction is done through rc->vbr_bits_off_target. Based on the
2330 // sign of this value, a limited % adjustment is made to the target rate
2331 // of subsequent frames, to try and push it back towards 0. This method
2332 // is designed to prevent extreme behaviour at the end of a clip
2333 // or group of frames.
2334 const int bits_used = rc->base_frame_target;
2335 rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
2336
2337 twopass->bits_left = MAX(twopass->bits_left - bits_used, 0);
2338
2339 if (cpi->common.frame_type != KEY_FRAME &&
2340 !vp9_is_upper_layer_key_frame(cpi)) {
2341 twopass->kf_group_bits -= bits_used;
2342 twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
2343 }
2344 twopass->kf_group_bits = MAX(twopass->kf_group_bits, 0);
2345
2346 // Increment the gf group index ready for the next frame.
2347 ++twopass->gf_group.index;
2348 }
2349